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Résumé

L’objectif de cette thèse est de proposer une approche générale de compréhension de vidéo
pour l’apprentissage et la reconnaisance d’événements, dans des applications du monde
réel. L’approche est composée de quatre tâches:
En premier lieu, pour chaque frame de la vidéo, une tâche de segmentation consiste à
détecter les régions mobiles, lesquelles sont représentées par des bôıtes englobantes qui les
délimitent.
En second lieu, une nouvelle méthode de classification 3D associe à chaque région mobile
un label de la classe d’objet (par exemple, personne, voiture) et un parallélépipède 3D
décrit par sa largeur, sa hauteur, sa longueur, sa position, son orientation, et des mesures
de fiabilité associées à ces attributs.
En troisième lieu, une nouvelle approche de suivi d’objets multiples utilise ces descriptions
d’objet pour générer des hypothèses de suivi par rapport aux objets évoluant dans la
scène. En dernier lieu, une nouvelle approche d’apprentissage incrémental d’événements
agrège en ligne les attributs et l’information de fiabilité des objets suivis afin d’apprendre
des concepts qui décrivent les événements se déroulant dans la scène. Des mesures
de fiabilité sont utilisées pour focaliser le processus d’apprentissage sur l’information
la plus pertinente. Simultanément, l’approche d’apprentissage d’événements reconnâıt
des événements associés aux objets suivis dans la scène. L’approche de suivi d’objets a
été validée en utilisant des benchmarks de video-surveillance libres d’accès. L’approche
complète de compréhension de vidéo a été evaluée en utilisant des vidéos obtenues d’une
application réelle de maintien de personnes âgées à domicile. L’approche a été capable
d’apprendre avec succès des événements associés aux trajectoires (e.g. le changement dans
la position 3D et la vitesse), la posture (e.g. se lever, s’accroupir), et l’interaction entre
objets (e.g. une personne s’approchant d’une table), parmi d’autres événements, avec un
effort minimal de configuration.

Mots clés:
Compréhension de vidéo, répresentation 3D des objets, suivi des objets, mesures de
fiabilité, apprentissage incrémental, apprentissage des événements.
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Abstract

The goal of this thesis is to propose a general video understanding framework for learning
and recognition of events occurring in videos, for real world applications. This video
understanding framework is composed of four tasks:
First, at each video frame, a segmentation task detects the moving regions, represented
by bounding boxes enclosing them.
Second, a new 3D classifier associates to each moving region an object class label (e.g.
person, vehicle) and a 3D parallelepiped described by its width, height, length, position,
orientation, and visual reliability measures of these attributes.
Third, a new multi-object tracking algorithm uses these object descriptions to generate
tracking hypotheses about the objects evolving in the scene. Reliability measures
associated to the object features are used to perform a proper selection of valuable
information.
Finally, a new incremental event learning algorithm aggregates on-line the attributes and
reliability information of the tracked objects to learn a hierarchy of concepts describing
the events occurring in the scene. Reliability measures are used to focus the learning
process on the most valuable information. Simultaneously, the event learning approach
recognises the events associated to the objects evolving in the scene.
The tracking approach has been validated using video-surveillance benchmarks publicly
accessible. The complete video understanding framework has been evaluated with videos
for a real elderly care application. The framework has been able to successfully learn events
related to trajectory (e.g. change in 3D position and velocity), posture (e.g. standing
up, crouching), and object interaction (e.g. person approaching to a table), among other
events, with a minimal configuration effort.

Keywords:
Video understanding, 3D object representation, object tracking, reliability measures,
incremental learning, event learning.
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Chapter 1

Introduction

One of the most challenging problems in the domain of computer vision and artificial
intelligence is the automatic interpretation of image sequences or video understanding.
The research in this area concentrates mainly on the development of methods for the
analysis of visual data to extract and process information about the behaviour of physical
objects in a real world scene.

The advance in low-level visual data extraction in video, has allowed researchers to focus
on higher level analysis involving temporal aspects, as event recognition and learning. In
the latest years, video event analysis has become one of the biggest focus of interest in the
video understanding community [Hu et al. 2004a], even if the number of studies in this area
is still low, compared with other areas in video understanding. The extraction of event
information in video generally implies the proper processing of low-level video processing
tasks, as motion detection, object classification, and tracking, in order to generate the
appropriate input for the event analysis tasks.

The goal of this thesis is to propose a video understanding framework for general
event learning and recognition addressing real world applications.

An increasing number of event analysis approaches have been proposed in the latest
years. The interest of researchers has been mainly focused on the recognition of pre-
defined events [Howarth and Buxton 2000], [Medioni et al. 2001], off-line learning of the
relations between pre-defined events [Hongeng et al. 2004], [Chan et al. 2006a], [Hamid
et al. 2005], [Toshev et al. 2006]), and off-line learning of events [Fernyhough et al. 2000],
[Remagnino and Jones 2001], [Hu et al. 2006], [Niebles et al. 2006], [Xiang and Gong
2008]. To date, very little attention has been given to incremental event learning in
video [Mugurel et al. 2000], [Piciarelli and Foresti 2006], which should be the natural step
further of real-time applications for unexpected event recognition, or anomalous behaviour
detection.

The analysis of events in video has several interesting applications. Video surveillance
is one of the most important application domains. For the safety of the public places,
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2 Chapter 1. Introduction

video camera surveillance is commonly used, but the dramatical increase of the number
of cameras has lead to the saturation of the transmission and analysis means, as it is
difficult to supervise simultaneously hundreds of screens. For assisting in this difficult
task, video understanding techniques can be utilised for filtering and sorting the scenes
which can be interesting for a human operator. For example, the AVITRACK project
for video surveillance in airports [AVITRACK 2002], reports to the operators the apron
activities occurring (e.g. refuelling operation), and generates alarms in case of undesired
situations (e.g. collision between a cargo vehicle and and an aircraft). As another example,
the CARETAKER project for behaviour analysis in public spaces [CARETAKER 2006],
[Carincotte et al. 2006], generates alarms in case of undesired situations (e.g. persons
fighting in a parking lot), and performs data mining on long duration video sequences for
analysing patterns of behaviour of the objects evolving in the scene.

Another interesting application domain is health-care monitoring. It consists in
monitoring the activity of a person through cameras and sensors in order to ensure
her/his physical and mental integrity. For these applications, video understanding
techniques can be utilised for automatically generating alarms in case that the health
of the monitored person is in danger. For example, GERHOME project for elderly care
at home [GERHOME 2005], [Zouba et al. 2007]), utilises heat, sound and door sensors,
together with video cameras for monitoring elderly persons. The video understanding
system proposed at GERHOME project is able to alert the family or to demand for
medical support in case that an accident is detected (e.g. person falling down), and to
monitor the behaviour of the person alerting her/him if some necessary action is not
performed (e.g. the person did not that her/his medication, or did not take water for a
long period in a hot season).

The utilisation of incremental event learning in video understanding allows to obtain
the probability of occurrence of the events in a video scene, which can be utilised
for the detection of abnormal situations based on an adaptive model of the event
frequency in a video scene. The detection of abnormal situations can be an interesting
characteristic for many video surveillance and health-care applications, as it allows to alert
an operator about the occurrence of a new unknown situation, which could be undesirable
or dangerous.

This thesis centres its interest in applications for incremental event learning, where several
objects of diverse type can interact in the scene (e.g. persons, vehicles). The events of
interest are also diverse (e.g. events related to trajectories, human posture) as the focus
of interest is learning events in general. The objects simultaneously evolving in the scene
can be many, but the interest is centred in objects which can be individually tracked in
order to be able of recognising the events each object is participating.

For achieving the goal of this thesis, a new video understanding framework for general
event learning and recognition is proposed. This approach involves a complete framework
for event learning including video frame segmentation, object classification, object
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tracking, and event learning tasks:

1. First, at each video frame, a segmentation task detects the moving regions,
represented by bounding boxes enclosing them.

2. Second, to each moving region, a new 3D classifier associates a object class label
(e.g. person, vehicle) and a 3D parallelepiped described by its width, height, length,
position, orientation, and visual reliability measures of these attributes.

3. Third, a new multi-object tracking algorithm uses these object descriptions to
generate tracking hypotheses about the objects evolving in the scene. Reliability
measures associated to the object features are used to perform a proper selection of
valuable information.

4. Finally, a new incremental event learning algorithm aggregates on-line the attributes
and reliability information of the tracked objects to learn a hierarchy of concepts
describing the events occurring in the scene. Reliability measures are used to focus
the learning process on the most valuable information. Simultaneously, the event
learning approach recognises the events associated to the objects evolving in the
scene.

Next Section 1.1 presents the hypotheses and objectives for this thesis work. Then,
Section 1.2 describes the structure of this thesis, where a short description of the contents
for each chapter is presented.

1.1 Thesis Hypotheses and Objectives

The framework assumes the following hypotheses:

• Mono-camera application: The framework has been conceived for considering as
input only one camera. This framework infers 3D information of the physical objects
evolving in the scene by using a priori knowledge about the objects expected to be
present in the scene. Even if the mono-camera constraint seems very limiting, in
real world applications it is often the case to process separately the cameras of a
large network.

• Fixed-camera hypothesis: The framework considers a fixed camera
configuration. This hypothesis implies the availability of a model for transforming
2D image referential points to 3D scene referential points. The process of finding this
mapping transform is known in the video processing domain as calibration. In the
scope of this thesis, a pinhole camera model is utilised, which considers the mapping
between 2D image points and 3D scene points as a linear transform represented by
a projection matrix. For performing the calibration process, an off-line process
called the Direct Linear Transform (DLT) algorithm [Abdel-Aziz and Karara 1971]
is utilised. DLT algorithm consists in finding the projection matrix by solving the
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linear problem X = AY , where each column xk ∈ X corresponds to a 2D image
point, the column yk ∈ Y to the corresponding 3D point in the scene referential, and
A to the transform to be found. The mentioned projection matrix is often referred
as perspective matrix.

• Available 3D object models: This hypothesis is more desirable than compulsory,
as the availability of 3D object models allows the different tasks of the video
understanding framework to perform a better analysis of the objects evolving in
the scene. The availability of 3D object models allows the classification task to feed
the tracking process with a more precise description of the mobile objects present in
the scene, allows the object tracking task to perform a more detailed analysis of the
possible configurations for the tracked objects, and allows the event learning task
to learn from more interesting object attributes.

• Real world applications: The video understanding framework application must
be suitable for learning events from video. This suitability implies that several
factors must be considered:

– Video sequence quality: The quality of the analysed video sequence must be
sufficient for detecting the objects evolving in the scene with an acceptable
level of reliability. Excessive video noise, too low video frame rate, or a big
lack of contrast between the objects and the background of the scene, among
others, can be the factors which prevent the right detection of an object. This
constraint does not mean that the interest is only centred in video sequences
of high definition and quality, as mechanisms are provided to control several
of these factors if their consequences in the video sequence are not severe.

– Crowding level: The number of objects simultaneously evolving in the scene
is not limited, but it is a fact that it can affect the performance, then it is
an aspect to be considered. The separability of objects evolving in the scene
is a more important factor, as the video understanding framework requires
the information of events for each individual object. This factor does not
mean that dynamic object occlusion can not occur, as mechanisms for cope
with occlusion exist in the framework, and will properly work according to the
reliability obtained for the object attributes in the previous frames.

– Real-time performance: The real-time computing performance is a desirable
factor of the proposed framework. Several aspects can prevent the framework to
accomplish this factor, as for example an excessive number of objects evolving
in the scene, a highly demanded precision for object attributes, or a huge
number of possible object classes to analyse. Depending if an application
requires or not an on-line response from the video understanding framework,
this factor becomes more or less desirable.

Given the complexity of the problem to be solved, this thesis work tries to respond to
several general questions arising:



1.1. Thesis Hypotheses and Objectives 5

1. How to diminish the gap between low-level video processing tasks and
event learning? Currently, general complex event recognition and learning is
performed by pre-defining the basic events of interest for the user. When the interest
is also focused in learning these basic events, current studies centre their attention
in particular event types (e.g. trajectories).

2. How can generic frequent events occurring in a scene be learnt and
recognised on-line, keeping a computing time performance adequate for
real world applications?

3. How can the information needed for event learning be robustly extracted
from noisy videos?

For responding to these questions, the proposed video understanding framework
establishes two global objectives:

1. To propose a general approach for frequent event learning, able to
properly work in real world applications. For this purpose, an incremental
learning approach is proposed in order to be able to learn simple events on-line
directly from mobile object attribute information, with minimal learning processing
time when new information arrives to the system. The learnt events can be used
to bridge the gap between low-level video processing tasks and high-level complex
event analysis for generic events, by considering these simple events as building
blocks of the complex events.

2. To propose a learning approach able to robustly handle noisy information.
For achieving this robustness, a complete framework has been proposed, which
utilises reliability measures for accounting the quality and coherence of the acquired
data. The reliability information is associated to the tracked object features, and
computed for the different tasks of the video understanding framework.

This way, the global contributions of this approach are the following:

1. A new incremental event learning approach able to learn the frequency
of generic events from a video scene. This approach proposes an automatic
bridge between the low-level data obtained from objects evolving in the scene and
higher level information which considers the temporal aspect. Incremental learning
of events can be useful for abnormal event recognition and to serve as input for
higher level event analysis.

2. A new global way of managing noisy information. The video understanding
framework proposes to associate reliability measures to obtained information, in
order to be able of accounting for the quality, coherence, and reliability of this
information. This way, most valuable information can be identified in order to
increase the robustness on tracking by focusing the object tracking process on most
coherent and certain object features, and to focus the learning process on the most
reliable information.
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1.2 Thesis Structure

First, Chapter 2 describes the state of the art related to the presented video understanding
framework. As the proposed framework addresses the whole issue of video understanding,
this chapter has been separated in five sub-parts covering: object representation, multi-
object tracking, the utilisation of reliability measures in video understanding, incremental
concept formation, and event learning from video.

Second, Chapter 3 presents a global view of the proposed video understanding framework,
giving a detailed description of the problem to be solved. This chapter gives a general
description of the proposed video understanding framework for event learning and
recognition. Also, the solutions proposed for the problems present at each task of the
video understanding framework are introduced. The possible user interactions with the
framework are also described. The three following chapters give a detailed description of
each component of the proposed framework.

In Chapter 4, the utilised object representation is described in detail. This description
includes the mathematical formulation of the parallelepiped model, the calculation of
different alternative models, the detection of static occlusion situations, and the validation
of the representation for its utilisation in real world applications.

In Chapter 5, the proposed multi-object tracking approach is described in detail. This
description includes a framework for hypotheses modelling, the tracking algorithm and
methods for hypothesis generation.

In Chapter 6, the proposed event learning and recognition algorithm is described in detail.
This description includes the framework for input, state and event concept representation,
and the incremental algorithm for event recognition and learning.

After, in Chapter 7 the complete video understanding framework is evaluated. Evaluation
for the classification and tracking tasks have been also performed. A full evaluation of
the video understanding framework has been performed, focused on different aspects as
the capability of event learning and recognition, the processing time performance, and
the influence of reliability measures, among other studies.

Finally, Chapter 8 presents the conclusion of this thesis work and the future research
perspectives for the different contributions emanating from this work.



Chapter 2

State of The Art

This chapter has as main objective to perform a proper justification of the choices made
for the proposed approach. Also, another important objective is analysing the current
state of the art of event analysis in video to be able to highlight the contributions of the
proposed approach. As this thesis work is involved in the resolution of several aspects of
video understanding, each section of this chapter will be dedicated to the different aspects
considered in the approach.

This way, first Section 2.1 explores the state of the art of object representation. Second,
Section 2.2 presents the related work for the Multi-target Tracking (MTT) problem.
Third, a review of the utilisation of reliability measures in video understanding is
performed in section 2.3. Fourth, section 2.4 presents a review of previous work in
incremental concept formation techniques. Fifth, section 2.5 presents the related work
in the topic of incremental learning of events in video. Finally, in Section 2.6 the most
important aspects of the state of the art with respect to this thesis work are discussed.

2.1 Object Representation for Video Understanding

This section explores different object representations utilised in video understanding, in
order to establish the proper representation fitting with the objectives of the proposed
video understanding framework. The choice of the right object representation plays a
critical role, as it defines the precision and availability of object information to be utilised
in a video understanding approach and has a direct incidence in the processing time
performance of the approach.

Different object representations have been used for video understanding, normally
defined by the objective or application domain. They comprise shape and appearance
representation of objects, and also combinations of these representations. Appearance
model includes colour, texture template, or local descriptors information which can
characterise a given object or globally an object class [Quack et al. 2007]. Usually these

7
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appearance models are either too dependent on the object appearance (i.e. colour-based
techniques need a discriminative colour distribution for the tracked object), or require an
extensive learning stage. As the interest of the thesis in object representation is focused
in obtaining 3D features from tracked objects, appearance models are also not suitable
because they base their representation on 2D image features.

In the following, commonly used shape representation of objects to be tracked are
presented, describing some representative tracking approaches from the state of the art
for each of these representations. These representations can be separated in general
representations (Section 2.1.1), able to give a generic description for different object
classes, and specific representations (Section 2.1.2), able to precisely describe a single
object class.

2.1.1 General Object Representations

These representations give a general description of object classes. The main advantages
of these representations are their capability of describing several object classes with the
same model and their processing time performance. The main limitation is their lack of
precision. According to the state of the art, these representations can be classified as:

• Point-based representation: The object is represented by a single point. In general,
this representation is suitable for tracking objects that occupy small regions in an
image. For instance, in [Veenman et al. 2001] objects are represented by their
centroid (Figure 2.1). They have been extensively used in radar applications. For
instance, in [Arambel et al. 2004], authors use a point representation for tracking
multiple objects in a radar system application, as depicted in Figure 2.8.

Figure 2.1: Example of point representation, where seeds in a dish are represented by
their centroid [Veenman et al. 2001].
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• 2D Primitive geometric shapes: It consists in enclosing the object to be represented
with a 2D primitive geometric shape. These representations have been found in the
literature with several different 2D shapes (e.g. rectangles, or ellipses). For instance,
in [Cucchiara et al. 2005b] objects are represented with a rectangle (Figure 2.2(a)),
while in [Comaniciu et al. 2003] persons are represented by an ellipse (Figure 2.2(c)).
Though primitive geometric shapes are more suitable for representing simple rigid
objects, they are also used for tracking non-rigid objects. For example, in [Cupillard
et al. 2001] authors track groups of people in a metro scene using a rectangular
representation ((Figure 2.2(b)). Because of their simplicity they are suitable to
complex real world applications with multiple targets. The main drawback of these
representations is their lack of precision, specially dealing with objects as people
which shape does not fit properly with a simple geometric shape.

(a) (b)

(c)

Figure 2.2: Examples for 2D primitive shape representations for tracking. In Figure
(a), tracked vehicles are represented by a rectangle [Cucchiara et al. 2005b]. In Figure
(b) an example of a non-rigid object (group of people) represented by a rectangular
shape [Cupillard et al. 2001]. Figure (c) shows elliptic shape representation for a person
[Comaniciu et al. 2003]).

• 3D Primitive geometric shapes: It consists in enclosing the object to be represented
with a 3D primitive geometric shape. These representations have also been found
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in the literature with several different 3D shapes (e.g. parallelepipeds, or cylinders).
For instance, in [Isard and Maccormick 2001], [Kong et al. 2005], [Kong et al.
2006], [Kelly et al. 2006] tracked pedestrians are represented with a cylindrical
shape, while in [Scotti et al. 2005], the cylinder shape representation is used for
modelling both vehicles and persons. In [Lai et al. 2001], and [Yoneyama et al. 2005]
vehicles are represented by a parallelepiped (Figure 2.3(a)). Also, polyhedral shape
representations for diverse objects can be found in [Marchand et al. 2001] (Figure
2.3(b)). As the 2D primitive shapes, the 3D primitive geometric shapes are more

(a) (b)

Figure 2.3: Examples for 3D primitive shape representations for tracking. In Figure (a),
tracked vehicles are represented by a parallelepiped [Yoneyama et al. 2005]. In Figure (b)
a polyhedral shape is used for tracking a nut [Marchand et al. 2001].

suitable for representing simple rigid objects, but they are also used for tracking non-
rigid objects. These representations gain in precision with respect to 2D primitive
shape representations, but they are more expensive in terms of processing time
performance, as the number of degrees of freedom of the 3D shapes is higher than
the 2D shapes. However, they are still suitable for real world applications with
multiple targets. they can be seen as the intermediate step between 2D primitive
shapes, and more complex specific object representations.

2.1.2 Specific Object Representations

These representations give a specific description of an object class. The main advantage of
these representations is their precision in the object description. Their main drawbacks are
their inability of describing other object classes and their high processing time. According
to the state of the art, these representations can be classified as:

• Articulated models: These models are used to represent articulated objects,
composed of body parts that are held together with joints. To represent an
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(a) (b)

(c)

Figure 2.4: Examples for articulated models. In Figure (a), a front and lateral articulated
model for a person, using rectangular patches [Black et al. 1997] is depicted. Figure (b)
depicts a model for humans standing and walking consisting of a set of ellipsoids. Figure
(c) depicts a complex model of human posture described by a set of 23 parameters, subject
to bio-mechanical constraints [Boulay et al. 2006].

articulated object, one can also model the constituent parts using geometric shapes.
For instance, [Black et al. 1997] use a 2D model of each human body part represented
by planar patches (Figure 2.4(a)). Also, in [Zhao and Nevatia 2004] a 3-ellipsoid
representation (for head, for torso, and for legs) is utilised for representing walking
and standing humans.(Figure 2.4(b)).

In [Boulay et al. 2006] a very precise 3D model of human is utilised to detect
postures. In this work, a human posture is described by a set of 23 parameters,
subject to bio-mechanical constraints. This human model enables to generate 2D
silhouettes to be compared with the one detected for a person in the scene (see
Figure 2.4(c)). This representation is specific for one type of object class and, in
general, very dependent on the application. Depending on the complexity of the
model, the processing time for this type of model can be very high.

• Contour-based representation: This type of representation defines the boundary of
an object. The region inside the contour is called the silhouette of the object.
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Silhouette and contour representations are suitable for tracking complex non-rigid
shapes [Yilmaz et al. 2004] (Figure 2.5(a)). Their drawback is their high processing
time due to the border detection process, and then, they are not well suited for
real-time applications.

• Skeletal models are commonly used as a shape representation for recognising objects
(e.g. posture detection for humans from lateral view [Ali and Aggarwal 2001]).
Figure 2.5(b) depicts a skeletal model for a person. An object skeleton can be
extracted by applying medial axis transform to the object silhouette [Ballard and
Brown 1982], which is very time consuming. This model can be used to model both
articulated and rigid objects. They are not well suited for real-time applications,
because of their high processing time.
In [Foresti and Regazzoni 1997, Foresti 1999], the authors calculate a statistical
morphological skeleton [Regazzoni et al. 1995] for classifying unknown objects and
estimating their 3D orientation. This is done by comparing the calculated skeletons
with those of object models stored into a database.

(a) (b)

Figure 2.5: Examples of object-specific representations. Figure (a) shows a contour
representation for a person [Yilmaz et al. 2004]. Figure (b) depicts a skeletal
representation of a person.

In another completely different way of representing objects, other authors train classifiers
with examples of the objects they expect to find in their applications. One of the
precursors of this type of approach are [Viola and Jones 2001]. The authors propose
to train a system in the detection of object basic features (e.g. Haar wavelets, Histograms
of Oriented Gradients (HOG)), and to combine these basic features to construct strong
classifiers, based on Adaboost algorithm. They present their method for an application of
frontal view face detection, with high detection rates. A considerable number of studies
have taken this kind of approach.

The problem of these methods is their dependence on a determined object orientation and
camera position relative to the object position, as the detection is restricted to objects
similar to the training samples. For example, in [Viola and Jones 2001], the face of a
person seen from one side would not be detected, as their classifier was trained to detect
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persons facing the camera. Then, for having a complete enough representation of an
object, the size of the training set can become prohibitively large for a given application.

One of the latest contributions on this type of approaches, is the work proposed in [Leibe
et al. 2005], and [Seemann et al. 2006]. In this work, authors propose a general approach
for multi-aspect detection of pedestrians. They utilise an approach for multi-scale object
categorisation using scale-invariant interest points called Implicit Shape Model (defined
in [Leibe and Schiele 2004]).
Their approach performs a global classification based on learnt object silhouettes, for then
performing another verification stage comprising locally learnt features (Figure 2.6(a))
representing articulations (Figure 2.6(b)) and viewpoints, which can be shared among
these representations. This way, authors argue that their two-stage recognition approach
is more robust and that their approach needs less training examples, than other similar
approaches.

(a) (b)

Figure 2.6: Object recognition approach presented in [Seemann et al. 2006]. In Figure
(a), for each local descriptor of typical object structures (referred as codebook entry),
their approach stores the spatial occurrence distribution, as well as the associated shape.
Figure (b) shows an example of shape clusters found on a training set for the right-left
walking direction.

Even if their work improves the performance of this type of approaches, the limitations
with respect to general models remain the same, as the recognition is limited to the
training samples. For example, in [Seemann et al. 2006], authors test their approach for
pedestrians walking in an environment with low camera angle. Their approach requires
two annotated test sets for learning different viewpoints and postures. Moreover, the
processing time is still an issue for this type of approaches.

2.2 Multi-target Tracking

This section analyses the related work for the resolution of the Multi-target Tracking
(MTT) problem, in order to highlight the interesting elements from the state of the art
used in the proposed tracking approach and to study the open issues for the tracking
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problem. Section 2.2.1 describes the Multiple Hypothesis Tracking (MHT) algorithms
addressing the MTT problem. Then, Section 2.2.2 describes other tracking algorithms
addressing this problem.

2.2.1 Multiple Hypothesis Tracking

One of the first approaches focusing on MTT problem is the Multiple Hypothesis Tracking
(MHT) algorithm [Reid 1979], which maintains several correspondence hypotheses for each
object at each frame. An iteration of MHT begins with a set of current track hypotheses.
Each hypothesis is a collection of disjoint tracks. For each hypothesis, a prediction is
made for each object state in the next frame. The predictions are then compared with
the measurements on the current frame by evaluating a distance measure.

MHT makes associations in a deterministic sense and exhaustively enumerates all possible
associations. The final track of the object is the most likely hypothesis over the time
period. The MHT algorithm is computationally exponential both in memory and time.
For reducing the processing time, they propose hypothesis elimination methods according
to the likelihood of hypotheses.

In Reid’s original implementation, the same dynamic model applies to all targets. In
[Cox and Leonard 1994], the authors extend the MHT to a broader class of applications
by allowing multiple behaviour models for different targets.

To reduce the computational load, in [Streit and Luginbuhl 1994] a probabilistic
MHT (PMHT) has been proposed, in which the associations are considered to be
conditionally independent random variables and thus there is no requirement for
exhaustive enumeration of associations. In this work, the states of targets are modelled
as continuous random variables and measurement associations to targets are modelled as
discrete random variables.

Also to overcome the exponential processing time limitation of MHT, [Cox and Hingorani
1996] use an algorithm to determine the k-best hypotheses in polynomial time (proposed
by [Murty 1968]) for tracking interest points. These MHT approaches are known in the
literature as Hypothesis-Oriented MHT (HOMHT), as the MHT algorithm maintains and
expands hypotheses from one frame to the next one, without feedback from the object
measurements.

For controlling the combinatorial explosion of hypotheses in MHT all the unlikely
hypotheses have to be eliminated at each frame. Several methods have been proposed to
perform this task (for details refer to [Kurien 1990], and [Pattipati et al. 2000]). These
methods are classified in two classes:

• Screening: Selective generation of hypotheses. These methods are applied prior
to hypothesis generation and allow to slow the exponential growth of the number
of hypotheses. In [Kurien 1990], three screening methods are described:
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– Gating: Consists in constructing for each target a region or gate in the
measurement space, which defines a validation zone for the association of
measurements to the target. The shape and size of the gate may be defined in
several ways. Figure 2.7(a) shows an example of the gating method.

– Clustering: Consists in partitioning targets into separate clusters. If the
intersection of measurements that can be associated to a set of targets is not
empty, those targets can be clustered. Figure 2.7(b) shows an example of the
clustering method.

– Classification: Consists in grouping targets according to their confidence
level. These confidence levels may be defined in several ways. For instance, the
confidence levels can be proportionally defined by the age of the target (number
of frames since the target was detected for the first time). This grouping scheme
allows different criteria to be applied for screening and pruning targets with
different confidence levels:

∗ Enforcing stricter pruning requirements for targets with lower confidence
levels. For example, a born target (age = 1) is allowed to fewer
misdetections compared to that allowed for a higher confidence level target.

∗ Imposition of restrictions on the number of associations to measurements
for targets with lower confidence levels.

1

2
3

Validation Gate

Estimated target state

Previous target state

Current measurements

(a)

1

2
3

Estimated target states

Previous target states
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measurements

A

B

C

(b)

Figure 2.7: Two screening methods for hypothesis generation. Figure (a) shows the gating
method. Here, the validation gate allows to ignore the association of measurement 1 to
tracked target. In Figure (b) a clustering method example is shown. Validation gates for
targets A and B define the possibility of association for the same measurement 3. Thus,
targets A and B are clustered.

• Pruning: Elimination of hypotheses after their generation. The two most common
methods are described:
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– Lower probability: Consists in eliminating hypotheses which probability is
lower than a pre-defined threshold.

– n-Scan Approximation: Consists in examining a finite but variable number
n of subsequent frames for assigning the measurements to targets in a particular
frame, in contrast of examining measurements for all frames since the birth of
targets. This method is performed in two steps:

∗ Perform all feasible associations between target hypotheses from the
previous frame with the measurements of the current frame.

∗ Identify the most likely set of hypotheses in the n frames earlier and
eliminate the rest.

Another approach for MHT is presented in [Kurien 1990], and is called the Track-Oriented
MHT (TOMHT). This approach recomputes the hypotheses using the newly updated
tracks with the measurements extracted in each frame. Rather than maintaining, and
expanding, hypotheses from frame to frame, TOMHT discards the hypotheses formed
on the previous frame. The tracks that survive pruning are predicted to the next frame
where new tracks are formed, using the new observations, and reformed into hypotheses.

In [Blackman et al. 2001] processing time results for a difficult scenario with 100 closely
spaced targets and a high radar update rate are presented, indicating the feasibility of
real-time operation for a TOMHT. This study was performed using a single 866 MHz
Pentium computer. Newer computers and/or parallel processing with several computers
would allow real-time tracking for even more difficult scenarios. Interesting theoretical
aspects of both HOMHT and TOMHT are discussed in [Bar-Shalom et al. 2007].

MHT methods have been extensively used in radar (e.g. [Arambel et al. 2004], [Rakdham
et al. 2007]) and sonar tracking systems (e.g. [Moran et al. 1997]). Figure 2.8 depicts an
example of MHT application to radar systems [Arambel et al. 2004]. In [Blackman 2004]
a good summary of MHT applications is presented. However, most of these systems have
been validated with simple situations (e.g. non-noisy data).

MHT is an approach oriented to single point target representation (see section 2.1),
so a target can be associated to just one measurement, not giving any insight on how
can a set of measurements correspond to the same target, whether these measurements
correspond to parts of the same target. Also, situations where a target separates into
more than one track are not treated, then not considering the case where a tracked object
corresponds to a group of visually overlapping set of objects.

In the case of valid assumptions on distributions, MHT gives optimal solutions. The
dynamics models for tracked object attributes and for hypothesis probability calculation
utilised by the MHT approaches are sufficient for point representation, but are not of
interest for this thesis because of their simplicity. For further details on classical dynamics
models used in MHT refer to [Reid 1979], [Kurien 1990], [Cox and Leonard 1994], [Streit
and Luginbuhl 1994], [Cox and Hingorani 1996], and [Bar-Shalom et al. 2007].
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Figure 2.8: Example of a Multi-Hypothesis Tracking (MHT) application to radar systems
[Arambel et al. 2004]. This figure shows the tracking display and operator interface
for real-time visualisation of the scene information. The yellow triangles indicate video
measurement reports, the green squares indicate tracked objects, and the purple lines
indicate track trails.
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2.2.2 Alternatives to Multiple Hypothesis Tracking

An alternative to MHT methods is the class of Monte Carlo methods. These
methods have widely spread into the literature as bootstrap filter [Gordon et al. 1993],
CONDENSATION (CONditional DENSity PropagATION) algorithm [Isard and Blake
1998], Sequential Monte Carlo method (SMC) [Doucet et al. 2001], and particle filter
[Hue et al. 2002a], [Hue et al. 2002b], [Jin and Mokhtarian 2007]. They represent the
state density distribution by a set of weighted hypotheses, or particles (Figure 2.9).

(a) (b)

Figure 2.9: Illustration of a sample-set representation of shape distributions for a Monte
Carlo method (CONDENSATION algorithm [Isard and Blake 1998]). In Figure (a)
samples of a curve distribution are displayed. Their thickness represents the weight
associated to a sample. Figure (b) depicts an estimator of the distribution mean, as
the weighted mean of the samples.

