Synchronous Languages:
!'_ Embedded Critical Real Time Software

A. Ressouche*

(*) Inria Sophia Antipolis-Méditerranée

14/12/2011 Critical Software

Embedded Systems

Embedded computers = computer systems in which
the computer is just one functional element of a
real-time system and is not a stand-alone

computing machine.
Example:

Real-Time System

; Operator

_ﬂ =
Industrial Computer
Sensors Actuators

G——
mﬁ Commands, setpoints

14/12/2011 Critical Software

measurements,

i Embedded Software

o Interconnected devices that contain software ,
hardware, electronics,... components.

a A/l in all Computing units are just another brick in
the wall. (embedded computers)

a Examples: automotive, avionics, cellular phones,
smart sensors,... complex digital circuits (System

on Chip).

14/12/2011 Critical Software

i Critical Software

a Roughly speaking a critical system is a
system whose failure could have serious
consequences

a Nuclear technology

o Transportation
aAutomotive
aTrain
2 Avionics

14/12/2011 Critical Software

i Critical Software (2)

o In addition , other consequences are
relevant to determine the critical aspect of
a software:
QFinancial aspect

= Loosing of equipment, bug correction
= Equipment callback (automotive)

QBad advertising
= Intel famous bug

14/12/2011 Critical Software

Software Classification

Example of the aeronautics norm
DO178B:

A Catastrophic (human life
loss)

Dangerous (serious injuries,
loss of goods)

B
C Major (failure or loss of the
D

system)

Depending of the level of risk Minor (without consequence

of the system, different kinds on the system)
of verification are required Without effect

14/12/2011 Critical Software

i Software Classification (avionics)

Minor

acceptable situation

Major

Dangerous

Unacceptable situation

catastrophic

probabilities

probable |rare |very rare |very
improbable

14/12/2011

Critical Software

i How Develop critical software ?

Classical Development V Cycle
tests of integrated system 219008
in laboratory
in operation
I

investigation

\\

design integration
\ /
development — tests

14/12/2011 Critical Software

i How Develop Critical Software ?

o Cost of critical software development:
= Specification : 10%
= Design: 10%
= Development: 25%

= Integration tests: 5%
= Validation: 50%

o Fact:

QEarlier an error is detected, more expensive its
correction Is.

14/12/2011 Critical Software

i Cost of Error Correction

cost of
error
correction

"~ _.7 error detection time

R R

Put the effort on the upstream phase

14/12/2011 Critical Software

i How Develop Critical Software ?

a Goals of critical software specification:

0 Define application needs
= — specific domain engineers

2 Allowing application development
= Coherency
= Completeness

dAllowing application functional validation
= Express properties to be validated

— Formal models usage

14/12/2011 Critical Software

i Critical software specification

a First Goal: must yield a formal description
of the application needs:
aStandard to allowing communication between

computer science engineers and non computer
science ones

aGeneral enough to allow different kinds of
application:
= Synchronous (and/or)
= Asynchronous (and/or)
= Algorithmic

14/12/2011 Critical Software

i Critical software specification

a Second Goal: allowing errors detection
carried out upstream:
2 Validation of the specification:
= Coherency

= Completeness
= Proofs

QdTest
= Quick prototype development
= Specification simulation

14/12/2011 Critical Software

i Example of non completeness

From Ariane 5:

Simultaneous
helium tank | events ? hydrogen tank
low low

I ! I
 action 2

<D

14/12/2011 Critical Software

i Critical Software Specification (3)

a Third goal: make easier the transition from
specification to design (refinement)
dReuse of specification simulation tests
dFormalization of design

0 Code generation
= Sequential/distributed
= Toward a target language
= Embedded/qualified code

14/12/2011 Critical Software

Relying on Formal Methods

test reuse
test coverage

test generation simulation

proofs

no more
integration tests

v abstract
interpretation

14/12/2011 Critical Software

automatic code
generation

code

Critical Software Validation

o What is a correct software?

aNo execution errors, time constraints
respected, compliance of results.

o Solutions:

2 At model level :
= Simulation
= Formal proofs

aAt implementation level:
= Test
= Abstract interpretation

14/12/2011 Critical Software

Validation Methods

o Testing

2 Run the program on set of inputs and check
the results

a Static Analysis

O Examine the source code to increase
confidence that it works as intended

o Formal Verification

aArgue formally that the application always
works as intended

14/12/2011 Critical Software

i Testing

a Dynamic verification process applied at
implementation level.

o Feed the system (or one if its components)
with a set of input data values:

aInput data set not too large to avoid huge time
testing procedure.

dMaximal coverage of different cases required.

