
Toward Validated Composition in Component-based Adaptive Middleware

Toward Validated Composition in
Component-based Adaptive Middleware

Annie Ressouche1 and Jean-Yves Tigli2 and Oscar Carrillo1

1Inria Sophia-Antipolis Méditerranée (Pulsar team)
2Nice Sophia Antipolis University and CNRS (Rainbow team)

SC 2011

Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Motivation

Challenge in adaptive middleware : How to manage
interaction and sometimes conflicts between multiple ambient
applications ?

Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Our Approach

1 Need for validation on the critical component

Introduction of a synchronous monitor to manage such a
component

2 Need for formal and sound composition operation

Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Our Approach

1 Need for validation on the critical component

Introduction of a synchronous monitor to manage such a
component

2 Need for formal and sound composition operation

Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Our Approach

1 Need for validation on the critical component

Introduction of a synchronous monitor to manage such a
component

2 Need for formal and sound composition operation

Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Our Approach

1 Need for validation on the critical component

Introduction of a synchronous monitor to manage such a
component

2 Need for formal and sound composition operation

Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Our Approach

1 Need for validation on the critical component

Introduction of a synchronous monitor to manage such a
component

2 Need for formal and sound composition operation

Synchronous composition of monitors

Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Our Approach

1 Need for validation on the critical component

Introduction of a synchronous monitor to manage such a
component

2 Need for formal and sound composition operation

Synchronous composition of monitors

Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Outline

1 Introduction

2 Use case Introduction

3 Components with Validated Behaviors
Component Behavior as Synchronous Model
Synchronous Monitors
Component Behavior Validation

4 Synchronous Monitor Composition
Multiple Access to Critical Components
Synchronous Monitor Composition
Composition and Validation

5 Practical Issues
WComp Middleware
WComp Synchronous Monitor Specification
Use Case Specification
Use Case Monitor Composition
Use Case Validation
Use case Implementation in WComp

6 Future Work

Toward Validated Composition in Component-based Adaptive Middleware

Use case Introduction

Monitor old adults in an instrumented home
Use case : observe kitchen usage with :

1 a camera sensor (to locate the person)
2 a fridge sensor (contact sensor on the door)
3 a timer sensor
4 a posture sensor (accelerometers)

Goal : send the appropriate alarm (warning, weak alarm,
strong alarm

Toward Validated Composition in Component-based Adaptive Middleware

Use case Introduction

Monitor old adults in an instrumented home
Use case : observe kitchen usage with :

1 a camera sensor (to locate the person)
2 a fridge sensor (contact sensor on the door)
3 a timer sensor
4 a posture sensor (accelerometers)

Goal : send the appropriate alarm (warning, weak alarm,
strong alarm

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior as Synchronous Model

Synchronous Modeling

time model : monitors listen to events and provide output
events in reaction They could be response time sensitive and
should support formal validation(⇒ determinism)

component behavior models = synchronous models

Synchronous models can be expressed as Mealy Machine

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior as Synchronous Model

Synchronous Modeling

time model : monitors listen to events and provide output
events in reaction They could be response time sensitive and
should support formal validation(⇒ determinism)

component behavior models = synchronous models

Synchronous models can be expressed as Mealy Machine

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior as Synchronous Model

Synchronous Modeling

time model : monitors listen to events and provide output
events in reaction They could be response time sensitive and
should support formal validation(⇒ determinism)

component behavior models = synchronous models

Synchronous models can be expressed as Mealy Machine

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior as Synchronous Model

Synchronous Modeling

time model : monitors listen to events and provide output
events in reaction They could be response time sensitive and
should support formal validation(⇒ determinism)

component behavior models = synchronous models

Synchronous models can be expressed as Mealy Machine

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior as Synchronous Model

Synchronous Modeling

time model : monitors listen to events and provide output
events in reaction They could be response time sensitive and
should support formal validation(⇒ determinism)

component behavior models = synchronous models
Synchronous models respect the synchronous hyothesis

Succession of reactions ⇒ logical time
Broadcasting of events (non blocking communication)
Reactions are atomic : input and resulting output events are
simultaneous
Synchronous models are deterministic

Synchronous models can be expressed as Mealy Machine

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior as Synchronous Model

Synchronous Modeling

time model : monitors listen to events and provide output
events in reaction They could be response time sensitive and
should support formal validation(⇒ determinism)

component behavior models = synchronous models
Synchronous models respect the synchronous hyothesis