Monte Carlo methods have the disadvantage that the required number of samples grows
exponentially with the size of the state space (perhaps as many as several thousands
when the motion is poorly defined). As a consequence, an accurate dynamic model is
required in practise to reduce the number of samples needed for accurate modelling. For
on-line applications, the system must provide a state estimate in each frame, usually
taken to be the mean or the median of the particles. This estimate is not particularly
accurate. This lack of smoothness in tracking results is a major drawback for Monte
Carlo methods for many applications. These factors make non-parametric techniques less
attractive for objects which have both a large state space and complex dynamics. Also, as
these techniques keep a non-parametric distribution of joint state probability, they scale
poorly as the dimensionality increases due to a large number of objects to be tracked.
Often, these techniques do not have enough information to select the proper hypotheses,
specially in case of noisy videos and too simple tracking features (e.g. position, speed,
height, and width).
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Point trackers are suitable for tracking very small objects which can be represented by
a single point representation (see section 2.1). When objects to track are represented as
regions or multiple points other kinds of issue must be addressed to perform tracking.
For instance, in [Brémond and Thonnat 1998a], authors propose a method for tracking
multiple non-rigid objects. They define a target as an individually tracked moving
region or as a group of moving regions globally tracked. To perform tracking, their
approach performs a matching process, comparing the predicted location of targets with
the location of newly detected moving regions through the use of an ambiguity distance
matrix between targets and newly detected moving regions. In the case of an ambiguous
correspondence they define a compound target to freeze the associations between targets
and moving regions until more accurate information is available. In this work, the used
features (3D width and height) associated to moving regions often did not allow the
proper discrimination of different configuration hypotheses. Then, in some situations as
badly segmented objects, the approach is not able to properly control the combinatorial
explosion of hypotheses. Moreover, no information about the 3D shape of tracked objects
was used, preventing the approach from taking advantage of this information to better
control the number of hypotheses.

Another example can be found in [Zhao and Nevatia 2004]. Authors use a set of ellipsoids
to approximate the 3D shape of a human (see Figure 2.4(b)). They use a Bayesian
multi-hypothesis framework to track humans in crowded scenes, considering colour-based
features to improve their tracking results. Their approach presents good results in tracking
several humans in a crowded scene, even in presence of partial occlusion. The processing
time performance of their approach is reported as slower than frame rate. Moreover, their
tracking approach is focused in tracking adult humans with slight variation in posture
(just walking or standing).

Another important issue in the context of multi-target tracking is the handling of missing
or noisy observations. To address these problems, Monte Carlo methods explicitly handle
noise by modelling uncertainty. These uncertainty measures are usually assumed to be in
the form of normally distributed noise. However, the assumption that measurements are
normally distributed around their predicted position may not hold. Moreover, in many
cases, the noise parameters are not known.

Another possible approach for handling noise and missing observations is to enforce
constraints that define the 3D structure of the object. This is addressed for non-rigid
objects in [Bregler et al. 2000], [Torresani et al. 2001], [Torresani and Bregler 2002],
[Torresani et al. 2004], where the authors first define a set of shape bases from a set
of reliable tracks which has minimum or no appearance error on the trajectory points.
Authors consider a feature as reliable if it contains a distinctive high contrast pattern with
2D texture, such as corner features [Torresani et al. 2001]. Computed shape basis then
serves as a constraint on the remaining trajectory points that are labelled as unreliable.
The drawback of this method is its processing time performance, far slower than frame
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rate.

2.3 Reliability Measures in Video Understanding

This section analyses the way reliability measures have been used in video understanding,
to establish how these measures can be used in the video understanding framework
proposed in this thesis. Reliability can be defined as the confidence or degree of trust we
have on a measurement. In this general sense, reliability measures can be interpreted,
modelled and calculated depending on the attributes we want to measure or the observer
that we want to evaluate. The observer can be a sensor (e.g. camera) or a video processing
task (e.g. classifier, tracker, event analyser).

In the context of video analysis, the interest is focused on the visible attributes of objects to
be analysed or in the process itself. The confidence of a reliability measure is a subjective
concept. It is mostly related to the certainty in terms of error in the measurement or
to the repetition of the measurement of an attribute throughout time. In the context of
sensors, it is related to the weighted merge of information from different sources.

Several applications of reliability measures on video analysis can be found in the
literature:

• For example, in [Irani et al. 1994], the authors use a reliability measure to determine
which pixel can be reliably considered as stationary. They have proposed a method
for detecting and tracking occluding and transparent moving objects, using models
of optical flow. They have defined a reliability measure of the motion at each pixel
which has been determined by the numerical stability of two optical flow equations
proposed by [Bergen et al. 1992]. These equations represent the minimisation of the
error of the incremental flow vector for general flow fields. The reliability measure
is expressed by R = λmin/λmax, where λmax and λmin are the largest and smallest
eigenvalues. This expression represents the inverse of the condition number 1 for the
coefficient matrix of the linear system formed by the optical flow equations.

In a similar way in the context of optical flow methods, [Tsai et al. 1999] use
the smallest eigenvalue of a singular value decomposition for a similar system of
equations, as a reliability measure for the motion of a pixel. The pixel estimate is
considered unreliable when this eigenvalue is less than a threshold.

• Another example can be found in [Loutas et al. 2002]. The authors propose a
reliability measure for tracking under occlusion, representing the efficiency of a
selected region for tracking. Selected regions are represented as feature point sets

1The condition number associated to a linear system Ax = b gives a bound on how inaccurate the
solution x will be after approximating the solution. It can be roughly described as the rate at which the
solution will change with respect to a change in b. Thus, if the condition number is large, even a small
error in b may cause a large error in x. On the other hand, if the condition number is small then the
error in x will not be much bigger than the error in b.
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and the reliability measure for these sets is defined using the sum of the entropy
of the feature points belonging to the set. They use this reliability measure to
determine when an object is partially or totally occluded.

• Also, in [Ben-Ezra et al. 1994] the authors propose a reliability measure to determine
the most dominant or influential pixels in terms of the gradient of the intensity of
pixel. The reliability measure is computed as the module of the gradient vector.

• In [Treetasanatavorn et al. July 2005], the authors use reliability measures as weights
for displacement vectors between features to be tracked. In this case, a reliability
measure for a displacement vector is calculated by the local motion coherence of
the vector with respect to the predicted displacement of the region (described in
[Treetasanatavorn et al. August/September 2005]). Then, these reliability measures
are used to reinforce the utilisation of the most reliable displacement vectors in terms
of displacement coherence, in order to find a correspondence between detected and
predicted regions. Figure 2.10 depicts one of the experimental results obtained in
[Treetasanatavorn et al. July 2005] for frames 4, 7 and 10 (Figure 2.10(a)) of a
Tennis Table sequence.

• In the context of observers, in [Kukar and Kononenko 2002] authors present a
framework to calculate the reliability in classification for a single new unlabelled
example for a Machine Learning Algorithm. First, the classifier is trained with a
set of labelled training examples. The resulting classifier is referred as the inductive
classifier, because the training phase is associated with an inductive step. Then,
another classifier is obtained by training the machine learning algorithm including
the unlabelled example in the training set, labelled with the result obtained using
the inductive classifier. This second trained classifier is referred as a transductive
classifier, because this training phase is associated with a transductive inference2

process. The reliability measure is determined using the difference between the
inductive classifier result for an unlabelled example and the transductive classifier
result for the same unlabelled example. This reliability measure is computed as
2−diff , where diff corresponds to the difference between the results obtained from
both, inductive and transductive classifiers. These results in high reliability values
for a small difference in results, and low reliability for a big difference, representing
the reliability as the stability of the classification result for a new unlabelled example.

• Also in the context of observers, in [Nordlund and Eklundh 1997] and [Nordlund
and Eklundh 1999], authors propose to use a reliability measure for segmentation
algorithms in order to decide which segmentation algorithm to use according to
the obtained segmentation results. They base their proposal in the fact that more
than one algorithm supporting the same hypothesis can increase the reliability of

2Transductive inference consists in using both labelled and unlabelled data to predict the labels of the
known unlabelled examples. In logic, statistical inference, and supervised learning, transductive inference
is reasoning from observed: specific training cases to specific test cases. In contrast, induction is reasoning
from observed training cases to general rules, which are then applied to the test cases.
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(a)

(b)

(c)

Figure 2.10: Reliability assessment and segmentation results from sequence Table Tennis
at frames 4, 7 and 10 for results presented in [Treetasanatavorn et al. July 2005]. Figure
(a) displays the original frames for the sequence. Figure (b) shows the reliability measure
results. Green colour corresponds to high reliability, and red colour to low reliability. In
Figure (c) segmentation results are displayed. Each colour illustrates a different tracked
region. No colour is used at the blocks of unreliable displacement vectors.
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all involved algorithms. The reliability in the segmentation will increase if the
algorithms results continue to coincide over time. When the reliability of the used
algorithm goes below a threshold, another more reliable algorithm is considered for
segmentation. The reliability measure for each algorithm is calculated considering
the detected area of moving pixels for an object, with respect to the detected
area currently used by the segmentation algorithm in time. If the currently used
algorithm reliability has been high and suddenly passes below a threshold, the
method switches to another segmentation algorithm.

• In [Heisele 2000], the author defines a reliability measure for the correspondence
problem of cluster trajectories. This reliability measure is based on the current
distance between clusters. The measure corresponds to a linear distance relation
between clusters in the colour/position feature space. The measure for the reliability
of a trajectory increases linearly with the mean distance of a cluster centroid to its
nearest neighbours in the mentioned space. Clusters which reliability measure is
lower than a pre-defined threshold are eliminated. An example for this reliability
measure is shown in Figure 2.11. Figure 2.11(a) shows the result of clustering in
colour/position feature space. Figure 2.11(b) shows the reliability measures for each
cluster. Bright values indicate high reliability.

(a) (b)

Figure 2.11: Illustration of the measure for the reliability of trajectories used in [Heisele
2000]. The result of clustering is shown in Figure (a). The reliability measures for each
cluster are shown in Figure (b). Brighter values indicate high reliability.

• Also, in [Erzin et al. 2006] authors use reliability measures as weights to combine
hypotheses from different biometric sensors. The authors propose a method for
person recognition in a vehicle using multiple biometric sensors. For this method, the
likelihood ratio of person detection corresponds to a weighted sum of the likelihood
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of detection associated to the different biometric sensors, where the weight for each
sensor is defined as a reliability measure. This likelihood ratio has been defined
as the Reliability Weighted Summation (RWS) rule by [Erzin et al. 2005]. The
reliability measure for each sensor is based on the difference of likelihood ratios
of the best two candidate person classes from a set of pre-defined person classes
set. Then, the reliability measure associated to a biometric sensor is calculated
considering the summation of the ratios for the true accept and true reject decisions
with respect to the two best candidate person classes. Hence, the reliability measure
increases when there is an evidence of either true accept or true reject, otherwise
stays low.

Thus, in general terms, reliability measures are utilised:

• to combine results according to the degree of trust on different measurements
weighted accordingly,

• to select the most reliable measurement, or

• to obtain a measurement of the degree of trust of an attribute or observer.

These measures allow the approaches to focus on the relevant information, allowing the
achievement of higher robustness.

According to the literature, the video understanding approaches utilising reliability
measures focus on computing these measures only on specific tasks of the video
understanding process, defining specific measures for them. A generic mechanism is
needed to compute in a consistent way the reliability measures of the whole video
understanding process.

2.4 Incremental Concept Formation

In this section, the evolution of models for incremental concept formation is analysed in
order to present the main concepts utilised by the proposed incremental event learning
algorithm.

The objective of Machine Learning (ML) is building machines that can significantly learn
for a wide variety of task domains. A computer program is said to learn from experience
E with respect to some class of tasks T and performance P , if its performance at tasks t,
as measured by P , improves with experience E [Haipeng 2003].

Machine learning can be either supervised or unsupervised. In supervised learning, there
is a specified set of classes and each example of the experience E is labelled with the
appropriate class. The goal is to generalise from the examples so as to identify to which
class a new example should belong. This task is also called classification. For further
details in supervised learning techniques, refer to [Kotsiantis et al. 2006].
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In contrast with supervised learning, the goal of unsupervised learning is often to de-
cide which examples should be grouped together, i.e., the learner has to figure out the
classes on its own. This is usually called clustering. The learning approach proposed in
this thesis is based on unsupervised learning techniques for conceptual clustering [Michal-
ski and Stepp 1983].

Conceptual clustering developed mainly during the 1980s, as a unsupervised machine
learning paradigm. Categorisation is the process in which ideas and objects are recog-
nised, differentiated and understood. Categorisation implies that objects are grouped into
categories, usually for some specific purpose. Conceptual clustering derives from attempts
to explain the categorisation process, and consists in generating classes (clusters or en-
tities) by first formulating their conceptual descriptions and then classifying the entities
according to the descriptions.

In [Michalski and Stepp 1983], Michalski and Stepp provide a definition of the conceptual
clustering task: given a set of instances, to place those instances into disjoint clusters
and formulate descriptions for each category. Conceptual clustering systems do not only
evaluate clusters based on some metrics, but also evaluate the goodness of the concepts
represented by those clusters. In order to do that, these systems explicitly deal with
concept descriptions and not only with extensional summaries of the clusters.

For the scope of this thesis, the interest is focused in incremental concept formation models
[H. 1989]. This approach has the same goal than the conceptual clustering approach, with
the added constraint that learning must be incremental. Incremental does not only mean
that the process is able to create a new concept dynamically with the arrival of a new
instance, but also that it does not extensively reprocess previously encountered instances,
while incorporating the new one. This concept leads to the integration of learning with
processing time performance [Gennari et al. 1990].

The hierarchical organisation of the acquired concepts is a distinctive feature of the meth-
ods for concept formation and conceptual clustering. Knowledge is represented by a set
of nodes partially ordered by generality. Each node represents a concept, and contains
intentional description of the concept. Similar hierarchical structures have been utilised in
other learning approaches, but with a different purpose, as for instance the version spaces3.

In the incremental concept formation models, when a new instance arrives, the process
begins at the most general node and sorts the instance down through the hierarchy. Once
the instance has finished its descent, one can use the concept description at the selected

3A version space is a hierarchical representation of knowledge used for inductive concept learning
(learning general rules from positive and negative samples) to represent an unknown concept to be
determined. A version space corresponds to the set of all concept descriptions within the given language
which are consistent with those training instances. Each instance and description is represented by a set
of symbolic attributes [Mitchell 1979], [Winston 1992].
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node to make predictions about unseen aspects of the instance.

Concept formation systems have an unsupervised nature, meaning that they must decide
the number of classes. The concept formation task has an incremental nature, meaning
that the agent accepts instances one at a time, and it does not extensively reprocess pre-
viously encountered instances while incorporating the new one.

The described models can all be characterised as incremental hill-climbing learners. One
can view concept formation as a search through the space of concept hierarchies, and hill
climbing is one possible method for controlling that search. The most important difference
between incremental hill climbing learners and the traditional hill climbing method lies in
the role of input. In incremental hill-climbing systems, each step through the hypothesis
space occurs in response to some new experience.

Several methods for conceptual clustering have been presented in the literature. In next
sections, the most relevant methods are presented for the proposed learning approach (for
further details see [Gennari et al. 1990]).

2.4.1 The beginning: Feigenbaum’s EPAM

Feigenbaum’s Elementary Perceiver And Memoriser (EPAM) can be viewed as an early
model of incremental concept formation [Feigenbaum 1959], [Feigenbaum and Simon
1962]. The system was intended as a psychological model of human learning on verbal
memorisation tasks.

EPAM represents each instance as a conjunction of attribute-value pairs, along with
an optional ordered list of component objects. Each component is in turn described as
a conjunction of attribute-value pairs, with its own optional components. A primitive
object is an object having only attributes and no component.

EPAM represents and organises its acquired knowledge in a discrimination network. Each
nonterminal node in this network specifies some test, and each link emanating from this
node corresponds to one possible result of that test. Each nonterminal node also includes
a branch marked other, which lets EPAM avoid specifying all possible results of the sets at
the outset. Each terminal node contains a partial set of attribute values (and component
categories) expected to hold for instances sorted to that node. This node structure is
known as the image of a stimulus.

As several incremental concept formation systems, the classification of an instance is
completely integrated to the learning process. When a new instance arrives, the system
sorts it through the discrimination network from the root node, until reaching a terminal
node. Each non-terminal node defines a test, which is performed for the instance. If the
tested attribute value equals a value associated to the branches emanating from the node,
EPAM sends the instance down that branch, else the instance is sent down the other
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branch. This process is repeated until the instance arrives to a terminal node, and at this
moment EPAM has recognised an object as an instance of the terminal node. The results
of all the tests leading to the generation of the node from the instance are associated to
a structure called image. The image for the node generated from the mismatching image
contains the original image plus the value for the discriminating test. After an instance
has been recognised, EPAM invokes one of the following two learning mechanisms:

1. Familiarisation: It happens when the image of the node matches with the new
instance (no attribute-value pair differs). This process adds to node’s image the
value of an attribute that occurs in the instance but not in the image. This way,
EPAM makes its images more specific as more instances are processed. For example,
when the instance {COLOUR = Y ELLOW ; NUCLEI = ONE; TAILS = ONE}
is the input of the process, familiarisation would produce the discrimination tree of
the Figure 2.12(b).

2. Discrimination: It happens when the image of the node fails to match the new
instance (if any attribute-value pair differs). This process sorts the instance through
the discrimination network a second time, looking for the first node at which the
image and instance differ.

• If such node is found, two new branches are created, one based on the instance’s
value for the test and the other based on the value for the test of the image
which has differed from the instance in the first sort of the instance through
the discrimination network.
For example, when the instance {COLOUR = Y ELLOW ; NUCLEI =
THREE; TAILS = ONE} is the input of the process, discrimination would
produce the discrimination tree of the Figure 2.12(d). In the first sort of this
instance through the discrimination tree, the new instance has differed in the
NUCLEI attribute with the image {COLOUR = Y ELLOW ; NUCLEI =
TWO}. In the second sort through the discrimination tree, the first test
where images differ with the instance is the NUCLEI test, with the image
{NUCLEI = ONE; TAILS = ONE}. Then, from the NUCLEI test
node, two new branches are created: {NUCLEI = TWO} from the first
sort differing image, and {NUCLEI = THREE} from the new instance.

• If no such node exists, the system eventually sorts the instance back down to
the terminal node where the mismatch originally occurred. Two new branches
are created, with the mismatching image and the new node. The discrimination
process selects a test on which the image and instance differ and which has not
yet been examined. The value of this test, becomes the label for one branch
and label for the second branch becomes OTHER.
For example, when the instance {COLOUR = GREEN ; NUCLEI =
ONE; TAILS = TWO} is the input of the process, discrimination would
produce the discrimination tree of the Figure 2.12(c). In the first sort of this
instance through the discrimination tree, the new instance has differed in the
TAILS attribute with the image {NUCLEI = ONE; TAILS = ONE}.
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Then, at this image position, the test TAILS is added, with two new
branches: {NUCLEI = ONE; TAILS = ONE} from the differing image,
and {NUCLEI = ONE; TAILS = TWO} from the new instance. Note that
the COLOUR attribute value of the new instance is not considered in the
created image, as the COLOUR test is not considered in the path leading to
the new node.
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Figure 2.12: Examples of EPAM’s learning method [Gennari et al. 1990].

The EPAM model introduces very important ideas into the machine learning community:

• Introduction of the notion of discrimination network. These networks can be seen as
the precursors of the concept hierarchies used in later work, and images as precursors
of concept descriptions.

• Distinction between instances and images.

• Distinction between the classification and prediction processes. The prediction
process establishes the knowledge that can be inferred from the concept descriptions.

• Two incremental learning mechanisms were introduced.
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Even if EPAM goal was the explanation of aspects of human learning and memory
intention, in terms of incremental concept formation models it had some significant
shortcomings:

• The concept descriptions (images) were just retained at the terminal nodes, so the
discrimination network could not be considered as a true concept hierarchy.

• Concepts were considered as all or none entities, instead of considering more
continuous structures.

• Just symbolic attributes were considered.

2.4.2 Methods inspired by EPAM

Three main approaches have been inspired by EPAM: UNIMEM ([Lebowitz 1983],
[Lebowitz 1985], [Lebowitz 1986], [Lebowitz 1987]), CYRUS ([Kolodner 1983]), and
CLUSTER/2 ([Michalski and Stepp 1983]).

UNIMEM (UNiversal MEMory model) represents each instance in the same manner
as EPAM: as a conjunctions of attribute-value pairs, but it can not handle component
objects. This method can handle numerical attributes in addition to symbolic ones.
Symbolic attributes can represent sets. In UNIMEM, both terminal and nonterminal
nodes contain concept descriptions. Each description consists of conjunction of attribute-
value pairs, with each value having an associated integer representing the predictability
in the feature (attribute-value pair).

UNIMEM also organises knowledge into a concept hierarchy through which it sorts new
instances. However, the details of this hierarchy differ from EPAM’s discrimination
network. Nodes high in hierarchy represent general concepts, with their children
representing more specific variants, and so on. Each concept has an associated set of
instances stored with it, viewed as terminal nodes in the hierarchy.

As in EPAM, UNIMEM’s network consists of nodes and links, with each of the node’s
links leading to a different child. However, UNIMEM allows each link to specify the
results of multiple tests. This redundancy lets to handle missing attributes and a very
flexible sorting strategy.

UNIMEM’s classification system is also completely integrated with its learning method.
As UNIMEM descends through the hierarchy, it uses the features on each node and its
emanating links to sort the instance. If the instance matches the description of the node
closely enough (parameter), then it sends the instance down those links that contain
features in the instance, and it continues the process with the relevant children.

Eventually, UNIMEM reaches a node that matches the instance but none of whose children
match. In this case, the system examines all instances currently stored with the node,
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comparing each of them in turn to the new instance. If an old instance shares enough
features (parameter) with a new one, the model creates a new more general node based on
these features and stores both instances as its children. If none of the existing instances
are similar enough to the new one, the system simply stores it with the current node.

Note that UNIMEM can place instances in more than one category, so these categories
overlap, not forming disjoint partitions over the instances. In the literature on cluster
analysis, this strategy has been called clumping.

Another system that independently incorporated many of the same advances as UNIMEM
is CYRUS. Kolodner [Kolodner 1983] conceived this approach for modelling the
organisation of episodic memory. It uses a concept representation scheme similar to the
one used by UNIMEM. The clumping strategy is also shared by CYRUS. In Kolodner’s
work, the images are referenced as E-MOPs (Episodic Memory Organisation Packets),
and instances are referred as events.

As UNIMEM, CYRUS resembles EPAM in the way of discriminating between items and
in its organisation and processes describing forgetting and retrieval. UNIMEM, CYRUS,
and EPAM are restricted to attribute-value languages (also known as symbolic attributes).
The main difference with EPAM is that CYRUS has a concept representation allowing
concept generalisation and multiple discrimination at each level in the hierarchy.

CLUSTER/2, presented in [Michalski and Stepp 1983], has introduced the conceptual
learning paradigm. This task includes not only clustering, but also characterisation. The
clustering problems involve determining useful subsets of an object set. This consists
in identifying a set of object classes, each defined as an extensional set of objects. The
characterisation problem consists in determining useful concepts for each object class.
This is simply the problem of learning from examples.

This approach is non-incremental and uses a divisive technique to generate a disjoint
hierarchy of concepts. The CLUSTER/2 system operates by transforming its
unsupervised learning task into a series of supervised learning tasks. Thus, CLUSTER/2
does not belong to the domain of incremental concept formation models, but it has
influenced several approaches in this domain with the definition of the conceptual learning
paradigm. For further details on this approach, refer to [Michalski and Stepp 1983] and
[Thompson and Langley 1991].

2.4.3 Fisher’s COBWEB

UNIMEM and CYRUS, along with the conceptual clustering work of Michalski and
Stepp [Michalski and Stepp 1983], have inspired the COBWEB system. COBWEB is
an incremental system for hierarchical conceptual clustering. The system carries out a
hill-climbing search through a space of hierarchical classification schemes using operators
that enable bidirectional travel through this space [Fisher 1987]. Like its predecessors,
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COBWEB represents each instance as a set of attribute-value pairs:

• Each attribute takes only one value and only nominal attributes are allowed (can
be extended).

• Each concept node is described in terms of attributes, values and associated weights.

• COBWEB stores the probability of each concept’s occurrence based on the number
of instances it represents.

• Each node includes every attribute observed in the instances.

• Associated with each attribute is every possible value.

• Each such value has two associated numbers:

1. Predictiveness: The predictiveness of a value v for an attribute a in a
category c is defined as the conditional probability that an instance i will
be a member of c, given that i has a value v for the attribute a or P(c|a = v).

2. Predictability: The predictability of a value v for an attribute a in a category
c is defined as the conditional probability that an instance i will have a value
v for the attribute a, given that i is a member of c or P(a = v|c).

In COBWEB’s concept hierarchy each node has an associated image, where general nodes
are higher in the hierarchy and more specific ones are below its parents. COBWEB’s
terminal nodes are always specific instances that it has encountered. COBWEB never
deletes instances and the generated hierarchy divides these instances into disjoint classes.
The basic COBWEB’s algorithm can be seen in Figure (2.13). Classification and learning
are intertwined, with each instance being sorted down through a concept hierarchy and
altering that hierarchy while passing in the following way:

• COBWEB initialises its hierarchy to a single node, setting the values of the concept
attributes as the values of the first processed instance.

• Upon encountering a second instance, COBWEB averages its values into those of
the concept and creates two children, one based on the first instance and another
based on the second.

• At each node, COBWEB retrieves all children and considers classifying and placing
a new instance in each of these categories. Each of these constitutes an alternative
clustering that incorporates the new instance.

• Using an evaluation function, COBWEB selects the best such clustering. This
evaluation function is described later (Equation (2.3)).

• COBWEB also considers creating a new category containing only the new instance,
which is included in the hierarchy if the evaluation result is better than the best
clustering that uses only existing categories.
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function COBWEB(N, I) returns concept hierarchy
Input

N : Current node in the concept hierarchy.
I: Unclassified (attribute-value) instance.

Variables
C,P,Q,R: Nodes in the hierarchy.
U, V,W,X: Clustering (partition) scores.

Begin
If N is terminal node then

Create new terminals(N, I);
Incorporate(N, I);

Else
Incorporate(N, I);
For Each C in children(N) do

compute score(I, C);
End For Each
P = highest score node(N);
W = score(P );
R = second score node(N);
Q = new node(N, I);
X = score(Q);
Y = merge score(P,R);
Z = splitting score(P );
If W is best score then

COBWEB(P, I);
Else If X is best score then

initialise probabilities(Q, I);
place node(Q,N);

Else If Y is best score then
O = Merge(P,R,N);
COBWEB(O, I);

Else If Z is best score then
Split(P,N);
COBWEB(N, I);

End If
End If
Return N ;

End

Figure 2.13: Top-level COBWEB algorithm.
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• If the best clustering is one considering an existing category, COBWEB updates
the probability of the category and the probability of its attributes. In addition,
COBWEB continues to sort the instance down through the hierarchy, recursively
considering the children of the category.

• If the best clustering is the one containing the new instance, COBWEB creates this
new category and makes it child of the current parent node. The system bases the
values for the attributes of this new concept on those found in the instance, giving
them each a predictability score of one. The new included concept is a terminal
node, thus halting the classification process at this step.

• COBWEB considers two additional operators to recover from non-optimal
hierarchies:

– Merging: At each level of the classification process, the system considers
merging the two nodes that best classify the new instance. If the resulting
clustering is better than the original (according to Equation (2.3)), the two
nodes are combined into a single category, retaining the original nodes as its
children (Figure 2.14).

P

A B

. . . .. . . . P

A B

. . . .. . . . N

Figure 2.14: Merging categories in COBWEB.

– Splitting: At each level, if COBWEB decides to classify an instance as a
member of an existing category, it also considers deleting this category and
elevating its children. If this action leads to an improved clustering, the system
changes the structure of the hierarchy accordingly (Figure 2.15).

COBWEB does not explicitly store predictiveness scores, as they can be derived from
predictability and node probability using Bayes’ rule. An example of a COBWEB concept
hierarchy is depicted in Figure 2.16(a), where node probability and predictability for each
attribute value is displayed. Figure 2.16(b) shows a drawn representation of obtained
concepts. In this representation, attributes with predictability equal to one are displayed
for each category, giving an insight of what these categories are actually representing.
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Figure 2.15: Splitting categories in COBWEB.

To evaluate the concept nodes, COBWEB uses a measure called category utility, which
is a measure of quality for categories. This function has been derived by Gluck and
Corter [Gluck and Corter 1985] by two paths, one using information theory and the other
using game theory. Category utility favours clusterings that maximise the potential for
inferring information. In doing this, it attempts to maximise intra-class similarity and
inter-class differences, and it also provides a principled trade-off between predictiveness
and predictability.

For any set of instances, any attribute value-pair Ai = Vij, and any class Ck, one can
compute P(Ai = Vij|Ck) (predictability) and P(Ck|Ai = Vij) (predictiveness). One can
combine these measures of individual attributes and measures into an overall measure of
clustering quality q. Specifically:

q =
∑

k

∑

i

∑

j

P(Ai = Vij)P(Ck|Ai = Vij)P(Ai = Vij|Ck). (2.1)

Equation (2.1) maximises predictability and predictiveness, summed across all classes (k),
attributes (i), and values (j). The probability P(Ai = Vij) weights the individual values
by their occurrence frequency, giving more importance to frequently occurring values.
Using Bayes’, rule we have P(Ai = Vij)P(Ck|Ai = Vij) = P(Ck)P(Ai = Vij|Ck). Then,
expression q in Equation (2.1) can be written as:

q =
∑

k

P (Ck)
∑

i

∑

j

P(Ai = Vij|Ck)
2. (2.2)

Defining category utility CU as the increase in the expected number of attribute values
that can be correctly guessed, given a set of K categories, over the expected number of

correct guesses without such a knowledge (
∑

i

∑

j

P(Ai = Vij)
2), finally we have:
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Figure 2.16: Examples of COBWEB hierarchy. (a) Detailed description of nodes,
numbered in order of creation [Gennari et al. 1990]. (b) Graphic representation of
the concept represented on each node. Note that just determined attribute values
(P(V |C) = 1.0) are drawn or coloured.
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The division by K allows to use the measure to compare different size clusters.

The concept hierarchy in COBWEB is very similar to UNIMEM’s in that each node
has an image and where general nodes are positioned higher in the hierarchy, while
more specific ones are below their parents. However, COBWEB terminal nodes always
correspond to specific instance as, unlike UNIMEM, COBWEB never deletes instances.
Also, the concept hierarchy in COBWEB divides the instances into disjoint categories,
unlike UNIMEM where concept representations can overlap. Also, COBWEB differs
from UNIMEM and EPAM in that it does not associate tests on attribute values to links,
leading to a novel method for sorting instances through the concept hierarchy.

One of the greatest contributions of COBWEB approach to concept formation is the
use of a well-defined evaluation function for categories, allowing the comparison between
concept hierarchies of different structure and size. However, this evaluation function may
not completely address the user requirements.

The explicit inclusion of merging and splitting operators is also an interesting contribution,
allowing COBWEB recovering from non-representative samples without losing its
incremental characteristic.

The main limitations of COBWEB are its inability to handle other type of attributes,
instead of just symbolic ones, and, as this approach retains all the processed instances as
terminal nodes, which can lead to over-fitting the data. COBWEB also suffers the ordering
effect, which refers to the tendency of incremental systems to create different hierarchies
when the same set of input instances is presented in a different sequence order.

2.4.4 Methods inspired by COBWEB

COBWEB method has been of great impact in the incremental concept formation domain,
as it has served as inspiration for a huge number of approaches. Several of these methods
inspired by COBWEB are now described:

• LABERINTH: In [Thompson and Langley 1991], the authors propose an
incremental unsupervised learning method for structured objects that acquires
probabilistic concepts from relational data, using the heuristic of separating the
instances into components for classification. LABERINTH uses a representation for
structured objects that reduces search by decomposing them into a partonomy4 of

4The term partonomy is used for object hierarchies, to distinguish them from concept hierarchies
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components.
LABERINTH extends COBWEB method by using relational data and separating
an instance into components for learning in structural domains. In terms of
classification and learning, the method differs from COBWEB in that LABERINTH:
(a) adds an outer loop to classify each component of a structured object, and
(b) introduces a new COBWEB subroutine to form predictive characterisations
of structured concepts.

• AICC: This system, presented in [Devaney and Ram 1994], is described as
an attribute-incremental concept formation system. AICC (Attribute-Incremental
Concept Creator) is able of both adding and removing attributes from an existing
concept hierarchy and restructuring it accordingly. The authors introduce the notion
of attribute-incrementation, as the dynamic restructuring of an existing hierarchy
of concepts as result of a change in the attribute set used to describe the instances.
The idea is to be able of incorporate the information about a new attribute to be
considered in the concept description without the necessity of recalculating all the
concept hierarchy from scratch. This method has been implemented as an extension
of COBWEB, using as input a concept hierarchy generated by COBWEB together
with new descriptions of the instances used to generate this hierarchy. This method
has also been conceived for symbolic attributes.