14/12/2011 Critical Software

i Testing (2)

Program Testing

executions tested ok / "Testing only highlights
_ bugs but not ensure their
all program executions absence " (E. Dijkstra)

14/12/2011 Critical Software

i Static Analysis

a The aim of static analysis is to search for
errors without running the program.

a Abstract interpretation = replace data of
the program by an abstraction in order to
be able to compute program properties.

a Abstraction must ensure :
= % (P) “correct” = P correct

= But &(P) “incorrect” = ?

14/12/2011 Critical Software

i Static Analysis: example

abstraction: integer by intervals

1: x:=1; x1 = [1,1]

2: while (x <1000) { - x2 = x1 U x3 N [-%, 999]
3 X = X+1; X3 =x2 0 [1,1]

4. } x4 =x1 U x3 N [1000, «]

Abstract interpretation theory = values are fix
point equation solutions.

14/12/2011 Critical Software

i Formal verification

o What about functional validation ?

2 Does the program compute the expected
outputs?

aRespect of time constraints (temporal
properties)

QO Intuitive partition of temporal properties:

= Safety properties: something bad never happens

= iveness properties: something good eventually
happens

14/12/2011 Critical Software

i Safety and Liveness Properties

o Example: the beacon counter in a train:

0 Count the difference between beacons and
seconds

1 Decide when the train is ontime, late, early

14/12/2011 Critical Software

Safety and Liveness Properties

o Some properties:
1. It is impossible to be late and early;
2. It is impossible to directly pass from late to

early;
3. Itis impossible to remain late only one instant;
4. If the train stops, it will get late

a Properties 1, 2, 3 : safety
o Property 4 : liveness

It refers to unbound future

14/12/2011 Critical Software

Checking

i Safety and Liveness Properties

a Use of model checking techniques

a Model checking goal: prove safety and
liveness properties of a system in analyzing
a model of the system.

a Model checking techniques require:
a model of the system
0 express properties

2 algorithm to check properties on the model (=
decidability)

14/12/2011 Critical Software

Model Checking Techniques

o Model = automata which is the set of
program behaviors

a Properties expression = temporal logic:
a LTL : liveness properties
1 CTL: safety properties

a Algorithm =

a LTL : algorithm exponential wrt the formula
size and linear wrt automata size.

A CTL: algorithm linear wrt formula size and wrt
automata size

14/12/2011 Critical Software

i Properties Checking

o Liveness Property @ .
0 ® = automata B(®d)
0 L(B(®)) = O décidable
Od|=M LM OB(~®)) = [0
o Scade allows only to verify safety

properties, thus we will study such
properties verification techniques.

14/12/2011 Critical Software

i Safety Properties

o CTL formula characterization:
aAtomic formulas
aUsual logic operators: not, and, or (=)

2 Specific temporal operators:
EX O, EF O, EG O
= AX O, AF O, AG O
-« EU(O, ,0,), AU(O,,0,)

14/12/2011 Critical Software

i Safety Properties Verification (1)

o Mathematical framework:
2 S : finite state, (#(S), 0) is a complete lattice
with S as greater element and LI as least one.
af:P(S) - P(S):
= f is monotonic iff O x,y O #(S), x Oy = f(x) O f(y)

= fis n-continue iff for each decreasing sequence
f(n x) = n f(x)

= fis O-continue iff for each increasing sequence
f(C x;) = O f(x)

14/12/2011 Critical Software

i Safety Properties Verification (2)

o Mathematical framework:

Qif S is finite then monotonic = n-continue et
[1-continue.