Succession of reactions ⇒ logical time
Broadcasting of events (non blocking communication)
Reactions are atomic : input and resulting output events are
simultaneous
Synchronous models are deterministic

Synchronous models can be expressed as Mealy Machine

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior as Synchronous Model

Mealy machines

both finite automata and synchronous models

model-checking techniques apply

sitting+standing/

warning3

sitting+standing/

warning3

!standing.!sitting.!lying

!standing.!sitting.!lying

lying/weak_alarm3

lying/weak_alarm3

q_init < Q, qinit , I ,O, T , λ > :

Q : finite set of states

qinit ∈ Q : initial state

T ⊆ Q × Q : transition
relation

λ : T × IB 7→ 2Oε : labeling
function

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Synchronous Monitors

Synchronous Monitors

Critical components (C) will provide a synchronous model of
their behaviors as a Mealy machine (M)

If M =< Q, qinit , I ,O, T , λ > and IC is the input event set of
C , there is an injective mapping : in : O 7→ IC

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Synchronous Monitors

Synchronous Monitors

Critical components (C) will provide a synchronous model of
their behaviors as a Mealy machine (M)

If M =< Q, qinit , I ,O, T , λ > and IC is the input event set of
C , there is an injective mapping : in : O 7→ IC

warning

weak_alarm

strong_alarm

alarm

posture

monitor
from

synchronous

lying

standing
sitting warning3

weak_alarm3

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Synchronous Monitors

Synchronous Monitors

Critical components (C) will provide a synchronous model of
their behaviors as a Mealy machine (M)

If M =< Q, qinit , I ,O, T , λ > and IC is the input event set of
C , there is an injective mapping : in : O 7→ IC

sitting+standing/

warning3

sitting+standing/

warning3

!standing.!sitting.!lying

!standing.!sitting.!lying

lying/weak_alarm3

lying/weak_alarm3

q_init

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Components with Validated Behaviors

Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Multiple Access to Critical Components

A critical component may have multiple synchronous monitors :

warning
in_kitchen from

sitting

lying posture

monitor
from

camera

warning1synchronous
monitorclose_fridge

fridge

fridge_opened

one_minute

standing
warning3

weak_alarm3

weak_alarm

strong_alarm

alarm

synchronous

synchronous
monitor
from

weak_alarm2

warning2

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Synchronous Monitor Composition

Composition under constraints

warning

weak_alarm

strong_alarm

alarm

synchronous

from posture
monitor

fridgefrom

synchronous

monitor
from camera

monitor

synchronous

ζ

sitting

lying

standing

one_minute

fridge_opened

in_kitchen

close_fridge

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Synchronous Monitor Composition

Composition with constraints

synchronous product (⊗)

constraint function (ζ)

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Synchronous Monitor Composition

Composition with constraints

synchronous product (⊗)

constraint function (ζ)

M1 =< Q1, q
init
1 , I1,O1, T1, λ1 >

M2 =< Q2, q
init
2 , I2,O2, T2, λ2 >

M1 ⊗M2 = < Q1 × Q2, (q
init
1 , qinit

2), I1 ∪ I2,O1 ∪ O2, T , λ > :

T = {((q1, q2), (q′1, q
′
2)) | (q1, q

′
1) ∈ T1, (q2, q

′
2) ∈ T2} ;

λ(((q1, q2), (q′1, q
′
2)), i1 · i2) = o1 ∪ o2) if there is

(q1, q
′
1) ∈ T1 | λ1((q1, q

′
1), i1) = o1) and

(q2, q
′
2) ∈ T2 | λ2((q2, q

′
2), i2) = o2)

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Synchronous Monitor Composition

Composition with constraints

synchronous product (⊗)

constraint function (ζ)

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Synchronous Monitor Composition

Composition with constraints

synchronous product (⊗)

constraint function (ζ)

1 Define the output set O of the composition monitor such that
there is an injection in : O 7→ IC

2 Define a surjective function γ : O1 ∪ O2 ∪ O1 × O2 7→ Oε

according to the respective injection from monitor output
events and IC :

∀o1 ∈ O1, γ(o1) = o and in(o) = in1(o1)
∀o2 ∈ O2, γ(o2) = o and in(o) = in2(o2)