• INC: This system, presented in [Hadzikadic and Bohren 1997], has been
proposed to cope with COBWEB method limitations about ordering effect, and
learning process performance. COBWEB and INC share several assumptions: (a)
probabilistic representation of concepts, (b) incremental classification process, (c)
both methods are able to handle just symbolic type of attributes, and (d) existence
of a numerical evaluation function responsible for estimating the quality of the
generated hierarchy. In contrast, the systems are different in several key issues:

– The structure of the evaluation function is different. INC method uses
a cohesiveness evaluation function. Cohesiveness calculates the average
similarity of all pairs of instances contained in a class, reflecting the similarity
between all instances under a given node. Similarity is used for both classifying
previous instances and predicting the class membership of new instances and is
considered as a linear combination of common and distinctive attribute/value
pairs.
The main difference between COBWEB and INC evaluation functions lies in
the fact that COBWEB’s category utility maximises the improvement of the
clustering at the global level, i.e., the parent or root level, while INC supports
a more localised approach. This new proposed structure for the evaluation
function results in a better performance in the number of comparisons to
classify a new instance.

(taxonomy). Partonomy is a classification based on part-of relations, while taxonomy is based on is-a

relations.
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– Tree-building operators. INC uses six operators during the tree building
process:

∗ Create: To form a new class for an instance found to be dissimilar to all
examined classes,

∗ Extend: To add a new instance to the most similar class found.

∗ Merge: To form a new class by merging the most similar children and
recursively classifying the new instance into the new class, if a new instance
is similar to half of the children in a class.

∗ Delete: To undo the consequences of an unsuccessful merge operation.

∗ Pull-in: If the cohesiveness measure between a sibling of a class and the
class itself is lower than the similarity measure between the class and the
sibling, the sibling is pulled into the class.

∗ Pull-out: If the cohesiveness measure between a child of a class and the
class itself is higher than the similarity measure between the class and the
child, the child is promoted one level, i.e., pulled out of its current class.

Pull-in and pull-out are responsible for reversing some unwarranted decisions
made by the system, which is common to any incremental system due to the
ordering effect.

– COBWEB keeps all processed instances, while INC is able to stop the
prediction process when similarity between the new instance and candidate
node is lower than a pre-defined threshold, avoiding over-fitting in noisy
domains at the time of retrieval.

• OLOC: In [Martin and Billman 1994], the incremental concept formation system
OLOC has been presented. The system is able to learn and use overlapping concepts,
combining multiple overlapping concepts for making predictions. OLOC uses the
same concept description and hierarchy structure as COBWEB. As COBWEB,
OLOC is also designed for just considering symbolic attributes. The main difference
with COBWEB is that the categories used by OLOC are not individual categories,
but sets of mutually exclusive categories. Each of these sets represents a distinct
way of partitioning instances, typically emphasising different attributes and thus
supporting overlapping concepts. This set of categories representation results in
modifications in classification and learning processes in order to properly update
and build the hierarchy of concepts.

• ARACHNE: In [McKusick and Langley 1991], the authors present ARACHNE
method as a concept formation system that uses explicit constraints on tree structure
and local restructuring operators to produce well-formed probabilistic concept
trees, in order to cope with COBWEB limitations related with the ordering effect.
Like COBWEB, ARACHNE represents knowledge as a hierarchy of probabilistic
concepts, and it classifies new instances by sorting them down this hierarchy. As
COBWEB, ARACHNE is able just to process symbolic attributes. The system
differs from COBWEB in the following aspects:
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– Evaluation function: The system assumes that a similarity measure is
available. For both classification and learning processes, the same similarity is
used to compare two concepts, two instances, or an instance and a node.

– Structure of the concept hierarchy: Two additional operators are proposed for
restructuring the concept hierarchy:

∗ Vertical placement operator: The system checks if each child of a
node is vertically well placed. A node is vertically well placed in a concept
hierarchy when the similarity between the node and its parent is higher
than the similarity between the node and the parent of its parent. If a
node is not vertically well placed, the node is promoted to the parent’s
level in the hierarchy.

∗ Horizontal placement operator: The system checks if each child of
a node is horizontal well placed. A node is horizontally well placed in a
concept hierarchy when the similarity between the node and its parent is
higher or equal than the similarity between the node and any of its siblings.
If two or more siblings are more similar to each other than their parent, the
most similar siblings are merged, averaging their probabilities and placing
the originally merged siblings as children of the new node. The process is
repeated with the children of the new node.

More details on ARACHNE approach, as comparative analysis with other methods
can be found in [Iba and Langley 2001].

• CLASSIT: The method CLASSIT [Gennari et al. 1990] has been proposed as an
incremental concept formation model which considers only numerical attributes.
This method is very important for the scope of the performed research and is
extensively described in next section 2.4.5.

• GALOIS: In [Carpineto and Romano 1993], authors present GALOIS as an
incremental concept formation approach that helps overcome COBWEB limitations
due to the ordering effect. Rather than finding and updating a particular hierarchy
of concepts, GALOIS keeps and updates all the classes that can be generated in
a restricted concept language. This approach relies on the theory of concept or
Galois lattices and, as it is restricted to symbolic attribute representations and is
not extended in the literature to numerical attributes, is out of the scope of this
research work.

2.4.5 Gennari’s CLASSIT

In [Gennari et al. 1989], [Gennari et al. 1990], Gennary et al. proposed a model of concept
formation named CLASSIT, which attempts to improve upon earlier work. It has been
strongly influenced by COBWEB, differing mainly in its representation of instances and
concepts, and its evaluation function.
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2.4.5.1 Representation and Organisation

• CLASSIT only accepts numerical attributes as input.

• CLASSIT also associates a probability distribution with each attribute occurring in
the concept.

• Instead of storing a probability for each attribute value, CLASSIT stores a
continuous distribution (bell-shaped curve) for each attribute, expressed by a mean
value and a standard deviation.

• CLASSIT organises concepts into a hierarchy in the same manner as do UNIMEM
and COBWEB. General concepts representing main instances are near the top of
the tree, with more specific concepts below them. In general, concepts lower in the
hierarchy will have attributes with lower standard deviation, since they represent
more specific classes with greater within-group regularity.

2.4.5.2 Classification and Learning

• CLASSIT includes the same basic operators as COBWEB:

1. To incorporate an instance into an existing concept.

2. To create a new disjunctive concept.

3. To merge two classes.

4. To split a class.

• As described in the COBWEB algorithm presented Figure 2.13, for every new
instance, the algorithm considers all four operators, computes the score of the
evaluation function in each case, and selects the choice with the highest score.

• CLASSIT makes a few important additions to the basic algorithm:

– Rather than always descending to the leaves of the hierarchy as it classifies
an instance, CLASSIT may decide to halt at some higher level node. When
this occurs, the system has decided that the instance is similar enough to
an existing concept, that further descent is unnecessary and that it should
throw away specific information about the instance. For determining when an
instance is similar enough to a concept, a parameter named cutoff, based on
the evaluation function, has been defined. This addition intends to avoid the
over-fit of data problem of COBWEB, which always considered all instances
in the concept hierarchy. Also, this addition allows to control the size of the
concept hierarchy, allowing a better performance of the method.

– If instances are described as a set of components, it is necessary that the system
correctly matches instance components with concept components. Using the
variances for each attribute in the concept description, CLASSIT finds a
match for that component with the least associated variation. Using this as
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a constraint, the system then finds a match for the next most constrained
component and so forth, continuing this process until all components in the
concept description have been matched against components in the instance.

2.4.5.3 Evaluation Function

As CLASSIT uses numerical attributes in both instances and concepts, a generalisation
of COBWEB’s category utility (Equation (2.3)) is required. The terms that have to be
adapted in the expression of the category utility to numerical domains are:

∑

j

P(Ai = Vij|Ck)
2 and

∑

j

P(Ai = Vij)
2. (2.4)

Both terms in Equation (2.4) correspond to the sum of squares of the probabilities of all
values of an attribute. The former uses probabilities given membership to a particular
class Ck, while the later does not consider any class information. The second terms
is equivalent to the attribute value probabilities in the parent node, since this node
includes the information of all processed instances. For applying these terms to continuous
domains, the summation must be changed to integration, and some assumptions must be
made about the distribution of values. If no prior knowledge exists about the distribution
of an attribute, the best assumption is to consider a normal distribution for each attribute.
Thus, the summation of the square of all probabilities becomes the integral of the normal
distribution squared. For the first summation in Equation (2.4), the distribution is for
a particular class, while the second summation must use the distribution at the parent
class. In both case, the integral evaluates the simple expression in Equation (2.5).
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where µ is the mean and σ is the standard deviation. Finally, since the expression is
used for comparison only, the constant term 1/2

√
π can be discarded. Then, the revised

evaluation function used by CLASSIT is:
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where I is the number of attributes, K is the number of classes in the partition, σik is the
standard deviation for a given attribute in a given class, and σip is the standard deviation
for a given attribute in the parent node.
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Unfortunately, this transformation introduces a problem when the standard deviation
is zero for a concept. For any concept based on a single instance, the value of 1/σ is
infinite. In order to solve this problem, it has been introduced the notion of acuity, a
system parameter that specifies the minimum value for σ. This limit corresponds to the
notion of a just noticeable difference in psychophysics, the lower limit on our perception
ability. This parameter can be provided by the user.

Because acuity strongly affects the score of new disjuncts, it directly controls the breadth,
or branching factor of the concept hierarchy produced, just as the cutoff parameter
controls the depth of the hierarchy.

The greatest contribution of CLASSIT approach to concept formation is the adaptation of
a well-defined evaluation function for categories, to numerical domain attributes. Another
contribution is the consideration of the cutoff parameter, which serves to diminish the
risk of data over-fit.

The main limitation of CLASSIT is inherited from COBWEB, as CLASSIT also suffers
from the ordering effect. Another limitation of CLASSIT is its inability to handle other
types of attributes, instead of just numerical ones. Authors give an insight on how a
mixture of symbolic and numerical attributes can be used, but they do not concretely
formulate the solution.

2.4.6 From CLASSIT to present

A first extension from COBWEB and CLASSIT is presented in [McKusick and Thompson
1990]. This extension, called COBWEB/3, has been proposed to handle both numerical
and symbolic attributes in the category utility measure. As in CLASSIT, COBWEB/3
assumes that the numerical attribute values are normally distributed. Then, for the set
of numerical attributes, the category utility CUk, for a given class Ck, is defined as:

CUk(numerical) =

P(Ck)
I
∑

i=1

(

1

σik

− 1

σip

)

2· I·√π
, (2.7)

where σik is the standard deviation for a given numerical attribute i in a given class, with
I corresponding to the number of numerical attributes, and σip is the standard deviation
for the attribute i in the parent node.

As in COBWEB approach category utility definition (Equation (2.3)), for the set of
symbolic features, the category utility CUk, for a given class Ck, is defined as:
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CUk(symbolic) =
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with L corresponding to the number of symbolic attributes, and Jl to the number of
possible values for the attribute l.

Then, for a set of mixed symbolic and numerical attributes, the overall category utility
CUk, given a class Ck, is the sum of the contributions of both sets of features:

CUk = CUk(symbolic) + CUk(numerical). (2.9)

Finally, the category utility CU for a class partition of K classes is defined as:

CU =
K
∑

k=1

CUk

K
(2.10)

Dividing the sum of class category utilities by K allows the comparison of class partitions
of different size.

In response to some disadvantages in COBWEB/3 approach, ECOBWEB is proposed
as part of a larger system, Bridger([Reich and Fenves 1991], [Reich 1991]). ECOBWEB
attempts to remedy some of the disadvantages inherent in the COBWEB/3 interpolation
scheme: (a) the normal distribution assumption for the pdf of numerical attributes,
and (b) the acuity value for bounding the category utility contribution from numerical
attributes.

In the ECOBWEB approach, the probability distribution for numerical attributes is
approximated by the probability distribution about the mean for that feature. This
probability is calculated in a designated interval range around the mean of the feature
value distribution, adding parameters to be pre-defined for the interval determination.
Similar limitations due to parameter pre-definition possesses GCF method, proposed in
[Talavera and Béjar 2001], which is a symbolic hierarchical clustering model that uses
parametrised measures, for allowing users to specify both the number of levels and the
degree of generality of each level.

In other extension for CLASSIT, in [Iba 1991] (also well described in and [Iba and
Langley 2001]) the method OXBOW is proposed. OXBOW extends CLASSIT to deal
with structured objects with differing numbers of components and to form concepts in
temporal domains. This method represent movements as sequences of state descriptions



44 Chapter 2. State of The Art

Throw

SidearmOverhand

Fast-�ball Curve-�ball Fork-�ball

attribute mean s.d.

time 1 0.01

J1-x 50 0.80

J1-y 0 3.70

J1-Vx 0 0.01

J1-Vy 0 0.01

J2-x 75 4.70

J2-y -25 3.90

J2-Vx 0 0.01

J2-Vy 0 0.01

Figure 2.17: An example of hierarchy of motor schema for baseball pitches, with one
node shown in detail, as presented in [Iba 1991]. Note that the top level of the state
description hierarchy is ordered sequentially in time. State descriptions are described by
time attribute, and position and velocity of two joints of an arm (J1 and J2).

with temporal relations among them, called motor schema. These motor schema are
capable of capturing and summarising the original movement.
OXBOW represents a single movement concept using a probabilistic hierarchy of states,
where its top-level partition is organised with respect to time only, and the nodes at this
level are ordered by time to yield the state sequence of movement.
At the same time, OXBOW organises movement concepts in a probabilistic movement
hierarchy, where each of these concepts points to a state hierarchy in which the top level
consists of an ordered AND tree that represents the sequence of states for the movement
concept. An example of this hierarchical structure is depicted in Figure 2.17. This
example shows a possible hierarchy of baseball-pitching schema. The leaf nodes of the
global tree represent the motor schema from specific observed pitches. The node labelled
as Overhand represents a generalisation of the three specific throws stored below it in the
hierarchy. This generalisation is also a motor schema, but instead of specific values, the
generalisation stores means and variances for each of the attributes in its state descriptions
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(for further details refer to [Iba 1991]).

The learning method of OXBOW is similar to CLASSIT’s. A variation has been
introduced to handle structured objects having temporal components. OXBOW learning
process sequentially incorporates a new state sequence into an existing movement concept.
For each state, OXBOW extends CLASSIT category utility function to consider structured
objects, as shown in Equation (2.11).
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where P(Ck) is the probability of class Ck, K is the number of classes at the current level
of the hierarchy, P(Skj) is the probability of the j-th state description in Ck, P(Spm) is
the probability of the m-th state description in the parent of the current partition, σkji

is the standard deviation of attribute i in the j-th state of the k-th class, and σpmi is the
standard deviation for attribute i in the m-th state of the parent node.

For each state, OXBOW employs the category utility function presented in Equation
(2.11) accounting for all movement attributes (positions and velocities), except for the
first level of the hierarchy of state descriptions, where just time attribute is considered in
order to organise the partition structure by temporal aspects of the movement.

Several other concept formation models have been proposed in the literature to date,
improving some limitation of the presented methods, but not adding any other important
feature to the incremental concept formation domain. For example, in [Li and
Biswas 2002] Similarity Based Agglomerative Clustering (SBAC) algorithm is presented,
which uses Goodall similarity measure [Goodall 1966]. This algorithm works well
with mixed numerical and symbolic attributes, though is computationally expensive.
Another example is CAS algorithm, presented in [Alomary and Jamil 2006]. CAS
builds a clustering hierarchy incrementally, with each cluster node containing frequency
information that maps an instance to that cluster. The representation language takes into
account the current ignorance while incorporating an instance into the cluster. It combines
a number of different paradigms such as constraint satisfaction, evidential reasoning,
inference maximisation, and entropy maximisation. The main limitation of CAS system
is that this approach allows just symbolic type attributes, preventing its utilisation for
several application domains.

2.4.7 Global Scope of Incremental Concept Formation

As stated in previous sections, models of incremental concept formation have evolved
in literature over years of studies. This evolution is depicted in Figure 2.18. The most
important approaches for the presented learning approach are highlighted. The depicted
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structure does not intend to list all the existing incremental formation approaches in the
literature (that would be impossible), but to highlight the evolution line of incremental
concept formation converging to the scope of the proposed learning approach in this thesis.
In the specific scope of this thesis, the interest is focused in the evolution of incremental

Figure 2.18: Evolution of Incremental Concept Formation domain. Most important
contributions in the scope of the proposed learning approach are highlighted in red.

concept formation methods able to learn from concepts containing both numerical and
symbolic attributes.

The precursor of the incremental concept formation domain is the EPAM algorithm for
hierarchical clustering ([Feigenbaum 1959], [Feigenbaum and Simon 1962]), proposing
a representation of instances or concepts as a set of attribute-value pairs (symbolic
attributes). The concepts structure representation corresponded to a discrimination
network, where different individual attributes where tested at different levels, and leaves
represented the concepts.
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In 1989, COBWEB has been proposed. COBWEB is an incremental concept formation
approach based on three methods inspired in EPAM (UNIMEM [Lebowitz 1983],
[Lebowitz 1985], [Lebowitz 1986], [Lebowitz 1987]), CYRUS [Kolodner 1983], and
CLUSTER/2 [Michalski and Stepp 1983]). Its most important contribution with respect
to previous work is the utilisation of the category utility function proposed by Gluck
and Corter [Gluck and Corter 1985], to evaluate the quality of the obtained concept
hierarchies. COBWEB has also introduced merging and splitting operators for concepts
in the hierarchy.

As depicted in Figure 2.18 and presented in section 2.4.4, COBWEB has served as
inspiration for several incremental concept formation models. For the scope of this
thesis work, the most interesting method derived from COBWEB is CLASSIT because it
adapts category utility for numerical attributes. Another interesting feature of CLASSIT
is the introduction of the cutoff parameter to control the size of the hierarchy and to
avoid the problem of data over-fit by having the possibility of halting the classification
process in a node higher than terminal nodes level. Following the scope of this thesis, the
most interesting extension of CLASSIT is COBWEB/3, which extends category utility to
handle both numerical and symbolic attributes.

2.5 Event Learning from Video

This section explores the existing methods proposed for event learning in video. The
analysis is focused in establishing the common learning techniques used in event learning,
and to explore the approaches which have faced the challenge of bridging the gap between
low-level video processing data and high-level complex event information.

In the latest years, video event analysis has become one of the biggest focus of interest
in the video understanding community [Hu et al. 2004a], even if the number of studies
in this area is still low. Several approaches have been proposed for the recognition and
learning of events in video. The extraction of event information in video implies the proper
processing of low-level video processing tasks, as motion detection, object classification,
and tracking, in order to generate the appropriate input for the event analysis tasks.

Several approaches for video analysis have been focused in the recognition of pre-defined
composite events, using a set of events extracted from visual features ([Howarth and
Buxton 2000], [Medioni et al. 2001], [Piater et al. 2002], [Vu et al. 2006]). These
methods have pre-defined ad-hoc methods for extracting events from low-level video tasks
information. Then, these recognised events serve as building blocks for the recognition of
also pre-defined composite events.

For example, Medioni et al. [Medioni et al. 2001] proposed an event recognition approach
for an airborne moving platform. To make the link between low-level object features and
the high-level behavioural events to detect, the authors propose an intermediate layer for
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the extraction of object properties serving as input to the high-level behaviour analysis
task. In this approach, behaviours to be recognised are pre-defined according to the
application. The general structure of the approach is shown in Figure 2.19.

Figure 2.19: Overview of the behaviour analysis approach proposed in [Medioni et al.
2001].

Similarly, in [Ma et al. 2005], [Ma et al. 2006], the authors propose a method for detecting
pre-defined primitive and composite events, which uses a feature vector accounting for
instantaneous and temporal information about the objects evolving in the scene for
representing an event. The authors also propose an unsupervised method for updating
the set of defined events, by comparing the distance of a new event with the clusters
formed with the existing events. If the new event is considered dissimilar, a new cluster
is formed, and reported to the user for proper labelling.

In the context of event learning, several approaches have focused their interest on learning
different elements of the events:

• Some approaches have focused in unsupervised learning of composite events,
utilising pre-defined events (see Section 2.5.1).
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• Other approaches have focused in unsupervised learning of both primitive and
composite events, for specific object feature sets (see Section 2.5.2).

• The utilisation of incremental learning of events in video is almost inexistent in the
video understanding literature (see Section 2.5.3).

2.5.1 Composite Event Learning

Several approaches have centred their attention on learning composite events in an
unsupervised way ([Howarth and Buxton 2000], [Hongeng et al. 2000], [Hongeng et al.
2004], [Chan et al. 2004], [Chan et al. 2006b], [Chan et al. 2006a]). These methods
search to enhance the recognition of composite events by an off-line training phase for
learning the probabilistic and temporal parameters of these representations. A common
method for representation of composite events is the Dynamic Bayesian Network (DBN)
[Ghahramani 1998], which is a Bayesian Network 5 that represents sequences of variables
in time.

More specifically, the Hidden Markov Models (HMM) are often utilised for this purpose
(and variants of HMM), which can be considered as the most simple DBN. In a HMM,
a sequence of observations is modelled by assuming that each observation depends on a
discrete hidden state, and that the sequences of hidden states are distributed according
to a Markov process6.

For example, in [Hongeng et al. 2000], the authors use a variant of HMM for recognising
composite events in a parking lot application. Also, in [Chan et al. 2004], [Chan et al.
2006b], [Chan et al. 2006a], authors propose an algorithm that solves event recognition.
In this approach, event detectors are made ad-hoc, but composite events are learnt as
DBNs trained with a standard Expectation Maximisation (EM) algorithm [Murphy 2002].
Authors apply semantic modelling early in the data processing chain, through the use of
spatio-temporal semantic relations. This way, DBN representations are based on these
relations rather than on low-level object attribute data, such as position (e.g. constructed
with relational predicates such as CloseTo or ContainedIn, or with unary predicates such
as Moving).

Other approaches are more interested in learning the sequences of events forming
composite events ([Hamid et al. 2005], [Toshev et al. 2006]). In [Hamid et al. 2005],
the authors propose an approach for learning composite events, which are described using

5A Bayesian Network is a probabilistic graphical model for representing conditional independences
between a set of random variables. These networks are directed acyclic graphs whose nodes represent
variables, and whose arcs encode conditional independences between the variables. They represent a
particular factorisation of a joint distribution, where each variable is represented by a node in the network.
A directed arc is drawn from node A to node B if B is conditioned on A in the factorisation of the joint
distribution [Ghahramani 1998].

6A Markov process is a stochastic process in which the conditional probability for a state at any future
instance, given the present state, is unaffected by knowledge of the past history of events.



50 Chapter 2. State of The Art

a histogram account for the occurrence of pre-defined event sequences of length n, called
n-grams. These composite events are clustered using a similarity measure made ad-hoc for
the composite event representation, and used for anomalous activity detection. Also, in
[Toshev et al. 2006], the authors have adapted a data mining algorithm called APRIORI
[Agrawal and Srikant 1995], for automatically deducing the frequent composite events of
a video, from a set of pre-defined events. Composite events are considered as patterns
represented by a sequence of these events. The approach has been tested in parking lot
sequences taking into account simple relational events of the type Person N in Zone M.

Until now, the presented methods, even if they perform learning at the composite events
level, need to pre-define the events in order to construct the composite ones.

2.5.2 Primitive Event Learning

One step further is the application of machine learning techniques for also learning the
events. This way, the task of pre-definition of events can become easier or even disappear.

Existing approaches for primitive event learning have mainly focused in specific events to
learn. The main motivations for these studies are the automatic generation of building
blocks for composite events and the detection of unexpected events based on their
frequency of occurrence in a video scene.

Mainly, the focus of research has been centred in learning trajectories ([Fernyhough et al.
2000], [Owens and Hunter 2000], [Remagnino and Jones 2001], [Hu et al. 2004b], [Hu et al.
2006], [Jiang et al. 2007], [Gaffney and Smyth 1999] , [Reulke et al. 2008], [Piciarelli et al.
2008]). A recent survey on trajectory learning for video surveillance applications can be
found in [Morris and Trivedi 2008].

In this context, the work presented in [Remagnino and Jones 2001] utilises a HMM
approach to model trajectory events occurring in a car-park environment. In their
approach, a HMM behaviour representation is composed of states (to be in a region in the
image), prior probabilities measuring the likelihood of an event starting in a particular
region, the transitional probabilities capturing the likelihood of trajectory progressing
from one region to another across the image, and the probability density function of each
state. An expectation maximisation (EM) algorithm [Cadez et al. 2000] is employed to
fit a number of Gaussian probability distributions, representing the states of trajectories
to recognise, which are trained off-line from a set of all trajectory positions in a training
dataset.

In [Jiang et al. 2007], a method for unusual event detection is proposed. First trajectories
from a training dataset of trajectories considered normal, are grouped and fitted to an
HMM, where the states are fitted to a Gaussian model of the position, obtaining a
representation of trajectories as shown in Figure 2.20. After training these HMMs off-line
unsupervised clustering is performed on them, merging HMMs considered similar. Those
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clusters containing large number of samples (e.g., more than the average number) are
chosen as normal pattern groups.

(a) (b)

Figure 2.20: HMM modelling of object trajectories as presented in [Jiang et al. 2007]. A
5-state HMM with Gaussian emission probability is fitted to the 2D trajectory feature
vector {(x1, y1), (x2, y2), (xT , yT )}, where {x, y} denotes the coordinate of object centre
at every frame and T is the length of the trajectory. The black ellipses and crosses show
the means and variances of every state.

Some other unsupervised event learning approaches have been proposed considering
attributes different from those related to trajectory learning.

In [Galata et al. 2002], the authors propose an approach for detecting interaction events
between pairs of objects. These interactions are represented as a sequence of feature
vectors. A feature vector of a sequence representing an interaction between two objects
corresponds to the velocity magnitude of the reference object, the vector representing the
relative distance between the two objects and the velocity vector of the other object. A
set of prototypical interactions is learnt off-line from these sequences of feature vectors
by using a variant of the Vector Quantisation (VQ) algorithm 7, proposed in [Johnson
and Hogg 1996]. Then, these prototypes become the events of a variant of a HMM which
automatically infers the high level structure of typical interactive behaviours. The learnt
behaviour model is then capable of recognising typical or atypical composite events within
a scene.

Also, in [Xiang and Gong 2008], the authors propose a method for unusual event detection.
For this purpose, the method performs clustering using a Gaussian Mixture Model (GMM)

7Vector Quantisation is a classical quantisation technique from signal processing which allows the
modelling of probability density functions by the distribution of prototype vectors (also referred to as
codebook vectors). It works by dividing a large set of vectors into groups having approximately the same
number of points closest to them. Each group is represented by its centroid point. For further details,
refer to [Gray 1984].
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over a 7D features training set. Each feature is represented as the centroid (x̄, ȳ) of the
blob enclosing a detected object in the scene, the blob dimensions (W ; H), the filling
ratio of foreground pixels within the bounding box associated with the blob, and a pair of
first-order moments of the blob (Mpx,Mpy). Then, behaviours are represented as Multi-
observation HMM (MOHMM)8 [Gong and Xiang 2003], using the cluster set resulting
from the 7D features as the states of the HMM. Both learning methods are performed
off-line.

In [Niebles et al. 2006], the authors propose a different way of performing unsupervised
event learning. A video sequence is represented as a collection of spatial-temporal words
by extracting space-time interest points. The algorithm learns from a set of video
sequences the probability distributions of the spatial-temporal words and intermediate
topics corresponding to human action categories automatically using a probabilistic Latent
Semantic Analysis (pLSA) model9 [Hofmann 1999]. The learnt model is then used for
human action categorisation and localisation in a novel video.

2.5.3 Incremental Event Learning

Approaches which use incremental learning techniques are of special interest for the scope
of this thesis. These techniques are currently almost inexistent in the literature.

In [Piciarelli and Foresti 2006], the authors propose a method for incremental trajectory
clustering. Each input trajectory is represented by a list of vectors, which correspond to
the spatial positions along the x and y axes in the 3D referential of the scene, ordered
by the time of occurrence of these object positions. Trajectory clusters are represented
in a similar way, but now the coordinates represent mean position at a given instant,
and an approximative variance parameter is associated to each mean position coordinate.
For performing trajectory clustering, the authors propose a distance measure, where the
distance of a trajectory from a cluster is the mean of the normalised distances of every
trajectory element from the nearest cluster element found inside a temporal window
centred at the instant the trajectory element occurs. If a match occurs, the cluster is
incrementally updated with the input trajectory data, considering a pre-defined update
rate weighting the new data.

The authors propose an interesting tree representation of trajectory cluster prefixes, useful
for abnormal trajectory detection. The authors refer to a cluster of similar trajectories as
a class. Each class is split in a concatenation of clusters representing the initial common
prefixes, so that classes can be represented with a tree structure, as in Figure 2.21.

8Compared to an HMM, in MOHMM the observational space is factorised by assuming that each
observed feature is independent of each other. Consequently, the number of parameters for describing a
MOHMM is much lower than that for an HMM.

9Probabilistic latent semantic analysis (pLSA) is a statistical technique for the analysis of general
co-occurrence data which models the probability of each co-occurrence as a mixture of conditionally
independent multinomial distributions.
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The tree construction method is as follows: when a new trajectory is detected, a matching

Figure 2.21: Representation of cluster prefixes for trajectories as in [Piciarelli and Foresti
2006]. (a) Trajectories; (b) classes; (c) cluster prefixes; (d) trees.

step is performed, in order to see if the trajectory matches any of the candidate prefix
clusters. If the trajectory matches a prefix cluster, the prefix cluster is updated. If no
match is found a new single-node tree is created. The prefix cluster associated to the
new node is initialised with the data of the trajectory, while the variance is initially set
to a fixed, pre-defined value. In the updating phase, the distance between the trajectory
and the matched cluster is continuously checked to detect if the trajectory is moving
too far from the cluster. If this happens near the end of the prefix cluster, no action is
performed, otherwise the prefix cluster is split in two parts, the first one representing the
part of the cluster that matches the trajectory and the second one representing the rest
of the prefix cluster. In the tree view, the split of a node is modelled with the creation of
a new child node, possibly inheriting all the children of the old node. In both cases, if the
trajectory no longer matches a prefix cluster, a new matching step must be performed as
described before, but this time the candidate nodes are all the children of the node from
which the trajectory comes. This approach works only in specific structured scenes (e.g.
road, path), performs learning only on spatial information (can not take into account time
information), and do not handle noisy data.

Another approach for incremental event learning in video is the work presented in [Mugurel
et al. 2000]. In this work, the authors propose an incremental event learning algorithm for
classifying and learning the pattern of multiple tracked objects moving in a dynamic scene.
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The pattern to be learnt is represented as a sequence of symbolic spatial relations among
objects (e.g. in-front, behind, left-of, and right-of) at each time instance. For performing
the incremental learning task, a variant of ILF(Incremental Learning with Forgetting)10

algorithm is utilised, which is an approach for incremental concept formation similar
to UNIMEM and COBWEB, that eliminates noisy instances. Unfortunately, the authors
perform testing for just two aircrafts, which does not allow to appreciate the potentialities
of the approach. Besides, the approach seems not scalable for a big number of objects,
as spatial-relations will grow exponentially. Another limitation arises with the number of
objects in the scene, which must be static during the analysed video scene, as relations
are described according to pair of objects.

2.6 Discussion

Each task of the video understanding process has to solve specific problems. Each of these
problems presents interesting and complex issues to the scientific community.

The first problem is to proper represent the detected moving regions in the scene,
according to the objectives of a real world application. As discussed in Section 2.1, the
choice of the right object representation plays a critical role and has a direct incidence in
the processing time performance. Given the objective of this thesis, 3D primitive shape
representation fits appropriately the processing time required by real world applications.
The 3D shape representation also allows to easily define a large variety of objects with a
better precision compared to the 2D primitive shape representations. Therefore, the issue
is to find a representation which offers a good trade-off between precision and processing
time.

One of the most challenging problems in video understanding is the MTT problem, as
described in Section 2.2. This problem has been subject of thousands of publications
proposing different approaches for its resolution. The main limitation of the MHT
approaches (and also Monte Carlo methods, such as particle filtering) is the impossibility
of considering the association of several moving regions corresponding to the same real
object, as these methods were first designed for objects represented as a single point.
Hence, it is necessary to address this problem in order to cope with situations related
to more complex representations, as for example, when an object is visually detected
as a set of separated moving regions or overlapping with another object. The tracking
requirements in this thesis imply the generation of hypotheses similarly as the TOMHT,
together with screening and pruning methods to achieve performances adequate for real
world applications. Moreover, the dynamics models of multi-target tracking approaches do

10ILF [Lazarescu et al. 1999] is an incremental learning algorithm that builds compact conceptual
hierarchies and tracks concept drift. The concept drift means that the statistical properties of the target
changes over time in unforeseen ways.
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not handle properly noisy data. Therefore, the shape representation information should
be combined with reliability measures to generate a new dynamics model which takes
advantage of these measures.