o X is a fix point iff of fiff f(x) = x

ax is a least fix point (Ifp) iff Oy such that
fly) =y, x0y

aX is a greatest fix point (gfp) iff Oy such that
fly) =y, y Ox

14/12/2011 Critical Software

i Safety Properties Verification (3)

a Theorem:

2f monotonic = f has a Ifp (resp glp)
o Ifp(f) = O M(O)
a gfp(f) = n (S)

Fixpoints are limits of approximations

14/12/2011 Critical Software

i Safety Properties Verification (4)

a We call Sat([0) the set of states where [is
true.

o M |= 0O iff s OSat(0d).

a Algorithm:

= Sat(P) ={s| ® |=5s}
= Sat(not @) = S\Sat(P)
= Sat(P1 or d2) = Sat(P1) U Sat(P2)
= Sat (EX) = {s | Ot O Sat(®) ,s —» t} (Pre Sat(d))
= Sat (EG @) = gfip (IF'(x) = Sat(P) n Pre(x))
= Sat (E(®1 U d2)) = /fip(F'(x) = Sat(d2) U (Sat(d1) n

14/12/ E)II?(X))

Critical Software

atomic formulas: a, b, ¢

b,C

EG (a or b) gfo (F(x) = Sat(d) n Pre(x))
["({Sos S1/ Sar S3, S43) = Sat (a or b) n Pre({sy, Si, Sy, S3, Sa})

"({Sos S1/ Sar S3. S4}) = {Sos S1/ S2s Saf N {Sor S1/ S2s S3, Sar

r({SOI S1/ Sy, S3, S4}) = {SOI S1r Sy S4}

14/12/2011 Critical Software

atomic formulas: a, b, ¢

b,C

EG (a or b) ({Sos S1/ S S3, Sa}) = {Sos S1/ S Sa)

r({SOI S1r Sy, 54}) = Sat (a or b) N Pre({SOI St SZI, S4})

r({SOI S]_I SZI S4}) = {SOI Sll SZI 54}

S, |= EG(a or b)

14/12/2011 Critical Software

i Model checking implementation

o Problem: the size of automata

o Solution: symbolic model checking
a Usage of BDD (Binary Decision Diagram) to

encode both automata and formu

o Each Boolean function has a unic
representation

a Shannon decomposition:

= f(Xo, X1, %) = f(1, X,y X)) V (O, Xy, ..

14/12/2011

d.
ue

2 Xn)

Critical Software

i Model Checking Implementation

a When applying recursively Shannon
decomposition on all variables, we obtain a
tree where leaves are either 1 or 0.

o BDD are:

1A concise representation of the Shannon tree
0 no useless node (if x then g else g < g)
2 Share common sub graphs

14/12/2011 Critical Software

& Model Checking Implementation (2)

(Xy %) v ((Xy VY1) (X UYo))

Xl/XO\Xl
SN N
/\ /\ /\ /\

/yl\ /yl\/\ /\ /y\/\/\ /\

14/12/2011 Critical Softwar

& Model Checking Implementation (2)

(X1 L Xo) v ((X1 VY1) U (X UYo))
0 %o
X1 / \Xl
/N VRN

Yo Yo Yo Yo
Al Ao

O/ \OO/ \O(')/ \1 ({y \1 O/ \OO/ \1((\1 Z{y \1

14/12/2011 Critical Software

& Model Checking Implementation (2)

(Xy %) v ((Xy VY1) (X UYo))

VANV
/ / /N

yl vyl

AW /\/\/\/\

10

14/12/2011 Critical Softwar

& Model Checking Implementation (2)

(Xy %) v ((Xy VY1) (X UYo))

14/12/2011

T T
/\ /\
/\ /\ /\

A/

/\/K/\

Critical Softwar

& Model Checking Implementation (2)

(Xy %) v ((Xy VY1) (X UYo))

/XO\Xl
SN N
/\ {\ /-

/\/K/\

14/12/2011 Critical Softwar

& Model Checking Implementation (2)

(Xy %) v ((Xy VY1) (X UYo))

