
Transport on shape manifold :
matching close shapes

Guillaume Charpiat

September 17, 2008

Introduction

The key idea to fill in the holes in a sample set of silhouettes (whose intrinsic di-
mension is far too high to expect at anytime a dense sample) consists in computing
deformation fields between close shapes (since between farther shapes it won’t be
reliable at all) and expressing statistics on them. But one cannot compare two
deformations which are defined on two different shapes, so we have to transport
deformation fields from shapes to shapes. This transport will be based on... defor-
mations between close shapes. So now we have two good reasons to search for ways
to match two close shapes together.

This document is organized as follow : first, explain the basic tool used (and
its first extension to ensure coherency) on a simple example (two open curves to be
matched). Then, extension to matching arbitrary shapes (set of closed connected
components). This matching algorithm is not perfect, but we don’t need a perfect
one (later, we will learn the metric and the ways to match shapes, here it’s just a
first step to extract some information from a set of shapes). We could consider any
other way to match close shapes, there are plenty of them, we just need any which
deals with non-trivial topology (a shape may have several connected components, or
holes), which deals with matching two shapes with different topologies (it happens
very often), and which is not too slow and does not give too bad matchings, of
course. Finally, we define and compute transport based on the matching tool.

1



Contents

1 Matching close shapes 3
1.1 Simple case of two open curves sharing starting point : Dynamic Time

Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Variations on Dynamic Time Warping . . . . . . . . . . . . . . . . . 9

1.2.1 Search for more coherency . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Final point not known . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Initial point not known . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Case of two closed curves . . . . . . . . . . . . . . . . . . . . . 10
1.2.5 Increasing mapping precision by oversampling . . . . . . . . . 10

1.3 Convergence of the solution with increasing oversampling . . . . . . . 11
1.3.1 Derivatives of E∞ . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Lipschitzianity of E∞ and energy convergence . . . . . . . . . 12
1.3.3 Finite number of local minima . . . . . . . . . . . . . . . . . . 13
1.3.4 Convergence towards the global minimum . . . . . . . . . . . 15
1.3.5 Continuous precision . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Increasing speed by neighborhoods . . . . . . . . . . . . . . . . . . . 23
1.5 Dealing with shapes, i.e. sets of close curves with random topology . 23

1.5.1 A polygon to a set of polygons . . . . . . . . . . . . . . . . . . 23
1.5.2 A polygon to a shape or void . . . . . . . . . . . . . . . . . . 25
1.5.3 A shape (set of polygons) to a shape . . . . . . . . . . . . . . 25

2 Transport of fields 25
2.1 Easy scheme as introduction . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Vectors are not real values . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Naive, diffusive barycentric transport . . . . . . . . . . . . . . . . . . 25
2.4 Non-diffusive barycentric transport . . . . . . . . . . . . . . . . . . . 26

2



1 Matching close shapes

1.1 Simple case of two open curves sharing starting point :
Dynamic Time Warping

B
1

B
n

A
A

1

m

B

A

Let A and B be two polygons, with m and n vertices respectively. We know
that A1 should be matched with B1, and Am with Bn. The question is : what
is the best matching function f , from [|1, m|] to [|1, n|], so that Ai correspond to
Bf(i) ? Here all vertices Ai will be matched to vertices of B (and not to intermedi-
ate points on segments). Consequently it may happen that several successive Ai be
mapped to the same point of B or that a vertex Bj has no corresponding point on A.

Requirements:

• f(1) = 1

• f is an increasing function, i.e. ∀i, f(i + 1) > f(i)

• f(m) = n

We suppose that A and B have already been rigidly registered (i.e. with respect
to position, size, and possibly orientation if it makes sense). Consider the simple
energy to minimize, subject to previous conditions :

E(f) =
∑

i

‖Ai −Bf(i)‖2.

3



A

n

B

1 m

1

Figure 1: The graph of a matching function f , i.e. here any increasing function,
with fixed extremities.

Drawing the graph of f is interesting (see figure 1) and inspires the dynamical time
warping algorithm:

• Start with f(1) = 1. Cost is fixed : ‖A1 −B1‖.

• Check all possible values of f(2), i.e. between 1 and n and their associated
costs of the matching so far : ‖A1−B1‖+‖A2−Bf(2)‖ (and store these values).

A

n

B

1 m

1

Figure 2: Compute the cost of all possible matchings for A1 and A2.

4



• Check all possible values of f(3), i.e. between 1 and n and their associated
costs (for the best possible path ending in (A3, Bf(3))):

inf
16i26f(3)

(
‖A1 −B1‖+ ‖A2 −Bi2‖

)
+ ‖A3 −Bf(3)‖.

For each possible value of f(3), store the cost and the associated best path
(1, i2, f(3)).

A

n

B

1 m
1

f(j)

j

ij−1

Figure 3: Step j (= 3). For all possible values of f(j), check all possible sequences
of matchings for (A1, A2, . . . , Aj) (with cost Cj(f(j)) = Cj−1(ij−1) + ‖Aj − Bf(j)‖),
relying on all possible best sequences of matching for (A1, A2, . . . , Aj−1).

A

n

B

1 m

1

Figure 4: All best sequences of matchings up to Aj.

5



• Iteratively, for each j, we already know all best paths from (A1, B1) up to all
possible pairs (Aj−1, Bk) at previous point, and we check all possible values of
f(j) and their associated costs (for the best possible path ending in (Aj, Bf(j))):

Cj(f(j)) = inf
16i26i36···6ij−16f(j)

( ∑
16k<j

‖Ak −Bik‖

)
+ ‖Aj −Bf(j)‖

= inf
16ij−16f(j)

(
inf

16i26i36···6ij−1

∑
16k<j−1

‖Ak −Bik‖+ ‖Aj−1 −Bij−1
‖
)

+ ‖Aj −Bf(j)‖
= inf

16ij−16f(j)
Cj−1(ij−1) + ‖Aj −Bf(j)‖

and store the cost and the associated best path (1, i2, i3, . . . , ij−1, f(j)).

A

n

B

1 m
1

jj−1

Figure 5: Best paths up to Aj, based on best paths up to Aj−1.m

A

n

B

1 m
1

j

Figure 6: The same. Iterate.