In the context of incremental concept formation, described in Section 2.4, the interest
is focused on their capability of incrementally learning a hierarchy of concepts according
to the arrival of new information. This characteristic is suitable with the objective of the
proposed video understanding framework for incremental learning events in real world
applications. These techniques were not conceived for representing temporal relations
between concepts, then an extension of these methods is necessary for considering these
relations. Also, the incremental concept formation models found in the literature do not
consider explicitly the quality of the information utilised in the learning process, even if
some techniques consider the possibility of missing object attributes.

Moreover, the design of a complete video understanding framework for event learning
implies the resolution of a wide variety of complex problems. For the complete framework,
the problem of obtaining reliable information from video concerns the proper treatment
of the information in every task of the video understanding process. For solving this
problem, each task has to measure the quality of the information in order to evaluate the
overall reliability of a framework. As presented in Section 2.3, the reliability measures
have been used in the literature for focusing on the relevant information, allowing more
robust processing. Nevertheless, these measures have been only used for specific tasks
of the video understanding process. A generic mechanism is needed to compute in a
consistent way the reliability measures of the whole video understanding process. Then,
the problem of globally estimating the quality of the information utilised by a video
understanding framework is still an open problem.

The currently existing event learning approaches in video understanding, presented in
Section 2.5, show the increasing interest of the community in this area. The efforts are
mostly focused on unsupervised learning rather than supervised learning and they only
handle specific events. Moreover, the few existing unsupervised techniques often perform
learning off-line. Thus, the problem of incremental learning of general events remains an
open problem in the video understanding domain.

Next Chapter 3 presents the video understanding framework for incremental event
learning, in order to understand the process as a whole, its interactions with the user,
and the resulting output from the learning approach. This section will also serve as an
introduction of next sections, explaining the different processes involved in the proposed
video understanding framework.





Chapter 3

Thesis Overview

In this thesis, a new video understanding framework for incremental event learning is
proposed. As depicted in Figure 3.1, the proposed video understanding framework is
conceived for obtaining a hierarchical description of the events induced by the objects
evolving in the scene, together with the recognised events in which these objects
participate, starting from noisy image-level data.
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Figure 3.1: Proposed video understanding framework for event learning. Black elements
correspond to the thesis contributions. Gray elements correspond to elements used by the
proposed framework, but not forming part of the contributions.

The video understanding process begins with a segmentation task which processes a video
frame and returns the motion regions occurring in the scene. These regions are processed
by a tracking task in order to extract the information of mobile objects present in the
video scene, and reliability measures are associated to the extracted information in order
to account for the quality and coherence of this information.
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Then, the obtained information and reliability measures are utilised by an event learning
and recognition task in order to incrementally update a hierarchical structure of learnt
states and events, and to recognise the events for each object evolving in the scene.
The learning process is performed without any prior information about the events to be
detected in the scene. A state represents the occurrence of a set of object attribute values,
while an event represents the transition between two states.

The object attribute information consists of 2D and 3D position and dimensions, where
3D attributes are inferred from generic 3D object models of the objects expected in the
scene (e.g. a person, a car). The tracking task obtains this 3D information by interacting
with a blob classification task, which associates 3D model instances to the blobs, together
with reliability measures associated to the attributes describing an instance of these 3D
models.

The objective of this chapter is to give a general overview of the proposed video
understanding framework, describing the different problems to be solved by the approach,
and also giving a first insight about the proposed solution at each task of the video
understanding framework.

This chapter is organised as follows. First, Section 3.1 defines the terminology utilised in
this thesis. Second, Section 3.2 focuses on describing the proposed video understanding
framework, the possible interactions between the framework and the user, and a
description of the platform utilised for the development of this framework. Third, Section
3.3 introduces the proposed blob classification approach utilised to associate a generic
3D object representation to a blob, focusing on the issues arising from the classification
problem. Fourth, in Section 3.4, the proposed multi-object tracking approach is presented,
giving a first insight about the way of solving different issues for the tracking problem.
Fifth, Section 3.5 introduces the proposed incremental event learning algorithm. Sixth,
the different possible interactions of the user with the video understanding framework
are described in Section 3.6. Finally, in Section 3.7, general remarks about the video
understanding framework are discussed.

3.1 Terminology

In the context of this thesis, several concepts must be appropriately defined in order to
clarify some discrepancies in the event and machine learning terminology utilised in the
literature. First, in the context of events, the following concepts are defined, using the
event ontology presented in [Brémond et al. 2004]:

Definition 3.1 A state is a spatio-temporal property valid at a given instant or stable
on a time interval. A state can characterise several mobile objects.

Definition 3.2 An event is one or several state transitions at two successive time
instants or on a time interval.
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Definition 3.3 A primitive state is a spatio-temporal property valid at a given instant
or stable over a time interval which is directly inferred from the visual attributes of physical
objects computed by vision routines.

Definition 3.4 A primitive event is a primitive state transition. It represents the
finest granularity of events.

Definition 3.5 A composite state is a combination of primitive states.

Definition 3.6 A composite event is a combination of primitive states and events.
This is the coarsest granularity of events. Composite events are also known in video
understanding literature as complex events, behaviours, and scenarios, among other
names.

In the context of machine learning, the following fundamental concepts for this thesis are
defined, based on the differences established in [Gennari et al. 1990]:

Definition 3.7 Supervised learning is a machine learning approach in which an
algorithm generates a function that maps inputs to desired outputs. To describe the desired
outputs, the algorithm is trained using a labelled training set (i.e. output is known for each
instance).

Definition 3.8 Unsupervised learning is a machine learning approach in which an
algorithm models a set of inputs. It differs from supervised learning in that information
about the output of instances is not known (i.e. the training dataset is unlabelled). Instead,
similarity or distance measures between instances are defined to guide the learning process.

Definition 3.9 Incremental learning is an unsupervised learning approach in which
an algorithm models a set of inputs, with the information obtained so far as an ongoing
process. This approach can dynamically generate new concepts, and interleave learning
and performance, as it is intended to learn from instances one at time without extensive
reprocessing of previously encountered instances.

Definition 3.10 Concept Clustering Problem [Michalski and Stepp 1983]:

• Given: A sequential presentation of instances and their associated descriptions.

• Find:

1. Clusterings that group those instances into categories.

2. A user-guided definition for each category that summarises its instances.

3. A hierarchical organisation for those categories.

Definition 3.11 Incremental concept formation models are incremental learning
approaches for solving the concept clustering problem. These formation models allow to
incrementally build a concept hierarchy based on incomplete or uncertain data, by updating
the hierarchical concept structure with the arrival of each new data instance. They also
allow the classification of a new instance, based on the inferred concepts from previously
processed data.
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For simplicity, from now, primitive states will be referred simply as states, while primitive
events will be referred as events. In order to avoid misunderstandings, the composite
events will keep their denomination.

3.2 Video Understanding Framework for Event

Learning

The design of general and robust video understanding techniques is still an open problem.
Providing robust information from noisy videos can be a very complex problem, as several
issues of different nature can complicate this task. For instance, these issues can be
associated to the quality of the analysed video (e.g. bad contrast), the complexity of the
scene (e.g. illumination changes, strong shadows, cluttered scene), the number of mobile
objects evolving in the scene (e.g. a crowd), or the interactions of the mobile objects with
the scene and with other mobile objects (e.g. static and dynamic occlusion), among other
issues.

All these factors can induce to errors a video understanding approach due to the ambiguity
of the visual evidence. Therefore, in order to achieve a robust video understanding process,
it is first necessary to measure the quality and coherence of the acquired information.

For coping with this problem, a new video understanding framework for learning frequent
events occurring in a noisy video scene is proposed. This approach involves a complete
framework for event learning, in order to cope with noisy environments.

Section 3.2.1 gives a detailed general description of this video understanding framework
for event learning and recognition. Then, the video understanding platform utilised to
develop this framework is presented in Section 3.2.2.

3.2.1 Video Understanding Framework Process

The proposed video understanding framework follows a bottom-up process to obtain high-
level temporal information, starting from low-level image data. This process is depicted
in Figure 3.2.

The video understanding framework receives as input a sequence of images. A
segmentation task is applied to each image frame to detect motion in the scene, obtaining a
set of moving regions represented as the bounding boxes enclosing them (called blobs from
now on). In particular, a background subtraction method called thresholding [Heikkila
and Silven 1999] is used for segmentation, which basically consists in comparing intensity
and colour information on the currently analysed frame, with a reference background
image (for further information about background subtraction methods refer to [McIvor
2000]). No further details about the utilised segmentation method is given in this thesis,
as segmentation is not part of the contributions (as depicted in Figure 3.1). In fact, for the
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Figure 3.2: Data-flow of the video understanding process.
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proposed approach, any segmentation method which gives as output a set of segmented
blobs can be used in the video understanding framework.

Then, taking as input the set of obtained blobs from the segmentation task, a multi-object
tracking task is performed. This task utilises a new tracking approach which combines
blob 2D information, together with 3D information obtained from the parallelepiped
object representation, to generate a set of mobile object configuration hypotheses. The
approach efficiently estimates the most likely tracking hypotheses in order to manage the
complexity of the problem with a high processing time performance. These hypotheses
are validated or rejected in time according to the information inferred in later frames
combined with the information obtained from the currently analysed frame.

For obtaining the 3D information associated to a mobile object, the tracking algorithm
interacts with a new proposed generic 3D classifier which associates to each processed
blob an object class, 3D attributes, and visual reliability measures of these 3D attributes.
The representation used by this classifier corresponds to a generic primitive 3D shape
which consists in a parallelepiped described by its 3D width, height, length, position, and
orientation with respect to the plane of the 3D referential of the scene. This representation
is calculated using pre-defined camera calibration information determined by an off-line
process, and pre-defined 3D models of expected objects in the scene. This classifier is
described with more detail in Section 3.3.

The reliability measures obtained with the classification task are utilised by the tracking
task in a new attribute dynamics model, which takes into account these measures as
a way of quantifying the quality of the estimated attributes. This dynamics model
utilises the visual reliability measures calculated for the parallelepiped model to weight
the contribution of new attribute information in the calculation of the attribute estimation
associated to a mobile object. This way, reliable information is enforced in the dynamics
model, contributing to the robustness of the approach by handling noisy data.

The tracking task gives as result the set of the most likely mobile object hypotheses,
including full description of object attributes and reliability measures. For more details
about the multi-object tracking approach, refer to Section 3.4.

Finally, a new event learning algorithm takes as input the information about tracked
objects in the scene, together with pre-defined learning contexts information, to learn the
frequency of events occurring in the scene. The learning contexts define the attributes
of interest to be considered for event learning. Multiple learning contexts are allowed
simultaneously, to allow the analysis of more than one context of interest at the same
time.

The event learning approach is based on incremental concept formation models, which
give as result a hierarchy of concepts, with information about the probability of occurrence
of these concepts. In the context of this thesis, a concept corresponds to a state and the
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data to be learnt corresponds to the visual attributes of mobile objects present in the
video scene. Then, the probability associated to each concept can be interpreted as the
frequency of occurrence of a state.

For enabling event learning, the hierarchical representation proposed by the models of
incremental concept formation is extended to represent the transitions between different
states. The new incremental learning algorithm expands the representation of concepts
to the first-order temporal relations between these concepts. This way, in the context of
the proposed learning approach, concepts represented as nodes in the hierarchy become
the learnt states induced by the tracked objects present in the scene, while the first-
order temporal relations, representing the change of a state to another, become the
learnt events. This way, the learning approach is able to incrementally generate a
hierarchical representation of the occurrence of states and events in the scene, together
with information about their frequency of occurrence.

A hierarchy of states and events is learnt for each pre-defined learning context, and the
current state and event for each object evolving in the scene is recognised. The process
of learning and recognition occurs simultaneously, as the utilised learning approach is
incremental. The information about the frequency of occurrence of the states and events
allows the system to detect abnormal events occurring in the scene. This event learning
approach is introduced in more detail in Section 3.5.

Next Section 3.2.2 describes the platform utilised for the development of the proposed
video understanding framework for event learning.

3.2.2 Video Understanding Platform

In order to develop the proposed video understanding framework, the platform for Video
Understanding SUP (Scene Understanding Platform) [Avanzi et al. 2005] has been utilised.
SUP has been developed by PULSAR Team (former ORION Team) at INRIA (Institute
National de Recherche en Informatique et Automatique), Sophia Antipolis, France. SUP
is a generic environment for video processing algorithms which allows to flexibly combine
and exchange various techniques at the different stages of the video understanding process.

SUP platform has been initially conceived as an implementation of a two-steps approach,
consisting of a vision module, followed by a behaviour patterns detector. In this two-
steps approach, the visual module is used to extract visual cues and events. Then, this
information is used in the second stage for the detection of more complex and abstract
behaviour patterns [Toshev et al. 2006].

By dividing the problem into two sub-problems simpler and more domain-independent
techniques can be used at each step. The first step makes usually extensive usage of
stochastic methods for data analysis while the second step conducts structural analysis
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of the symbolic data gathered at the preceding step (see Figure 3.3(a)). Examples of this
two-level architecture can be found in the work of [Ivanov and Bobick 2000] and [Vu et al.
2003].

At the first level, SUP extracts primitive geometric features like moving regions. Based
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Figure 3.3: Contrasted video understanding architectures for video understanding. The
steps depicted in each figure describe the data flow during the video understanding process.
Figure (a) depicts a two-level architecture of a video understanding system. Figure (b)
depicts the proposed video understanding framework, which bridges the gap present in
the two-level architecture.

on them, objects are recognised and tracked. At the second level those events in which
the detected objects participate, are recognised. For performing this task, a special
representation of events is used which is called event description language [Vu et al.
2003]. This formalism is based on an ontology for video events presented in [Brémond
et al. 2004] which defines concepts and relations between these concepts in the domain
of human activity monitoring. The major concepts encompass different object types and
the understanding of their behaviour from the point of view of the domain expert.

Two-level architectures introduce a gap between low-level information associated to visual
data and high-level information associated to events. For this type of architecture, this
gap has been often bridged utilising events pre-defined by the user. This way, low-level
data are carried to a higher conceptual level, defined by the knowledge of the user.

In contrast, the proposed video understanding framework, defines an architecture which
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automatically bridges the gap between visual and conceptual information, by learning
the frequent events occurring in the analysed video scene (see Figure 3.3(b)), which are
represented as attribute distributions. These events can be seen as primitive temporal
concepts which can be used as building blocks for the detection or learning of more
complex events.

Next Section 3.3 introduces the method for 3D object classification, utilised by the
proposed video understanding framework to associate 3D information and reliability
measures to a set of 2D blobs.

3.3 3D Object Classification

The main issues arising from the classification problem are both inherent to the
classification problem itself and to the issues carried out from the segmentation problem.
The main issues of the classification problem are related to the ambiguity of visual
evidence, for instance, the object appearance changes with respect to its orientation,
position relative to the camera, and posture in the case of persons and animals, or the
same visual evidence can represent more than one object if no sufficiently discriminant
information is available.

Binocular visual perception allows human beings to perceive depth of their environment.
At the same time, a person can shut one of his/her eyes and still preserve the depth
sensation, without loosing too much of precision on depth estimation of the focused object.
This capability is a consequence of the interpretation that the brain performs about the
new visual information, by associating it to similar environments or objects previously
observed, and then concluding on its nature and 3D shape. This means that the brain
uses a priori knowledge to conclude about the attributes (e.g. position, dimensions) of an
observed object.

Following this idea, a new object representation using a simple generic 3D primitive shape
model of the expected objects in the scene is proposed. This model allows to represent
objects of different nature in a way that is independent from the relative position between
the object and the camera. More specifically, the proposed representation corresponds to
a parallelepiped model described by its 3D dimensions (width w, length l, and height h),
and orientation α with respect to the ground plane of the 3D referential of the scene, as
depicted in Figure 3.4. Also, visual reliability measures of the three estimated dimensions
are proposed, which represent a measure of their visibility with respect to the camera
and static occlusion. These measures have been mainly proposed to aid the tracking and
learning tasks of the video understanding framework.

A large variety of objects can be modelled (or, at least, enclosed) by a parallelepiped.
The proposed model is defined as a parallelepiped perpendicular to the ground plane
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Figure 3.4: Example of a parallelepiped representation of an object. The figure depicts a
vehicle enclosed by a 2D bounding box (coloured in red) and also by the parallelepiped
representation. The base of the parallelepiped is coloured in blue and the lines projected
in height are coloured in green. Note that the orientation α corresponds to the angle
between the length dimension l of the parallelepiped and the x axis of the 3D referential
of the scene.

of the analysed scene. Starting from the basis that a moving object will be detected
as a 2D blob, 3D dimensions can be estimated based on the information given by pre-
defined 3D parallelepiped models of the expected objects in the scene. These pre-defined
parallelepiped are defined as the parallelepiped dimensions w, l, and h described by a
Gaussian distribution representing their probability of occurrence for a given object class,
together with a minimal and maximal value for each dimension.

The initial problem of determination of a parallelepiped enclosing a moving object has
six degrees of freedom (d.o.f.): two d.o.f. for parallelepiped position with respect to
the ground of the 3D referential of the scene, three d.o.f. for 3D dimensions of the
parallelepiped, and one d.o.f. for the parallelepiped orientation.

The four 2D constraints imposed by the blob (bottom, top, left, and right limits with
respect to the image frame) allow to finally describe the four (x, y) base points of the
parallelepiped in terms of h and α attributes. Then, an optimisation step based on the
pre-defined parallelepiped models of expected objects in the scene is performed, obtaining
as result the most likely parallelepiped models for each class represented by the pre-defined
models.

These parallelepiped models consist in a Gaussian representation for the w, l, and h
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attributes of the parallelepiped, representing the probability of different 3D dimension
sizes for a given object. In the case of objects changing their posture (e.g. a person), a
set of parallelepiped sub-models is defined representing each posture of interest for the
represented object. Then, for the optimisation step, the likelihood of a parallelepiped
instance with respect to a pre-defined model is calculated as the multiplication between
the dimensional probabilities.

The utilised representation tries to cope with several limitations imposed by 2D
representations, but keeping its capability of being a general model able to describe
different objects, and a performance adequate for real world applications. Object 2D
primitive shapes can be efficiently computed, and then they are the most suitable
representation for real world tracking applications. These representations have several
advantages which justify their use. For certain applications, two dimensions are enough
to describe the objects involved in the analysed scene, because:

1. the relative position between the camera and the observed object hides one
dimension (e.g. tracking groups of people in a metro scene [Cupillard et al. 2001]),
meaning that it can be enough to model a 3D object with a 2D model,

2. the estimation of the another dimension is performed by merging information from
different cameras (e.g. human posture detection [Cucchiara et al. 2005b], apron
monitoring application on an airport [Borg et al. 2006]), and

3. object detection can be more interesting than classification for certain applications
(e.g. detection of stopped vehicles in a highway [Cucchiara et al. 2005a]).
Certainly, the processing time spent in calculating the attributes associated to 2D
representations is inexpensive, allowing to obtain a good performance for real world
applications. These 2D models are sufficient to find the 3D position of an object,
which is enough for certain applications.

Nevertheless, 2D representations present also several drawbacks, which make them useless
for many situations:

1. If the 2D moving region considerably changes its appearance depending on its
position relative to camera (see Figure 3.5), dimensional estimation becomes
unreliable.

2. If the 2D representation considerably changes when the object rotates (see Figure
3.6), dimensional estimation becomes also unreliable.

3. For deformable objects (e.g. persons changing their posture), it would become a very
hard task to define a 2D representation for each possible deformation of an object
of this nature, considering that it can also change according to different positions
relative to camera and different object orientations.

On the other extreme, different models have been proposed for specific objects (e.g.
persons, vehicles), which are application and object dependent. Some authors use
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(a) (b)

Figure 3.5: 2D moving region changes by different positions of an object relative to the
camera. Here, the same person (with same posture) is represented by very dissimilar 2D
regions in the same video sequence. In Figure (a) the person is far from the camera and
it is possible to see her/his height, while in Figure (b) the person is seen almost from top
and almost nothing can be said about his height.

precise models of a specific object to perform detection. These models allow generally to
obtain quite good detection rates and attribute estimations, but the computational cost
associated to its utilisation is often too expensive to be used in real world applications.
[Black et al. 1997] uses a 2D model of each body part of a human constrained by image
motion parameters to perform tracking of walking persons and human gestures. [Boulay
et al. 2006] uses a very precise 3D model of human to detect postures. In this work,
a human posture is described by a set of 23 parameters, subject to bio-mechanical
constraints. This human model is used to generate silhouettes to be compared with
the one detected for a person in the scene.

The proposed parallelepiped model representation allows to quickly determine the type
of object associated to a moving region and to obtain a good approximation of the real
3D dimensions and position of an object in the scene. This representation tries to cope
with the majority of the limitations imposed by 2D models, but being general enough to
be capable of modelling a large variety of objects and still preserving high efficiency for
real world applications.

The characteristics of this new object representation are listed below:

1. A representation independent from the camera view and the orientation of the object
with respect to the 3D referential of the scene.

2. A model which instances can be quickly obtained, with better precision than 2D
representations, providing 3D object features which are more interesting for event
analysis tasks.
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(a) (b)

Figure 3.6: 2D moving region shape changes because of a change in the object orientation.
Here, the same car is represented by very dissimilar 2D regions in the same video sequence.
In Figure (a) a car is seen from its back part. Later, the car rotates to park and it is seen
from its right part, as seen in Figure (b).

3. A simple generic object representation model which allows users to easily define new
mobile objects expected to be present in the scene.

4. Reliability measures proposed to calculate the visibility of the obtained 3D object
features, accounting for occlusion situations and camera view.

For further details about this new 3D object classification approach, see Chapter 4.

In next Section 3.4, the proposed multi-object tracking algorithm in the context of the
video understanding framework is introduced. This tracking method uses the proposed
object representation to perform tracking of object 3D features, and to take advantage of
the reliability measures associated to them.

3.4 Multi-target Tracking using Reliability Measures

The object tracking problem presents the most challenging issues to the video
understanding community. Among the most known issues are dynamic and static object
occlusion (partial visibility of an object), multiple objects tracking, and the problems
derived from poor object segmentation.

Many approaches have been proposed to manage all the possible tracks that can occur
for multiple objects tracking ([Gordon et al. 1993], [Isard and Blake 1998], [Doucet et al.
2001], [Hue et al. 2002a], [Hue et al. 2002b]). These methods often generate an exponential
number of hypotheses increasing with the size of the state space. Also, they scale poorly
as the dimensionality increases due to large number of objects to be tracked. As a
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consequence, an accurate dynamic model is required in practise to reduce the number
of samples needed for accurate modelling.

A new method for tracking multiple objects present in a video is proposed. This method
is focused on monocular static cameras and it is dedicated to real world applications.
This method maintains a list of likely configuration hypotheses for the mobile objects
present in the scene. The proposed tracking method has been developed to cope with a
wide range of typical issues present in videos with multiple objects, such as, segmentation
errors (e.g. due to shadows, or weakly contrasted objects), cluttered scenes, and dynamic
occlusions. These tracking issues are major challenges in the vision community [Society
2007].

The capability of the tracking approach for coping with these issues depends on the
reliability of the attributes estimated in the video frames processed before the occurrence
of one of the mentioned issues. This means, that the tracking approach will be able
of solving these issues if the temporal coherence and quality of the object attributes
previously estimated, calculated as reliability measures, is high enough to utilise this
attributes in the resolution of these issues.

This new method efficiently estimates the most likely tracking hypotheses in order to
manage the complexity of the problem with a good computer performance. This approach
combines blob 2D information, together with 3D information obtained from the object
representation presented in previous Section 3.3, to generate a set of mobile objects
configuration hypotheses. These hypotheses are validated or rejected in time according
to the information inferred from previous frames, and combined with the information
obtained from the currently analysed frame.

Each mobile object is represented as a set of statistics of features inferred from visual
evidences of their presence in the scene. The hypotheses are grouped according to their
visual relations in scene in order to separate the tracking procedure into different tracking
ambiguities. Each group of hypotheses is updated according to the visual evidences
obtained in later frames, expanding the hypotheses group to account for different possible
mobile object tracks. The generation of new hypotheses for tracked objects has been
carefully designed to immediately generate the best possible hypotheses in order to
improve the processing time performance.

The reliability measures obtained with the classifier introduced in previous Section 3.3
are utilised in a new proposed attribute dynamics model, which takes into account these
measures to quantify the quality of the estimated attributes. This dynamics model
utilises the visual reliability measures calculated for the parallelepiped model, introduced
in previous Section 3.3, to weight the contribution of new attribute information in
the calculation of the attribute estimation associated to a mobile object. This way,
reliable information is enforced in the dynamics model, contributing to the robustness
of the approach by handling noisy data. Also, a cooling function is utilised in order to
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diminish the contribution of old information, and highlight the contribution of the newest
information.

The proposed tracking approach is able to cope with several issues common to multi-
object tracking techniques:

• The static occlusion problem: This problem occurs when a tracked object is
partially or totally occluded by the image frame border or static objects present
in the scene (Figure 3.7). The proposed tracking approach solves this issue by
maintaining the temporal coherence of the expected tracked object attributes, and
determining which portion of the object can be occluded by a border or a static
object (Figure 3.7(c)).

(a) (b) (c)

Figure 3.7: Example of a static occlusion situation, and how this issue can be solved
with the proposed tracking approach. Figure (a) shows the original frame, where a
crouched person is occluded by a couch. Figure (b) shows the segmentation result, where
resulting blob is depicted in orange and moving pixels in white. Yellow lines represent
the pre-defined static objects in the scene. Note that a big portion of the tracked person
is occluded by the couch. In Figure (c), the solution found by the proposed tracking
algorithm for this problem is depicted. The 3D parallelepiped representation is coloured
in green, while object trajectory is represented by a sequence of points in red, connected
by red segments. Last point in trajectory represents the expected position for next frame,
which is connected by a green segment.

• The dynamic occlusion problem: This problem occurs when a tracked object is
partially or totally occluded by another tracked object (Figure 3.8). The problem
arises when the segmentation process is not able to separate a set of objects,
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which are near to each other. The proposed tracking approach solves this issue
by maintaining the temporal coherence of the set of occluding objects, and checking
the validity of the possible solutions in terms of 3D model collisions. As the tracking
approach does not use object appearance information, it can solve dynamic occlusion
situations where involved objects maintain the temporal attribute coherency during
the occlusion situation. One of the considered aspects in future work is the inclusion
of object appearance models for coping with more complex dynamic occlusion
situations.

(a) (b)

(c) (d)

Figure 3.8: Example of a dynamic occlusion situation for two vehicles in a parking lot
application. Figures (a) and (b) show an image frame where the two vehicles are still
separately segmented. Figures (c) and (d) show the next image frame where segmentation
is not able to separate the object. In this case, the temporal coherence on vehicle attributes
can be exploited in order to solve this dynamic occlusion situation. In images (b) and
(d), the resulting blobs are depicted in orange and moving pixels in white. For the four
images, yellow lines represent the pre-defined static objects, and red lines represent the
zones of interest in the scene.

• Low contrasted objects and illumination problems: These problems leads to
missing object parts, several separated parts, or an over-segmented object (Figure
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3.9). More precisely, these situations are commonly caused by illumination changes,
low object contrast with respect to background, and object shadows and reflections,
among other situations. The proposed tracking approach solves these issues by
maintaining the temporal coherence of the tracked object, evaluating if possible
hypotheses for the object in current frame are coherent with respect to the expected
attribute values of the dynamics model, and eliminating incoherent hypotheses.

(a) (b) (c)

Figure 3.9: Example of a badly segmented object, and how this issue can be solved with
the proposed tracking approach. Figure (a) shows the original frame. Figure (b) shows
the segmentation result, where resulting blobs are depicted in orange and moving pixels
in white. Yellow lines represent the pre-defined static objects in the scene. Notice that
the legs of the tracked person are badly segmented, with some parts of the shoes detected
as movement separately from the body. In Figure (c), the solution found by the proposed
tracking algorithm for this problem is depicted. The 3D parallelepiped representation is
coloured in green, while object trajectory is represented by a sequence of points in red,
connected by red segments. Last point in trajectory represents the expected position for
next frame, which is connected by a green segment.

Hence, the proposed multi-object tracking approach presents the following main
characteristics:

1. A new multi-hypothesis algorithm for tracking multiple objects for real world
applications.
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2. A new dynamics model for object tracking which keeps redundant tracking of 2D
and 3D object information, in order to increase robustness.

3. New methods for best object hypothesis generation in order to ensure a high
processing time performance for tracking.

For further details about this new multi-object tracking approach, see Chapter 5.

Next Section 3.5 introduces the proposed event learning algorithm. It uses as input the
set of mobile objects obtained by the introduced tracking approach, which are represented
by a set attributes with reliability measures associated to the temporal coherence of these
attributes.

3.5 Incremental Event Recognition and Learning

The proper treatment of the information by the previous tasks of the proposed video
understanding framework, allows the final event learning task to obtain as input a more
detailed and refined description of the mobile objects evolving in the scene, as also to
identify the most valuable information contained in these object descriptions by using the
reliability measures associated to the mobile object attributes.

This way, an event learning method based on models of incremental concept formation
([Gennari et al. 1990], [Carbonell 1990]) is proposed. The models of incremental con-
cept formation allow to incrementally build a concept hierarchy based on incomplete or
uncertain data, by updating the hierarchical concept structure with the arrival of each
new data instance. These models also allow the classification (i.e. recognition) of a new
instance, based on the inferred concepts from previously processed data. In the context
of the proposed learning method, a concept corresponds to a state, and data correspond
to the visual attributes of mobile objects present in the video scene.

The input data of this method correspond to object visual attribute values together with
a reliability measure for each attribute, obtained from the multi-object tracking approach
introduced in Section 3.4. These reliability measures represent the temporal coherence of
the tracked object attributes, and are used to perform a proper selection of the relevant
information for the learning approach.

The new incremental learning algorithm proposes an extension of the models of incre-
mental concept formation, by expanding the representation of concepts to the first-order
temporal relations (i.e. Markov hypothesis) between these concepts. Thus, in the context
of the proposed learning approach, concepts (represented as nodes in the hierarchy) be-
come the states induced by the tracked objects present in the scene, while the first-order
temporal relations, representing the state transitions, become the learnt events. There-
fore, the learning approach is able to incrementally generate a hierarchical representation
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of the states and events occurring in the scene, as depicted in Figure 3.10. Information
about the frequency of occurrence of these states and events is also calculated, which
allows to determine if the current state and event of an object is normal or abnormal in
terms of frequency. The utilised hierarchical representation presents concepts describing
more general states in the top of the hierarchy, while the sibling state concepts in the
hierarchy represent specifications of their parent.

Currently in the video understanding literature, several studies on event learning can be

S0

S1 S2 S3

S1.1 S1.2 S3.1 S3.2 S3.3

e1.2-1.1

e1.1-1.2

e1-2

e1.2-2

e2-3

e2-3.2

e3.2-3.1 e3.2-3.3

e3.3-3.2

Figure 3.10: Example of a hierarchical event structure resulting from the proposed event
learning approach. Rectangles represent states s, while circles represent events e. An
event represents the unidirectional transition between two states.

found, which has been mainly performed for trajectories, and by applying off-line learn-
ing methods ([Fernyhough et al. 2000], [Owens and Hunter 2000], [Remagnino and Jones
2001], [Hu et al. 2004b], [Hu et al. 2006], [Jiang et al. 2007], [Gaffney and Smyth 1999] ,
[Reulke et al. 2008]). Very little attention has been given to incremental event learning
in video ([Piciarelli and Foresti 2006]), which should be the natural step further for un-
expected event recognition, or anomalous behaviour detection. Only few solutions have
been proposed in the literature for bridging the gap between low-level video processing
tasks (as segmentation and tracking), and high-level composite event analysis.

One of the objectives of this learning approach aims precisely at bridging this gap, by
proposing a generic way of learning the frequency of events occurring in the scene, from
the information obtained from low-level video processing tasks. These events can serve
as building blocks for high-level event analysis.

For guiding the learning process, it is necessary to pre-define the learning contexts. A
learning context corresponds to a description of the scope of the events of interest for the
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user. It is defined as a set of object attributes, where these attributes can be numerical
or symbolic. For the numerical attributes, it is necessary to associate a discrimination
value, which represents the granularity of interest for this attribute. For example, in a
trajectory learning context, we can be interested in learning the events associated to the
3D position (x, y) and velocity (Vx, Vy) of vehicles arriving to a parking lot.

As the attributes defined in the learning context are numerical, normalisation values
have to be associated to these attributes, for corresponding to a meaningful variation of
the attributes. Following the previous example, as a parking lot is a large open area,
and vehicles velocity can be high, appropriate normalisation values can be 2 meters for
position attributes, and 10 km/h for velocity attributes.

Several learning contexts can be simultaneously processed by the proposed approach,
generating for each of them a different resulting hierarchy of states and events. Then,
for each learning context, the event learning method extracts the appropriate available
information according to the currently tracked objects in the scene. Then, state instances
are created for each tracked object. These instances are classified through the hierarchy
of states and the information of the instance is used to update the state hierarchy. Each
state concept in the hierarchy is described by its frequency of occurrence, and by descrip-
tions of the attribute values it represents.

Each tracked object can participate to more than one learning process at the same time,
if this object is allowed according to the associated learning context. The state and event
hierarchies are learnt combining the information provided by all the allowed mobile ob-
jects being tracked.

