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Toward Validated Composition in Component-based Adaptive Middleware

Introduction

Motivation

Challenge in adaptive middleware : How to manage
interaction and sometimes conflicts between multiple ambient
applications ?
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Use case Introduction

Monitor old adults in an instrumented home
Use case : observe kitchen usage with :

1 a camera sensor ( to locate the person)
2 a fridge sensor (contact sensor on the door)
3 a timer sensor
4 a posture sensor ( accelerometers)

Goal : send the appropriate alarm (warning, weak alarm,
strong alarm
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events in reaction They could be response time sensitive and
should support formal validation(⇒ determinism)

component behavior models = synchronous models

Synchronous models can be expressed as Mealy Machine
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Components with Validated Behaviors

Component Behavior as Synchronous Model

Mealy machines

both finite automata and synchronous models

model-checking techniques apply

sitting+standing/

warning3

sitting+standing/

warning3

!standing.!sitting.!lying

!standing.!sitting.!lying

lying/weak_alarm3

lying/weak_alarm3

q_init < Q, qinit , I ,O, T , λ > :

Q : finite set of states

qinit ∈ Q : initial state

T ⊆ Q × Q : transition
relation

λ : T × IB 7→ 2Oε : labeling
function
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Synchronous Monitors

Critical components (C ) will provide a synchronous model of
their behaviors as a Mealy machine (M)

If M =< Q, qinit , I ,O, T , λ > and IC is the input event set of
C , there is an injective mapping : in : O 7→ IC
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warning

weak_alarm

strong_alarm

alarm

posture

monitor
from

synchronous

lying

standing
sitting warning3

weak_alarm3
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Critical components (C ) will provide a synchronous model of
their behaviors as a Mealy machine (M)

If M =< Q, qinit , I ,O, T , λ > and IC is the input event set of
C , there is an injective mapping : in : O 7→ IC

sitting+standing/

warning3

sitting+standing/

warning3

!standing.!sitting.!lying

!standing.!sitting.!lying

lying/weak_alarm3

lying/weak_alarm3

q_init
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Component Behavior Validation

Component Behavior Validation

model-checking techniques apply in our approach

properties = ∀CTL∗ formulas

formulas interpreted over Kripke structure
detail

M 7→ K(M).

Definition

M |= ψ iff K(M) |= ψ and iff each initial state of K(M) satifies ψ
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Synchronous Monitor Composition

Multiple Access to Critical Components

A critical component may have multiple synchronous monitors :

warning
in_kitchen from

sitting

lying posture

monitor
from

camera

warning1synchronous
monitorclose_fridge

fridge

fridge_opened

one_minute

standing
warning3

weak_alarm3

weak_alarm

strong_alarm

alarm

synchronous

synchronous
monitor
from

weak_alarm2

warning2
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Synchronous Monitor Composition

Synchronous Monitor Composition

Composition under constraints

warning

weak_alarm

strong_alarm

alarm

synchronous

from posture
monitor 

fridgefrom

synchronous

monitor 
from camera

monitor 

synchronous

ζ

sitting

lying

standing

one_minute

fridge_opened

in_kitchen

close_fridge
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Synchronous Monitor Composition

Composition with constraints

synchronous product (⊗)

constraint function (ζ)
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Synchronous Monitor Composition

Composition with constraints

synchronous product (⊗)

constraint function (ζ)

M1 =< Q1, q
init
1 , I1,O1, T1, λ1 >

M2 =< Q2, q
init
2 , I2,O2, T2, λ2 >

M1 ⊗M2 = < Q1 × Q2, (q
init
1 , qinit

2 ), I1 ∪ I2,O1 ∪ O2, T , λ > :

T = {((q1, q2), (q′1, q
′
2)) | (q1, q

′
1) ∈ T1, (q2, q

′
2) ∈ T2} ;

λ(((q1, q2), (q′1, q
′
2)), i1 · i2) = o1 ∪ o2) if there is

(q1, q
′
1) ∈ T1 | λ1((q1, q

′
1), i1) = o1) and

(q2, q
′
2) ∈ T2 | λ2((q2, q

′
2), i2) = o2)
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Synchronous Monitor Composition