6



At the end of the process: the best match between A and B is the sequence (i1 =
1 6 i2 6 i3 6 · · · 6 im−1 6 im = n) that minimizes

∑
k ‖Ak −B(ik)‖.

A

n

B

1 m

1

Figure 7: Best paths up to Am−1, with associated costs Cm−1(f(m− 1).

A

n

B

1 m

1

Figure 8: Building best path to Am.

inf
i1=16i26i36···6im−16im=n

(∑
k

‖Ak −Bik‖

)
= Cm(n)

= inf
16im−16im=n

Cm−1(im−1) + ‖Am −Bn‖

Since at each step we have successively computed stored the best paths, the problem
is solved and we have the global solution.

7



A

n

B

1 m

1

Figure 9: Final path is the optimal matching.

Complexity :

• Number of steps : number of points on A (m)

• For each step j : try all matching possibilities for Aj (number of points on B:
n)

• For each possible matching f(j) for Aj : try to connect to all possible best
paths ending in (Aj−1, Bk) with k 6 f(j).

The third loop can be achieved at the level of the second one (f(1) = 1, f(2) =
max(Cj−1(1), Cj−1(2)), f(3) = max(Cj−1(1), Cj−1(2), Cj−1(3)) = max(f(2), Cj−1(3)),
etc. : complexity = n for all f(j) together).

Total: m× n (instead of nm for trying successively all possible matchings)

8



1.2 Variations on Dynamic Time Warping

1.2.1 Search for more coherency

Let us replace the energy to minimize E(f) =
∑

i ‖Ai −Bf(i)‖2 by:

E(f) =
∑

i

(
‖Ai −Bf(i)‖2 + β ‖

−−−−→
AiAi+1 −

−−−−−−−→
Bf(i)Bf(i+1)‖2

)
(1)

(where β is any positive constant) in order to enforce the spatial similarity which
happens when following the contours A and B. Note that :

‖
−−−−→
AiAi+1 −

−−−−−−−→
Bf(i)Bf(i+1)‖2 = ‖

−−−−→
AiBf(i) −

−−−−−−−→
Ai+1Bf(i+1)‖2

i.e. the norm of the difference between the red vectors is the same as the one
between the green vectors on figure 10. We want this color vectors to be as identical
as possible.

B
1

B
n

A
A

1

m

A

B

B B

A A

f(i) f(i+1)

i+1i

Figure 10: Best paths up to Am−1, with associated costs Cm−1(f(m− 1).

Denoting
−−−−→
AiBf(i) by −→vi , the energy can be rewritten as follow:

E(f) =
∑

i

−→vi
2 + β ‖−→vi −−−→vi+1‖2 =

∑
i

(1 + 2β)−→vi
2 − 2β−→vi · −−→vi+1. (2)

This energy involves terms which depend on two successive values of f at the
same time, and consequently the trick to remove the third loop in the complexity
calculus does not work anymore, because, in the graph of f , the edges between nodes
on the j − 1-th column and the j-th column have now different costs, depending on
j − 1 and on j.

The complexity is now m× n2.

1.2.2 Final point not known

In that case, the constraint f(m) = n is removed. It does not change the algorithm:
at the final step, instead of computing only the best path which ends in (Am, Bn),
compute all best paths (Am, Bj) and select the best one amongst them. Same
complexity (in both case, with or without spatial coherency enforced).

9



1.2.3 Initial point not known

Constraint f(1) = 1 is removed. Unhappily this implies running the previous algo-
rithm n times, one for each possible initialization. New complexity:

• basic dynamic time warping : m× n2

• with spatial coherency enforced : m× n3.

Remark for the first case : there exists a faster algorithm, in n2 log(n) (confusing n
with m). See [1].

1.2.4 Case of two closed curves

Pick up one point on A, called initial point A1. Select a direction, follow the polygon
along this direction and number vertices accordingly, with, at the end of the loop,
Am+1 = A1. Just apply the previously studied case “initial point not known” (section
1.2.3) on (A1, A2, . . . , Am, Am+1), with the n possible initializations for f(1) and with
the final point constraint f(m + 1) = f(1). Same complexity : m × n2 or m × n3

depending on the use of coherence reinforcement.

1.2.5 Increasing mapping precision by oversampling

One major problem of this framework is that a vertex Ai has to be matched with a
vertex Bj even if it would have better fitted into the middle of a segment [Bj, Bj+1].
This framework can only map points Ai onto a discrete set of predefined vertices Bj,
it solves a discrete problem between two sets of polygon vertices, it does not solve a
continuous problem on the whole continuous polygons. It is however easy to obtain
a sub-pixel quality (supposing edges of B have pixel length).

A second major reason to do what follows is that energies like (1) involve a
penalty term on the difference between the vector joining two successive points−−−−→
AiAi+1 and the one joining their corresponding points

−−−−−−−→
Bf(i)Bf(i+1). The optimal

solution of such an energy will depend strongly on the precise discretization of B.
For example if there are more points on A than on B, for some value of i we will

have f(i) = f(i + 1) and consequently one vector
−−−−→
AiAi+1 will be compared to

−→
0 .

More generally, to afford such a penalty term, we need a finer discretization on B
than on A.

Refine B by replacing each edge [Bj, Bj+1] by a sequel of edges

[Bj, B
1
j ], [B

1
j , B

2
j ], [B

2
j , B

3
j ], . . . , [B

p−1
j , Bp

j ], [B
p
j , Bj+1]

where (Bj, B
1
j , B

2
j , . . . , B

p
j , Bj+1) is a set of p + 2 points regularly spaced on the

segment [Bj, Bj+1]. And run the previous algorithm to map A to this oversampled
version of B.

10



B B

B

B

B

B

j j+1

j+1

j

1

j

2

j

Figure 11: Oversampling so as to refine the quality of the matching.

1.3 Convergence of the solution with increasing oversam-
pling

Let us denote by Bp the polygon B oversampled with a factor p + 1 (i.e. with p
intermediate points between all pair of consecutive vertices). Let us also denote by
fk the global minimizer of Ek(fk) = E(A, Bk, fk). The question is : does the series
of solutions fk converge somehow when k → +∞ ?