For the symbolic attributes of a state, all their possible values are listed and a frequency of
occurrence value is associated, according to the number of instances which are considered
for the attribute value. Numerical attributes are represented by the mean and standard
deviation of the attribute values for the collected instances in the state concept.

Then, when an instance is classified, the associated state concept description is updated
with the attribute information of the instance, considering the reliability measures associ-
ated to the attributes for weighting the contribution of this new information to the model
of the attribute.

The learning algorithm keeps track of the current state of each mobile object. When
an object changes of state, the event information is updated or created if it is the first oc-
currence of this event. Each event concept contains mean and variance information about
the time of permanence of the mobile object in the previous state. This information can
be very useful to understand the behaviour of objects evolving in the scene.

Hence, the result of the learning process corresponds to a learnt hierarchy of states and
events for each pre-defined learning context, and the currently recognised state and event
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for each object evolving in the scene. As the utilised event learning approach is incremen-
tal, the process of learning and recognition occurs simultaneously.

This way, the proposed incremental event learning approach presents the following main
characteristics:

1. A new incremental frequent event learning approach, which learns states as a
hierarchy of concepts, and also learns the frequency of occurrence of the events
associated to these states.

2. The consideration of reliability measures associated to obtained data in the previous
object tracking process in order to guide the learning process on the most reliable
information.

3. A multiple contextual definition of the interesting attributes to be considered in the
learning process.

For further details about this new incremental event learning approach, see Chapter 6.

Next Section 3.6 describes the possible interactions between the user and the proposed
video understanding framework.

3.6 Framework Configuration and User Interaction

The proposed framework offers to the user different possibilities to build specific
applications, as proposed by [Brémond and Thonnat 1998b]. This way, the video
understanding framework allows the flexibility necessary for coping with a wide variety
of objects and scenarios with an acceptable precision and time performance.

It is critical for the utilisation of 3D information in the video understanding framework, to
define at least one model of the expected mobile objects in the scene. These models allow
the framework to extract the 3D information of mobile objects detected and tracked in the
scene. A model of expected object is defined as a probabilistic parallelepiped, described by
each of its 3D dimensions (width, length and height). Each of these attributes is described
by a Gaussian function accounting for the probability of occurrence of an attribute value
for a given object model. As any Gaussian distribution, they are defined by the mean
expected value for the attribute µ, and the expected standard deviation σ values for the
attribute.

Also, minimal and maximal values for each attribute model must be provided in order to
guide the search of the attribute values in a valid interval. Optionally, a velocity model
can be defined in the same way as dimensional attributes in order to help the tracking
task in the search of possible tracks for a mobile object which are coherent with its type.
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The parallelepiped model allows the definition of a wide variety of objects in a very
simple way. The description is independent to the object orientation in the scene and
relative position with respect to the camera. Even if these models are not perfectly suited
for objects which change their posture (e.g. a person), the model is able to handle this
type of objects in an appropriate way. The definition of an object with different postures
is achieved by defining a parallelepiped model for each posture of interest, plus a general
parallelepiped model representing all the possible dimensional limits of this object class.

The user can also define the zones of interest to be analysed in the video scene. These
zones are defined as polygons in the ground plane of the 3D referential of the scene. These
zones are used by the framework to discriminate the zones where the moving object will
be considered for analysis. Examples of pre-defined zones of interest can be found in
Figures 3.11(b) and 3.11(d).

The user can define the static objects and walls present in the scene. Two representations

(a) (b)

(c) (d)

Figure 3.11: Example of elements pre-defined in a video scene. Figure (a) shows a couch
defined as a context object in an apartment scene. The apartment scene is presented
in Figure (b). Figure (c) shows a motor-park defined as a context object in an open
parking lot scene. The parking lot scene is presented in Figure (d). Context objects are
represented with yellow lines, context walls with green lines, while zones of interest are
represented with red lines.
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are allowed for modelling two different types of static objects:

• If the static object to be represented has a visible internal zone where a mobile
object could possibly arrive, the static object is defined by a set of walls, with a
given height. This representation allows the definition of objects with open spaces
inside them, as also the definition of objects without roof. For example, Figure
3.11(c) shows the definition of a motor-park as a static object of this type. Note
that there is a missing wall for the entrance of vehicles.

• If the static object has no gaps inside, or the user is not interested in the mobile
object interactions inside the object, the static object can be defined as a polygon
in the ground plane of the 3D scene referential, plus the height of the static object.

These static elements are used by the video understanding framework to cope with the
problem of static occlusion, where a mobile object is partially occluded by a static object
present in the scene.

In order to guide the learning process through the extraction of the interesting events
according to the application, the user can define several learning contexts. As described
in Section 3.5, a learning context corresponds to a description of the scope of the events
of interest for the user. It is defined as a set of the possible object types involved in the
context, and a set of object attributes, where these attributes are numerical or symbolic.
For the numerical attributes, it is necessary to associate a normalisation value representing
meaningful attribute variation. For the symbolic attributes, it is necessary to list the
values of interest for this attribute. Several learning contexts can be simultaneously
processed by the proposed approach, generating for each of them a different resulting
hierarchy of events.

Learning Context Trajectory {
Involved Objects: Any
Attributes:

Numerical x : 2 [m]
Numerical y : 2 [m]
Numerical Vx : 10 [km/h]
Numerical Vy : 10 [km/h]

End

Figure 3.12: Definition of a trajectory learning context in a parking lot environment.

As defined in Figure 3.12 for a trajectory learning context, the user can be interested in
learning the events associated to the 3D object position (x, y) in the ground plane of the
3D referential of the scene, together with the (Vx, Vy) for any type of object in a parking
lot environment (e.g. persons and vehicles). As the attributes defined in the learning
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context are numerical, normalisation values have to be associated to these attributes. As
a parking lot is a large open area, appropriate normalisation values can be 2 meters for
position attributes, and 10 km/h for velocity attributes.

In other case, as defined in Figure 3.13 for a position-posture context, the user can

Learning Context Position Posture {
Involved Objects: Person
Attributes:

Numerical x : 50 [cm]
Numerical y : 50 [cm]
Symbolic Posture : { Standing,

Crouching,
Sitting,
Lying }

End

Figure 3.13: Definition of a Position-Posture learning context for persons in an office
environment.

be interested in learning the events associated to the 3D object position (x, y) in the
ground plane of the 3D referential of the scene, together with the human posture in an
office environment. As an office is a small closed area, appropriate normalisation values
for position attributes can be 50 centimetres.

All these possibilities of customisation by the user, give a high flexibility to the proposed
video understanding framework in order to cope with a wide variety of applications and
typical issues present in the video understanding domain.

3.7 Discussion

As seen in this chapter, the process of learning events from object attributes can be an
extremely hard task. In order to treat the general event learning problem, lots of issues
have to be solved. Different levels in the event learning process impose different issues
to be considered for obtaining a proper description of the events occurring in the scene,
even in presence of noisy data.

The video understanding framework proposes solutions to several common issues in the
video understanding domain. At a global scope, the approach proposes a unified way of
measuring and controlling robustness of data. This solution corresponds to the utilisation
of reliability measures associated to the data obtained at different levels of the event
learning process.

At a specific scope, the approach proposes new solutions for common issues in
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classification, tracking and event learning. Also, at each task of the video understanding
framework, special attention has been given on processing solutions able to achieve a
performance adequate for real world applications.

• The 3D classifier includes inexpensive methods for discarding the analysis of objects
types impossible to associate to the processed visual evidence. Also, the classifier
includes optimisation mechanisms for quickly finding the most likely instances
associated to each expected object model.

• The tracking algorithm also considers the optimisation of processing time by
immediately generating the most likely hypotheses, instead of generating and
pruning hypotheses. Also, every function of the proposed dynamics model is
designed as an incremental function, allowing to update each function with the
new arriving attribute values, instead of recalculating the functions. More details
on processing time considerations for tracking can be found in Chapter 5.

• Finally, the learning task considers the processing time performance by nature, as
it is conceived as an incremental learning approach, avoiding the need of extensive
calculation when incorporating new information.

The proposed video understanding framework has been conceived to be utilised in diverse
application domains. The framework can be considered as a generic framework for event
learning in several aspects:

• The possibility of inexpensively defining several 3D object models. The proposed
model allows a simple way of defining any object expected to be present in the scene,
even if the object can change its posture.

• The flexibility in the definition of contextual scene information. The possibility of
defining static object information, as the zones of interest of the 3D scene, gives
the user the possibility to better guide the video understanding framework to the
elements of the scene interesting for the user.

• The possibility of defining learning contexts, gives to the user a large number of
possibilities of event analysis. Moreover, new attributes, such as interaction between
people and equipment, can be derived to give even more flexibility to the video
understanding framework.

Briefing, the two main global contributions of the video understanding framework with
respect to the video event analysis domain are:

1. A new incremental video understanding approach able to learn generic events from
a video scene. This approach proposes an automatic bridge between the low-level
data obtained from objects evolving in the scene and higher level information which
considers the temporal aspect. Incremental learning of events can be useful for rare
event recognition and to serve as input for higher level event analysis. Current
related work in video analysis has paid little attention on solving the problem
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of generic frequent event learning, focusing mainly on specifically learning events
associated to object trajectories. Also, event learning state of the art has currently
few contributions in incremental event learning.

2. A new general way for controlling the pertinence on utilisation of noisy video data.
The video understanding framework proposes to associate reliability measures to the
obtained information, in order to account for the quality, coherence, and reliability
of this information. Reliability measures have been already used in the video
understanding domain, but just for very specific tasks and features. The reliability
measures are used in every level of the proposed video understanding framework:

• In the object representation associating visual reliability measures for the
estimated dimensions of the 3D parallelepiped model (i.e. length, width, and
height). These measures allow to account the visibility of the obtained 3D
data, associating a degree of confidence for these attributes.

• In the multi-hypothesis tracking algorithm the reliability measures take several
forms:

– Temporal coherence measures of attribute estimations.

– A visual quality measure of attribute estimations.

– Global temporal coherence measure of a tracked object.

– Global visual quality measure of a tracked object.

– Global reliability measure for a tracking hypothesis.

• In the incremental event learning algorithm the reliability measures obtained
in previous stages of the video understanding framework are used to determine
which is the most valuable information to be utilised in the learning process.

As previously detailed, the contributions of this Thesis are centred in object
classification, tracking, event learning, and in the interaction between different tasks of
the video understanding process. The motion segmentation task is not in the scope of this
Thesis, even if a segmentation approach is utilised in the proposed video understanding
framework. For the same reason, background updating, which is a very important subject
related to the segmentation task, is not studied in this Thesis. Background updating can
be very useful for dealing with problems as illumination changes, weak contrast, and
dynamic background in the scene. For details on background updating algorithms refer
to [Jain et al. 1977, Parker 1991, Stauffer and Grimson 2000, Durucan and Ebrahimi 2001,
Ziliani and Cavallaro 2001, Rosin 2002, Snidaro and Foresti 2003].

Next Chapters describe in detail the proposed 3D classifier (including the proposed
object model), object tracker, and event learning method. Then, the following Chapter 4
describes the 3D model for expected objects to be present in the scene, together with the
methodology for obtaining these models from visual evidence in the scene.



Chapter 4

Reliable Object Classification

In order to obtain the associated 3D information to a blob, a new 3D classifier for
monocular video sequences is proposed. This new method allows to classify objects
modelled independently from the position relative to the camera and object orientation.
For this purpose, a simple and generic 3D model has been proposed, which represents an
object as a parallelepiped.

The proposed model is described by the parallelepiped dimensions (width, length and
height) and orientation in the ground plane of the scene. Also, visual reliability measures
of the three estimated dimensions are proposed, which represent a measure of their
visibility. These measures have been proposed to estimate the object dimensional
attributes in the tracking method, by better weighting the most visible attribute values.
This classifier interacts with the proposed tracking algorithm on-demand, as depicted in
Figure 4.1.

This chapter is organised as follows. First, in Section 4.1, the proposed parallelepiped
model is formally presented, including its mathematical formulation and the visual
reliability measures associated to the parallelepiped dimensions. Second, Section 4.2
describes the method for finding the most likely parallelepiped model instance associated
to a blob, explaining how different video interpretation domain issues (as static occlusion
and objects with changing posture) have been solved by the model. Third, in Section 4.3,
the parallelepiped model is validated in both aspects, processing time performance and
classification correctness, by performing a validation test over generated data. Finally, in
Section 4.4, remarks of the classification issues are discussed, serving as an introduction
to the next chapter.

4.1 The 3D Parallelepiped Object Model

A large variety of objects can be modelled (or, at least, enclosed) by a parallelepiped.
The proposed model is defined as a parallelepiped perpendicular to the ground plane of
the analysed scene. Starting from the basis that a moving object will be detected as a 2D
blob b with 2D limits (Xleft, Ybottom, Xright, Ytop), 3D dimensions can be estimated based
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Figure 4.1: 3D Classifier as a component of the video understanding framework. Black
elements correspond to the contributions of this thesis work. Gray elements correspond
to elements used by the proposed framework, but not forming part of the contributions
of this work. Red elements correspond to the elements analysed in this chapter, related
with the 3D classifier.

on the information given by pre-defined 3D parallelepiped models of the expected objects
in the scene.

An attribute model q̃, for an attribute q can be defined as:

q̃ = (Prq(µq, σq), qmin, qmax), (4.1)

where Prq is a probability distribution described by its mean µq and its standard deviation
σq, where q ∼ Prq(µq, σq). qmin and qmax represent the minimal and maximal values for
the attribute q, respectively.

Then, a pre-defined 3D parallelepiped model QC for an object class C can be defined
as:

QC = (w̃, l̃, h̃), (4.2)

where w̃, l̃, and h̃ represent the attribute models for the 3D attributes width, length and
height, respectively. The attributes w, l and h have been modelled as Gaussian probability
distributions with parameters (µw, σw), (µl, σl) , and (µh, σh), respectively.

The objective of the classification approach is to obtain a detected object model SO

for an object O detected in the scene, which better fits with an expected object class
model QC.
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A 3D parallelepiped model SO (see Figure 4.2) is described by:

SO = (α, (w,Rw), (l, Rl), (h,Rh)), (4.3)

where α represents the parallelepiped orientation angle (Figure 4.2(b)), defined as the
angle between the direction of length 3D dimension and x axis of the world referential of
the scene. The orientation of an object is usually defined as its main motion direction.
Therefore, the real orientation of the object can only be computed after the tracking task.

Dimensions w, l and h represent the 3D values for width, length and height of the
parallelepiped, respectively. l is defined as the 3D dimension which direction is parallel
to the orientation of the object. w is the 3D dimension which direction is perpendicular
to the orientation. h is the 3D dimension parallel to the z axis of the world referential of
the scene. Rw, Rl and Rh are 3D visual reliability measures for each dimension. These
measures represent the confidence on the visibility of each dimension of the parallelepiped
and are described below.

The dimensions of the 3D model are calculated based on the 3D position of the
vertexes of the parallelepiped in the world referential of the scene. Eight points
P z

i (xi, yi) = (xi, yi, z) are defined, with i ∈ {0, 1, 2, 3} and z ∈ {0, h}, as the 3D points

that define the parallelepiped vertexes, with P
(0)
i corresponding to the i-th base point

and P
(h)
i corresponding to the i-th vertex on height h, as shown in Figure 4.2(d). Also,

Pi are defined (and respectively Ei), with i ∈ {0, 1, 2, 3}, as the 3D points (xi, yi) on the
ground plane xy representing each vertical edge Ei of the parallelepiped, as depicted in
Figure 4.2(b). The parallelepiped position (xp, yp) is defined as the central point of the
rectangular base of the parallelepiped, and can be inferred from points Pi.

4.1.1 Mathematical Resolution

The idea of this classification approach is to find a parallelepiped bounded by the limits
of the 2D blob b corresponding to a group of moving pixels. For completely determining
the parallelepiped model, it is necessary to determine the values for the orientation α in
3D scene ground, the 3D parallelepiped dimensions w, l, and h and the four pairs of 3D
coordinates from Pi = (xi, yi), with i ∈ {0, 1, 2, 3}, defining the base of the parallelepiped.
Therefore, a total of 12 variables have to be determined.

To find these values, a system of equations has to be solved. A first group of equations
arise from the constraints imposed by the vertexes of the parallelepiped which are bounded
by the 2D limits of the blob. For expressing these equations, four line segments in the 2D
image referential are defined, as depicted in Figure 4.2(c):

SegLeft: Defined by points [(Xleft, Ytop); (Xleft, Ybottom)].
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Figure 4.2: 3D parallelepiped model for detected objects. (a) 3D view of the scene. (b)
Top view of the scene. (c) Point of view from the camera explaining image 2D referential
variables. (d) Point of view from the camera explaining world 3D referential variables.
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SegBottom: Defined by points [(Xleft, Ybottom); (Xright, Ybottom)].
SegRight: Defined by points [(Xright, Ytop); (Xright, Ybottom)].
SegTop: Defined by points [(Xleft, Ytop); (Xright, Ytop)].

Then, points T = {TL, TB, TR, TT} ∈ {P z
i |i ∈ {0, 1, 2, 3}, z ∈ {0, h}} are defined as the

vertexes that comply with Equations (4.4). Indexes for vertexes Tj, with j ∈ {L,B,R, T},
stand for left, bottom, right, and top, respectively.

ImageProjection(TL) ∈ SegLeft,
ImageProjection(TB) ∈ SegBottom,
ImageProjection(TR) ∈ SegRight,
ImageProjection(TT ) ∈ SegTop,

(4.4)

where ImageProjection(· ) is the function that projects a point from the 3D world
referential of the scene onto the image plane. The problem is that the set of vertexes
T = {TL, TB, TR, TT} varies according to the orientation α of the parallelepiped and the
relative position of the blob with respect to the camera.

xy

z

P0

P0 P0P1
P1

P1

P2

P2

P2

P3 P3

P3

 = 0
o

 = 45
o

 = 90
o

Figure 4.3: Effect of change of parallelepiped orientation in the vertexes bounded by the
bounding box. Notice, for example, that from angle α = 0o to α = 45o, the points T
remain the same, while from angle α = 0o to α = 90o, Pi points rotate, giving that
TL ≡ P0 changes to TL ≡ P3, TB ≡ P1 changes to TB ≡ P0, and so on.

The change in orientation α just rotates the parallelepiped, so its effect in changing
the vertexes just consists in rotating the indexes of points Pi bounded by the blob, as
depicted in Figure 4.3. In this example, the set of points T = {TL = P

(h)
0 , TB = P

(0)
1 , TR =
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P
(0)
2 , TT = P

(h)
3 } changes to T = {TL = P

(h)
3 , TB = P

(0)
0 , TR = P

(0)
1 , TT = P

(h)
2 }, when

parallelepiped orientation α changes from 0o to 90o, changing the indexes of the points Pi

associated to each point in T , but the height of the vertex remains the same.

The relative position of the blob with respect to the camera poses a more delicate situation,
as the visual perception of the parallelepiped varies according to the camera view. In a
pin-hole camera model, the pinhole aperture of the camera, through which all projection
lines pass, is assumed to be infinitely small, a point. In the literature this point in 3D space
is referred to as camera focal point (xf , yf , zf ). Hence, the vertexes of the parallelepiped
associated to each side of the blob depend on the relative position of the blob with respect
to the projection in 2D image coordinates (Xf , Yf ) of the focal point projection on the
ground of the 3D scene (xf , yf , 0), as depicted in Figure 4.4.

This way, nine cases can be identified depending on the relative position of the blob

X

Y

x

z
focal point (x  ,  y  ,  z  ) 

3D ground plane 
projection (x  ,  y  , 0)

2D image
projection 
(X  ,  Y  )

y

f f

f f f

f f

Figure 4.4: 2D projection (Xf , Yf ) of focal point (xf , yf , zf ), projected to the ground of
the 3D scene (xf , yf , 0). This 2D projection point is used to determine the parallelepiped
case according to the camera view.

to the point (Xf , Yf ) as depicted in Figure 4.5. As can be observed, each of these cases
determine the height of the vertexes of the set T . For example, for Case C0, TL and TT

height is h, and TB and TR vertexes height is 0, while for Case C4, the height of every
vertex in the set T is h.

Hence, considering a blob b with 2D limits (Xleft, Ybottom, Xright, Ytop) the height of the
vertexes in set T is determined following the rules of Equation (4.5):
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2D image projection
of focal point 3D 
projection on the 
ground plane
of the 3D 
scene: 
(x  , y  , 0)f f

C0: Top - Left C1: Top - Center C2: Top - Right

C3: Middle - Left C4: Middle - Center C5: Middle - Right

C6: Bottom - Left C7: Bottom - Center C8: Bottom - Right

Figure 4.5: Different parallelepiped cases determined with the relative 2D position of the
blob with respect to the 2D projection of the focal point (Xf , Yf ).

TL =

{

P
(h)
l if Xleft <= Xf

P
(0)
l else

TB =

{

P
(h)
b if Ybottom >= Yf

P
(0)
b else

TR =

{

P
(h)
r if Xright >= Xf

P
(0)
r else

TT =

{

P
(h)
t if Ytop <= Yf

P
(0)
t else

(4.5)
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where l, b, r, and t correspond to the indexes of the parallelepiped vertexes bounded by
the 2D limits (Xleft, Ybottom, Xright, and Ytop), respectively. Consider then, the function
In h(Tj), with j ∈ {L,B,R, T} which returns 1 if the vertex is bounded by the blob b
in parallelepiped height h, or 0 if the vertex is bounded by the blob b in the base of the
parallelepiped at height 0. Consider also the pin-hole camera model Equation (4.6), with
M corresponding to the calibrated perspective matrix:





Xk

Yk

k



 = M ·









x
y
z
1









, with M =





p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23



 , (4.6)

where X = Xk/k, and Y = Yk/k correspond to image referential 2D coordinates. Then,
using the pin-hole camera model Equation (4.6), and the four relations of Equation (4.4),
four linear equations can be derived between each pair of variables Tj = (xj, yj) of vertexes
set T , with j ∈ {L,B,R, T}, as shown in Equation (4.7).

(p20 × xL + p21 × yL + p22 × h× In h(TL) + p23)×Xleft

= p00 × xL + p01 × yL + p02 × h× In h(TL) + p03,

(p20 × xB + p21 × yB + p22 × h× In h(TB) + p23)× Ybottom

= p10 × xB + p11 × yB + p12 × h× In h(TB) + p13,

(p20 × xR + p21 × yR + p22 × h× In h(TR) + p23)×Xright

= p00 × xR + p01 × yR + p02 × h× In h(TR) + p03,

(p20 × xT + p21 × yT + p22 × h× In h(TT ) + p23)× Ytop

= p10 × xT + p11 × yT + p12 × h× In h(TT ) + p13.

(4.7)

These four equations are valid when each vertex Pi (i ∈ {1, 2, 3, 4}) associated to a
variable Tj is bounded by only one blob limit. If this is not the case, we are in presence
of a degenerate case, where a same vertex is bounded by two blob limits at the same
time. For further details about the types of degenerate cases and their resolution, refer
to Appendix A.

Other six equations can be derived from the fact that the parallelepiped base points Pi,
with i ∈ {0, 1, 2, 3}, form a rectangle. Then, considering the parallelepiped orientation
α, these equations are written in terms of the parallelepiped base points Pi = (xi, yi), as
shown in Equation (4.8).
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x2 − x1 = l × cos(α)
y2 − y1 = l × sin(α)

x3 − x2 = −w × sin(α)
y3 − y2 = w × cos(α)
x0 − x3 = −l × cos(α)
y0 − y3 = −l × sin(α)

(4.8)

These six1 equations define the rectangular base of the parallelepiped, considering an
orientation α and base dimensions w and l.

As there are 12 variables and 10 equations, there are two degrees of freedom for this
problem. In fact, the problem posed this way, defines a complex non-linear system, as
sinusoidal functions are involved, and the indexes j ∈ {L,B,R, T} for the set of bounded
vertexes T are determined by the orientation α. Then, the wisest decision is to consider
variable α as a known parameter.

This way, the system becomes linear. But, there is still one degree of freedom. The
best next choice must be a variable with known expected values, in order to be able to fix
its value with a coherent quantity. Variables w, l and h comply with this requirement, as
a pre-defined Gaussian model for each of these variables is available. The parallelepiped
height h has been arbitrarily chosen for this purpose.

Therefore, the resolution of the system results in a set of linear relations in terms of
h of the form presented in Equation (4.9). Just three expressions for w, l, and x3 were
derived from the resolution of the system, as the other variables can be determined from
the relations presented in Equations (4.7) and (4.8).

w = Mw(α; M, b)× h + Nw(α; M, b)

l = Ml(α; M, b)× h + Nl(α; M, b)

x3 = Mx3(α; M, b)× h + Nx3(α; M, b)

(4.9)

Therefore, considering perspective matrix M and 2D blob b = (Xleft, Ybottom, Xright, Ytop),
a parallelepiped model SO for a detected object O can be completely defined as a function
f :

SO = f(α, h,M, b) (4.10)

1In fact there are eight equations of this type. The two missing equations correspond to the relations
between the variable pairs (x0;x1) and (y0; y1), but these equations are not independent. Hence, they
have been suppressed.
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Equation (4.10) states that a parallelepiped model O can be determined with a function
depending on parallelepiped height h, and orientation α, 2D blob b limits, and the
calibration matrix M . The visual reliability measures remain to be determined and are
described below.

4.1.2 Dimensional Reliability Measures

A reliability measure Rq for a dimension q ∈ {w, l, h} is intended to quantify the visual
evidence for the estimated dimension, by visually analysing how much of the dimension
can be seen from the camera point of view. The objective is to find a measure that gives
a minimal value (e.g. 0) when attribute is not visible, and a maximal value (e.g. 1) when
the dimension is totally visible. The chosen function is Rq(SO) → [0, 1], where visual
reliability of the attribute is 0 if the attribute is not visible and 1 if is completely visible.

These measures represent visual reliability as the maximal magnitude of projection of
a 3D dimension onto the image plane, in proportion with the magnitude of each 2D blob
limiting segment. Thus, the maximal value 1 is achieved if the image projection of a 3D
dimension has the same magnitude compared with one of the 2D blob segments. The
function is defined in Equation (4.11).

Ra = min

(

dYa·Yocc

H
+

dXa·Xocc

W
, 1

)

, (4.11)

where a stands for the concerned 3D dimension (l, w, or h). dXa and dYa represent the
length in pixels of the projection of the dimension a on the X and Y reference axes of
the image plane, respectively. H and W are the 2D height and width of the currently
analysed 2D blob. Yocc and Xocc are occlusion flags, which value is 0 if occlusion exists
with respect to the Y or X reference axes of the image plane, respectively.

In simple terms, this function accounts for the visibility of estimated parallelepiped
dimensions in the image. The value of this function is between 0 and 1. The occlusion
flags are used to eliminate the contribution to the value of the function of the projections
in each 2D image reference axis in case of occlusion. An exception occurs in the case
C4 of a top view of an object, where reliability for h dimension is Rh = 0, because the
dimension is occluded by the object itself.

The concept of visibility is not necessary for describing the reliability of the parallelepiped
orientation α and parallelepiped position (xp, yp), because these attributes depend on
dimensions w and l. Hence, no dimensional reliability measure associated to the visibility
is proposed for these attributes. In Section 5.2.2, a reliability measure for attributes α and
(xp, yp) is proposed as the mean between the visual reliability of w and l. These reliability
measures are used in the object tracking task of the video understanding framework to
weight the contribution of new attribute information.
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For each class C of pre-defined models
For all valid pairs (h, α)

SO ← F (α, h,M, b);

if PM(SO, C) improves best current fit S
(C)
O for C,

then update optimal S
(C)
O for C;

Class(b) = argmaxC(PM(S
(C)
O , C));

Figure 4.6: Classification algorithm for optimising the parallelepiped model instance
associated to a blob.

4.2 Classification Method for Parallelepiped Model

The problem of finding a parallelepiped model instance SO for an object O, bounded by
a blob b has been solved, as presented in section 4.1. The obtained solution states that
the parallelepiped orientation α and height h must be known in order to calculate the
parallelepiped.

Taking these factors into consideration, a classification algorithm is proposed, which
searches the optimal fit for each pre-defined parallelepiped class model, scanning different
values of h and α. After finding optima for each class based on the probability measure
PM (defined in Equation (4.12)), the method infers the class of the analysed blob also
using the reliability measure PM . This operation is performed for each blob on the
current video frame.

PM(SO, C) =
∏

q∈{w,l,h}

Prq(q|µq, σq) (4.12)

Given a perspective matrix M, object classification is performed for each blob b from the
current frame as shown in Figure 4.6.

The presented algorithm corresponds to the basic optimisation procedure for obtaining the
most likely parallelepiped given a blob as input. Several other issues have been considered
in this classification approach, in order to cope with static occlusion, ambiguous solutions,
and objects changing postures. Next sections are dedicated to these issues.

4.2.1 Solving Static Occlusion

The problem of static occlusion occurs when a mobile object is occluded by the border
of the image, or by a static object (e.g. couch, tree, desk, chair, wall, and so on). In the
proposed video understanding framework, static objects can be modelled as part of the
context of the 3D scene, as described in Chapter 3. Then, a static object is defined as a
set of points delimiting the base of the object, together with the 3D height of the object.

The possibility of occlusion with the border of the image is easy to determine as it just
depends on the proximity of a moving object to the border of the image. Then the
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possibility of occurrence of this type of static occlusion can be determined based on 2D
image information. To determine the possibility of occlusion by a static object present
in scene is a more complicated task, as it becomes compulsory to interact with the 3D
world.

In order to treat static occlusion situations, both possibilities of occlusion are determined
in a stage prior to calculation of the 3D parallelepiped model. Then, the direction and
limit of blob bounds possible growth for the image referential directions left, bottom, right,
and top are determined, according to the position of the possibly occluding elements. For
example, if a blob has been detected very near the left limit of the image frame, then the
blob could be bigger to the left, so its direction of possible growth is to the left.

As stated before, the possibility of occlusion by the border of the image for a given
blob is determined by the proximity of the blob to the image border. For determining the
possibility of occlusion by a static object several tests are performed:

1. First, the 2D proximity to the static object 2D bounding box is analysed as a first
filter for occlusion possibility.

2. If 2D proximity test is passed, the next step is to evaluate the blob proximity to the
2D projection of the static object in the image plane.

3. Finally, if the 2D projection test is also passed, the faces of the 3D polygonal shape
are analysed, identifying the nearest faces to the blob. If some of these faces are
hidden from the camera view, it is considered that the static object is possibly
occluding the object enclosed by the blob. This process is performed in a similar
way as [Georis et al. 2004].

When a possible occlusion exists, the maximal possible growth for the possibly occluded
bounds of the blob is determined. First, in order to establish an initial limit for the
possible growth of blob bounds caused by occlusion, the largest possible expected objects
in the scene are considered at the blob position, and the 2D bounds of the blob enclosing
these largest expected objects are taken into account if they exceed the blob initial bounds
in the direction of possible occlusion. If all possible largest expected objects do not impose
a larger bound to the blob, the hypothesis of possible occlusion is discarded.

Then, the obtained limits of growth for blob bounds are adjusted for static objects, by
analysing the hidden faces of the object polygon which possibly occludes the blob. The
growth of a blob bound is then limited by the 2D projection of the line defined by the
hidden face at height 0 on the ground of the 3D scene, as the object enclosed by the blob
can not pass through the object.

Then, for each object class, the calculation of occluded parallelepipeds is performed by
taking several starting points for extended blob bounds in the occlusion direction which
represent the most likely configurations for a given expected object class. Configurations
which pass the allowed limit of growth are immediately discarded and the remaining blob
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bound configurations are optimised locally with respect to the probability measure PM ,
defined in Equation (4.12), using the same algorithm presented in Figure 4.6. Notice that
the definition of a general limit of growth for all possible occlusions for a blob allows to
achieve an independence between the kind of static occlusion and the resolution of the
static occlusion problem, obtaining the parallelepipeds describing the static object and
border occlusion situations in the same way.

4.2.2 Solving Ambiguity of Solutions

As the determination of a parallelepiped to be associated to a blob has been considered as
an optimisation problem of geometric features, several solutions can sometimes be likely,
leading to undesirable solutions far from the visual reality. A typical example is the one
presented in Figure 4.7, where two solutions are very likely geometrically given the model,
but the most likely from the expected model has the wrong orientation.

A good way for discriminating between ambiguous situations is to return to moving

(a) (b)

Figure 4.7: Geometrically ambiguous solutions for the problem of associating a
parallelepiped to a blob. Figure (a), shows an ambiguity between vehicle model instances,
where the one with incorrect orientation has been chosen. In Figure (b), the correct
solution to the problem.

pixel level. As the problem of finding the parallelepiped associated to a blob is partially
solved by optimising the fitness to the expected object models, a simple solution is to
store the most likely found parallelepiped configurations and to select the instance which
better fits the moving pixels found in the blob, instead of just choosing the most likely
configuration.