/ XO \
X1 X1

AN /N
N s
e

Y1

/ \

]}1 1

14/12/2011 Critical Software

& Model Checking Implementation (2)

(Xy %) v ((Xy VY1) (X UYo))

/ 7\

0 %o
X1 / \Xl
\
Y1 <
/
0 1

0 Yo Yo
/ \
0 Y1
/\
1 1

14/12/2011 Critical Software

& Model Checking Implementation (2)

(Xy %) v ((Xy VY1) (X UYo))

14/12/2011 Critical Software

& Model Checking Implementation (2)

(Xy %) v ((Xy VY1) (X UYo))

14/12/2011 Critical Software

i Model Checking Implementation(3)

a Implicit representation of the of states set
and of the transition relation of automata
with BDD.

o BDD allows

= canonical representation

= test of emptiness immediate (bdd =0)
= complementarity immediate (1 = 0)

= union and intersection not immediate
= Pre immediate

14/12/2011 Critical Software

i Model Checking Implementation (4)

a But BDD efficiency depends on the number
of variables

a Other method: SAT-Solver

2 Sat-solvers answer the question: given a
propositional formula, is there exist a valuation
of the formula variables such that this formula
holds

2 first algorithm (DPLL) exponential (1960)

14/12/2011 Critical Software

i Model Checking Implementation (4)

a SAT-Solver algorithm:
aformula = CNF formula = set of clauses
2 heuristics to choose variables

ddeduction engine:
= propagation
= specific reduction rule application (unit clause)
= Others reduction rules

2 conflict analysis + learning

14/12/2011 Critical Software

Model Checking Implementation (5)

a SAT-Solver usage:

1 encoding of the paths of length k by
propositional formulas

2 the existence of a path of length k (for a given
k) where a temporal property @ is true can be
reduce to the satisfaction of a propositional
formula

a theorem: given ® a temporal property and M
a model, then M |= ® = 0On such that
M|=_® (n<|S|.2I®)

14/12/2011 Critical Software

i Bounded Model Checking

a SAT-Solver are used in complement of
implicit (BDD based) methods.

oM =D
averify = @ on all paths of length k (k bounded)
21 useful to quickly extract counter examples

14/12/2011 Critical Software

i Bounded Model Checking

Given a property p

Is there a state reachable in & cycles, which satisfies —p ?

14/12/2011 Critical Software

i Bounded Model Checking

The reachable states in & steps are captured by:

I(s;) N\ T(555,) N\-........ - NT(5., S.)
The property p fails in one of the k steps
=p(Sp) V =p(S) V =p(s,) V =p(S..) V =p(5)

The safety property p is valid up to step k iff Q(k)
IS unsatisfiable:

k-1 k
20 = 1(sp) n N\ 705, 5i)n N -p(5)

14/12/2011 Critical Software

i Bounded Model Checking

K++

>M [=p

CT is the completeness threshold
14/12/2011 Critical Software

i Bounded Model Checking

o Computing CT is as hard as model
checking.

o Idea: Compute an over-approximation to
the actual CT
a1 Consider the system as a graph.
aCompute C7 from structure of the graph.

o Example: for AGp properties, CT is the
longest shortest path between any two
reachable states, starting from initial state

14/12/2011 Critical Software

i Model Checking with Observers

o Express safety properties as observers.

o An observer is a program which observes
the program and outputs ok when the
property holds and failure when its fails

inputs

14/12/2011

program

observer

outputs

. ok

failure

Critical Software

i Properties Validation

o Taking into account the environment

awithout any assumption on the environment,
proving properties is difficult

2 but the environment is indeterminist

= Human presence no predictable
= Fault occurrence

2 Solution: use assertion to make hypothesis on
the environment and make it determinist

14/12/2011 Critical Software

i Properties Validation (2)

o Express safety properties as observers.

a Express constraints about the environment
as assertions.

assertions > assume
inputs program outputs
observer , Ok

failure

14/12/2011 Critical Software

i Properties Validation (3)

o if assume remains true, then ok also
remains true (or failure false).

