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Introduction

The purpose of this is to document the basic algorithms I use to transform a binary
image into a shape, which may have a non-trivial topology, how to compute normals
that point towards the outside of the shape, and how to register any two shapes
with simple, fast tools.
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1 Segmentation of a binary image

Data : a black and white image (grey levels = 0 and 255 only) : a black object,
possibly not topologically trivial, on a white background
Desired output : the contour of the object (non-oriented yet)
Difficulties : pixelization, ordering segments

Finding open/closed connected components:

• Find edges : one side of a pixel (a “segment”) belongs to the contour if and
only if the two neighboring pixels have different colors

• Special case : one might decide that all black pixel sides on the image border
belong to the contour (in that case all connected components of the contour
will be closed curves)

• Find neighbors of all contour segments (2 in the middle of a straight line [check
following special case], 1 on the image border if previous special case ignored)

• Special case : tangent components, i.e. a square window of 2× 2 pixels with a
black diagonal and a white diagonal. Arbitrary decision: the black pixels are
connected, the white ones aren’t. This solution minimizes the total number of
(black) connected components.

• Pick up any segment and follow recursively its neighbors in the same direction
(twice, one for each possible initial direction), until dead-end (if open connected
component) or back to initial pixel. This is one component. Label segments
accordingly.

• Do previous step as long as unlabeled segments exist.

• Store components into polygons (one polygon = ordered table of successive
contour points, with a label “closed” or “open”)

Complexity : linear in number of image pixels (mostly linear in number of contour
length with a small factor).

2 Pre-processing polygons

2.1 Smoothing

Angles are only 0 or π/2, so there is a need for smoothing. Just apply Gaussian
smoothing with a predefined standard deviation (e.g. 3 pixels) along the polygons.

2.2 Sub-sampling

• In case of previous regular discretization : pick regularly one vertex every n
initial vertices.
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• Otherwise : pick up vertices so that the length between two successive vertices
is never greater than l.

2.3 Over-sampling

• In case of previous regular discretization : just cut each segment into n parts.

• Otherwise : add points along the contour, regularly spaced (does not neces-
sarily include original points)

2.4 Computation of normals

• At any vertex : based on the two neighboring vertices. Consider
−−−−−→
Pi−1Pi+1,

turn it with the angle π/2, and normalize it.

• Special case (extremity of an open polygon) : orthogonal to the segment itself.

• On a segment : easy ! Turn Si =
−−−−→
PiPi+1 with an angle π/2 and normalize it.

In all cases : orientation is arbitrary but coherent : all normals of a same component
point towards the outside (or the inside) of the component (for example, always point
to the right when following the contour). The sign of the curvature is not taken into
account.

2.5 Smoothing of normals

The same : a Gaussian mask along the contour, a few pixel wide.

3 Test whether a point is inside a polygon

Point A, closed polygon P with ordered successive vertices (Pi)16i6n.
Notation: Pn+1 := P1.
n segments : Si = [Pi, Pi+1].

3.1 Number of intersections between a half-line and a poly-
gon

Consider any random (unit normed) direction −→u , and the half-line [A,−→u ) starting
from A with direction −→u . Just count the number c of times this half-line intersects
the polygon P . Then, if c is odd, A is inside, and otherwise A is outside.

Pathological cases:

• if A is on the boundary P itself. Easy to detect (A belongs to one segment).
Boundary P is considered as included in the “inside” of P .
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• if the half-line includes one segment (very low probability). Easy to detect.
Pick up another random direction.

• if the half-line goes through one vertex (then the line could cross the polygon at
this point or be tangent). Easy detection (one vertex belongs to the half-line).
Pick up another random direction. Note : this case includes the previous one.

To count the number of intersection with the polygon, just check successively how
many segments of the polygon the half-line crosses.

3.2 Intersection of a half-line and a segment

Point A, direction −→u , segment Si = [Pi, Pi+1].
We know that the half-line [A,−→u ) does not go through Pi or Pi+1.

Special case:

• if Si and −→u are parallel. Then because of hypotheses (the half-line does not
go through the vertices), there is no intersection.

Normal case : let B the intersection of the two lines, δ the possibly negative distance
AB along (A,−→u ), and γ the possibly negative relative distance PiB/PiPi+1 along
(Pi, Pi+1).