This way, a moving pixel analysis is associated to the most likely parallelepiped instances
by sampling the pixels enclosed by the blob and analysing if they fit the parallelepiped
model instance. The sampling process is performed at a low pixel rate, adjusting this
pixel rate to a pre-defined interval of sampled pixels number. True positives (TP ), false
positives (FP ), true negatives (TN), and false negatives (FN) are counted, considering
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a TP as a moving pixel which is inside the 2D image projection of the parallelepiped,
a FP as a moving pixel outside the parallelepiped projection, a TN as a background
pixel outside the parallelepiped projection, and a FN as a background pixel inside the
parallelepiped projection. Then, the chosen parallelepiped will be the one with higher
TP + TN value.

Another type of ambiguity is related to the fact that a blob can be represented by different
classes. Even if normally the probability measure PM (Equation (4.12) ) will be able
to discriminate which is the most likely object type, it exists also the possibility that
overlapping object models give good PM values for different classes. This situation is
normal as visual evidence can correspond to more than one mobile object hypothesis at
the same time. The classification approach gives as output the most likely configuration,
but it also stores the best result for each object class in order to represent the different
hypotheses for a same blob. This way, the decision on which object hypotheses are the real
ones can be postponed to the object tracking task, where temporal coherence information
can be utilised in order to chose the correct model for the detected object.

4.2.3 Coping with Changing Postures

Even if a parallelepiped is not the best suited representation for an object changing
postures, it can be used for this purpose by modelling the postures of interest of an
object. The way of representing these objects is to first define a general parallelepiped
model enclosing every posture of interest for the object class, which can be utilised for
discarding the object class for blobs too small or too big to contain it. Then, specific
models for each posture of interest can be modelled, in the same way as the other modelled
object classes.

Then, these posture representations can be treated as any other object model. Each of
these posture models are classified and the most likely posture information is associated
to the object class. At the same time, the information for every analysed posture is stored
in order to have the possibility of evaluating the coherence in time of a object changing
postures by the later tracking task.

4.2.4 Implementing For High Processing Time Performance

In order to obtain a high processing time performance, different mechanisms are
utilised. These mechanisms search to reduce the computational load of the approach
by preprocessing the information at different levels of the classification process:

1. When a blob is received as input by the classification algorithm, the size of the
blob is utilised to discard object classes which can not be represented by the
blob. For each object model of the expected objects in the scene, its information
regarding the minimal and maximal attribute values for the model is utilised to
generate the maximum and minimum size parallelepipeds for the model. These
parallelepipeds are tested at different angles to generate the blobs bounding them.
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If all the generated blobs are bigger or smaller than the analysed blob, the model
is immediately discarded, as no solution can be later found by the classification
algorithm.

2. As described in Equation (4.10), the solution of the parallelepiped association
problem depends on the perspective matrix M , the blob b, the orientation angle
α, and the parallelepiped height h. In order to optimise the calculation of the
values of parallelepiped width w, length l, and base points Pi, with i ∈ {0, 1, 2, 3},
different values can be preprocessed according to the available information:

(a) Before the execution of the classification task, the mathematical expressions
only depending on the matrix M can be calculated.

(b) Then, when the blob b to be analysed is available, the mathematical
expressions only depending on the blob 2D bounds (Xleft, Ybottom, Xright, Ytop)
are calculated.

(c) Next, when a value for the orientation α has been fixed among the interval of
analysis for the orientation, the mathematical expressions now only depending
on α are calculated, arriving to the linear expressions of the Equation (4.9).

(d) Finally, values for w, l, and Pi, with i ∈ {0, 1, 2, 3}, can be inexpensively
calculated by evaluating the linear expressions for the different valid values for
h.

This way, a cascade of constant values calculation is performed in order to avoid
extensive recalculation at each level of the classification algorithm.

3. Another mechanism for improving the processing time performance of the approach
is the utilisation of the analysed object model information to narrow the interval of
valid values for h. For this purpose, the minimal qmin and maximal qmax values for
the attribute q ∈ {w, l, h} are utilised, in the following way:

(a) First, the limits of w interval [wmin, wmax] are utilised with Equation (4.9)
to obtain an interval of valid attribute h values defined as hw = [(wmin −
Nw)/Mw, (wmax −Nw)/Mw].

(b) Second, hw interval is intersected with the model limits for h interval hh =
[hmin, hmax], obtaining the interval h∧.

(c) Third, the limits of l interval [lmin, lmax] are utilised with Equation (4.9)
to obtain an interval of valid attribute h values defined as hl = [(lmin −
Nl)/Ml, (lmax −Nl)/Ml].

(d) Finally, interval h∧ is intersected with the interval hl, obtaining the final
interval of valid values for h.

4. Also, as described in previous Section 4.2.1, the utilisation of starting points for
searching the best solutions for a static occlusion situation, improves the processing
time performance, by guiding the algorithm through the most likely parallelepiped
configurations.
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4.3 Testing Robustness and Processing Time

Performance

In order to evaluate the processing time performance and robustness of the classification
approach, a test has been performed on synthetic data. For this purpose, 27000
parallelepiped model instances have been generated, with different 3D dimensions,
orientation, 3D position, and object type. They have been generated in two environments:
the first one corresponds to a parking lot scene, referred as Borel sequence (B, in short),
and the second corresponds to an apartment scene, referred as the Gerhome sequence
(G, in short).

The test consists in utilising each of the synthetic parallelepipeds to obtain the blob
bounding the parallelepiped. This blob is then utilised as input of the proposed
classification approach and an associated parallelepiped is obtained. Finally, both
parallelepiped, the synthetic and the obtained one, are compared and error measures
are calculated. This way, for performing this test, the synthetic parallelepipeds were
determined in the following way:

• Three expected object models are utilised: two models correspond to the postures of
a person (Person-Standing (P-S, in short) and Person-Crouching (P-C)), and
one model represents a Vehicle (V, in short). Models P-S and P-C are calculated
in both sequences B and G, while model V is just calculated in sequence B.

• For each of these three models, P-S, P-C, and V, combinations of three values for
each dimensional attribute w, l, and h, are considered. The three values correspond
to the set {max(µq − σq; qmin), µq, min(µq + σq; qmax)}, with q ∈ {w, l, h}, chosen to
represent situations where the likelihood of a numerical attribute value, with respect
to the attribute model value, is not high. Taking all possible combinations among
the three-values sets for the dimensional attributes, 27 combinations are considered.
The set of three values {q1, q2, q3}, with q ∈ w, l, h, considered for each object model
are summarised in Table 4.1.

Model wmin wmax σw w1 w2 = µw w3 lmin lmax σl l1 l2 = µl l3 hmin hmax σh h1 h2 = µh h3

P-S 30 100 20 30 40 60 20 70 30 20 25 55 120 220 60 120 170 220
P-C 40 100 20 40 50 70 40 80 30 40 60 80 90 140 60 90 110 140
V 125 190 50 125 156 190 200 480 100 271 371 471 100 160 35 100 134 160

Table 4.1: Values considered for each object dimension q ∈ {w, l, h}, as {q1, q2, q3} =
{max(µq − σq; qmin), µq, min(µq + σq; qmax)}.

• Then, for each of the 27 combinations of object model dimensions, four values for
orientation α are considered: {0.0, π/6, π/3, π/2}.

• Finally, 50 different parallelepiped 3D positions are considered for each value of α.
Among these parallelepiped positions, situations representing static border occlusion
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are considered. Just border occlusion is considered because, as described in previous
Section 4.2.1, the treatment of the static occlusion situation is independent from the
type of occlusion, and because the border occlusion can be detected just with 2D
information.

This way, 5400 parallelepipeds are processed for each of the five utilised Sequence-
Type pairs, giving a total of 27000 analysed parallelepipeds. Examples of the processed
parallelepipeds are depicted in Figure 4.8. Figures 4.8(a) and 4.8(b), shows the detected
parallelepipeds from the sequence B for the vehicle class, while Figures 4.8(c), 4.8(d),
4.8(e), and 4.8(f) show the parallelepipeds from the sequence G for two postures of the
person class. Figures 4.8(a), 4.8(c), and 4.8(e) correspond to occlusion situations, while
Figures 4.8(b), 4.8(d), and 4.8(f) represent non-occlusion situations.

For robustness evaluation, three error measures have been calculated:

• Mean Dimensional Error ǫd: This measure corresponds to the mean value of the
dimensional errors, as presented in Equation (4.13).

ǫd =
ǫw + ǫl + ǫh

3.0
, with: ǫw = |ws − wc|, ǫl = |ls − lc|, and ǫh = |hs − hc|, (4.13)

where dimensions with s subscripts stand for the synthetic parallelepiped, while
attributes with c subscripts stand for the calculated parallelepiped.

• Mean Position Error ǫp: This measure corresponds to the mean value of
the euclidean distance between the 3D position of the synthetic and calculated
parallelepipeds.

• Mean Alpha Error ǫα: Difference between the orientation angle α of the synthetic
and calculated parallelepipeds.

For processing time performance evaluation the blob rate measure, representing the
number of blobs that the classifier can process per second ([blobs/sec]), and the
blob speed measure, representing the mean time spent in the classification of a blob
([secs/blobs]), have been calculated.

4.3.1 Results

The tests were performed on a computer with processor Intel Xeon CPU 3.00 GHz, with
2 Giga Bytes of memory. The obtained results in terms of the three error measures are
summarised in Table 4.2. Note that the error measures are normally higher for static
occlusion situations as a hidden part of the blob forces the model to fit its dimensional
values to the model, approaching to mean dimension values.

In general terms, mean error values show that the associated parallelepiped presents
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Examples of calculated parallelepiped for the test with synthetic data. Blob
bounds are coloured according to the object type (red for person, and brown for vehicle).
Parallelepiped base is in blue, while projections in height are in green. Static context
objects are coloured in yellow and context zones are coloured in white.
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Test Non-Occluded Blobs Occluded Blobs
ǫd (σǫd

)[cm] ǫp (σǫp
)[cm] ǫα (σǫα

)[deg] ǫd (σǫd
)[cm] ǫp (σǫp

)[cm] ǫα (σǫα
)[deg]

B: P-S 9.25 (5.86) 20.33 (14.77) 38.17 (25.32) 17.37 (8.56) 15.53 (6.88) 45.11 (26.56)
B: P-C 9.43 (5.29) 19.18 (13.83) 41.44 (27.01) 16.08 (8.6) 16.27 (7.13) 41.92 (26.64)
B: V 22.49 (15.26) 22.75 (15.18) 19.7 (19.58) 34 (20.35) 61.36 (37.94) 31.97 (24.04)
G: P-C 9.87 (6.2) 7.34 (6.43) 45.97 (29.18) 14.64 (8.02) 28.79 (21.41) 46.19 (27.98)
G: P-S 8.81 (5.88) 6.92 (6.2) 37.88 (28.78) 13.84 (6.85) 40.13 (25.82) 43.7 (29.16)
Mean 12.13 (7.79) 16.16 (11.81) 36.12 (25.69) 18.74 (10.25) 34.68 (21.91) 42.02 (27.16)

Table 4.2: Three analysed errors for each analysed object type and sequence. The error
ǫd corresponds to the mean error in parallelepiped dimensions estimations, the error ǫd

corresponds to the 3D parallelepiped position error, and the error ǫα corresponds to the
error in orientation of the parallelepiped. Results are separated in occluded and not
occluded object situations. The standard deviation of each analysed error is displayed
between parentheses.

low error when the blob is completely visible, and also the errors present a low variability.
Nevertheless, the effect of partial occlusion can be noticed by the added error in attribute
estimation. This increment in the error occurs because the classification algorithm always
tries to fit the most likely parallelepiped according to the models of expected objects
present in the scene. As an occlusion situation adds another degree of freedom allowing
the growth of a 2D dimension, the algorithm is less geometrically constrained to find a
solution nearer to the model mean, in despite of real situations where the instance is not
near the mean values

Figures 4.9, 4.10, and 4.11 present graphically the mean and standard deviation in error
measures for error measures ǫd, ǫp, and ǫα, respectively.

From Figures 4.9, and 4.10 the influence of the variability of an object model with
respect to the increment of the dimensional and position error can be observed. As seen
in Table 4.1, the vehicle model presents the higher variability in dimensions and Figures
4.9, and 4.10 show, at the same time, a higher error mean and standard deviation for both
ǫd and ǫp errors can be noticed for the vehicle model. The posture models for a person
are quite similar in variability and this similarity is also reflected in the graphics.

The similar behaviour between errors ǫd and ǫp was expected, as they are tightly related
because ǫd measures the mean error for the 3D dimensions w, l, and h, while ǫp measures
the error of the 3D position of the parallelepiped, which is calculated based on the
dimensions w and l.

Figure 4.11 shows the behaviour of the error in the orientation angle α. The orientation
error for person postures has maintained its behaviour for both sequences, showing the
independence of α with respect to the proximity and position to the camera. The
orientation error for the vehicle model is lower than the other errors, which could be
due to the pixel analysis mechanism described in Section 4.2.2. As the vehicle model
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Figure 4.9: Dimensional Error ǫd for each analysed object type and sequence. The red
cross shows the mean error, while the blue and green lines represent the standard deviation
on the error. Green colour is utilised for non-occluded blob solutions, while blue colour
is used for occlusion situations.

can be better appreciated from top than a person, the pixel analysis mechanism was able
to better discriminate between the available solutions to find a more correct one to be
associated to the blob.

Table 4.3 presents the results for the analysis of computer performance information for
the proposed classification algorithm. Results show a good blob rate for non-occluded

Test Non-Occluded Blobs Occluded Blobs

Blob rate[blobs
sec

] Blob speed[ sec
blobs

] Frames Blob rate[blobs
sec

] Blob speed[ sec
blobs

] Frames
B: P-S 106.24 0.009413 4603 9.99 0.100073 797
B: P-C 86.03 0.011624 4372 8.78 0.113873 1028
B: V 185.43 0.005393 4180 122.45 0.008167 1220
G: P-C 33.39 0.029953 3289 13.39 0.074672 2111
G: P-S 51.64 0.019366 3509 21.72 0.046033 1891
Total 19953 7047
Mean 70.47 0.014191 15.61 0.064064

Table 4.3: Processing time performance for non-occluded and occluded blobs.

blobs, which indicates that the classification algorithm could perform with an adequate
processing time performance for real world applications. In presence of occlusion, the
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Figure 4.10: Position Error ǫp for each analysed object type and sequence. The red cross
shows the mean error, while the blue and green lines represent the standard deviation on
the error. Green colour is utilised for non-occluded blob solutions, while blue colour is
used for occlusion situations.

classification algorithm still could have a high time performance for a scene of low
complexity, but it is not possible to ensure a high processing time performance of the
classification approach. This means that other mechanisms have to be envisaged to
improve the processing time performance.

4.3.2 Experiment Conclusion

The experiment has shown that the obtained classification error is not excessive and
its variability is also not high. The presented results on synthetic data show a robust
behaviour of the classification approach. The computation of the orientation α and the 3D
dimensions and position of the parallelepiped are independent from the relative position
to the camera.

From the performance results, the method has shown its capability of obtaining an
adequate processing time performance for situations of moderated complexity, but the
results in performance for static occlusion situations indicate the necessity of other
alternative or complementary ways for coping with the static occlusion problem.
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Figure 4.11: Orientation α Error ǫp for each analysed object type and sequence. The
red cross shows the mean error, while the blue and green lines represent the standard
deviation on the error. Green colour is utilised for non-occluded blob solutions, while
blue colour is used for occlusion situations.

4.4 Discussion

The proposed classification method has shown interesting characteristics to be highlighted:

• Adequate processing time performance for scenarios of moderated complexity.

• Classification results independent from the camera view and orientation of the
object, in case of synthetic data.

• Capability of coping with static occlusion situations. Nevertheless, the
parallelepiped attribute estimation will be negatively affected by the degree of
occlusion.

• Methods for disambiguation between several geometrically plausible alternatives.

• Representation capability for a large variety of objects, even those with different
postures.

Visual reliability measures have been presented but not used by the classification method.
These measures are intended to be used by the tracking approach to guide the temporal
estimation of object features through the most reliable information.
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The proposed object classification method presents the following limitations:

• The first one is related to the representation capability of the model. Even if this
generic model is good for describing a large variety of objects, the result from the
classification algorithm is a coarse description of the object. In order to address the
interpretation of more complex situations, more detailed and class-specific object
models could be utilised when needed. This problem, even if very interesting, is not
in the scope of this thesis.

• A second limitation which belongs to the scope of this thesis, is the limited processing
time performance. Even if the algorithm is quick enough to cope with several
situations with a high processing time performance, it seems that the classification
approach will have performance problems with scenarios of higher complexity. The
main problem causing this limited performance is the lack of knowledge to guide the
classification process to quickly find the optimal solution. In this sense, the tracking
approach to be presented in next Section 5 can be of great help on indicating which
are the parallelepiped attribute values more coherent with the currently tracked
object attributes.

• A third limitation arising from the obtained results of the test presented in Section
4.3, is the imprecision in the estimation of the object orientation angle α. The
results show that, for situations without occlusion, the mean orientation error for
the person class is near 40◦, while for the vehicle class the mean orientation error
is near 20◦. While 20◦ of mean error can be considered as acceptable, 45◦ seems
very high. This error can be explained because of the camera view of the evaluated
videos, where the model instances for the vehicle class are better discriminated than
for the person class from this camera view, as more parallelepiped configurations for
the person class at different orientation angles have a high value of the probability
measure PM (Equation (4.12)).

• As a fourth limitation, the quality of the classification algorithm depends on the
quality of the motion segmentation results. Therefore, more work still needs to
be done in order to measure the impact of segmentation errors (e.g. shadows,
reflections, poorly contrasted objects) on the classification results. In this work,
the considered reliability concept measures mostly the visual ambiguity related to
geometrical object attributes. Other reliability concepts can be taken into account
in order to measure the occurrence of segmentation errors.

• Finally, a fourth limitation of geometrical nature can be identified. The resolution
of the parallelepiped calculation problem presented in Section 4.1.1 has been
formulated for focal point positions higher than the objects evolving in the scene.
An object higher than the focal point height will lead to an erroneous calculation
of the possible parallelepipeds associated to the object. This situation can not be
considered as an error, but as case that has not been taken yet into account. The
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solution of this limitation implies the resolution of a new system of equations for
covering these situations.

As a summary, the proposed 3D shape object representation presents the following
contributions:

1. A representation independent from the camera view and the orientation of the object
with respect to the 3D referential of the scene.

2. A simple generic object representation model which allows users to easily define new
mobile objects that could be present in the scene.

3. A model which instances can be obtained with an adequate processing time
performance, with better precision than generic 2D primitive shape representations,
providing 3D object features which are more interesting for event analysis tasks.

4. Reliability measures proposed to calculate the visibility of the obtained 3D object
features, accounting for occlusion situations and camera view.

This classification approach is controlled by the new multi-object tracking approach
proposed for the video understanding framework, which is described in next Chapter
5. This description includes the utilised data framework of hypotheses, the tracking
algorithm and methods for hypothesis generation.



Chapter 5

Multi-target Tracking using
Reliability Measures

In order to obtain coherent and reliable information about the objects evolving in a video
scene, a new multi-object tracking approach has been proposed. This tracking method
is a component of the video understanding framework proposed in this thesis work and
presented in Chapter 3, as depicted in Figure 5.1. The object tracking approach takes
as input the blobs which are the result from the previous image segmentation task to
provide as output the most reliable and coherent list of tracked objects, described by a
set of attributes with associated reliability measures. These reliability measures describe
the visual quality of the analysed data and the temporal coherence of the obtained mobile
object attribute values.

This tracking method maintains a list of likely configuration hypotheses for the mobile
objects present in the scene. These hypotheses are validated or rejected according to
the new visual evidence arriving to the tracker, checking the coherence and reliability of
the estimated information for each tracked object. The most likely tracking hypotheses
for a mobile are efficiently estimated in order to manage the complexity of the problem
with a processing time performance adequate for real world applications. This approach
combines blob 2D information, together with 3D information obtained from the 3D
classifier, to generate a set of mobile object configuration hypotheses.

The hypotheses are grouped according to their visual proximity relations in the scene
in order to separate the tracking procedure into different tracking sub-problems. A
hypothesis is eliminated if it becomes unlikely in time, compared with other related
hypotheses.

Each mobile object is represented as a set of statistics of features inferred from visual
evidences of their presence in the scene. The tracking approach takes advantage of the
3D parallelepiped model presented in Chapter 4 to track the objects present in the scene
using the most reliable available 2D and 3D information about the object. At the same
time, the tracker guides the 3D classifier in two ways:

107
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Figure 5.1: Proposed object tracking approach as a component of the video understanding
framework. Black elements correspond to the contributions of this thesis work. Gray
elements correspond to elements used by the proposed framework, but not forming part
of the contributions of this work. Red elements correspond to the elements analysed in
this chapter, related with the object tracker.

• By performing the 3D classification process when a minimal amount of visual
support on the existence of the object has been collected. The 2D spatial and
size coherence is evaluated in the first frames in which an object has been detected,
in order to perform the 3D classification process over blobs associated to object
hypotheses which are likely to be really occurring in the real situation. This way,
the computer performance can be enhanced by processing less blobs to obtain the
3D information.

• By guiding the 3D classifier in the search of the optimal parallelepiped model. Using
the estimated 3D dimensional and position attributes of the tracked objects, the
tracking approach guides the classification process by defining the starting point for
the object attributes and the allowed variability for each of these attributes.

A new object dynamics model is proposed, which utilises the visual reliability measures
calculated for the parallelepiped model to weight the contribution of the new attribute
information to the estimated attribute calculation, with respect to the reliability of this
new information. This way, reliable information is enforced in the dynamics model,
contributing to the robustness of the approach by handling noisy data. Also, a cooling
function is utilised in order to diminish the contribution of old information, and highlight
the contribution of the newest information. The functions utilised to update the dynamics
model information are defined incrementally, in order to improve the calculation time.

The proposed tracking approach is able to cope with several issues common to multi-object
tracking techniques. The problems of partial object segmentation or over-segmentation
are solved by the proposed tracking approach by maintaining the temporal coherence of
each tracked object, evaluating if the possible hypotheses for the objects in the current
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frame are coherent with respect to the expected attribute values of the dynamics model,
and then suppressing incoherent hypotheses. The static occlusion problem resolution
proposed by the 3D classifier is reinforced by the tracking approach, guiding the classifier
in the search of the 3D attributes and the real size of the 2D blob, based on the temporal
coherence of the expected tracked object 2D and 3D attributes.

This chapter is organised as follows. First, the terminology utilised for describing
the tracking approach is defined in Section 5.1. Second, in Section 5.2, the proposed
representation of tracking information is presented, explaining its different levels of
abstraction and how the dynamics model of the mobile object attributes is updated in
time. Third, Section 5.3 presents the object tracking method explaining the general
framework of the algorithm, and the processes involved in the tracking approach. These
tracking processes are dedicated to the separation of the tracking problem in sub-problems,
the generation and elimination of mobile object hypotheses, and the treatment of visual
interpretation domain issues. Fourth, in Section 5.4, an illustration of the object tracking
approach is presented. Finally, in Section 5.5, the most important aspects of the tracking
approach are discussed.

5.1 Multi-object Tracking Terminology

In the context of the proposed object tracking approach, several concepts must be defined:

Definition 5.1 A mobile object (or simply a mobile) is a potential physical object
present in the scene, observed during a time interval. It is described by a set of attribute
statistics calculated with the accumulation of the information provided by the visual
evidences of the presence of the object in the scene.

Definition 5.2 A mobile track (or simply a track) is a potential mobile at frame k.
This concept represents a possible new spatial configuration of a tracked object in the scene,
inferred from the information of the mobile at frame k− 1 and the new visual evidence at
time t.

Definition 5.3 A blob buffer is the set of visual evidences of a mobile object for the k
latest frames. The information at each frame k is represented by the 2D blob information,
together with the 3D information provided by the classification task described in previous
Section 4. The size of the blob buffer is a pre-defined value.

Definition 5.4 A hypothesis is a potential configuration of a set of mobiles. A
hypothesis groups visually related mobile objects, and in this sense it corresponds to a
possible interpretation of a partial world.

Definition 5.5 A hypothesis set is a set of mutually exclusive hypotheses, representing
the set of different possible interpretations for a partial world. In this sense, a hypothesis
set is a complete partial world.
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Definition 5.6 A hypothesis set list is a list of hypothesis sets, representing the list
of partial worlds. In this sense, a hypothesis set list represents the complete world.

Definition 5.7 An involved blob set is a set of blobs representing the valid
correspondences between the visual evidence (blobs) at current frame k and a mobile object.
This set can be also associated to a hypothesis as the union of the involved blob sets for the
mobiles represented in the hypothesis, and to a hypothesis set as the union of the involved
blob sets for these hypotheses.

Next Section 5.2 presents the representation of the information utilised by the proposed
object tracking approach.

5.2 Tracking Hypotheses Representation

The representation of the tracking information corresponds to a hypothesis set list as seen
in Figure 5.2. Each related hypothesis set in the list is composed by a set of hypotheses
which are exclusive between them. These hypotheses represent different alternatives for
mobile configurations temporally or visually related. Each hypothesis set can be treated
as a different tracking sub-problem, as one of the ways of controlling the combinatorial
explosion of mobile hypotheses.

This representation scheme is similar to the one utilised by the MHT approaches (Section
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Hypothesis
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Hypothesis 1
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Hypothesis N

Hypothesis 
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Figure 5.2: Representation scheme utilised by the new tracking approach. The
representation consists in a list of hypothesis sets. Each hypothesis set consists of a
set of hypotheses temporally or visually related. Each hypothesis corresponds to a set of
mobile objects representing a possible object configuration in the scene.

2.2), as it explicitly considers the separation of the tracking problem into sub-problems
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according to the spatial proximity of objects evolving in the scene, in order to diminish
the complexity of the problem.

The difference of the utilised representation with existing work in tracking, lies
fundamentally in the dynamics model. The most innovative aspect of the dynamics
model is the explicit inclusion of reliability measures in the object attribute updating
functions in order to control the influence of new incoming information according to its
reliability, as described in Section 5.2.2.

5.2.1 Hypothesis Level

A hypothesis corresponds to a set of mobile objects, related to a group of visually related
blobs in a certain frame or to different tracks for a set of mobiles. Each hypothesis has
associated a likelihood measure, as seen in Equation (5.1).

PH =
∑

i∈Ω(H)

pi·Ti, (5.1)

where Ω(H) corresponds to the set of mobiles represented in hypothesis H, pi to the
likelihood measure for a mobile i (defined in Equation (5.15) ), and Ti to a temporal
reliability measure for a mobile i relative to hypothesis H, based on the life-time of the
object in the scene. This reliability measure is defined in equation (5.2).

Ti =
Fi

∑

j∈Ω(H) Fj

, (5.2)

where Fi corresponds to the number of frames where the mobile object i has been observed.
The temporal reliability is a weight for the global hypothesis likelihood, which is computed
according to the life-span of each object, to take into account the number of evidences
found for each object.

The likelihood measure PH for an hypothesis H corresponds to the summation of the
likelihood measures for each mobile object, weighted by a temporal reliability measure for
each mobile, accounting for the life-time of each mobile. This reliability measure allows
to give higher likelihood to hypotheses containing objects validated for more time in the
scene.

5.2.2 Dynamics Model

The dynamics model is the process for computing and updating the attributes of the
mobile objects. Each mobile object contained in a hypothesis is represented as a set
of statistics inferred from visual evidences of their presence in the scene. These visual
evidences are stored in a short-term history buffer of blobs representing these evidences,
called blob buffer. The attributes considered for the calculation of the mobile statistics,
belong to the set A = {X,Y,W,H, xp, yp, w, l, h, α}. (X,Y ) is the centroid position of the
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blob, W and H are the 2D blob width and height in image plane coordinates, respectively.
(xp, yp) is the centroid position of the calculated 3D parallelepiped base, w, l, and h
correspond to the 3D width, length, and height of the calculated parallelepiped in 3D
scene coordinates.

The statistics associated to an attribute a ∈ A are calculated incrementally in order
to have a better processing time performance, conforming a new dynamics model
for tracked object attributes. This dynamics model proposes a new way of utilising
reliability measures to weight the contribution of the new information provided by the
visual evidence at the current image frame. The model also incorporates a cooling function
utilised as a forgetting factor for reinforcing the information obtained from newer visual
evidence.

Considering t0 as the time-stamp of the current frame and tk the time-stamp of the k-th
previous frame, the obtained statistics for each mobile are now described. The mean value
ā for attribute a is defined as the weighted mean between the expected and estimated
values of the attribute:

ā(t0) =
aexp(t0)·Raexp

(t0) + aest(t0)·Raest
(t0)

Raexp
(t0) + Raest

(t0)
, (5.3)

where the estimated value aest represents the value of a extracted from the observed
visual evidence associated to the mobile (Equation (5.7) ), and the expected value aexp

for attribute a corresponds to the expected value for current time t0, given the estimated
values for a and the velocity of a at the previous time t1, and is defined as

aexp(t0) = ā(t1) + Va(t0)· (t0 − t1). (5.4)

Va corresponds to the estimated velocity of a (equation (5.11)). Raexp
and Raest

are the
reliability measures for the expected and estimated values of a, respectively. Raexp

is
determined as the mean of the global reliabilities Ra and RVa

of a and Va, respectively,
at the previous time t1.

Global reliability Ra is calculated as the mean between Raexp
and Raest

at t0. The reliability
measure Raest

is calculated as the mean between the visual reliability RDa (Equation (5.9)
) and coherency reliability RCa (Equation (5.5) ) values. Raest

is weighted by Rvalid, which
is a reliability measure corresponding to the number of valid blobs in the blob buffer of
the mobile over the size of the buffer.

For a 2D attribute, a valid blob corresponds to a blob not marked as lost, while for a 3D
attribute, a valid blob corresponds to a blob which has been classified and has then valid
3D information. Lost blobs represent the fact of not finding any blob as visual evidence for
the mobile. Not classified blobs correspond to blobs where the 3D classification method
was not able to find a coherent 3D solution with respect to the current mobile attributes
3D information.
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The coherence reliability measure RCa accounts for the coherence of attribute a values
throughout time. It is defined as

RCa(t0) = 1.0−min

(

1.0,
σa(t0)

amax − amin

)

, (5.5)

with

σa(t0) =

√

e−λ·(t0−t1)·Sa(t1)

Sa(t0)
·
(

σa(t1)2 +
RDa0 · (a0 − ā(t1))2

Sa(t0)

)

, (5.6)

which corresponds to the standard deviation of the attribute a. The values amax and amin

in (5.5) correspond to pre-defined minimal and maximal values for a, respectively.
The estimated value aest represents the value of a extracted from the observed visual
evidence associated to the mobile, and is defined as

aest(t0) =
a0·RDa0 + e−λ·(t0−t1)· aest(t1)·Sa(t1)

Sa(t0)
, (5.7)

with
Sa(t0) = RDa0 + e−λ·(t0−t1)·Sa(t1), (5.8)

where ak is the value and RDak
is the visual reliability of the attribute a, extracted from

the visual evidence observed at frame k. The visual reliability of an attribute RDak

changes according to the attribute. In the case of 3D dimensional attributes w, l, and h,
these visual reliability measures are obtained with the Equation (4.11). For 3D attributes
xp, yp, and α, their visual reliability is calculated as the mean between the visual reliability
of w and l, because the calculation of these three attributes is related to the base of the
parallelepiped 3D representation. For 2D attributes W , H, X and Y a visual reliability
measure inversely proportional to the distance to the camera is calculated, accounting for
the fact that the segmentation error increases when objects are farther from the camera.

The visual reliability measure RDa represents the mean of the reliability measures RDak
,

weighted by the forgetting factor. Similarly to the Equation (5.7) for aest, the visual
reliability measure RDa is incrementally defined as

RDa(t0) =
Sa(t0)

sumCooling(t0)
, (5.9)

with
sumCooling(t0) = sumCooling(t1) + e−λ·(t0−t1). (5.10)

All RDak
values, regardless the concerned attribute a, are weighted by a visual support

factor φ accounting for the quality of visual evidence obtained in the analysed frame for
the mobile. This factor allows to differentiate between normally coherent situations and
special cases where the visual evidence represent a lost, sub-segmented or over-segmented
mobile.
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Normal situations correspond to mobiles which attributes are validated with visual
evidence, and φ = 1. A mobile is considered lost when no visual evidence can be
associated to the estimated state for the analysed frame, and φ = 0. If the size of
expected 2D blob constructed with the mobile 2D attributes is considerably inferior than
the blob considered as the visual evidence, the mobile is considered as sub-segmented,
and φ ∈ ]0, 1[. In the other side, if the expected 2D blob constructed with the mobile
2D attributes is considerably bigger than the blob considered as the visual evidence, the
mobile is considered as over-segmented, and also φ ∈ ]0, 1[. In these special cases with
φ < 1, the expected state of the mobile is considered to keep the temporal coherence of
the mobile attributes with less visual reliability, allowing to cope with segmentation errors
and dynamic occlusion.