assertions > assume
inputs program outputs
observer , Ok

failure

14/12/2011 Critical Software

+

Synchronous Model Specification

14/12/2011 Critical Software

ynchronous System Implementation

Implementatjon

Q

y.
Models (%

f

Analysis /
Development
Platform

Property analyses

14/12/2011 Critical Software

Reactive & Real-Time Systems

Modeling

Analysis

Automotive

Transportation

Reactive

Communications

Programming Avionics
Development
yalidation Image Processing
. Signal Processin
Reactive & Real- Application Areas 3 L

. Teleph
Time Systems —
\ Features

Real-Time

Control

. Control
Industrial process

Embedded
control

——

Smart Sensors

14/12/2011 Critical Software

System Programming

i Synchronous Approach to Reactive

Synchronous
Approach

14/12/2011 Critical Software

System Programming

i Synchronous Approach to Reactive

Imperative

Synchronous
Approach

14/12/2011 Critical Software

System Programming

i Synchronous Approach to Reactive

Synchronous
Approach

14/12/2011 Critical Software

Synchronous Approach to Reactive
i System Programming

Tools
Formal validation
Imperative
prog. style

Declarative

Approach

Textual

Semantics

Analysis
Synchronous Syntax f

format

N TN

Graphical

AN

Mathematical
semantics

14/12/2011 Critical Software

System Programming

i Synchronous Approach to Reactive

Imperative

prog. style /

Analysis
\ Declarative
Synchronous Syntax
Approach
pp Textual

Semantics format /

\ Graphical

Implementation

(++) Safe
(++) Deterministic code
(+-) Efficient

14/12/2011 Critical Software

i Determinism & Reactivity

a Determinism:
The same input sequence always yields
The same output sequence

a Reactivity:
The program must react() to any stimulus
Implies absence of deadlock

(1) Does not necessary generate outputs, the reaction may change
internal state only.

14/12/2011 Critical Software

+

LUSTRE Declarative Synchronous
Language

14/12/2011 Critical Software

i Languages

Say what IS or what
SHOULD BE

Declarative languages

Imperative langages

Say what MUST BE
DONE

14/12/2011 Critical Software

i LUSTRE

o LUSTRE
a1It is a very simple language (4 primitive
operators to express reactions)

aRelies on models familiar to engineers

= Equation systems
= Data flow network

aLends itself to formal verification (it is a kind of
logical language)

2 Very simple (mathematical) semantics

14/12/2011 Critical Software

i Operator Networks

o LUSTRE programs can be interpreted as
networks of operators.

o Data « flow » to operators where they are
consumed. Then, the operators generate

new data. (Data Flow description)
—| Operator

\
Token

(data)

14/12/2011 Critical Software

i An example of Data Flow

radix-2
DIT FFT

14/12/2011 Critical Software

i Data Flow

radix-2
DIT FFT

14/12/2011 Critical Software

i Data Flow

radix-2
DIT FFT

14/12/2011 Critical Software

i Data Flow

radix-2
DIT FFT

14/12/2011 Critical Software

Data Flow

radix-2
DIT FFT

P1

14/12/2011 Critical Software

Data Flow

radix-2
DIT FFT

P1

14/12/2011 Critical Software

i Functional Point of View

P'=P+W,*Q
Q'=P-W *Q

14/12/2011 Critical Software

i Flows, Clocks

a A flow is a pair made of

A possibly infinite sequence of values of
a given type

1A clock representing a sequence of
instants

XT (X Xo, eee h Xy, oet)

14/12/2011 Critical Software

i Language (1)
ariable :

Qtyped

2 If not an input variable, defined by 1 and
only 1 equation

dPredefined types: int , bool , real
Qtuples: (a, b, ¢)
Equation : X = E means Uk, x, =e,

Assertion :

Boolean expression that should be always
true at each instant of its clock.

14/12/2011 Critical Software

i Language (2)

Substitution principle:
If X=E then E can be substituted for X

anywhere in the program and conversely

Definition principle:
A variable is fully defined by its declaration
and the equation in which it appears as a
left-hand side term

14/12/2011 Critical Software

‘_kxpressions
real }
Constants

o1,.. true ,false , .., 152, ...