Let us denote by E∞ the energy when considering the whole polygon B, i.e.
when vertices of A can be matched to any point on B. E∞(f) is a function defined
on the finite discrete set [|1, m|], with continuous values in S1 (consider an arc-length
parameterization of the closed curve B). Thus, minimizing E is a search for optimal
parameters in Sm

1 .

This section can be skipped if you do not like mathematics or convergence studies,
but you should pay attention at least to the last frame-box before 1.4.

1.3.1 Derivatives of E∞

E∞ has a quadratic form, even if not directly of f , but of −→vi =
−−−−→
AiBf(i) (see equation

2). Hence its writes E∞(f) = Q({−→vi }) = t−→v Q−→v where −→v = {−→vi }. The quadratic
form Q can be written as a m ×m matrix with 1 + 2β on the diagonal and 2β on
the first sub- and sup-diagonals:

Q =



1 + 2β −β 0 . . . 0 −β
−β 1 + 2β −β 0 . . . 0
0 −β 1 + 2β −β 0 . . .

. . .
. . .

0 . . . 0 −β 1 + 2β −β
−β 0 . . . 0 −β 1 + 2β



11



Q should be read either as Q ⊗ Id2, i.e. a m ×m matrix of 2 × 2 matrices, whose
elements Qi,j, which should be read as Qi,j Id2, are proportional to the identity
matrix Id2 (acting on R2 vectors −→vi ), or as the tensor product Q ⊗ Q acting on
R2m = Rm × Rm = (R2)m by Q−→v = Q(−→vi )x ⊗Q(−→vi )y.
From its expression in equation (2), the matrix Q is symmetric positive definite.

The first order derivative of E∞ is then:

dE∞

df
(f) =

∑
i

dQ

d−→vi

({−→vi })×
d−→vi

df

Q is smooth (2-degree polynomial). −→vi , as a function of f(i), is differentiable ev-
erywhere except on arc-lengths of geometrical vertices of the polygonal curve B (a
finite number of points). However −→vi is Lipschitzian (no big irregularity at these
points, just the direction of moving changes). Almost everywhere, we have:

d2E∞

df(i) df(j)
=

d2Q

d−→vi d−→vj

× d−→vi

df(i)
× d−→vj

df(j)
+

dQ

d−→vi

× d2−→vi

df(i)2

with d2Q being constant (i.e. does not depend on any −→vi or f(i)), since Q is

quadratic. The vector
−→
tB(f(i)) = d−→vi

df(i)
is the tangent vector to B at point Bf(i), with

constant speed (in norm) since we have chosen an arc-length parameterization of
B. On geometrical vertices of the polygonal curve B, the quantity d−→vi

df(i)
is ill-defined

but is finite. Everywhere where the tangent of the polygonal curve B is defined,
d2−→vi

df(i)2
= d

−→
ti

df(i)
=
−→
0 . On the vertices, these quantities are Dirac peaks weighted with

direction variations. To sum up, almost everywhere,

d2E∞

df(i) df(j)
= 2 Qi,j

t−→tB(f(i)) · −→tB(f(j)) (3)

and on a geometrical vertex Bk (i.e. subject to f(i) being the arc-length lk corre-
sponding to vertex Bk):

d2E∞

df(i) df(j)
= 2 ηi=j δlk(f(i)) (t−→v ×Q)i ·

(−→
tB(l+k )−−→

tB(l−k )
)

with ηi=j equals 1 if i = j and 0 otherwise, and with δ being the Dirac peak.

1.3.2 Lipschitzianity of E∞ and energy convergence

As a quadratic function on a bounded domain of a Lipschitzian function (the arc-
length parameterization of B), E∞ is Lipschitzian (for a given polygon B), i.e. there
exists a constant M so that:

∀fa, f b ∈ Rm,
∣∣E∞(fa)− E∞(f b)

∣∣ 6 M‖fa − f b‖Rm

12



Note that an upper bound of the norm of the derivative of E (from formula (2) or
(6) later) leads to M = 2(1 + 4β)L

√
m where L is the maximum distance between

one point of A and one point of B.

Consequence: Consider any oversampling discretization Bk, with maximum step
size ε between two successive vertices. For any vector f discretized accordingly (i.e.
with values on vertices of Bk), Ek(f) = E∞(f). Furthermore, there exists a vector
gk close to the global minimizer f∞ of E∞ but with values on vertices of Bk, with
|gk(i)− f∞(i)| 6 ε/2 ∀i, and consequently:

|Ek(gk)− E∞(f∞)| 6 M‖gk − f∞‖ 6
M

2

√
m ε

and thus:

Ek(gk) 6 E∞(f∞) +
M

2

√
m ε.

Since fk is the global minimizer of Ek,

E∞(f∞) 6 E∞(fk) = Ek(fk) 6 Ek(gk) 6 E∞(f∞) +
M

2

√
m ε.

Consequently,

Proposition: The global minimum of Ek (which is found by the algorithm)
converges towards the global minimum of E∞ when the discretization step size εk

tends to 0 :
min

f
Ek(f) → min

f
E∞(f) when k → +∞

and the error is bounded linearly by the step size:

∀k, |Ek(fk)− E∞(f∞)| 6
M

2

√
m εk 6 (1 + 4β) L m εk.

1.3.3 Finite number of local minima

Proposition: The number of local minima of E∞ is finite, at most (2n)m.

Proof : E∞ is piece-wise quadratic and continuous.
Let us consider the continuous polygonal curve B, which, as any polygon, has a
finite number n of geometrical sides Si = [Bi, Bi+1], and let us denote by Li the
line (Bi, Bi+1). Let f = (f1, f2, . . . , fm) be a local minimum of E∞. The energy E∞
is differentiable almost everywhere (i.e., not where one of the Bfi

is a geometrical
vertex). Since the set of possible values of each fi is a closed, bounded set, and that
a local minimum is reached at f , then, for each fi, either Bfi

is a geometrical vertex,
either the derivative with respect to fi is 0. Let us first consider the case where Bfi

is not a geometrical vertex:

d

dfi

E∞(f) = 2 ( t−→v ×Q)i ·
−→
tB(fi) = 0

13



which reads: (
(1 + 2β)−→vi − β−−→vi+1 − β−−→vi−1

)
· −→tB(fi) = 0 (4)

Since Bfi
is not a geometrical vertex, the tangent

−→
tB(fi) is constant in the neigh-

borhood of fi. Furthermore, since B is parameterized by arc-length, −→vi =
−−−→
AiBfi

varies linearly as a function of fi in the neighborhood : if Bprec(fi) is the first geo-
metrical vertex that precedes Bfi

(i.e. one of the extremities of the side on which

Bfi
is), then we can write −→vi =

−−−→
AiBfi

=
−−−−−−→
AiBprec(fi) +

−−−−−−−→
Bprec(fi)Bfi

=: −→wi + fi
−→
tB(fi),

with −→wi and
−→
tB(fi) both constant in the neighborhood of fi. Note that the size of

the “neighborhood” is quite big, it is the set of all indexes of points of the current
geometrical segment.