The value e−λ·(t0−t1), present in Equations (5.6), (5.7), and (5.8), corresponds to the
cooling function of the previously observed attribute values. It can be interpreted as a
forgetting factor for reinforcing the information obtained from newer visual evidence. The
parameter λ ≥ 0 is used to control the strength of the forgetting factor. A value of λ = 0
represents a perfect memory, as forgetting factor value is always 1, regardless the time
difference between frames, and it is used for attributes w, l, and h when the mobile is
classified with a rigid model (i.e. a model of an object with only one posture (e.g. a car)).

This way, aest(t0) value in Equation (5.7) is updated by adding the value of the attribute
for the current visual evidence, weighted by the visual reliability value for this attribute
value, while previously obtained estimation is weighted by the forgetting factor.

The statistics considered for velocity Va follow the same idea of the previously defined
equations for attribute a, with the difference that no expected value for the velocity of a
is calculated, obtaining the value of the statistics of Va directly from the visual evidence
data. The velocity Va of a is defined as

Va(t0) =
Va0·RDVa0

+ e−λ·(t0−t1)·Va(t1)·SVa
(t1)

SVa
(t0)

, (5.11)

with

SVa
(t0) = RDVa0

+ e−λ·(t0−t1)·SVa
(t1), (5.12)

Vak
corresponds to current instant velocity, extracted from the a attribute values observed

at video frames k and j, where j corresponds to the nearest previous frame index in time
to k. RDVak

corresponds to the visual reliability of the current instant velocity and is
calculated as the mean between the visual reliabilities RDak

and RDaj
.

The coherence reliability function RCVa
for Va is defined as

RCVa
(t0) = 1.0−min

(

1.0,
σVa

(t0)

Vamax
− Vamin

)

, (5.13)
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with

σVa
(t0) =

√

e−λ·(t0−t1)·SVa
(t1)

SVa
(t0)

·
(

σVa
(t1)2 +

RDVa0
· (Va0 − Va(t1))2

SVa
(t0)

)

, (5.14)

which corresponds to the standard deviation of the attribute velocity Va. The values
Vamax

and Vamin
in Equation (5.13) correspond to pre-defined values for the minimal and

maximal values for Va, respectively.

The global reliability RVa
for velocity Va is calculated as the mean between the visual

reliability RDVa
and coherency reliability RCVa

(Equation (5.13)) values, where RDVa

corresponds to the mean visual reliability of measured velocity values for attribute a. RVa

is weighted by RVvalid, which is a reliability measure corresponding to the number of valid
blob consecutive pairs in the blob buffer of the mobile.

Finally, the likelihood measure pm for a mobile m in Equation (5.1) can be defined in
many ways by combining the present attribute statistics. The chosen likelihood measure
for pm is a weighted mean of the probability measures for different group of attributes
(groups {w, l, h}, {x, y}, {W,L}, and {X,Y }), weighted by a joint reliability measure for
each group, throughout the video sequence, as presented in Equation (5.15).

pm =
CD2D·RD2D + CD3D·RD3D + CV2D·RV2D + CV3D·RV3D

RD2D + RD3D + RV2D + RV3D

(5.15)

with

CD3D =
(RCw + Pw)·RDw + (RCl + Pl)·RDl + (RCh + Ph))·RDh

2· (RDw + RDl + RDh)
, (5.16)

CV3D =
MPV + PV + RCV

3.0
, (5.17)

CD2D = Rvalid2D
· RCW + RCH

2
, (5.18)

CV2D = Rvalid2D
· RCVX

+ RCVY

2.0
, (5.19)

where Rvalid2D
is the Rvalid measure for 2D information, corresponding to the number of

not lost blobs in the blob buffer, over the current blob buffer size. RD2D is the mean
between visual reliabilities RDW and RDH , multiplied by Rvalid2D

measure. RV2D is the
mean between RDX and RDY , also multiplied by Rvalid2D

measure.

RD3D is the mean between RDw, RDl, and RDh for 3D dimensions w, l, and h,
respectively, and multiplied by Rvalid3D

measure. Rvalid3D
is the Rvalid measure for 3D

information, corresponding to the number of not classified blobs in the blob buffer, over
the current blob buffer size. RV3D is the mean between RDx and RDy for 3D coordinates
x and y, also multiplied by Rvalid3D

measure.
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Measures CD2D, CD3D, CV2D, and CV3D are considered as measures of temporal
coherence (i.e. discrepancy between estimated and measured values) of the dimensional
attributes (D2D and D3D) and their corresponding velocities (V2D and V3D). The
measures RD3D, RV3D, RD2D, and RV2D are visibility measure accumulation in time (with
decreasing factor) of the attribute value reliability obtained from the object classification
task.

Pw, Pl, and Ph in Equation (5.16) correspond to the mean probability of the dimensional
attributes according to the a priori models of objects expected in the scene, considering
the cooling function as in Equation (5.7). Note that parameter t0 has been removed for
simplicity. MPV , PV , and RCV values present in Equation (5.17) are inferred from Vx and
Vy. MPV represents the probability of the current velocity magnitude V =

√

V 2
x + V 2

y

with respect to a pre-defined velocity model for the classified object, added to the expected
object model, defined in the same way as described in Section 4.1. PV corresponds to the
mean probability for the position probabilities PVx

and PVy
, calculated with the values of

Pw and Pl, as the 3D position is inferred from the base dimensions of the parallelepiped.
RCV corresponds to the mean between RCVx

and RCVy
.

This way, the value pm for a mobile object m will mostly consider the probability values
for attribute groups with higher reliability, using the values that can be trusted the most.

5.3 Reliability Multi-Target Tracking

In this Section, the proposed tracking method is described in detail. In general terms, this
method presents similar ideas in the structure for creating, generating, and eliminating
mobile object hypotheses compared to the MHT methods presented in Section 2.2.1. The
main differences from these methods are induced by the object representation utilised for
tracking, the dynamics model, and the fact that this representation differs from the point
representation (rather than region) frequently utilised in the MHT methods.

The utilisation of region-based representations implies that several visual evidences could
be associated to a mobile object. This consideration implies the conception of new
methods for creation and update of object hypotheses.

The complete object tracking process is depicted in Figure 5.3. First, a hypothesis
preparation phase starts with a pre-merge task, which performs preliminary merge
operations over blobs presenting highly unlikely initial features, reducing the number
of blobs to be processed by the tracking procedure.

Then, the blob-to-mobile correspondences are calculated according to the proximity to
the currently estimated mobile attributes to the blobs serving as visual evidence for the
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current frame. This set of blob correspondences associated to a mobile object, is defined
as the involved blob set which consists of the blobs that can be part of the visual evidence
for the mobile in the current analysed frame.

Finally, partial worlds (hypothesis sets) sharing a common set of blobs (visual evidence)
are merged, to account for new object configurations produced by this shared visual
evidence. The processes involved in the hypothesis preparation phase are described in
more detail in Section 5.3.1.

Then, a hypothesis updating phase starts with the generation of the new possible tracks for
each mobile object present in the scene. This process has been conceived to consider the
immediate creation of the most likely tracks for each mobile object, instead of calculating
all the possible tracks and then keeping the best solutions.

These sets of most likely tracks are combined in order to obtain the most likely hypotheses
representing the current alternatives for a partial world. The process of generation of
hypotheses has been also conceived to immediately generate the best set of hypotheses,
instead of generating and pruning.

After, visual evidence not utilised for certain hypotheses of the hypothesis set are
considered as the alternative of new objects entering to an existing partial world. Hence,
new mobiles are initialised with the visual evidence not used by a given hypothesis, but
utilised by other hypotheses sharing the same partial world. This way, all the hypotheses
are complete in the sense of given a coherent description of the partial world they represent.

In a similar way, visual evidence not related to any of the currently existing partial
worlds, is utilised to form new partial worlds according to the proximity of this new
visual evidence. This last task completes the description of the world and is the last part
of the hypothesis updating phase, which is detailed in Section 5.3.2.

A last phase of hypothesis reorganisation is performed to filter lost mobiles, and unlikely
or redundant hypotheses. In this phase the last task consists in separating partial worlds
where currently the mobile objects are not related.

The tracking process internally updates the hypothesis set list with the updated hypothesis
sets. The most likely hypotheses are utilised to generate the list of most likely mobile
objects which corresponds to the output of the tracking process.

5.3.1 Hypothesis Preparation

If hypothesis sets already exist at the currently analysed frame, several tasks prior
to updating the currently tracked mobiles must be performed in order to prepare the
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hypothesis sets for the task of hypothesis updating.

For each mobile belonging to a hypothesis, the involved blob set is determined by using the
previously obtained mobile attribute information. First, the estimated mobile position is
determined from the currently most reliable velocity and position information (2D or 3D
position), using the coherence reliability measures RCa and RCVa

, defined in Equations
(5.5) and (5.13), respectively.

Then, the estimated dimensions for the mobile object at the current frame are also
determined based on the previous dimensional attribute information, for obtaining the
estimated bounding box position and dimensions for the object. This estimated bounding
box is enlarged according to the possible variation of the mobile attributes, determined
with the standard deviation values for the mobile attributes σa, and σVa

, defined in
Equations (5.6) and (5.14), respectively. Finally, if intersection between a blob detected in
the current frame and the estimated and enlarged bounding box, is not null, the analysed
blob detected in the current frames belongs to the involved blob set of the analysed mobile.

In the case that none of the 2D and 3D position and velocity information is reliable, a pre-
defined maximal velocity is considered to determine a variation value used to enlarge the
estimated bounding box in all directions, as no velocity direction information is available.
This is the common case of first detected visual evidences for a mobile, where the velocity
can not be determined or it has a very low reliability.

The involved mobile set is also utilised for determining which blobs can be considered as
visual evidence for the current object, and is then used in several processes of hypothesis
updating. This way, the determination of the involved blob set for a mobile enables
to immediately filter mobile tracks which are very unlikely to occur, corresponding to
another mechanism for controlling the combinatorial explosion.

After determining the involved blob set for each mobile of a hypothesis, the involved
blob set for the hypothesis is determined by performing a union of the involved blob sets
of the mobiles. In the same way, the involved blob set for a hypothesis set is determined
by performing a union of the involved blob sets of the hypotheses conforming the set.

When every involved blob set for the hypothesis sets is determined, it can be detected
if different partial worlds, represented by different hypothesis sets, are visually related
between them. If this is the case, these hypothesis sets must be merged in order to
represent new hypotheses relating mobile objects which can share visual evidence. Two
partial worlds are visually related if the intersection between their involved blob sets is not
null. If this is the case, the merge process between two hypothesis sets is performed, which
consists in generating the hypotheses of the new set by merging every pair of hypotheses
that can be constructed from the combination of the two hypothesis sets. The merge
process continues until no other intersection of the involved blob sets for two hypothesis
set is not null.
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When the merging process ends, the resulting hypothesis sets are ready to be updated
with the new visual evidence information. This hypothesis updating phase is explained
in next Section 5.3.2.

5.3.2 Hypothesis Updating

The first task of the hypothesis updating phase corresponds to the generation of the new
possible tracks for each mobile object. A list of the most likely tracks is associated to each
mobile object contained in a hypothesis set. This tracks are also represented as mobile
objects, updated with the visual evidence extracted from the current video frame.

The track generation method applies two different methods according to the number
of frames of mobile life-span. The first method is applied with a life-span of one or two
frames, as for first and second frames, it is not possible to determine the coherence of the
mobile velocity attributes.

This first generation method consists in considering combinations of all the blobs
belonging to the involved blobs set of a mobile object for the generation of new tracks.
Each generated visual evidence from the combinations of these blobs must be valid in the
sense that the utilised blobs must be near between each other.

Each new coherent visual evidence is utilised to generate a track combining the dynamics
model information of the analysed mobile with the visual evidence information. The
coherence of the new obtained track is checked with the mobile object information
obtained in previous frames. If the coherency test is passed, the new track is included in
the list of tracks for the analysed mobile. If no coherent association has been found for
the analysed mobile, a new mobile is created and tagged as lost. The treatment for lost
objects is described in Section 5.3.4.

Finally, the first generation method ends by limiting the number of possible tracks for
a mobile. The new mobiles are suppressed if their likelihood measure pm, normalised
by the best pm measure, is lower than a pre-defined MinimalRelativeMobileLikelihood
threshold. Then, the best surviving new mobile number is limited to a pre-defined
MaximumMobileTracks threshold.

The second generation method is applied with a life-span of more than two frames, as
now is possible to determine the coherence of the velocity attributes for the mobile. This
generation method consists in using the set of involved blobs to first generate the new
evidence associated to the mobile which best fits the estimated bounding box associated
to a mobile from its current attribute values, and then generates other mobile tracks using
the remaining involved blobs.
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If no involved blobs have been found for the analysed mobile, a new mobile is created
and tagged as lost. The treatment of this case is the same as described in the first mobile
generation method.

If only one involved blob has been found for the currently analysed mobile, a new mobile
is immediately generated by updating the analysed mobile dynamics with the information
extracted from the involved blob. If the analysed mobile is in ensure mode the occurrence
of the special situations is analysed, as presented in Section 5.3.4.

When the involved blob set size is higher than one blob, velocity information is available.
Hence, the visual evidence can be searched in a neighbourhood of the bounding box
generated using the current information of the mobile object.

Using the involved blob set of the mobile, the combination of blobs which better covers
the current estimated bounding box calculated with the mobile information, is considered
as the initial visual evidence for the mobile. Then, other blob combinations are searched
using the initial combination as a starting point. Each generated visual evidence is then
treated similarly as the first generation method.

The second task of the hypothesis updating phase corresponds to the hypothesis
generation task. This task utilises as input the result of the mobile track generation
process, and consists in generating for each hypothesis set, the new set of hypotheses
with updated mobile information which maximises the hypothesis likelihood measure PH

presented in Equation (5.1). The idea is to immediately generate these best hypothesis
sets, instead of generating all the possible hypotheses and then pruning the ones with
lower PH . The hypothesis generation task is independent for each hypothesis set.

The idea of this task is to utilise ordered lists of the best tracks for each mobile object being
part of the analysed hypothesis, to sequentially search for the best combinations of these
objects, where each of these combinations represent a different new hypothesis. Then, a
new hypothesis is considered valid if there is no severe collisions between the parallelepiped
bases of the mobile objects which have available and reliable 3D information. If this is
the case, the hypothesis is inserted in the list of new hypotheses of the currently analysed
hypothesis.

The third task of the hypothesis updating phase corresponds to the generation of new
mobiles entering into existing partial worlds. In other words, a process of insertion of
new mobiles is performed to associate new mobiles to visual evidence not explained by a
hypothesis.

Hence, new mobiles are created for each hypothesis in a hypothesis set, from the set
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of blobs which belongs to the involved blob set of the hypothesis set, but which does
not belong to the involved blob set of the hypothesis. This means that the hypothesis
represents its tracked mobiles without considering blobs that are used by other hypotheses
in the same set, then these not involved blobs can correspond to new blobs entering the
scene. All the possible merge combinations are generated and the hypotheses are created
now including the information of previously tracked blobs. Then, a hypothesis can become
a set of hypotheses, enlarging the hypothesis set it belongs.

The last task of the hypothesis updating phase corresponds to the generation of new
mobiles entering into a new partial world. This process is similar to the third task, with
the difference that no hypothesis information about existing mobiles must be replicated.

For further details about these methods for track and hypothesis generation, see Appendix
B.

Next Section 5.3.2.1 describes the updating process for a mobile object when new visual
evidence is found, process which is utilised by the four tasks of the hypothesis updating
phase.

5.3.2.1 Mobile Initialisation and Updating

In order to track a mobile object evolving in the video scene, its attribute information must
be updated with the information given by the visual evidence associated to the object in
the current frame. The process of updating this information is determined by different
stages according to the mobile life-span and the coherence of its attribute information.

• First, in order to ensure a minimal evidence of the mobile object existence, the
visual evidence on the first frames of existence of the tentative mobile is stored in
a blob buffer. At these first frames only the 2D information updates the dynamics
model presented in Section 5.2.2. This way, the unnecessary classification of blobs
that are later lost is avoided, improving the processing time performance.

The number of frames to be processed with only the 2D information are
customisable, but a reasonable value should be considered between three and the
size of the blob buffer associated to the mobile. Three values are necessary for a
first verification of the temporal coherency of the attribute velocity, as two pairs of
blobs are needed for getting two instant velocities. The blob buffer size is taken as
an upper bound, which ensures to avoid the loss of information, as blob information
leaving the buffer is lost and next step uses this blob information to estimate the
initial 3D information.

• Second, when the upper bound for processing only 2D information is reached,
the updating process initialises the 3D information.The 3D attribute initialisation
process searches, for each blob in the blob buffer (starting from the oldest one), a
coherent 3D solution. When a blob is successfully classified, the process searches for
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the best configuration among all the classified expected object model classes. Then,
each remaining blob in the blob buffer is classified searching for solutions which are
coherent with the 3D information of the first classified blob. This means that the
solutions are search in a neighbourhood of the attribute values associated to the
initial blob.

This guided classification has a twofold benefit: to search 3D parallelepipeds which
are coherent with the currently obtained mobile object information, and to guide
the 3D classification task in the search of the 3D solution, improving its processing
time performance.

All information about other non-optimal coherent 3D solutions for other object
classes is also stored in order to give to the mobile attribute updating process the
possibility to change the 3D information in case that another object class becomes
more likely than the currently selected one.

If the classification of the initial blob does not give any class label or if no coherent
3D solution is found among all classes, only the 2D information is updated and the
next blob in the blob buffer sequence is considered as starting point to search for
a coherent 3D solution. If no coherent 3D solution is found at all, the mobile is
considered as an object of unknown class.

• Third, for the following blob visual evidence associated to the mobile, after obtaining
the result from the second process previously described, the attribute updating
process continues to apply the guided classification process to classes with a
previously found 3D solution, while for classes without associated 3D information,
a initial 3D solution is searched. This way, the exploration of the most likely class
associated to the mobile continues.

• Fourth, if the number of classified blobs for the currently most coherent class arrives
to a pre-defined minimalNumberOfClassifiedBlobs and the mobile measure pm is
higher than a pre-defined minimalMobileLikelihoodToEnsure threshold, the mobile
passes to ensure mode. In this updating mode, just the currently most coherent
class is evaluated, optimising the performance of the updating process by considering
that the currently associated class is the correct one for the mobile object.

5.3.3 Reorganisation of Hypotheses

The final phase of the tracking process corresponds to reorganisation tasks for improving
the processing time performance of the approach.

In other way to control the combinatorial explosion in the number of generated hypotheses
a chain of hypothesis filters, contained in function filterHypotheses (presented in Section
5.3), are applied to the generated hypothesis sets:
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1. Unlikely Mobile Elimination:

For each hypothesis set, consider a list of the hypotheses belonging to the set, ordered
by their likelihood measure PH (Equation (5.1)). First, each hypothesis which
likelihood measure PH , normalised by the likelihood measure of the currently best
hypothesis, is lower than a pre-defined threshold is discarded. The exceptions are
the hypotheses which are constituted only by initial mobiles (detected for the first
time) with PH = 0, as these objects are completely unreliable. Then, these initial
mobile hypotheses are allowed to survive until more visual evidence is available
from the following frames. Finally, just a maximal value of N (pre-defined value)
hypotheses of a life-span higher than one frame can survive, which correspond to
the hypotheses with higher PH . As with the previous filtering step, initial mobile
hypotheses are not eliminated.

2. Unseen Mobile Elimination:

Unseen or lost mobiles are eliminated depending on their history. An unseen object
will be eliminated if:

• The object has left the scene. In this case, the object information is stored for
possible future analysis.

• The object has been lost before reaching a life-span higher that the blob buffer
size. This condition represents the fact that objects which existence has not
been sufficiently validated are not allowed to get lost.

• The object is of unknown class and has been lost for a period longer than the
maximum between the blob buffer size and the number of frames it has not
been lost. This means that a lost object of unknown type is allowed to survive
according to the time it has stayed visible in the scene before.

• The object life-span is lower than twice the blob buffer size and the number
of consecutive frames where the object has been lost is higher than the blob
buffer size. This condition imposes the life-span for an object to be considered
as sufficiently validated. If an object has been followed for more that twice the
blob buffer size, it can not be filtered as unseen.

3. Repeated Hypothesis Elimination:

As mobiles can be individually suppressed from the hypotheses in a set, it is
necessary to check if the elimination has caused that now equivalent hypotheses
exist in the same hypothesis set. If this is the case, redundant information must be
eliminated. Two hypotheses are considered as equal if all mobiles in a hypothesis
can be coupled with another mobile in the other hypothesis sharing the same used
visual evidence at the current frame, and where the overlapping of the 2D blobs
generated from the mobile object attributes are highly similar.
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Finally, if after the hypothesis elimination process there are hypothesis sets composed by
just one hypothesis, the function splitHypothesesSets (presented in Section 5.3) separates
the mobile objects composing the hypothesis into individual hypothesis sets composed by
one hypothesis with just one mobile object. This can be done because the existence of
one surviving hypothesis in a set ensures that the hypothesis has been assumed as the
correct one, then all mobile objects contained in the hypothesis are also validated as the
correct ones, and can be treated independently.

The main objective of all these presented mechanisms is to control the combinatorial
explosion in the number of hypotheses. By controlling this combinatorial explosion the
tracking approach naturally tends to sustain an acceptable processing time performance,
which can be considered as adequate for several real world applications.

5.3.4 Managing Special Situations

During the tracking process, several special situations can be found, which add complexity
to the tracking task and which must be treated in order to obtain a more robust
performance of the tracker. Four situations considered fundamental for the robust
performance of the tracking process have been addressed:

• Static Occlusion: This situation occurs when a mobile object is partially occluded
by a static object present in the scene or by the image border.

• Dynamic Occlusion: This situation occurs when a mobile object is partially occluded
by other mobile objects, producing ambiguous visual support for these objects .

• Sub-segmented object: This situation occurs when the segmentation task previous
to the tracking process is not able to determine the complete segmented blob, giving
partial visual evidence of the object. This situation often occurs due to bad contrast
between the mobile object and the background representation.

• Over-segmented object: This situation occurs when the segmentation task previous
to the tracking process is not able to determine the correct blob limits, giving a
visual evidence which covers a larger zone than the object would have covered. This
situation can occur due to the presence of shadows, and illumination changes, among
other situations.

If the analysed mobile is in ensure mode, it means that it has shown a sufficiently reli-
able behaviour to test the occurrence of more complex situations, as bad segmentation
or dynamic occlusion. If the quality of the new mobile track generated with the involved
blob visual evidence is low, these complex situations are analysed applying a sequence of
tests between the blob corresponding to the visual support and the estimated bounding
box from the current attributes of the analysed mobile.

First, the blobSupport and mobileSupport measures are calculated considering the in-
tersection between the blob serving as visual evidence and the bounding box generated
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from the expected mobile attribute values. These measures correspond to coverage rates
in the interval [0.0; 1.0].

The blobSupport measure accounts for the coverage ratio of the estimated bounding box
by the visual evidence blob, where the maximal value 1.0 is obtained when the bounding
box obtained from the mobile attribute estimation is contained by the visual support blob.

The mobileSupport measure accounts for the ratio of coverage of the visual evidence
by the estimated bounding box, where the maximal value 1.0 is obtained when the blob
serving as visual evidence is contained by the bounding box estimated with the mobile
attributes.

If both blobSupport and mobileSupport are higher than the HighVisualSupportRate thresh-
old, the association blob-mobile is considered as a normal situation of good quality. The
HighVisualSupportRate has shown the desired results at a rate of 0.95. This situation
is considered as normal because a high rate for both measures implies that the visual
evidence is in concordance with the estimated mobile attribute values. This situation is
depicted in Figure 5.4(a).

(a) (b)

Figure 5.4: Normal situations determined after analysing blobSupport and mobileSupport
measures. Red box represents the visual evidence, while green box represents the
estimated bounding box generated from the mobile information. The yellow zone
represents the intersection between both blobs. Figure (a) represents the normal situation
where visual evidence corresponds in size and in position to the expected attributes of the
mobile object. Figure (b) depicts the normal situation where visual evidence corresponds
in size to the expected attributes of the mobile object, but not in position.

If the later test has not classified the situation as normal, it means that it is still possible
that a special situation is occurring. A second test is then performed in order to be sure
that the situation is a special case. First, the differences in width and height, between



5.3. Reliability Multi-Target Tracking 127

the blob serving as visual evidence and the bounding box estimated from the mobile at-
tributes, are calculated.

Then, the tolerance of the width and height differences considered as normal are de-
termined from the mobile attributes W and H standard deviations, inferiorly bounded by
a minimal pixel tolerance. If the width and height tolerances comply with the width and
height differences, the analysed situation is also considered as normal. This is because the
blob can be considered as acceptable visual evidence for the mobile, but it is the position
of the blob which does not fit properly the position proposed by the mobile attributes.
This situation is depicted in Figure 5.4(b).

If the situation is still not considered as normal, now remaining cases can correspond
to the different special situations. To determine the right situation, a sequence of tests
is performed. The first test evaluates if the mobileSupport is higher than the HighVisu-
alSupportRate threshold and if the area of the visual support blob is lower than the area
of the bounding box estimated from the mobile attributes. If this the case, as the first
test has failed, it implies that the blobSupport is lower than the HighVisualSupportRate
threshold. This corresponds to situations where the bounding box estimation by mobile
attributes is weakly covered by the visual support blob, as depicted in Figures 5.5(a) and
5.5(b).

Then, in this case this situation can represent a sub-segmented object, or a static occlusion
case. To differentiate both cases it is sufficient to analyse the possibility of occlusion for
the visual evidence, and evaluate if the not visible part is in a zone of possible occlusion.
For further information about how to determine the occlusion zones refer to Section 4.2.1.

If the previous test fails, the second test evaluates if the mobileSupport is lower than
the highVisualSupportRate threshold and if the blobSupport is lower that a pre-defined
lowVisualSupportRate threshold. This situation corresponds to a lost object, as depicted
in Figure 5.5(c). In practise, the lowVisualSupportRate threshold has been set to 0.05.
Here, the visual support blob is not highly contained by the bounding box estimated with
the mobile attributes, and the estimated bounding box is weakly covered by the visual
support, meaning that it does not exist enough evidence to associate the visual evidence
to the mobile object.

For updating the analysed mobile considering a lost visual evidence, the counter of lost
blobs is incremented and the dynamics model updates the current state of attributes using
previously obtained information. The reliabilities are updated considering the currently
obtained information as not valid.

Figure 5.5(c) depicts this situation with an erroneous case where the visual evidence
really corresponds to a vehicle evolving in a farther position. In practise, the blob could
really correspond to infinite possibilities, as noise, illumination changes, shadows, and so
on.
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(a) (b) (c)

Figure 5.5: Special situations where the object is partially or not validated by the visual
evidence. Red box represents the visual evidence, while green box represents the estimated
bounding box generated from the mobile information. The yellow zone represents the
intersection between both blobs, while the blue zone represents an occlusion zone. Figure
(a) represents the special situation where the object is sub-segmented (legs not detected).
Figure (b) depicts the special situation where the object is not completely detected because
it is partially occluded. Figure (c) represents a situation where the object is lost, and
the blob supposed to correspond to visual evidence does not correspond to the analysed
tracked object.

If the lost mobile test fails, a last test remains which evaluates if the blobSupport is
higher than the HighVisualSupportRate threshold and if the area of the visual support
blob is higher than the area of the bounding box estimated from the mobile attributes. As
the first normal test has failed, this means that the visual evidence is considerably bigger
than the estimated bounding box from the mobile attributes, having an over-segmented
object situation, as depicted in Figure 5.6.

This situation can correspond to two more specific cases: an over-segmented object due,
for example, to the presence of shadows or illumination changes (Figure 5.6(a)), or dy-
namic occlusion situation, where more than one object share common visual evidence
(Figure 5.6(b)). To determine which of these situations can be really happening, dynamic
occlusion can be detected by analysing the mobile objects in a same hypothesis, which
share the same visual evidence.

In the static occlusion and sub-segmented object situations, the analysed mobile is
updated by considering the visual support factor φ (defined in Section 5.2.2) equal to the
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(a) (b)

Figure 5.6: Special situations where the visual evidence is considerably bigger than
the estimated bounding box from the object attributes. Red box represents the visual
evidence, while green box represents the estimated bounding box generated from the
mobile information. The yellow zone represents the intersection between both blobs.
Figure (a) represents the special situation where the object is over-segmented by the
segmentation of a shadow as part of the object. Figure (b) depicts the special situation
where the object is part of a dynamic occlusion situation where the visual evidence
corresponds to more than one object.

blobSupport measure, accounting for the coverage rate of the mobile object.

In the same way, in the dynamic occlusion and over-segmented object situations, the
analysed mobile is updated by considering the visual support factor φ equal to the mo-
bileSupport measure, accounting for the coverage rate of the blob visual support and
weighting this way the possible error committed in the estimation of the new mobile
track attributes.

For the four special situations, before updating the current attributes of the mobile for the
current frame, the estimated bounding box limits are adjusted with the visual evidence
blob, in order to improve the visual support factor by adjusting the estimated bounding
box limits to lie within the visual evidence blob limits, and then recalculating the mobile
attributes with the adjusted blob. This way, all these special situations can be treated in
a consistent way.
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5.4 Illustration of The Tracking Approach

The tracking approach is illustrated with a video sequence with one person performing
diverse activities in a furnished apartment. This scene presents various features which
allow to test the capability of the proposed tracking method: occluding furniture, strong
illumination changes, shadows, and reflections, among other features.

The tests were performed with a computer with processor Intel Xeon CPU 3.00 GHz,
with 2 Giga Bytes of memory. The test consists of two clips delimited by the person
entering and leaving the scene in different ways. A total of 587 analysed frames (1 minute
and 13 seconds) has been considered, testing the quality of trajectories, the capability of
differencing between two postures and the processing time performance. Videos of test
results are available at the website:

http://www-sop.inria.fr/pulsar/personnel/Marcos.Zuniga/name-of-video.avi

where name-of-video are gerhome-clip1 (a short clip with one severe occlusion and
posture change), gerhome-clip2 (a zone with strong shadows and reflexions), or, gerhome-
segmentation-clip2 which corresponds to the video of the segmentation result with
associated blob bounding boxes, used as input of the tracking algorithm.

5.4.1 Results

In Table 5.1 and 5.2 a summary of the obtained results is presented.

Sequence Length Mean Time [sec/frame] Frame Rate[frames/sec]
gerhome-clip1 115 0,0063 159,7470
gerhome-clip2 472 0,0180 55,4604
Mean 0,0157 63,6625

Table 5.1: Evaluation of results obtained for both analysed video clips in terms of
processing time performance.

In Table 5.1, Mean Time corresponds to the mean time per video frame (in seconds),
while Frame Rate corresponds to the number of frames per second that the tracking
algorithm can process. The frame rate for an isolate mobile proves that the system is
able to achieve high processing time performance, but it is not enough to validate the
processing time performance of the approach in more complex situations, because the
interaction of several objects in the same image zone can produce a significant increment
of initial hypotheses.



5.4. Illustration of The Tracking Approach 131

Sequence Length Good Trajectories Trajectory Rate
gerhome-clip1 115 113 0,9826
gerhome-clip2 472 442 0,9364
Total 587 555 0,9455

Table 5.2: Evaluation of results obtained for both analysed video clips in terms of
processing time performance.

In Table 5.2, Good Trajectories is the number of trajectory points which were at
reasonable position (as evaluated by a human observer) with respect to the person present
in the scene. Trajectory Rate is the rate of good trajectories with respect to the total
number of analysed frames. In both video clips, the algorithm has never lost its target,
even in presence of severe occlusion. The points considered out of the trajectory were
visibly far from the centre of the base of the tracking target. Also, the postures standing
and crouching were analysed, obtaining a success rate of 91, 31%.

In Figures 5.7 and 5.8, some image frames from the analysed videos can be found. Left
images correspond to the image segmentation input. Right images are the corresponding
tracking algorithm result.

In Figure 5.7, the first frame pair from top to bottom presents a person coming from
left door who crouches and hides behind the couch. This frame is challenging because
previously the person was standing and, at the same time, the couch is occluding the legs
of the person. The algorithm is quite successful in estimating both the 3D bounding box
of the object and its position in the 3D referential of the scene. Second pair presents the
solution for a sub-segmented person where his legs are almost not segmented. Instead
tracking algorithm finds a good estimate of the real position of the object and its 3D
bounding box.

In figure 5.8, the first frame pair from top to bottom presents a person coming from the
entrance door of the apartment with reasonably good segmentation. Second pair presents
the solution for a poor segmentation frame where legs of the person are not segmented at
all. For this situation, the tracking algorithm finds a good estimate of the real position of
the object and its 3D bounding box anyway. Third pair shows a frame where the visual
evidence of the person is segmented in two pieces, but the tracking algorithm corrects this
situation. Fourth image pair shows the case of an image reflection and shadows present
in the scene, with a good overall response of the tracking approach.
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Figure 5.7: Images from the analysed video clip gerhome-clip1. Left images correspond to
image segmentation input to tracking algorithm. Right images are the corresponding
output of the proposed tracking approach. From top to bottom, first image pair
correspond to frame 37 of this clip, where the person coming from left door hides behind
the couch, with a successful estimation of the real position and dimensions of the crouched
person. Second, frame 97 presents the solution for a poor segmentation frame.