P
i

P

B
A

i+1

u

γ

δ

Then:

• if δ < 0 : no intersection

• else if γ < 0 or γ > 1 : no intersection

• else : intersection

Writing definitions gives :

γ
−−−−→
PiPi+1 =

−−→
PiA + δ−→u

With two projections:
γ PiP

2
i+1 =

−−→
PiA ·

−−−−→
PiPi+1 + δ−→u ·

−−−−→
PiPi+1

γ (
−−−−→
PiPi+1 · −→u ) =

−−→
PiA · −→u + δ
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This implies

γ =

−−→
PiA ·

−−−−→
PiPi+1 − (

−−→
PiA · −→u )(

−−−−→
PiPi+1 · −→u )

−−−−→
PiPi+1

2 − (
−−−−→
PiPi+1 · −→u )2

and
δ = (γ

−−−−→
PiPi+1 −

−−→
PiA) · −→u

4 Normals’ orientation

A shape is a set of non-intersecting polygons.
A polygon is here a closed contour (otherwise there is no inside/outside).
Hypothesis : normals have been coherently pre-computed along polygons (see 2.4).

4.1 Orientation of normals towards the outside of a polygon

G

P

P
i+1

i−1

P
i

Compute the gravity center G (of the contour), consider the (or one of the)
farthest point Pi from G. A tangent line at this point cut the plane in two parts,
one containing all other points Pj and one without any. Then necessarily the inner
product between the normal at point Pi towards the outside of the polygon and the

vector
−−→
GPi is positive.

Notes:

• Any point Pi on the convex hull is ok, for example one can consider the vertex
with smallest coordinate x...

• The normal at point Pi should be computed carefully. Just considering
−−−−−→
Pi−1Pi+1

rotated with π/2 may fail. Instead, just reduce the neighborhood to an isosceles

triangle by replacing Pi−1 by Pi+
−−−−→
PiPi−1/PiPi−1, and Pi+1 by Pi+

−−−−→
PiPi+1/PiPi+1

to compute the normal at Pi.
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Figure 1: Bad case
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Figure 2: Isosceles is always good

4.2 Orientation of normals towards the outside of a shape

The orientation of normals on each polygon are coherent within the polygon and
point towards the exterior of the polygon. The question is whether they point
towards the interior of the shape or towards its exterior. Easy solution : for each
polygon, count the number of polygons (of the shape) it is included into. To test
if one polygon is (strictly) inside another one, just test whether one point of the
former is inside or outside the latter... (section 3).

5 Simple shape registration : translation/scale

One has to choose a way to register one shape onto another one in order to compare
them. One simple solution is to perform no registration, arguing that two shapes
identical up to a rigid transformation are different. Another point of view is to
claim that they are identical. The difficulty is when one tries to register (rigidly)
two different shapes : what is the optimal registration ?

• Registration with respect to location (translations) : usual consensus and easy
to perform.

• Registration with respect to angle (rotations) : in the simplest form, easy to
perform (just align first moments) but this is ill-posed when there is no clear
first direction (e.g. for a circle, a star, a square, anything not elongated). In the
global form, very hard to perform (gradient descents with many initialization
of angles ?) if the objects are not supposed to have about the same orientation.

• Registration with respect to size (scalings) : with respect to what ? Length
(bad idea for noisy shapes or self-occluding shapes) ? Diameter ? Area ?

The good way to solve the problem is to first define a metric on the shape space
and then minimize the distance between the two shapes with respect to all param-
eters (position, angle, scale). Also don’t forget that the meaning of the matching
computed between two shapes depends strongly on the kind of registration you per-
formed earlier. Without registration : true movement. Registration with respect to
position and angle : true deformation (but the first axis cannot change!). Registra-
tion with respect to size also : relative deformation, volume preserving.
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Here I will just present the computation of the mass and of the center of mass
(easy solution). For human silhouettes one can consider that an angle variation is
an intrinsic deformation of the silhouette (i.e., that standing is different from lying).

5.1 Area of a polygon

Computing the area of a polygon is not more complex than computing its length.

G

P
i+1

P
i

One just needs to consider any point G (not necessarily the center of mass) and
sum the (possibly negative) areas of all triangles GPiPi+1.

Area =

∣∣∣∣∣∑
i

−−→
GPi ∧

−−−−→
PiPi+1

∣∣∣∣∣
Note : this quantity does not depend on G.

5.2 Center of mass

Computing the center of mass M of the whole polygon (the surface) is not more com-
plex than computing the center of mass of its contour. The algorithm is essentially
the same as the one for the area.

−−→
OM =

1

3
∑

j

−−→
OPj ∧

−−−−→
PjPj+1

∑
i

(−−→
OPi ∧

−−−−→
PiPi+1

) (−−→
OPi +

−−−→
OPi+1

)
Note: the resulting point M does not depend on the initial point O.

Conclusion

Life is easy. No need for mesh triangulation.
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