Similarly, one can replace all −→vj by some affine application −→wj + fj
−→
tB(fj) on the

segment neighborhood, provided Bfj
is not a vertex. If Bfj

is a vertex, then the
“neighborhood” is restricted to the point itself. In all cases, equation (4) can be
rewritten as a linear quantity of f with constant coefficients (within the product of
the three neighborhoods of fi−1, fi, fi+1):[

1 + 2β
]
fi −

[
β
−−−→
tB(fi) ·

−−−−−→
tB(fi+1)

]
fi+1 −

[
β
−−−→
tB(fi) ·

−−−−−→
tB(fi−1)

]
fi−1 = ai (5)

where ai = −
(
(1 + 2β)−→wi − β−−→wi+1 − β−−→wi−1

)
·
−−−→
tB(fi) is constant (within the product

of neighborhoods). Then, back to the original problem: if f is a local minimum,
then:

∀i ∈ [|1, m|], Bfi
is a vertex or fi satisfies (5).

Let us consider the following matrix:

Qt =



1 + 2β −β
−→
t1 ·

−→
t2 0 . . . 0 −β

−→
t1 ·

−→
tm

−β
−→
t2 ·

−→
t1 1 + 2β −β

−→
t2 ·

−→
t3 0 . . . 0

0 −β
−→
t3 ·

−→
t2 1 + 2β −β

−→
t3 ·

−→
t4 0 . . .

. . .
. . .

0 . . . 0 −β
−−→
tm−1 ·

−−→
tm−3 1 + 2β −β

−−→
tm−1 ·

−→
tm

−β
−→
tm · −→t1 0 . . . 0 −β

−→
tm · −−→tm−1 1 + 2β


where

−→
ti :=

−−−→
tB(fi). Note that Qt is symmetric definite positive:

t−→x ·Qt · −→x = (1 + 2β)
∑

i

x2
i − 2β

∑
i

−→
ti ·

−→
ti+1 xi xi+1

=
∑

i

x2
i + β

∑
i

(
x2

i − 2
−→
ti ·

−→
ti+1 xi xi+1 + x2

i+1

)
=

∑
i

x2
i + β

∑
i

(
xi
−→
ti − xi+1

−→
ti+1

)2

> 0 if −→x 6= −→
0

This calculus also leads to the bounds:

−→x 2 6 t−→x ·Qt · −→x 6 (1 + 4β)−→x 2 (6)

14



which implies that the eigenvalues of Qt are between 1 and 1 + 4β. From (3) it
appears that the Hessian of E∞ is twice Qt, hence the bounds on its eigenvalues λ.
A similar calculus can be performed to bound the first order derivative.

The condition “Bfi
is a vertex” reads “fi is a boundary condition amongst n

vertex possibilities”, while the condition “fi satisfies (5)” reads “(Qt ·
−→
f )i = ai“.

Removing the lines and columns in Qt which correspond to vertices let it still sym-
metric definite positive (it just changes the index set under the sum signs in the
previous calculus) and thus, for each choice of vertex assignments to the fi which
correspond to vertices, we obtain a linear system with one unique solution (thanks
to definite positivity).

For each solution, the searches have been performed along lines (Bprec(fi), Bnext(fi))
instead of along segments, so that we have at most one solution for each choice of
assignments of fi to geometrical vertices or segments of B. This means at most
(2n)m local minima. Hence the number of local minima is finite.

Remark: With an exhaustive search on a finite set, one can compute the exact lo-
cation of all local minima. With (2n)m cases to explore and as many linear systems
to solve, it might take some time.

1.3.4 Convergence towards the global minimum

Proposition : If E∞ admits only one global minimum, then the solution fk also
converges towards f∞. In case of multiple global minima, property (11) still holds
for one of the possible f∞ (which may change with k).

Proof: If none of the points Bf∞ is a geometrical vertex of B, then E∞ is in-
finitely differentiable at f∞ and the first order derivative is 0. The second order
derivative (3) can easily be shown to be symmetric definite positive, and constant in
the neighborhood (whose size is named η). Considering λ2

− its smallest eigenvalue
(2 6 λ2

− 6 2 + 8β from equations (3) and (6)),

∃ η > 0, ∀ f s.t. ‖f − f∞‖ < η, E∞(f) > E∞(f∞) +
λ2
−

2
‖f − f∞‖2 (7)

Amongst the finite set of (not global but) local minima, let f1 be the one with the
lowest value E∞(f1). Then E∞(f1) > E∞(f∞). Consider k big enough so that ε is
small enough so that Mmε < E∞(f1)− E∞(f∞), so that Ek(fk) < E∞(f1). Start
from fk and perform a gradient descent. The energy is piece-wise quadratic, and
continuous, so the path has finite length, reaching a local minimum, which can only
be f∞ (the only one lower). Following the same path but starting from f∞, the value
of E∞ keeps increasing, and to quantify the increase we can apply the property (7)
up to a length η along the path. The function f 7→ ‖f − f∞‖ is continuous along
the path and its value is 0 at the beginning of the path. If ‖fk − f∞‖ > η then
necessarily there exists one point fp on the path where ‖fp − f∞‖ = η, and we have

15



E∞(fk) > E∞(fp) > E∞(f∞) +
λ2
−
2

η2. Thus

‖fk − f∞‖ < η or E∞(fk) > E∞(f∞) +
λ2
−

2
η2.