Synchronous Monitor Composition

Composition with constraints

synchronous product (⊗)

constraint function (ζ)

1 Define the output set O of the composition monitor such that
there is an injection in : O 7→ IC

2 Define a surjective function γ : O1 ∪ O2 ∪ O1 × O2 7→ Oε

according to the respective injection from monitor output
events and IC :

∀o1 ∈ O1, γ(o1) = o and in(o) = in1(o1)
∀o2 ∈ O2, γ(o2) = o and in(o) = in2(o2)

3 Deduce the constraint function ζ : 2O1∪O2 7→ 2O :
∀o ∈ 2O1∪O2 , if ∃o1, o2 ∈ o such that γ(o1, o2) 6= ε then
γ(o1, o2) ∈ ζ(o) ; else γ(o1) ∈ ζ(o) and γ(o2) ∈ ζ(o)
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Synchronous Monitor Composition

Composition and Validation

∀CTL∗ formula preservation

Goal : ensure that ∀CTL∗ properties are preserved through
composition under constraints ;

Means :
1 Show that K(M1⊗ |ζ M2) (Kζ) approximates K(M1) (K1) ;
2 Define a translation τζ to map ∀CTL∗ properties related to M1

to properties related to (M1⊗ |ζ M2) ;
3 Prove that K1 |= φ⇒ Kζ |= τζ(φ) ;
4 Deduce the result for M1 and Mζ .
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Synchronous Monitor Composition

Composition and Validation

Lemma

Kζ approximates K1

Approximation

1 there is a surjective mapping ha : Aζ 7→ A1

2 there is a surjective mapping h : KQζ 7→ KQ1 such that
h(qζ) = q1 ⇒ ∀a1 ∈ L1(q1), ∃aζ ∈ Lζ(qζ) and ha(aζ) = a1.

3 qζ −→ q′ζ is a transition of Kζ then h(qζ) −→ h(q′ζ) is a
transition in K1
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Synchronous Monitor Composition

Composition and Validation

Definition
τζ :

τζ(true) = true ; τζ(false) = false

∀a1 ∈ A1, τζ(a1) =
∨

aζ∈Aζ

aζ | ha(a1) = aζ

extended to formulas according to logic syntax

Theorem

Let M1 and M2 be two Mealy machines and φ a ∀CTL∗ formula
related to M1, then M1 |= φ⇒ M1⊗ |ζ M2 |= τζ(φ)
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Practical Issues

WComp Middleware

WComp : our experimental middleware

WComp, middleware for
ubiquitous and ambient
computing

Based on services for devices
software infrastructure

Manage interactions
between devices at runtime
using a component-based
architecture and event flows
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Practical Issues

WComp Synchronous Monitor Specification

WComp Synchronous Monitor Specification
1 Lustre synchronous language to specify mealy machines :

respect of synchrony hypothesis
compilation generates mealy machines
synchronous product natural
constraint functions expressed as equations
well adapted to formal verification

2 Lesar model-checker to verify properties :

Bdd based model-checker
observers to express properties (in Lustre)
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Practical Issues

Use Case Specification

Use Case Implementation

warning
in_kitchen from

sitting

lying posture

monitor
from

camera

warning1synchronous
monitorclose_fridge

fridge

fridge_opened

one_minute

standing
warning3

weak_alarm3

weak_alarm

strong_alarm

alarm

synchronous

synchronous
monitor
from

weak_alarm2

warning2
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Practical Issues

Use Case Specification

node camera(in_kitchen,close_fridge:bool) returns(warning1:bool)

let warning1 = in_kitchen and close_fridge;

tel

node fridge(fridge_opened, one_minute: bool)

returns (warning2, weak_alarm2: bool);

let warning2= fridge_opened and not one_minute;

weak_alarm2= fridge_opened and one_minute;

tel

node posture(sitting, standing,lying:bool)

returns(warning3,weak_alarm3:bool)

let warning3 = (standing or sitting) and not lying;

weak_alarm3 = not standing and not sitting and lying;

tel
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Practical Issues

Use Case Monitor Composition

Use Case Implementation : monitor composition

warning

weak_alarm

strong_alarm

alarm

synchronous

from posture
monitor 

fridgefrom

synchronous

monitor 
from camera

monitor 

synchronous

ζ

sitting

lying

standing

one_minute

fridge_opened

in_kitchen

close_fridge
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Practical Issues