INt a + O
Imported
bool \ P
(types and
.operators ,

c.a - LkUl,c =c

14/12/2011 Critical Software

i « Combinational » Lustre

Data operators

Arithmetical: +, -, *, /, div , mod
Logical: and, or, not , xor , =>
Conditional: If ... then ... else
Casts: int |, real

« Point-wise » operators

XopY < Uk, (X0opY), = XkOpYy

14/12/2011 Critical Software

:h « Combinational » Example
X:

M:int
Operator Flows
Y:int /// yd

I nt) ;

Definition
kOO ,M, =(X, +Y,)/2

14/12/2011 Critical Software

i Example (suite)

node Average (X,Y:int)
returns (M:int);
var S:int; -- local variable

let
S = X +Y; -- non significant order
M=S/2;

tel

By substitution, the behavior is the same

14/12/2011 Critical Software

i « Combinational » Example (2)

a if operator

node Max (a,b : real) returns (m: real)
let

m = if (a >= b) then a else b;
tel

functional «if then else »; it is not a
statement

14/12/2011 Critical Software

i « Combinational » Example (2)

a if operator
node Max (a,b : real) returns (m: real)
let
m = if (a >= b) then a else b;
tel

14/12/2011 Critical Software

i Memorizing

Take the past into account!
pre (previous):

X = (X11X2’°” X ’) : pre()(): (niLXl’... X4 ,)
Undefined value denoting uninitialized memory: Nil

-> (Initialize). sometimes call “followed by”

X = (X1’X2""’Xnv--) , Y = (y1’y2’°" Yn r--) :
(X=>Y)= (% Y22 Yoreer)

14/12/2011 Critical Software

i « Sequential » Examples

n = 0 - pre(n)+1

14/12/2011 Critical Software

i Sequential » Examples

node MinMax (X:int) returns (min,max:int);
let
min = X => if (X < pre min) then X else
pre min;
max = X -> if (X > pre max) then X else
pre max;

tel

14/12/2011 Critical Software

‘L « Review » Example

node Count (init:int) returns (c:int);
let ¢ = init -> pre ¢ + 2; tel

node DoubleCall (even:bool) returns (n:int);
let
n = if even then Count(0) else
Count(1);
tel

Doublecall(ff ff tt tt ff ff tt tt ff) = ?

14/12/2011 Critical Software

i Recursive definitions

Temporal recursion
Usual. Use pre and ->
e.g.:nat=1->prenat + 1

Instantaneous recursion
egd.:. X=1.0/(2.0-X)

Forbidden in Lustre, even if a solution
exists!

Be carefull with cross-recursion.

14/12/2011 Critical Software

i Clocks

Basic clock
Discrete time induced by the input sequence
Derived clocks (slower)

when (filter operator):

E when C is the sub-sequence of E obtained by
keeping only the values of indexes e, for which
c =true

14/12/2011 Critical Software

‘L Examples of clocks

Basic cycles 1 2 3 4 5 6 7 8
Cl true false true true false true false true
Cycles of C1 1 2 3 4 5
C2 false true false true true
Cycles of C2 1 2 3

14/12/2011 Critical Software

i Example of sampling

nat,odd:int
halfBaseClock:bool
= 0 -> pre nat +1;
halfBaseClock =
true -> not pre halfBaseClock;

odd = nat when halfBaseClock;
is a flow on the basic clock;

odd is a flow on halfBaseClock
Exercice: write even

14/12/2011 Critical Software

i Interpolation operator

« converse » of sampling

current (interpolation) :

Let E be an expression whose clock is C, current(E)
IS an expression on the clock of C, and its value at
any instant of this clock is the value of E at the last

time when ¢ was true.

current (X when C) # X
A current canvyield nil

14/12/2011 Critical Software

+

First programs

14/12/2011 Critical Software

Edges

node Edge (b:bool) returns (f:bool); A
-- detection of a rising edge

let
f = false ->} (b and not pre (b))}
_tel; /

/
INiti Undefined at
the first instant

Falling_Edge = Edge(not c);