For k big enough, the second possibility does not hold anymore, and consequently
we can apply formula (7) to fk itself, to obtain:

‖fk − f∞‖ 6
1

λ−

√
2
(
E∞(fk)− E∞(f∞)

)
(8)

and thus:

‖fk − f∞‖ 6

√
2M

λ−
m1/4 ε1/2 6 (1 + 4β)1/2 L1/2 m1/2 ε1/2 (9)

for ε small enough, with ε being the discretization step size on B leading to the
solution fk. But for ε small enough, we also have

‖gk − f∞‖ 6
√

m
ε

2

hence

|Ek(gk)− E∞(f∞)| 6
λ2

+

8
m ε2 (10)

where λ2
+ 6 2 + 8β is the greatest eigenvalue of the Hessian of E∞ at f∞. Together

with (8),

‖fk − f∞‖ 6
1

2

λ+

λ−
m1/2 ε 6

1

2
(1 + 4β)1/2 m1/2 ε (11)

which is a better bound than (9), for ε small enough. Both (11) and (9) still hold
for any ε at the cost of replacing f∞ by a local minimum, i.e., for any k, there exists
a local minimum of E∞ such that its distance to fk is smaller than the quantities
mentioned. If we index by j and denote by f∞ loc j the local minima of E∞, then:

∀k, ∃j, ‖fk − f∞ loc j‖ 6
1

2
(1 + 4β)1/2 m1/2 ε

The case not studied yet is the one where one or several points of B∞ are a
geometrical vertices of B. The neighborhood of f∞ is then piece-wise quadratic,
and the number of pieces is finite. The first order directional derivatives can be
computed. Contrarily to the previous case, they may be non zero. However they are
necessarily non-negative (since f∞ is a local minimum). We can re-use the previous
framework with λ2

− the smallest eigenvalue amongst the smallest eigenvalues of the
Hessians of all quadratic functions. Indeed, the property (7) still holds and the proof
ends. The convergence rate is however better in this case. For each variable fi, let
us denote by di the lowest of the two partial directional derivatives with respect
to fi (which may differ if Bfi

is a vertex). When Bfi
is not a vertex, di = 0, but

if it is, di > 0 and most often in practice di will be non zero. We obtain, in the
neighborhood of f∞:

E∞(f) > E∞(f∞) +
∑

i

di|fk,i − f∞,i| +
λ2
−

2
‖f − f∞‖2

16



and thus, with (10):∑
i

di|fk,i − f∞,i| 6
∑

i

di|fk,i − f∞,i| +
λ2
−

2
‖f − f∞‖2 6

λ2
+

8
m ε2

∀i s.t. di 6= 0, |fk,i − f∞,i| 6
1

di

λ2
+

8
m ε2 6

1 + 4β

8 di

m ε2.

If di is too small or 0, then the bound (11) can still be used instead.

To sum up, we have :

• Energy convergence speed :

∀k, E∞(fk) 6 E∞(f∞) + (1 + 4β) L m εk

• Closeness to local minima:

∀k, ∃ j(A, m, B, εk), ‖fk − f∞ loc j‖ 6
1

2
(1 + 4β)1/2 m1/2 εk

• Convergence towards the global minimum:

∃ k0(A, m, B), ∀k > k0, ‖fk − f∞‖ 6
1

2
(1 + 4β)1/2 m1/2 εk

• Faster convergence at vertices (i.e. ∀i s.t. Bf∞,i
is a geometrical vertex of

B):

∃ k0(A, m, B), ∀k > k0, |fk,i − f∞,i| 6
1 + 4β

8 di

m ε2
k

Note that if we divide the energies by m and the norms by
√

m in order that the
quantities expressed converge towards integrals when m → +∞, then the number
of points m on A disappear from all inequalities, which means that the convergence
speeds do not depend on the discretization of A. The convergence speed does not
depend on the number n of geometrical vertices of B. However the number of local
minima with values E∞(f∞ loc j) close to the global one may increase with m and
consequently so may k0(A, m, B). In all cases a good local minima will be guaranteed
uniformly as a function of the discretization step size ε only (and of the polygon
size L), neither of A, nor B: the error on the energy and the distance to the closest
minimum are linearly bounded by ε.
Remark: the interpretations of the latter paragraph will have to change when
later in this report we will show that we should replace β by 1

ε2
A
β in all expressions.

1.3.5 Continuous precision

Continuous output
It is possible to obtain a continuous precision (of the output) without considering an

17



infinite sampling of B. Since the energy is piece-wise quadratic, the exact solution
can be found provided the good piece of quadric is selected. The selection could be
made thanks to the dynamic time warping algorithm with a small step size. Then
either a Newton gradient descent could be performed or the linear system involving
Qt could be solved.

Continuous input
In the general case, knowing where to match two consecutive points Ai and Ai+1

to Bfi
and Bfi+1

respectively does not tell that the whole segment [Ai, Ai+1] should
be matched to [Bfi

, Bfi+1
]. Indeed, in some special cases, the latter could be not

included in B at all... and the arc-length coordinates of Bfi
and Bfi+1

could differ a
lot.

A
i

A
i+1

B
f(i)

?
B
f(i+1)

Figure 12: In the general case, no matching extension is possible. Just refine the
discretization step on A or oversample it.

If B could be a relatively smooth curve, then one solution would be to consider
a step size on A smaller than the distance between B and its skeleton, so that if Bfi

and Bfi+1
are close enough, then f(i) and f(i + 1) also and the matching extension

can be performed. However, this would work only if the computed Bfi
and Bfi+1

are close enough, which will not be the case if A and B do not match completely.
And B is a polygon, so the distance to its skeleton is 0. However B may be a dis-
cretization of a smooth curve, in which case the skeleton of the smooth curve could
be considered instead of B’s one.

Another point of view is to consider the matching from B to A, and to reverse it.
If both matchings correspond approximately, then the continuous extension makes
sense. Else there is an intrinsic singularity in the matching problem between A and
B which cannot be solve.