Use Case Validation

node alarm_comp (close_fridge, fridge_opened, one_minute, standing,

sitting, lying, in_kitchen : bool)

returns (warning, weak_alarm, strong_alarm : bool)

var warning1, warning2, warning3, weak_alarm2, weak_alarm3 : bool;

let warning1 = camera(in_kitchen, close_fridge);

(warning2, weak_alarm2) = fridge(fridge_opened, one_minute);

(warning3, weak_alarm3) = posture(standing, sitting, lying);

warning = warning1 or warning2 or warning3 and not weak_alarm2

and not weak_alarm3;

weak_alarm = weak_alarm2 xor weak_alarm3;

strong_alarm = weak_alarm2 and weak_alarm3;

tel
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Practical Issues

Use Case Validation

node verif (close_fridge, fridge_opened, one_minute, standing,

sitting, lying, in_kitchen : bool) returns (prop: bool)

var warning, weak_alarm, strong_alarm : bool;

let (warning, weak_alarm, strong_alarm) =

alarm_comp(close_fridge, fridge_opened, one_minute,

standing, sitting, lying, in_kitchen);

assert (not ((standing and lying) or (standing and sitting) or

(lying and sitting)));

prop = if (fridge_opened and one_minute and lying)

then strong_alarm else true;

tel



Toward Validated Composition in Component-based Adaptive Middleware

Practical Issues

Use Case Validation

node verif (close_fridge, fridge_opened, one_minute, standing,

sitting, lying, in_kitchen : bool) returns (prop: bool)

var warning, weak_alarm, strong_alarm : bool;

let (warning, weak_alarm, strong_alarm) =

alarm_comp(close_fridge, fridge_opened, one_minute,

standing, sitting, lying, in_kitchen);

assert (not ((standing and lying) or (standing and sitting) or

(lying and sitting)));

prop = if (fridge_opened and one_minute and lying)

then strong_alarm else true;

tel

Property Preservation
In fridge synchronous monitor : fridge opened ⇒ warning2

τζ(warning2) = warning
In alarm comp monitor : fridge opened ⇒ warning
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Practical Issues

Use case Implementation in WComp
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Practical Issues

Use case Implementation in WComp

SynComp tool offering :

facilities to design synchronous monitor and observers

automatic generation of WComp components for synchronous
monitors
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Future Work

Future Work

1 Improve constraint function expression (default rules) to get
efficient adaptation

2 A dedicated language versus Lustre
3 Apply Abstract Interpretation methodology

To perform validation on complex value events
To strengthen runtime composition

4 Study how global properties can be decomposed into local
ones (assume-guarantee paradigm)
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Future Work

Kripke Structure

A Kripke structure K is a tuple : K =< Q,Q0,A,R, L > where :

Q is a finite set of states ;

Q0 ⊆ Q is the set of initial states ;

A is a finite set of atomic propositions ;

R ⊆ Q × Q is a transition relation that must be total : for
every state q ∈ Q, there is a state q′ such that R(q, q′) ;

L : S 7→ 2A is a labeling function that labels each state by the
set of atomic propositions true in that state.

return
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Future Work

Definition

M1 =< Q1, q
init
1 , I1,O1, T1, λ1 >

M2 =< Q2, q
init
2 , I2,O2, T2, λ2 >

M1 ⊗M2 = < Q1 × Q2, (q
init
1 , qinit

2 ), I1 ∪ I2,O1 ∪ O2, T , λ > :

T = {((q1, q2), (q′1, q
′
2)) | (q1, q

′
1) ∈ T1, (q2, q

′
2) ∈ T2} ;

λ(((q1, q2), (q′1, q
′
2)), i1 · i2) = o1 ∪ o2) if there is

(q1, q
′
1) ∈ T1 | λ1((q1, q

′
1), i1) = o1) and

(q2, q
′
2) ∈ T2 | λ2((q2, q

′
2), i2) = o2)

return
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