3 Deduce the constraint function ζ : 2O1∪O2 7→ 2O :
∀o ∈ 2O1∪O2 , if ∃o1, o2 ∈ o such that γ(o1, o2) 6= ε then
γ(o1, o2) ∈ ζ(o) ; else γ(o1) ∈ ζ(o) and γ(o2) ∈ ζ(o)

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Synchronous Monitor Composition

Composition with constraints

synchronous product (⊗)

constraint function (ζ)

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

∀CTL∗ formula preservation

Goal : ensure that ∀CTL∗ properties are preserved through
composition under constraints ;

Means :
1 Show that K(M1⊗ |ζ M2) (Kζ) approximates K(M1) (K1) ;
2 Define a translation τζ to map ∀CTL∗ properties related to M1

to properties related to (M1⊗ |ζ M2) ;
3 Prove that K1 |= φ⇒ Kζ |= τζ(φ) ;
4 Deduce the result for M1 and Mζ .

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

∀CTL∗ formula preservation

Goal : ensure that ∀CTL∗ properties are preserved through
composition under constraints ;

Means :
1 Show that K(M1⊗ |ζ M2) (Kζ) approximates K(M1) (K1) ;
2 Define a translation τζ to map ∀CTL∗ properties related to M1

to properties related to (M1⊗ |ζ M2) ;
3 Prove that K1 |= φ⇒ Kζ |= τζ(φ) ;
4 Deduce the result for M1 and Mζ .

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

∀CTL∗ formula preservation

Goal : ensure that ∀CTL∗ properties are preserved through
composition under constraints ;

Means :
1 Show that K(M1⊗ |ζ M2) (Kζ) approximates K(M1) (K1) ;
2 Define a translation τζ to map ∀CTL∗ properties related to M1

to properties related to (M1⊗ |ζ M2) ;
3 Prove that K1 |= φ⇒ Kζ |= τζ(φ) ;
4 Deduce the result for M1 and Mζ .

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

∀CTL∗ formula preservation

Goal : ensure that ∀CTL∗ properties are preserved through
composition under constraints ;

Means :
1 Show that K(M1⊗ |ζ M2) (Kζ) approximates K(M1) (K1) ;
2 Define a translation τζ to map ∀CTL∗ properties related to M1

to properties related to (M1⊗ |ζ M2) ;
3 Prove that K1 |= φ⇒ Kζ |= τζ(φ) ;
4 Deduce the result for M1 and Mζ .

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

∀CTL∗ formula preservation

Goal : ensure that ∀CTL∗ properties are preserved through
composition under constraints ;

Means :
1 Show that K(M1⊗ |ζ M2) (Kζ) approximates K(M1) (K1) ;
2 Define a translation τζ to map ∀CTL∗ properties related to M1

to properties related to (M1⊗ |ζ M2) ;
3 Prove that K1 |= φ⇒ Kζ |= τζ(φ) ;
4 Deduce the result for M1 and Mζ .

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

∀CTL∗ formula preservation

Goal : ensure that ∀CTL∗ properties are preserved through
composition under constraints ;

Means :
1 Show that K(M1⊗ |ζ M2) (Kζ) approximates K(M1) (K1) ;
2 Define a translation τζ to map ∀CTL∗ properties related to M1

to properties related to (M1⊗ |ζ M2) ;
3 Prove that K1 |= φ⇒ Kζ |= τζ(φ) ;
4 Deduce the result for M1 and Mζ .

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

Lemma

Kζ approximates K1

Approximation

1 there is a surjective mapping ha : Aζ 7→ A1

2 there is a surjective mapping h : KQζ 7→ KQ1 such that
h(qζ) = q1 ⇒ ∀a1 ∈ L1(q1), ∃aζ ∈ Lζ(qζ) and ha(aζ) = a1.