Quality of refinement
Let A and B be two smooth continuous curves with strictly positive distances to

18



their skeletons, namely dA and dB respectively. By smooth we mean at least twice
geometrically differentiable (i.e. with respect to their arc-length), with bounded and
continuous second order derivative. Let f be a function matching A to B, i.e. which
associates to the arc-length of points on A the arc-length of points on B. Then
consider the following matching energy:

M(f) =
1

|A|

∫
A

∥∥∥−−−−−−−−→A(s)B(f(s))
∥∥∥2

+ β

∥∥∥∥−→tA(s)−
(

d

ds
f(s)

)
−→
tB(f(s))

∥∥∥∥2

ds

where |A| is the length of A. Here f has to be continuous (and differentiable),

otherwise squares of Dirac peaks appear. Note that
∥∥∥−→tA(s)−

(
d
ds

f(s)
)−→
tB(f(s))

∥∥∥ =∥∥∥ d
ds

−−−−−−−−→
A(s)B(f(s))

∥∥∥. This energy has been designed so that, given two regular (uni-

form) discretizations Ak and Bk of A and B with maximal step sizes εA and εB

respectively, the discretized version of M is the one studied before:

M(Ak, Bk, fk) :=
1

m
E∞(Ak, Bk, fk)

where fk maps vertices of Ak to any points on the polygon Bk (not necessarily to
vertices). The following study will lead to a more accurate discretized energy in the
case of non-uniform discretizations.

Proposition : For εA and εB small enough (< dA and dB respectively), if the
minimizer fk of M(Ak, Bk, fk) satisfies

∀i, |fk(i + 1)− fk(i)| 6 min{KεA, dB}

then a continuous extension f from A to B can be computed from it, and it satisfies:

M(f) 6 M(Ak, Bk, fk) + α1εA 6 inf
g

K-Lipschitz

M(g) + α2εA

with α1 = L1+K
2

and α2 = 2α1 + 1
dA

+ 2K( 1
dA

+ K2

dB
) + 2

dB
K4. Note that εB does

not appear in the constants, indeed its role is understated by K by εB 6 KεA, and
K can be arbitrarily chosen (greater than 1). Note that these inequalities are still
valid when considering the minimizer of Ek(A

k, Bk, fk) up to the addition of the
associated cost. Note also that in the proof we have to change the definition of the
energies so that the inequalities stand for non-regular discretizations of the shapes.

Remark: the constraint ∀i, |fk(i + 1)− fk(i)| 6 min{KεA, dB} is easy to enforce
in the algorithm. However, for a given K, there may be no solution.

Proof of the first inequality.
When following the contour A, one goes through vertices of Ak quite regularly. For
a given point A(s), let us denote by prec(s) the index of the vertex of Ak which just
precedes it on A. Let us denote by ai the arc-length on A of the vertex Ak

i . Then A(s)
belongs to the small curve segment A(aprec(s))A(aprec(s)+1). Let us denote prec(s)

19



by i for readability purposes, and interpolate the function fk between vertices i and
i + 1 by:

g(s) = fk(i) +
s− ai

ai+1 − ai)

(
fk(i + 1)− fk(i)

)
and estimate M(g). We have:

−−−−−−→
A(ai)A(s) = (s− ai)

−→
tA(ai) + ηA(s)−→nA(ai)

with ηA(s) 6 1
dA

ε2
A because of the bound on the curvature of A. Similarly,

−−−−−−−→
Bfk(i)Bg(s) =

s− ai

ai+1 − ai

(
fk(i + 1)− fk(i)

) −→
tB(fk(i)) + ηB(s)−→nB(fk(i))

with ηB(s) 6 K2

dB
ε2

A because of the bound on the curvature of B, provided that

|fk(i + 1)− fk(i)| 6 min{KεA, dB}, ∀i. The two last equations together give:

−−−−→
AsBg(s) =

−−−−−−→
Aai

Bfk(i) + (s− ai)

[
−→
tA(ai) +

fk(i + 1)− fk(i)

ai+1 − ai

−→
tB(fk(i))

]
+−→η (s)

with ‖−→η (s)‖ 6
(

1
dA

+ K2

dB

)
ε2

A. So that∣∣∣∣∫ ai+1

s=ai

‖
−−−−→
AsBg(s)‖2ds − wi‖

−−−−−−→
Aai

Bfk(i)‖2

∣∣∣∣ 6
(1 + K)2

3
ε3

A + L
1 + K

2
ε2

A + O(ε5
A)

with wi = |ai+1 − ai| 6 εA. Note that
∑

i wi = |A|. We obtain:∣∣∣∣∣ 1

|A|

∫
A

∥∥∥−−−−→AsBg(s)

∥∥∥2

ds−
∑

i

wi

|A|

∥∥∥−−−−−−→Aai
Bfk(i)

∥∥∥2

∣∣∣∣∣ 6 L
1 + K

2
εA + O(ε2

A)

Note that wi

|A| = 1
m

if the discretization step size is constant along A. The same way,∥∥∥−→tA(s)−−→
tA(ai)

∥∥∥ 6
1

dA

ε2
A∥∥∥−→tB(g(s))−−→

tB(fk(i))
∥∥∥ 6

1

dB

K2ε2
A

and
d

ds
g(s) =

fk(i + 1)− fk(i)

ai+1 − ai

so that∣∣∣∣∣
∫ ai+1

s=ai

∥∥∥∥−→tA(s)−
(

d

ds
f(s)

)
−→
tB(f(s))

∥∥∥∥2

ds− (ai+1 − ai)

∥∥∥∥−→tA(ai)−
fk(i + 1)− fk(i)

ai+1 − ai

−→
tB(fk(i))

∥∥∥∥2
∣∣∣∣∣

6 wi (1 + K)

(
1

dA

+
K2

dB

)
ε2

A + O(ε4)

20



hence∣∣∣∣∣ 1A
∫

A

∥∥∥∥−→tA(s)−
(

d

ds
f(s)

)
−→
tB(f(s))

∥∥∥∥2

ds−
∑

i

1

|A|wi

∥∥∥−−−−→AiAi+1 −
−−−−−−−−−→
Bfk(i)Bfk(i+1)

∥∥∥2

∣∣∣∣∣
6 (1 + K)

(
1

dA

+
K2

dB

)
ε2

A + O(ε3)

Consequently : ∣∣M(g)− F (Ak, Bk, fk)
∣∣ 6 L

1 + K

2
εA + O(ε2

A)

where

F (Ak, Bk, fk) =
∑

i

wi

|A|

∥∥∥−−−−−−→Aai
Bfk(i)

∥∥∥2

+ β
1

|A|wi

∥∥∥−−−−→AiAi+1 −
−−−−−−−−−→
Bfk(i)Bfk(i+1)

∥∥∥2

.