14/12/2011 Critical Software

i Bistable

a Node Switch (on,off:bool) returns (s:bool);
such that:

S raises (false to true) if on, and falls (true to
false) if off

2 must work even off and on are the same

node Switch (on,off:bool) returns (s:bool)
let

= if (false —pre) then not off else on;
tel

14/12/2011 Critical Software

i Count

a A node Count (reset, x: bool) returns (c:int)
such that:

acis reset to 0 if reset, otherwise it is
incremented if x

node Count (reset, x: bool) returns (c:int)
let
= if reset then O
else if x then (0 -> prec) + 1
else (0 -> pre ¢)
tel

14/12/2011 Critical Software

i A Stopwatch

o 1 integer output :

a 3 input buttons: on_off, reset, freeze
2on_off starts and stops the watch
dreset resets the stopwatch (if not running)
0 freeze freezes the displayed time (if running)

o Local variables
2 running, freezed : bool (Switch instances)
acpt : int (Count instance)

14/12/2011 Critical Software

A stopwatch

node Stopwatch (on_off, reset, freeze: bool)
returns (time:int)

var running, freezed: bool; cpt:int

let
running = Switch(on_off, on_off);
freezed = Switch(freeze and running,
freeze or on_off);
cpt = Count (reset and not running, running);
time = if freezed then (0 -> pre time) else cpt;
tel

14/12/2011 Critical Software

ieA Stopwatch with Clocks

Stopwatch (on_off, reset, freeze: bool)
returns (time:int)
var running, freezed : bool;
cpt_clock, time_clock : bool;
(cpt : int) when cpt_clock;
let
running = Switch(on_off, on_off);
freezed = Switch (freeze and running,
freeze or on_off);
cpt_clock = true -> reset or running;
cpt = Count ((not running, true) when cpt_clock);
time_clock = true -> not freezed;

time = current(current(cpt) when time_clock);
te14/ 12/2011 Critical Software

i Modulo Counter

node Counter (incr:bool, modulo : int)
returns (cpt:int)

let
=0 -> if incr
then MOD(pre (cpt) +1, modulo)
else pre (cpt);
tel

14/12/2011 Critical Software

i Modulo Counter with Clock

node ModuloCounter (incr:bool, modulo : int)
returns (cpt:int,
: bool)
let
=0 -> if incr
then MOD(pre (cpt) +1, modulo)
else pre (cpt);
= false ->
pre(cpt) <> MOD(pre(cpt)+1);
tel

14/12/2011 Critical Software

i Timer

node Timer (dummy:bool)
returns (, , :bool)
var hour_clock, minute_clock, day_clock;

let
(, minute_clock) = ModuloCounter(true, 60);

(, hour_clock) =
ModuloCounter(minute_clock,60);

(hour, day_clock) =
ModuloCounter(hour_clock, 24);

tel

14/12/2011 Critical Software

i Numerical Examples

o Integrator node:

a7 : real function and Y its integrated value
using the trapezoid method:

2 F, STEP : 2 real such that:
F.=1f(x,) and x,,= x, + STEP,

Yo=Y, +(F,+F,)*STEP, /2

14/12/2011 Critical Software

‘L Numerical Examples

node integrator (F, STEP, init : real)
returns (Y : real);
let
Y = init ->pre(Y) + ((F + pre(F))*STEP)/2.0
tel

14/12/2011 Critical Software

‘L Numerical Examples

node sincos (omega : real)

returns (sin, cos : real);

let

Sin =0 a * integra

cos, 0.1, 0.0);
cos=1-0 *_integrator(sin, 0.1, 0.0);
tel

14/12/2011 Critical Software

‘L Numerical Examples

node sincos (omega : real)
returns (sin, cos : real);
let
sin = omega * integrator(cos, 0.1, 0.0);
cos = 1 —omega * integrator(, 0.1, 0.0);

tel /%
(0.0 ->pre(sin))

14/12/2011 Critical Software

i Safety and Liveness Properties

o Example: the beacon counter in a train:

0 Count the difference between beacons and
seconds

1 Decide when the train is ontime, late, early

node train (sec, bea : bool) returns (ontime, early, late: bool)
let
diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
early = (true -> pre ontime) and (diff > 3) or
(false -> pre early) and (diff > 1);
late = (true -> pre ontime) and (diff < -3) or
(false -> pre late) and (diff < -1);
ontime = not (early or late);
tel

14/12/2011 Critical Software

Train Safety Properties

o It is impossible to be late and early;
aQ ok = not (late and early)
o It is impossible to directly pass from late to
early;
Q ok = true -> (not early and pre late);
a It is impossible to remain late only one
instant;

QO Plate = false -> pre late;
PPlate = false -> pre Plate;
ok = not (not late and Plate and not PPlate);

14/12/2011 Critical Software

i Train Assumptions

o property = assumption + observer: "/ (/e
lrain keeps the right speed, it remains on
time”

o observer = ok = ontime

o assumption:
anaive: assume = (bea = sec);
O more precise : bea and sec alternate:

= SF = Switch (sec and not bea, bea and not sec);
BF = Switch (bea and not sec, sec and not bea);
assume = (SF => not sec) and (BF => not bea);

14/12/2011 Critical Software

Development Environment

i SCADE: Safety-Critical Application

a Scade has been developped to address
safety-critical embedded application design

o The Scade suite KCG code generator has
been qualified as a development tool
according to DO-178B norm at level A.

14/12/2011 Critical Software

i SCADE

a Scade has been used to develop, validate
and generate code for:

3 avionics:
= Airbus A 341: flight controls

= Airbus A 380: Flight controls, cockpit display, fuel
control, braking, etc,..

= Eurocopter EC-225 : Automatic pilot

= Dassault Aviaation F7X: Flight Controls, landing
gear, braking

= Boeing 787: Landing gear, nose wheel steering,
braking

14/12/2011 Critical Software

i SCADE

o System Design
0 Both data flows and state machines

a Simulation
2 Graphical simulation, automatic GUI integration

o Verification

Control

2 Apply observer technique Software Design :
o Code Generation o TSCA_"_J_'{'_-_’____ .
a certified C code

14/12/2011 Critical Software

i SCADE: state-flow example

> pre

|
|—|_>

X
0

node incrementer () returns (valout: int)

let
valout = (0 = pre (valout)) + 1
tel

++

> valout

14/12/2011 Critical Software

i SCADE: state machines

o Input and output: same interface

o States:

2 Possible hierarchy

0 Start in the initial state

1 Content = application behavior
o Transitions:

0 From a state to another one

2 Triggered by a Boolean condition

14/12/2011 Critical Software

i SCADE: state machines

When ON, ison = true

i <SM1=> l_.—‘\

trigger

transiti

When off, ison = false
14/12/2011 Critical Software

i SCADE: model checking

Observers in Scade

P: aircraft autopilot and security system

alarm
aircraft_altitude P landing_order
|aircraft_altitude <
200 = and 1
landing_order not | implies S
alarm

14/12/2011 Critical Software

i SCADE: code generation

a KCG generates certifiable code (DO-178
compliance)

o Clean code, rigid structure (easy
integration)

a Interfacing potential with user-defined code
(c/c++)

14/12/2011 Critical Software

i SCADE: code generation structures

o Type InC_<operator_name>
2 structure C
2 one member for each input

o Type OutC_<operator_name>
QStructure C
2 one member for each output and each state
1 0ther member for output/state computations

14/12/2011 Critical Software

i SCADE: code generation structures

o Reaction function

2 for a transition (or a reaction) computes the
output and the new state

2 void <operator_name>
(Inc_<operator_name> * inC,
outC_<operator_name>* outc)

o Reset function
a To reset the reaction and the structures

0 void <operator_name>_reset
(outC_<operator_name>* outc

14/12/2011 Critical Software

i SCADE: code generation files

o Generated files

0 <0
dec

d <0

perator_name>.h : type and function
arations for code integration

perator_name>.c : implementation of

reaction and reset functions
0 kcg_types.(h,c) to define types in C
2 kecg_conts.(h,c) to define contants

14/12/2011

Critical Software