3 qζ −→ q′ζ is a transition of Kζ then h(qζ) −→ h(q′ζ) is a
transition in K1

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

Definition
τζ :

τζ(true) = true ; τζ(false) = false

∀a1 ∈ A1, τζ(a1) =
∨

aζ∈Aζ

aζ | ha(a1) = aζ

extended to formulas according to logic syntax

Theorem

Let M1 and M2 be two Mealy machines and φ a ∀CTL∗ formula
related to M1, then M1 |= φ⇒ M1⊗ |ζ M2 |= τζ(φ)

Toward Validated Composition in Component-based Adaptive Middleware

Synchronous Monitor Composition

Composition and Validation

Definition
τζ :

τζ(true) = true ; τζ(false) = false

∀a1 ∈ A1, τζ(a1) =
∨

aζ∈Aζ

aζ | ha(a1) = aζ

extended to formulas according to logic syntax

Theorem

Let M1 and M2 be two Mealy machines and φ a ∀CTL∗ formula
related to M1, then M1 |= φ⇒ M1⊗ |ζ M2 |= τζ(φ)

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

WComp Middleware

WComp : our experimental middleware

WComp, middleware for
ubiquitous and ambient
computing

Based on services for devices
software infrastructure

Manage interactions
between devices at runtime
using a component-based
architecture and event flows

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

WComp Synchronous Monitor Specification

WComp Synchronous Monitor Specification
1 Lustre synchronous language to specify mealy machines :

respect of synchrony hypothesis
compilation generates mealy machines
synchronous product natural
constraint functions expressed as equations
well adapted to formal verification

2 Lesar model-checker to verify properties :

Bdd based model-checker
observers to express properties (in Lustre)

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

WComp Synchronous Monitor Specification

WComp Synchronous Monitor Specification
1 Lustre synchronous language to specify mealy machines :

respect of synchrony hypothesis
compilation generates mealy machines
synchronous product natural
constraint functions expressed as equations
well adapted to formal verification

2 Lesar model-checker to verify properties :

Bdd based model-checker
observers to express properties (in Lustre)

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

WComp Synchronous Monitor Specification

WComp Synchronous Monitor Specification
1 Lustre synchronous language to specify mealy machines :

respect of synchrony hypothesis
compilation generates mealy machines
synchronous product natural
constraint functions expressed as equations
well adapted to formal verification

2 Lesar model-checker to verify properties :
Bdd based model-checker
observers to express properties (in Lustre)

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use Case Specification

Use Case Implementation

warning
in_kitchen from

sitting

lying posture

monitor
from

camera

warning1synchronous
monitorclose_fridge

fridge

fridge_opened

one_minute

standing
warning3

weak_alarm3

weak_alarm

strong_alarm

alarm

synchronous

synchronous
monitor
from

weak_alarm2

warning2

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use Case Specification

node camera(in_kitchen,close_fridge:bool) returns(warning1:bool)

let warning1 = in_kitchen and close_fridge;

tel

node fridge(fridge_opened, one_minute: bool)

returns (warning2, weak_alarm2: bool);

let warning2= fridge_opened and not one_minute;

weak_alarm2= fridge_opened and one_minute;

tel

node posture(sitting, standing,lying:bool)

returns(warning3,weak_alarm3:bool)

let warning3 = (standing or sitting) and not lying;

weak_alarm3 = not standing and not sitting and lying;

tel

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use Case Monitor Composition

Use Case Implementation : monitor composition

warning

weak_alarm

strong_alarm

alarm

synchronous

from posture
monitor

fridgefrom

synchronous

monitor
from camera

monitor

synchronous

ζ

sitting

lying

standing

one_minute

fridge_opened

in_kitchen

close_fridge

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use Case Validation

node alarm_comp (close_fridge, fridge_opened, one_minute, standing,

sitting, lying, in_kitchen : bool)

returns (warning, weak_alarm, strong_alarm : bool)

var warning1, warning2, warning3, weak_alarm2, weak_alarm3 : bool;

let warning1 = camera(in_kitchen, close_fridge);

(warning2, weak_alarm2) = fridge(fridge_opened, one_minute);

(warning3, weak_alarm3) = posture(standing, sitting, lying);

warning = warning1 or warning2 or warning3 and not weak_alarm2

and not weak_alarm3;

weak_alarm = weak_alarm2 xor weak_alarm3;

strong_alarm = weak_alarm2 and weak_alarm3;

tel

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use Case Validation

node verif (close_fridge, fridge_opened, one_minute, standing,

sitting, lying, in_kitchen : bool) returns (prop: bool)

var warning, weak_alarm, strong_alarm : bool;

let (warning, weak_alarm, strong_alarm) =

alarm_comp(close_fridge, fridge_opened, one_minute,

standing, sitting, lying, in_kitchen);

assert (not ((standing and lying) or (standing and sitting) or

(lying and sitting)));

prop = if (fridge_opened and one_minute and lying)

then strong_alarm else true;