Note that F = 1
m

E∞ =: M(Ak, Bk, fk) in case of regular discretization.

Proof of the second inequality.
Consider f the global minimizer of M if it exists, or otherwise any matching close
to the optimum (any f s.t. M(f) 6 infg M(g) + ε with ε arbitrarily small). f is
differentiable and defined on a compact set, so it is continuous and Lipschitzian.
We will suppose here that f is also K-Lipschitzian (with K predefined). In fact
the hypothesis of the proposition could be “M admits a K-Lipschitzian solution, or
the inf of M on the set of the K-Lipschitzian functions equals the inf of M”. Then
let us build gk by gk(i) = f(ai), a candidate solution for the discretized problem
M(Ak, Bk, gk). We have:

∀s ∈ [ai, ai+1],
∣∣f(s)− gk(i)

∣∣ 6 K |s− ai| 6 KεA

We can proceed as previously, except for d
ds

f(s) − gk(ai+1)−gk(ai)
ai+1−ai

on which we have

no bound. We will prove instead that an affine function between ai and ai+1 does
not increase the energy much, and re-use the previous framework. Consider the
functional of 3 functions a, b, f :

G(a, b, f) =

∫ x1

x0

∣∣∣∣a− b
df

ds

∣∣∣∣2 ds.

When a and b are constant, the minimum of G over f with fixed extremities f(xi) =
yi is achieved for the affine function f . Indeed:

G(a, b, f) = a2 − 2ab

∫ x1

x0

df

ds
ds + b2

∫ x1

x0

df

ds

2

ds

with a2 − 2ab
∫ x1

x0

df
ds

ds = a2 − 2ab(y1 − y0) is constant. Then we have∫ x1

x0

1ds

∫ x1

x0

df

ds

2

ds >

(∫ x1

x0

1× df

ds
ds

)2

= (y1 − y0)
2

21



with equality only if df
ds

is collinear to 1, i.e. is constant. We thus have found
fmin(s) = y1−y0

x1−x0
which minimizes G(a, b, f). Now let us add small variations ηa and

ηb to G (with maximal values ea and eb respectively) and search for the new mini-
mum. For all f we have:
|G(a + ηa, b + ηb, f)−G(a, b, f)|

6 2aea + e2
a + 2(aeb + bea)

∫ x1

x0

∣∣∣∣dfds

∣∣∣∣ ds + (2beb + e2
b)

∫ x1

x0

df

ds

2

ds

6 ea(2a− ea) + 2K(aeb + bea) + K2eb(2b + eb)

if f is K-Lipschitzian. Consequently the infimum values of both cannot be far:
G(a, b, fmin) = inf

g
K-Lipschitz

G(a, b, g)

6 inf
g

K-Lipschitz

G(a + ηa, b + ηb, g) + ea(2a + ea) + 2K(aeb + bea) + K2eb(2b + eb).

Applied to G(
−→
tA(ai),

−→
tB(gk(ai)), f) and its variation

∫ ai+1

s=ai

∥∥∥−→tA(s)−
(

d
ds

f(s)
)−→
tB(f(s))

∥∥∥2

ds

we obtain that the previously studied affine interpolation reaches almost the global
minimum of the derivative term with fixed extremities. So:∣∣∣∣∣
∫ ai+1

s=ai

∥∥∥∥−→tA(s)−
(

d

ds
f(s)

)
−→
tB(f(s))

∥∥∥∥2

ds− (ai+1 − ai)

∥∥∥∥−→tA(ai)−
gk(i + 1)− gk(i)

ai+1 − ai

−→
tB(gk(i))

∥∥∥∥2
∣∣∣∣∣

6
1

dA

ε2
A + 2K(

1

dA

+
K2

dB

)ε2
A +

2

dB

K4ε2
A + O(ε3

A).

Using the previous framework and summing the bounds, we obtain:

∣∣M(f)−M(Ak, Bk, gk)
∣∣ 6 (L

1 + K

2
+

1

dA

+ 2K(
1

dA

+
K2

dB

) +
2

dB

K4

)
εA.

But M(Ak, Bk, fk) 6 M(Ak, Bk, gk), so

M(Ak, Bk, fk) 6 M(f) + O(εA).

22



Remark: this convergence study showed that we should use the coefficients
wi = ai+1 − ai = ‖AiAi+1‖ rather than the uniform ones, and minimize

F (Ak, Bk, fk) =
∑

i

wi

|A|

∥∥∥−−−−−−→Aai
Bfk(i)

∥∥∥2

+ β
1

|A|wi

∥∥∥−−−−→AiAi+1 −
−−−−−−−−−→
Bfk(i)Bfk(i+1)

∥∥∥2

.

However F = 1
m

E∞ =: M(Ak, Bk, fk) in case of regular discretization. The
previous convergence studies in 1.3.4 remain valid provided β is replaced by 1

w2
i
β.

Consequently, in order the bounds with β to remain bounds, the discretization
of A should not only satisfy wi 6 εA but also wi > αεA (for any fixed choice of
α > 0, for example 1/2). Then, in order to combine the bounds on εA with the
first ones in εk = εB, which becomes :

∀k, F∞(fk) 6 F∞(f∞) + (1 +
4

α2

β

ε2
A

) L εB

we have to require that εB goes faster towards 0 than ε2
A. However this bound

might be not the most optimal one. If we look at the proximity of fk to local
minima, we need only εB to decrease faster than εA.

1.4 Increasing speed by neighborhoods

To speed up the algorithm, the possible matching points Bj for Ai could be taken
amongst only the nearest neighbors of Ai. If we fix a constant K and search for
the indexes Ni = {N 1

i ,N 2
i , . . . ,NK

i } of the K nearest neighbors of Ai amongst B
points, then the number n of points of B is replaced by K in all previous complexity
computations. For example the complexity in the case of closed curve matching
with coherency enforcement becomes m×K3. To this complexity should be added
the one of searching for the nearest neighbors. With a naive search, it becomes
m× (n + K3).

1.5 Dealing with shapes, i.e. sets of close curves with ran-
dom topology

1.5.1 A polygon to a set of polygons

First, let us match a polygon A onto a set of polygons B = ∪iBi. We proceed the
same way as previously for two closed curves, except that we remove the constraint
that the matching function f should be increasing. Indeed, there is no order on
the set of points of a set of polygons, and anyway the constraint is useless in the
way the algorithm proceeds. Thus, two consecutive points on A may be matched
to two points on different connected components of B, but this is not a problem (it
is even what we are searching for) since this would mean that these two connected
components are very close at this location (and thus that they could be merged
together in another frame). The spatial coherency criterion proves useful here.

23



Figure 13: Topology changes appear frequently.

Also, in case of large movements of thin object parts (like fingers, or legs), we
would like the left side of a leg to be matched to the left side of the leg in the other
shape (and not the right one which is however closer), and a way to ensure that is
to take into account the orientation of the normals (which point towards the outside
of shapes) in the distance between possibly matching points.

Figure 14: Nearest point on the other shape (bad match).

Figure 15: Nearest point, including the normal orientation (towards the outside) in
the distance.

24



1.5.2 A polygon to a shape or void

We add another possibility of matching for any point : the matching to void, which
means that no possible corresponding point has been found on B. Choosing void
rather than a point of B as a corresponding point has a cost, which is higher if the
previous point is not already matched to void. This is in order to avoid that just one
point may be matched to nothing, while it may be coherent that a whole segment
may not appear in the other shape. The cost should be put high enough so that
matching to void remains exceptional (points should not be matched to void in case
of a big deformation).

1.5.3 A shape (set of polygons) to a shape

Just match successively each of the polygons of the first shape with the previous
method. Ok it might lack a bit of coherency but it allows to benefit from the locally
linear structure of shapes (each vertex has two neighbors, and there is a simple way
to order the set of vertices).

2 Transport of fields

2.1 Easy scheme as introduction

You are given shapes A, B and the matching function fB→A from B to A. You
are also given any function gA defined on (vertices of) A and you would like to
transport it to (vertices of) B. A possible solution is to consider gB = gA ◦ fB→A. If
fB→A(s) = ∅ then set gB(s) = 0.

2.2 Vectors are not real values

The previous scheme works fine to transport real-valued functions, but when trans-
porting vectors, one may want to rotate the vectors accordingly, so that the image of
a vector which was orthogonal (or collinear) to

−→
tA(s) is orthogonal (resp. collinear)

to
−→
tB
(
f−1

B→A(s)
)
. Then this is the same as transporting the two real-valued functions

−→gA ·
−→
tA and −→gA · −→nA. However this requires not-too-noisy boundaries (i.e., smooth

tangents and normals).

2.3 Naive, diffusive barycentric transport

Now you would like to refine the transport, using a more precise matching from B
to an oversampled version of A. The point of A corresponding to a vertex of B can
be expressed as a barycenter of two vertices of A: αAi + (1−α)Ai+1 for a certain α
between 0 and 1 and a certain i which depend on s (the coordinate of the point of
B). Naive transport : set

gB(s) = αgA(fB→A(Ai)) + (1− α)gA(fB→A(Ai+1)).

25



2.4 Non-diffusive barycentric transport

Now imagine you have a series of shapes Ak and you want to transport a function
defined on A0 onto An by transporting successively the function from Ak to Ak+1.
Using the previous framework will end up in diffusing the function along the shapes
at each step. Instead, one can compute the whole matching function fAn→A0 =
fA1→A0 ◦fA2→A1 ◦ · · · ◦fAn→An−1 and then estimate directly gA0 ◦fAn→A0 , performing
only one interpolation instead of n.

There is an easy way to define fB→A ◦ fC→B(s) in most cases (but which has to
be changed in the other cases).

A

B

C

α 1−α

βα
(1−β)α

(1−α) (1−γ)

γ(1−α)+

Figure 16: Simple case: compute the barycenter of the barycenters...

A

B

C

α 1−α

β

γ

1−γ
1−β

Figure 17: The other case: average the values at the two barycenters.

Let us denote by C0 the point to be matched, by B1 and B2 the extremities of
the segment which contains its image via fC→B, and A1, A2, A3, A4 the extremities
of the segments which contain the images of B1 and B2 via fB→A. The points B1

and B2 are two consecutive points on a same connected component of B, and, the
same way, A1 and A2 are two consecutive points of a same component of A, and so
are A3 and A4. However A1, A2 and A3, A4 may belong to two different components
of A, or be far (as a function of the arc-length). We can choose a threshold, for
example εA, so that if the arc-length distance between A2 and A3 is smaller than

26



εA, then we compute the barycenter of (the arc-length of) the four points Ai with
their associated weights. And then the value of gA is estimated at this barycenter.

In the other cases, we can only compute the weighted mean of the values of gA

at the two barycenters.
We estimate the transport TA0→An(gA0) of the function gA0 from A0 to An by

recursively applying the previous algorithm, avoiding as much as possible to compute
averages at middle steps (only when necessary), postponing the computation of
averages to the last step on A0 as often as possible. The recursively-built set of
segment extremities on An−1, An−2, . . . , A0 that surround points matching a given
point on An is a tree, with most often only two leaves (splitting steps are not
frequent).

A

2

0

A
1

A

A

A

n−1

n

n−2

n−3
A

A

Figure 18: Following one point along the series of shapes leads to a tree, with few
branches only since a split happens only in case of matching difficulty (topology
change for instance).

The process has to be repeated for each point on An, so the complexity of the
transport (knowing the matching functions fAi→Ai−1) is n×m where m is the average
number of points on shapes Ai. More simply, the computation cost is about linear
in the total number of points in the set of shapes. However the cost in the worst
case is m× 2n...

Note: we are in the barycentric framework, i.e. the matching functions fAi→Ai−1

are computed as in part 1.2.5, from vertices of Ai to vertices of the oversampled
target shape Ai−1.

Conclusion

Don’t hesitate to ask me for more details or my code.

27



References

[1] F. R. Schmidt, Dirk Farin, and D. Cremers. Fast matching of planar shapes
in sub-cubic runtime. In IEEE International Conference on Computer Vision
(ICCV), Rio de Janeiro, Brazil, October 2007.

28