tel

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use Case Validation

node verif (close_fridge, fridge_opened, one_minute, standing,

sitting, lying, in_kitchen : bool) returns (prop: bool)

var warning, weak_alarm, strong_alarm : bool;

let (warning, weak_alarm, strong_alarm) =

alarm_comp(close_fridge, fridge_opened, one_minute,

standing, sitting, lying, in_kitchen);

assert (not ((standing and lying) or (standing and sitting) or

(lying and sitting)));

prop = if (fridge_opened and one_minute and lying)

then strong_alarm else true;

tel

Property Preservation
In fridge synchronous monitor : fridge opened ⇒ warning2

τζ(warning2) = warning
In alarm comp monitor : fridge opened ⇒ warning

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use case Implementation in WComp

Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use case Implementation in WComp

SynComp tool offering :

facilities to design synchronous monitor and observers

automatic generation of WComp components for synchronous
monitors

Toward Validated Composition in Component-based Adaptive Middleware

Future Work

Future Work

1 Improve constraint function expression (default rules) to get
efficient adaptation

2 A dedicated language versus Lustre
3 Apply Abstract Interpretation methodology

To perform validation on complex value events
To strengthen runtime composition

4 Study how global properties can be decomposed into local
ones (assume-guarantee paradigm)

Toward Validated Composition in Component-based Adaptive Middleware

Future Work

Future Work

1 Improve constraint function expression (default rules) to get
efficient adaptation

2 A dedicated language versus Lustre
3 Apply Abstract Interpretation methodology

To perform validation on complex value events
To strengthen runtime composition

4 Study how global properties can be decomposed into local
ones (assume-guarantee paradigm)

Toward Validated Composition in Component-based Adaptive Middleware

Future Work

Future Work

1 Improve constraint function expression (default rules) to get
efficient adaptation

2 A dedicated language versus Lustre
3 Apply Abstract Interpretation methodology

To perform validation on complex value events
To strengthen runtime composition

4 Study how global properties can be decomposed into local
ones (assume-guarantee paradigm)

Toward Validated Composition in Component-based Adaptive Middleware

Future Work

Future Work

1 Improve constraint function expression (default rules) to get
efficient adaptation

2 A dedicated language versus Lustre
3 Apply Abstract Interpretation methodology

To perform validation on complex value events
To strengthen runtime composition

4 Study how global properties can be decomposed into local
ones (assume-guarantee paradigm)

Toward Validated Composition in Component-based Adaptive Middleware

Future Work

Kripke Structure

A Kripke structure K is a tuple : K =< Q,Q0,A,R, L > where :

Q is a finite set of states ;

Q0 ⊆ Q is the set of initial states ;

A is a finite set of atomic propositions ;

R ⊆ Q × Q is a transition relation that must be total : for
every state q ∈ Q, there is a state q′ such that R(q, q′) ;

L : S 7→ 2A is a labeling function that labels each state by the
set of atomic propositions true in that state.

return

Toward Validated Composition in Component-based Adaptive Middleware

Future Work

Definition

M1 =< Q1, q
init
1 , I1,O1, T1, λ1 >

M2 =< Q2, q
init
2 , I2,O2, T2, λ2 >

M1 ⊗M2 = < Q1 × Q2, (q
init
1 , qinit

2), I1 ∪ I2,O1 ∪ O2, T , λ > :

T = {((q1, q2), (q′1, q
′
2)) | (q1, q

′
1) ∈ T1, (q2, q

′
2) ∈ T2} ;

λ(((q1, q2), (q′1, q
′
2)), i1 · i2) = o1 ∪ o2) if there is

(q1, q
′
1) ∈ T1 | λ1((q1, q

′
1), i1) = o1) and

(q2, q
′
2) ∈ T2 | λ2((q2, q

′
2), i2) = o2)

return

Toward Validated Composition in Component-based Adaptive Middleware

Future Work

return

	Introduction
	Use case Introduction
	Components with Validated Behaviors
	Component Behavior as Synchronous Model
	Synchronous Monitors
	Component Behavior Validation

	Synchronous Monitor Composition
	Multiple Access to Critical Components
	Synchronous Monitor Composition
	Composition and Validation

	Practical Issues
	WComp Middleware
	WComp Synchronous Monitor Specification
	Use Case Specification
	Use Case Monitor Composition
	Use Case Validation
	Use case Implementation in WComp

	Future Work