5.4. Illustration of The Tracking Approach 133

Figure 5.8: Images from the analysed video clip gerhome-clip2. Left images correspond
to image segmentation input to tracking algorithm. Right images are the corresponding
output of the proposed tracking approach. From top to bottom, first image frame 3
corresponds to the person passing the entrance door. Second frame pair 24 presents the
solution for a sub-segmented person. Third frame pair 31 shows the resolution of a split
visual evidence problem. Fourth frame pair 68, shows a case with shadows and reflection.
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5.4.2 Experiment Conclusion

The preliminary tests performed show that the tracking approach is able to achieve a
adequate processing time performance. Extensive testing is needed in order to establish
the limitations and potential of the approach. The proposed tracking approach has shown
its capability of tracking a target even if the segmentation is of bad quality. Following
tests will be oriented to the interaction with other mobile objects. This approach can
solve a large number of different static occlusion situations. Nevertheless, just simple
and partial dynamic occlusions can be solved by keeping the motion coherence, as no
appearance models are utilised for this approach.

Reliability measures provide a simple way of determining the quality of obtained
information. These measures have helped in the robustness of the approach by allowing
the proper consideration of most reliable information. They are also used in the event
learning task of the proposed video understanding framework to consider the most
coherent information, validated in time by the tracking approach.

5.5 Discussion

The proposed tracking approach presents several features which aims at obtaining a
processing time performance which is adequate for real world applications. These features
can be found through all the tracking process:

• The proposed tracking approach explicitly cooperates with the 3D classification
process (described in Chapter 4), by guiding the classification process using the
previously learnt mobile object attributes. This way, the tracking process is able to
indicate a starting point and the bounds of search for the parallelepiped attributes
to be found by the classification approach, as described in Section 5.3.2.1.

This cooperation scheme allows a reduction in the processing time dedicated to
3D classification. As mobile information can become more reliable as more visual
evidence is available, the cooperation scheme can be also considered to improve its
quality in time, as more reliability implies a more accurate mobile dynamics model
and less variability of mobile attributes, establishing tighter bounds to the search
space.

• When the mode of a mobile object becomes the ensure mode, even a better
processing time performance can be obtained by the 3D classification process, as
the parallelepiped is estimated just for one object class. In the other extreme,
when information is still unreliable to perform 3D classification, only 2D mobile
attributes are updated as a way to avoid unnecessary computation of bad quality
tentative mobiles (for details, see Section 5.3.2.1).

• The determination of the involved blob sets, described in Section 5.3.1, allows to
control the number of possible blob associations for a mobile object and to separate



5.5. Discussion 135

the tracking problem into sub-problems according to the proximity of the blobs
representing the visual evidence.

Then, the involved blob sets determination presents a two-fold contribution to the
early control of the combinatorial explosion, as less possible associations per mobile
and less related mobiles per tracking sub-problem imply the immediate reduction
in the number of hypotheses to generate, contributing to the improvement of the
processing time performance.

• The hypothesis updating process, presented in Section 5.3.2, have been oriented to
optimise the estimation of the updated hypothesis set, in order to obtain the most
likely hypotheses avoiding to generate unlikely hypotheses that must be eliminated
later. The generation of the mobile tracks utilises a similar principle, generating
the initial solution nearest to the estimated mobile attributes, according to the
available visual evidence, and then generating the other mobile track possibilities
starting from this initial solution.

This way, the generation is focused on optimising the processing time performance
by immediately generating good quality solutions, instead of generating all the
possible combinations and pruning the solutions with bad quality.

• Even if the hypothesis updating process is focused in generating the minimal possible
number of hypotheses, the processing load for the next frame can be reduced by
filtering redundant, not useful, or unlikely hypotheses, as described in Section 5.3.3.

• Finally, the split process for hypothesis sets, also presented in Section 5.3.3,
represents another mechanism to improve the processing time performance as it
immediately reduces the number of mobiles in a same hypothesis set, generating
different hypothesis sets, which can be treated as separated tracking sub-problems.

Several of the presented ideas in the proposed tracking approach are not new and find
their parallel in the literature, as [Avanzi et al. 2001]. The different Screening techniques
[Kurien 1990], presented in Section 2.2, can be found in the algorithm in the following
ways:

• The gating technique is similar to the method for determination of the involved
blob sets. The main difference lies in the fact that the gating technique is focused in
finding possible correspondences for points, which can only participate in a one-to-
one association with a mobile, while the involved blob set determines the blobs which
can correspond to a part of the visual evidence of the mobile or blobs which can
represent the visual evidence for several mobiles, consequently allowing associations
one-to-many (object segmented in parts) and many-to-one (dynamic occlusion).

• The clustering technique can be found in the proposed tracking algorithm in the
form of the mergeHypothesesSets (Section 5.3.1) and splitHypothesesSets (Section
5.3.3) functions, which define when a set of mobiles must be considered as part of
the same tracking sub-problem or not.



136 Chapter 5. Multi-target Tracking using Reliability Measures

• The confidence level concept (or mobile age) proposed by the classification technique
is similar to the utilisation of the ensure mode for mobiles when mobile attribute
reliability is high and in the consideration of only 2D information for the first frames
of life-span of a mobile, when information is highly unreliable (Section 5.3.2.1). It
can be considered an improvement with respect to the classification technique the
fact that the ensure mode is not just based on the age of the mobile, but on the
reliability of its attributes.

The Pruning techniques also presented in Section 2.2, can also find its parallel in
the proposed tracking approach. Compared with the Lower probability technique, the
proposed tracking approach disposes of the Unlikely Mobiles Elimination filter (Section
5.3.3), which differs from the Lower probability technique in that the filter normalises the
likelihood of the hypotheses with respect to the best hypothesis of the set, in order to
ensure that at least one hypothesis remains and that the filtering process is independent
from the average quality of the hypothesis set.

The n-Scan Approximation pruning technique finds its parallel in the utilisation of a blob
buffer by the proposed tracking approach, for storing the visual evidence associated to a
mobile in the later frames. As the n-scan approximation technique uses the information
from few consecutive frames for assigning the measurements to mobiles, this blob buffer
limits the search of a mobile object solution to some few frames before the current frame.

The proposed tracking method has shown that is capable of achieving an adequate
processing time performance for sequences of moderated complexity. But nothing can
still be said for more complex situations. The approach has also shown its capability
of solving static occlusion, sub-segmentation, and object segmented into several parts
problems.

The tracking approach can also solve dynamic occlusion situations by maintaining the
temporal coherence of the set of occluding objects, and by checking the validity of the
new possible solutions in terms of 3D model collisions. As the tracking approach does not
use object appearance information, it can only solve dynamic occlusion situations where
involved temporal attribute coherency is maintained. One of the considered aspects in
future work is the inclusion of object appearance models for coping with more complex
dynamic occlusion situations. The dynamic occlusion problem resolution capability has
still to be validated.

The tracking approach utilises the reliability measures to control the uncertainty in the
obtained information, learning more robust object attributes and establishing quality of
the obtained information. These reliability measures are also utilised in the event learning
task of the video understanding framework to determine the most valuable information
to be learnt. Briefing, the proposed multi-object tracking approach presents the following
main contributions:

1. A new dynamics model for object tracking which computes the tracking likelihood
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in an optimised way, given the available information. This dynamics model includes
several measures of reliability associated to real physical notions. Moreover, the
computation of these measures are accumulated throughout time by a summation
of the different notions weighted by a forgetting factor. Thanks to this weighted
summation, tracking reliability is naturally normalised by the a priori reliability
of the physical notion. This approach contrasts with the state of the art, where
most tracking approaches (MHT or particle filtering) update the tracking likelihood
by the joint probability of current and past likelihood, requiring a non intuitive
normalisation of the tracking likelihood.

2. Explicit interaction between the tracking and classification tasks, allowing the
achievement of a higher processing time performance.

3. New methods for best object hypothesis generation in order to ensure a tracking
performance adequate for real world applications.

4. A new multi-hypothesis algorithm for tracking multiple objects in noisy
environments, for real world applications. The approach partially copes with static
occlusion, several situations with dynamic occlusion, and poorly segmented objects
(e.g. divided in several parts, or with some misdetected part). Dynamic occlusion
can be addressed if tracked objects have a high motion coherence before occlusion,
as this approach does not include appearance model information.

The proposed object tracking approach presents the following limitations:

1. The first limitation is related to dynamic occlusion situations. The tracking
approach is able to cope with dynamic occlusion utilising the object attribute
information estimated in the previous frames to estimate the current values for the
object attributes. As the tracking approach only estimates the current attributes
based on previous information, the behaviour of the objects during the occlusion
period can not be determined, which can lead to tracking errors, such as mistaken
tracks.

2. A second limitation corresponds to the incapability of the tracking approach to
identify an object leaving the video scene and the re-entering in the scene as the
same object. This is due to the geometrical nature of the information utilised for
tracking and due to the no utilisation of appearance models of the tracked objects.

3. Third, the quality of the tracking task depends on the segmentation and the
classification results. Thus, situations with crowd and strong shadows can still
be a challenge.

4. Fourth, the tracking algorithm requires the tuning of several parameters. Further
analysis has to be performed in order to automatically tune these parameters
according to the application.
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5. Finally, a third limitation can be identified with respect to the processing time
performance on scenes with a high number of objects evolving in the scene. Even
if the hypothesis generation process of the tracking approach has been optimised
a large number of objects simultaneously entering the scene can produce a high
number of initial object configuration hypotheses as no object information is
available when a new object enters the scene. This limitation is relative to the
application, as a high processing time performance is not always a requirement for
all application.

The mobile objects resulting from the tracking process are utilised as input by the last
task of the proposed video understanding framework, corresponding to incremental event
learning, which is described in detail in the following Chapter 6.



Chapter 6

Incremental Event Recognition and
Learning

In this chapter, a new method for incremental learning of events in videos is presented.
This learning method is a component of the video understanding framework presented in
Chapter 3, as depicted in Figure 6.1. This event learning method takes as input the mo-
bile objects which are the result of the previous object tracking task presented in Chapter
5.
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Figure 6.1: Proposed event learning approach as a component of the video understanding
framework. Black elements correspond to the contributions of this thesis work. Gray
elements correspond to elements used by the proposed framework, but not forming part
of the contributions of this work. Red elements correspond to the elements analysed in
this chapter, related with the proposed event learning method.

The event learning method is based on models of incremental concept formation ([Gen-
nari et al. 1990], [Carbonell 1990]). The models of incremental concept formation allow to

139
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incrementally build a concept hierarchy, by updating the hierarchical concept structure
with the arrival of each new data instance. These models also allow the recognition of
a new instance, based on the inferred concepts from previously processed data. In the
context of the proposed learning method, a concept corresponds to a state, and data
correspond to the visual attributes of mobile objects present in the video scene.

The input data of this method correspond to object visual attribute values together
with a reliability measure for each attribute, obtained from the multi-object tracking
approach. These reliability measures represent the temporal coherence of the tracked
object attributes, and are used to perform a proper selection of the relevant information
for the learning approach.

The new incremental learning algorithm proposes an extension of the models of incre-
mental concept formation, by expanding the representation of concepts to the first-order
temporal relations (i.e. Markov hypothesis) between these concepts. Thus, in the context
of the proposed learning approach, concepts (represented as nodes in the hierarchy) be-
come the states induced by the tracked objects present in the scene, while the first-order
temporal relations, representing the state transitions, become the learnt events. There-
fore, the learning approach is able to incrementally generate a hierarchical representation
of the states and events occurring in the scene. Information about the frequency of occur-
rence of these states and events is also calculated, which allows to determine if the current
state and event of an object is normal or abnormal in terms of frequency. The utilised
hierarchical representation presents concepts describing more general states in the top of
the hierarchy, while the sibling state concepts in the hierarchy represent specifications of
their parent.

For guiding the learning process, it is necessary to pre-define the learning contexts. A
learning context corresponds to a description of the scope of the events of interest for the
user. It is defined as a set of object attributes, where these attributes are numerical or
symbolic. For the numerical attributes, it is necessary to associate a discrimination value,
which represents the granularity of interest for this attribute. As the attributes defined in
the learning context can be numerical, normalisation values have to be associated to these
attributes, for corresponding to a meaningful variation of the attributes. A normalisation
value associated to an attribute is known as the acuity of the attribute.

Several learning contexts can be simultaneously processed by the proposed approach,
generating for each of them a different resulting hierarchy of states and events. Then,
for each learning context, the event learning method extracts the appropriate available
information according to the currently tracked objects in the scene. Then, state instances
are created for each tracked object. These instances are classified through the hierarchy
of states and the information of the instance is used to update the state hierarchy. Each
state concept in the hierarchy is described by its frequency of occurrence, and by descrip-
tions of the attribute values it represents.



6.1. Description of the Learning Data 141

Each tracked object can participate to more than one learning process at the same time,
if this object is allowed according to the associated learning context. The state and event
hierarchies are learnt combining the information provided by all the allowed mobile ob-
jects being tracked.

For the symbolic attributes of a state, all their possible values are listed and a frequency of
occurrence value is associated, according to the number of instances which are considered
for the attribute value. Numerical attributes are represented by the mean and standard
deviation of the attribute values for the collected instances in the state concept.

Then, when an instance is classified, the associated state concept description is updated
with the attribute information of the instance, considering the reliability measures associ-
ated to the attributes for weighting the contribution of this new information to the model
of the attribute.

The learning algorithm keeps track of the current state of each mobile object. When
an object changes of state, the event information is updated or created if it is the first oc-
currence of this event. Each event concept contains mean and variance information about
the time of permanence of the mobile object in the previous state. This information can
be very useful to understand the behaviour of objects evolving in the scene.

Hence, the result of the learning process corresponds to a learnt hierarchy of states and
events for each pre-defined learning context, and the currently recognised state and event
for each object evolving in the scene. As the utilised event learning approach is incremen-
tal, the process of learning and recognition occurs simultaneously.

This chapter is organised as follows. First, in Section 6.1, the event learning contexts
are formally presented. Then, the structure representing the learnt states and events is
described. Second, Section 6.2 presents MILES algorithm, a new incremental event learn-
ing approach. This section presents the utilised data representation, the utilisation of
reliability measures for guiding the learning process, the operators for updating, expand-
ing, and contracting the event learning structure, and a detailed description of MILES
learning algorithm. Third, Section 6.2.4 presents an illustration of the proposed incre-
mental event learning algorithm. For this purpose, ten hand-crafted trajectories of eight
frames each have been analysed, in order to explain the mechanics of the learning process
and to understand how the real world situations are represented in the approach. Finally,
in Section 6.3, remarks about the learning approach are discussed.

6.1 Description of the Learning Data

The information utilised by the proposed event learning approach corresponds to the
mobile objects tracked by the previous object tracking task (presented in Chapter 5)
and to the event learning contexts pre-defined by the user. Each learning context guides
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the extraction of the appropriate features from the mobile object attributes, in order, to
prepare the proper input for each learning process.

Each learning process constructs a hierarchy of states, based on the information received
at each video frame. When a mobile object passes from one state to another in a given
hierarchy of states, this change of states corresponds to an event. The event representation
is linked to the states triggering this event, and information about the time spent by the
starting state before passing to the next state is stored.

Then, in order, to feed the learning processes with the proper information, the tracked
object information must be also extended to represent the information required by each
concerned learning process and to store the current state and event information for the
mobile object.

Next two Sections are dedicated to explain in detail the representation utilised for the
information in the proposed event learning approach. First, Section 6.1.1 focuses on a
detailed description of the hierarchy of states and events. Second, Section 6.1.2 focuses
in formalising the definition event learning contexts and processes, together with the
necessary extension to the representation of learning information for a mobile.

6.1.1 Hierarchical Events Tree

The proposed event learning approach utilises a hierarchy tree for representing the states,
in the same way as proposed by [Fisher 1987], and discussed in Section 2.4.3. This
representation is extended to also consider the occurrence of events as the transition
between these states. More formally:

Definition 6.1 A hierarchy of states and events H is defined as set of states
organised hierarchically, with a set of events representing the transitions between these
states. The states are hierarchically organised by generality, with the states higher in the
hierarchy being more general, while the children of each state represents a specification of
its parent. There is no limit to the number of children of a state. Pairs of learnt state
concepts are linked by the event representation, which represents the unidirectional fact of
passing from one state concept to another.

An example of a hierarchy of states and events is presented in Figure 6.2. In the
example, the state S1 is a more general state concept than states S1.1 and S1.2, and so on.
Each pair of states (S1.1 ; S1.2) and (S3.2 ; S3.3), is linked by two events, representing the
occurrence of events in both directions.

A state S is represented in the hierarchy in the following way:
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S0

S1 S2 S3

S1.1 S1.2 S3.1 S3.2 S3.3

e1.2-1.1

e1.1-1.2

e1-2

e1.2-2

e2-3

e2-3.2

e3.2-3.1 e3.2-3.3

e3.3-3.2

Figure 6.2: Example of a hierarchical event structure resulting from the proposed event
learning approach. Rectangles represent states s, while circles represent events e. An
event represents the unidirectional transition between two states.

State S {
Probability of Occurrence: P(S)
Number of Represented Instances: N(S)
Number of Event Occurrences: NE(S)
Attributes:

Numerical n1 ∼ N (µn1 ; σn1)
...

...
Numerical nM ∼ N (µnM

; σnM
)

Symbolic s1 : {
V

(1)
s1 ← P(s1 = V

(1)
s1 |S)

...

V
(L1)
s1 ← P(s1 = V

(L1)
s1 |S) }

...
...

Symbolic sP : {
V

(1)
sP ← P(sP = V

(1)
sP |S)

...

V
(LP )
sP ← P(sP = V

(LP )
sP |S) }

}

The probability of occurrence P(S) for a state S corresponds to the number of occurrences
for the state in the video sequence, over the number of occurrences for its parent state
concept. The number of represented instances N(S) represents the number of times that
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an object instance has been classified as the state S. The number of event occurrences
NE(S) represents the number of times that state S passed to another state, generating
an event.

Each numerical attribute n is considered to follow a Gaussian distribution n ∼ N (µn; σn),
with µn corresponding to the mean value for the attribute and σn to its standard deviation.
Each symbolic attribute is represented by every defined value for the attribute, and a
conditional probability P(V

(i)
s |S) associated to each value, with V

(i)
s being the i-th possible

value for the attribute s.

An event E is represented in following way:

Event E {
Number of Occurrences: N(E)
Probability of Occurrence: P(E)
Starting State: Sa

Arriving State: Sb

Starting State Time TSa
∼ N (µTSa

; σTSa
)

}

The number of occurrences N(E) corresponds to the number of occurrences for the event
E in the video sequence. The probability of occurrence P(E) for an event E, then
corresponds to the number of occurrences N(E), over the number of event occurrences
generated from its starting state concept NE(Sa). The event represents the change from
state Sa to Sb, in that order, as the inverse order implies the occurrence of another
event (see Figure 6.2). It is also estimated the time spent in state Sa before passing to
state Sb, defined as TSa

∼ N (µTSa
; σTSa

), modelled as a Gaussian distribution with µTSa

corresponding to the mean value of the time TSa
and σTSa

to its standard deviation.

As an example of the consideration of all these defined elements forming the described
hierarchy of states and events, Figure 6.3 shows the state and event hierarchy obtained
considering the learning context Position Posture, previously depicted in Figure 3.13.
For simplicity, just postures of interest for the example are listed in the state
representation.

The hypothetic case consists in a person staying in Standing posture during 69 frames
(state S1.1), then the person passes to Crouching posture (event E1.1→1.2) for the next
43 frames (state S1.2), and next the person returns to the Standing posture (event
E1.2→1.1) for the following 145 frames (state S1.1). All these posture changes have occurred
approximately at the same position in the plane xy (state S1). Finally, the Standing
person walks to another position (events E1→2 and E1.1→2) by 122 frames (state S2).

The structure of Figure 6.3 allows to appreciate how the state concepts are more specific
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Figure 6.3: Extended example of the hierarchical state and event structure utilised in the
proposed event learning approach. The structure represents learnt states and events
considering a Position Posture learning context (see Figure 3.13). Black rectangles
represent states, while red ovals represent events.
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while descending the hierarchical tree. For instance, state S1 shows posture probabilities
higher than zero for both analysed postures, while states S1.1 and S1.2 specify only one
posture, with probability equal to one. Also, state S0 shows a higher generality degree for
the position coordinates x and y, with a higher standard deviation for both dimensions,
compared to states S1 and S2.

Note that only three events happen in the hypothetical case, so information about state
time in each event just represents the occurrence of one event, by a standard deviation
equal to zero. Also notice that state S1 ignores the events happening between its siblings,
so event E1→2 accounting for the event change to state S2 as a higher level of abstraction.

Figure 6.4 depicts the states represented in Figure 6.3 in the plane xy. This graphical
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Figure 6.4: Graphical representation of the position information in the xy plane, for the
extended example of the hierarchical state and event structure presented in Figure 6.3.
The little ovals represent the mean value for the position of each state, while the large ovals
represent the standard deviations of the position dimensions. The green arrow represents
the Event E1→2.

representation shows the separation between state concepts S1 and S2 in terms of position,
and how well states S0 and S1 generalise their children. It is also interesting to notice
the high similarity between states S1.1 and S1.2, as their difference lies in the posture
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dimension.

6.1.2 Event Learning Contexts

In order to guide the event learning approach through the extraction of the interesting
events according to the application, the user can define several event learning contexts.

Definition 6.2 Event Learning Context: An event learning context corresponds to
a description of the learning scope for a given event learning task. It is defined as a
set of mobile object attributes to be learnt for a set of object classes. The set of mobile
object attributes can correspond to a mixture of numerical and symbolic attributes. The
definition of an event learning context LC follows the structure presented below:

Learning Context LC {
Involved Objects: Any | Any3D | {O1, O2, . . . , ON}
Attributes:

Numerical n1 : An1

Numerical n2 : An2

...
Numerical nM : AnM

Symbolic s1 : {V (1)
s1 , V

(2)
s1 , . . . , , V

(L1)
s1 }

Symbolic s2 : {V (1)
s2 , V

(2)
s2 , . . . , , V

(L2)
s2 }

...

Symbolic sP : {V (1)
sP , V

(2)
sP , . . . , , V

(LP )
sP }

}

The Involved Objects statement defines the object classes to be analysed in the learning
context LC. This definition can be Any2D if every object type is considered, even the
unknown type (no 3D information available), Any3D if every object type different from
unknown is considered, or a list of object classes including the objects of interest for this
learning context. The Any2D option is used only when all the considered mobile object
attributes are independent from the 3D referential of the scene. An example of definition
of a Trajectory learning context is defined in Figure 6.5, where the learnt objects can be
any of the available classes, except the unknown class.

The Attributes statement defines the mobile object attributes to be considered in the
learning process. For each numerical attribute ni, with i ∈ {1, . . . ,M}, it is necessary to
associate a normalisation value Ani

, which represents the lower bound for the numerical
attribute change to be considered as meaningful. In other words, the difference between
the mean value for a numerical attribute n and the value of the attribute for a new
instance will be considered as significant and noticeable when this difference is higher
than the acuity An.
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The normalisation value Ani
corresponds to the concept of acuity, utilised by [Gennari

Learning Context Trajectory {
Involved Objects: Any3D
Attributes:

Numerical x : 2 [m]
Numerical y : 2 [m]
Numerical Vx : 10 [km/h]
Numerical Vy : 10 [km/h]

}
Figure 6.5: Definition of a trajectory learning context in a parking lot environment. For
this context, the user can be interested in learning the events associated to the object
position (x, y), together with the velocity (Vx, Vy) for any type of object in a parking lot
environment (e.g. persons and vehicles).

et al. 1989], [Gennari et al. 1990], described in Section 2.4.5 as a system parameter that
specifies the minimum value for attributes σ in the CLASSIT algorithm for incremental
concept formation. In psychophysics, the acuity corresponds to the notion of a just
noticeable difference, the lower limit on the human perception ability. This concept is used
for the same purpose in the proposed event learning approach, but the main difference
with its utilisation in CLASSIT is that the acuity was used as a single parameter, while
Ani

acuity values are defined for each attribute to be learnt for a given context. This
improvement allows to represent the different normalisation scales and units associated
to different attributes, as also representing the interest of users for different applications.
For instance, a trajectory position attribute x could have an acuity of 50 centimetres
for an application with a camera in an office environment, while for the same attribute,
the acuity could be two metres for a parking lot application with a camera far from the
objects, where the user is not interested in little details on position change.

For the symbolic attributes, it is necessary to list the values of interest associated to
each of these attributes. As enunciated in Definition 6.2, both numerical and symbolic
attributes can simultaneously be part of the same event learning context. This situation
is represented with an example in Figure 6.6 for a position-posture context. This
context mixes numerical position attribute information, with symbolic posture attribute
information.

Each event learning context defines an autonomous event learning process, giving to the
approach the sufficient flexibility to learn events of different nature utilising the same
mobile objects extracted from the video sequence. In consequence, each event learning
process is defined by its associated event learning context and the event hierarchy the
learning process learns. Formally:
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Learning Context Position Posture {
Involved Objects: Person
Attributes:

Numerical x : 50 [cm]
Numerical y : 50 [cm]
Symbolic Posture : { Standing,

Crouching,
Sitting,
Lying }

}
Figure 6.6: Definition of a Position-Posture learning context for people in an office
environment.

Learning Process LP1 {
Hierarchy of States and Events: H1

Learning Context: LC1

}

It is then necessary to define how a mobile object will be able to feed different event
learning processes simultaneously. For each mobile object, it is necessary to obtain a
contextualisation of its attributes according to each learning context LC in which the
object can be involved, together with information about the current state and latest
event of the mobile object in a hierarchy H. This results in a structure as described
below:

ContextualisedObject CO {
Learning Context: LC1

Attributes:
LC1.v1 = LC1.V1 ← LC1.R1
...
LC1.vM = LC1.VM ← LC1.RM

Hierarchy: HLC1

Level: L1

Previous State: HLC1 .S
(L1)
a | Unknown

Current State: HLC1 .S
(L1)
b | Unknown

Time in Current State: T
HLC1

.S
(L1)
b

Last Event: HLC1 .E
(L1)
a→b | Unknown

...
...

...
...

...
...

...
Level: LQ

Previous State: HLC1 .S
(LQ)
a | Unknown

Current State: HLC1 .S
(LQ)
b | Unknown

Time in Current State: T
HLC1

.S
(LQ)

b
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Last Event: HLC1 .E
(LQ)
a→b | Unknown

...
...

...
...

...
...

...
...

Learning Context: LCK

Attributes:
LCK .v1 = LCK .V1 ← LCK .R1
...
LCK .vM = LCK .VM ← LCK .RM

Level: L1

Previous State: HLCK
.S

(L1)
a | Unknown

Current State: HLCK
.S

(L1)
b | Unknown

Time in Current State: T
HLCK

.S
(L1)
a

Last Event: HLCK
.E

(L1)
a→b | Unknown

...
...

...
...

...
...

...
Level: LQ

Previous State: HLCK
.S

(LQ)
a | Unknown

Current State: HLCK
.S

(LQ)
b | Unknown

Time in Current State: T
HLCK

.S
(LQ)
a

Last Event: HLCK
.E

(LQ)
a→b | Unknown

}

Hence, in order to contextualise a tracked object O, for each learning context LCj in which
the object O is involved, with j ∈ {1, . . . , K}, the contextualised object CO defines the
attribute-value-measure triplets (vi; Vi; Ri), with i ∈ {1, . . . ,M}, where Ri corresponds to
the reliability measure associated to the obtained value Vi for the attribute vi. This triplet
is defined regardless if the type of the concerned attribute is numerical or symbolic. With
the object already contextualised, now it is possible to feed the event learning processes
properly.

Also, the contextualised object CO must store information about the current states and
events, in order to detect the occurrence of a new event and to be able to generate its
representation properly, for each hierarchy HLC learnt for a learning context LC. This

information consists of the previous state S
(Lq)
a where the tracked object was, the current

state S
(Lq)
b where the tracked object is, the last occurred event E

(Lq)
a→b for the object, and the

time T
S

(Lq)

b

staying in the current state, for each level Lq of the state and event hierarchy,

with q ∈ {1, . . . , Q}. Notice that the level q = 0 is not considered as it will only contain
the root node for the hierarchy representing the learning context LC (see previous Section
6.1.1).
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Now, with all these elements and their interactions properly described, details on the
event learning process can be presented in next Section 6.2.

6.2 MILES: Method for Incremental Learning of

Events and States

As described in Section 6.1.2, each learning context defines a different learning process for
independently generating a hierarchy of states and events, as the one described in Section
6.1.1. This Section is dedicated to the detailed description of this event learning process.

The proposed event learning process is based on models of incremental concept formation
([Gennari et al. 1990], [Carbonell 1990]), which have been discussed in Section 2.4. The
models of incremental concept formation allow to incrementally build a concept hierarchy
based on incomplete or uncertain data, by updating the hierarchical concept structure
with the arrival of each new data instance. These models also allow the classification of
a new instance, based on the inferred concepts from previously processed data.

In the context of the proposed event learning process, a concept corresponds to a state
and the learnt data correspond to the visual attributes of mobile objects present in the
video scene. More specifically, these data correspond to the contextualised object CO,
defined in Section 6.1.2.

As every incremental concept formation model, the proposed incremental event learning
approach needed a name. This approach has been called MILES, acronym standing
for Method for Incremental Learning of Events and States. MILES state hierarchy
construction is mostly based on COBWEB [Fisher 1987] algorithm (see Section 2.4.3),
but also considering ideas from other existing incremental concept formation approaches.
From CLASSIT [Gennari et al. 1990] algorithm (see Section 2.4.5) the concepts of acuity
and cutoff are considered, but in a different way, as detailed in Section 6.2.2.

As defined in Section 2.4.3, to evaluate the concept nodes, the latest incremental concept
formation models use a quality measure for categories (or concepts) called category utility,
which favours clusterings that maximise the potential for inferring information. The
objective of the category utility is to measure how well the instances are represented by
a given category. In this thesis, a category is a state.

For MILES, a measure similar to the category utility function from COBWEB/3
[McKusick and Thompson 1990] algorithm has been considered, which is based in
Equations (2.7), (2.8), and (2.9) (Section 2.4.6). These new equations correspond to
Equations (6.1), (6.2), and (6.3), and are now defined considering a state concept Sk in a
learning context LC. For the set of numerical attributes, the category utility CUk, for a
given state concept Sk, is defined as:
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CUk(numerical) =

P(Sk)
I
∑

i=1

(

Ani

σ
(k)
ni

− Ani

σ
(p)
ni

)

2· I·√π
, (6.1)

where σ
(k)
ni is the standard deviation for the numerical attribute ni, with i ∈ {1, 2, .., I},

in the state concept Sk, and σ
(p)
ni is the standard deviation for the numerical attribute ni

in the parent or root node Sp, as defined in Section 6.1.1. The value Ani
corresponds to

the acuity for the attribute ni.

Note that the incorporation of the acuity term Ani
establishes a difference with the

preceding versions of numerical category utility. The idea of utilising the acuity value
is to balance the contribution of numerical and symbolic attributes to the category
utility, giving to the numerical attributes the possibility to have a probability of one
if the standard deviation corresponds to the acuity value. This assumption is reasonable
in the sense that the acuity value defines when a change in a numerical attribute is
considered as not significant. The obtained attribute contribution value always belongs
to the interval [0, 1], as the acuity Ani

is the lower bound for the standard deviation σ
(k)
ni .

Also, the incorporation of the acuity is useful to normalise the contributions of numerical
attributes representing different metric units (e.g. position and velocity) and scales (e.g.
a position attribute in metres and a distance attribute in centimetres).

For the set of symbolic features, the category utility CUk, for a given state concept
Sk, is defined as:

CUk(symbolic) =

P(Sk)
L
∑

l=1

JL
∑

j=1

(

P(sl = V (j)
sl
|Sk)

2 − P(sl = V (j)
sl
|Sp)

2
)

L
, (6.2)

where P(sl = V
(j)
sl |Sk) is the conditional probability that the symbolic attribute sl has

a value V
(j)
si in the state concept Sk, with l ∈ {1, 2, .., L} and j ∈ {1, 2, .., JL}, while

P(sl = V
(j)
sl |Sp) is the conditional probability that the symbolic attribute si has a value

V
(j)
si , in the parent or root node Sp, as defined in Section 6.1.1.

Then, for a set of mixed symbolic and numerical attributes, the overall category utility
CUk, given a state concept Sk, is the sum of the contributions of both sets of features:

CUk = CUk(symbolic) + CUk(numerical). (6.3)

Finally, the category utility CU for a class partition of K classes is defined as:
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CU =
K
∑

k=1

CUk

K
(6.4)

For a given learning context, MILES sequentially processes all the contextualised object
instances at the current frame. MILES initialises its hierarchy to a single state concept,
setting the values of the state concept attributes as the values of the first processed
instance. Upon encountering a second instance, MILES averages its values into those
of the initial state concept and creates two children, one based on the initial state and
another based on the instance.

Then, at each state concept, MILES retrieves all children and considers classifying and
placing the new instance in each of these states. Based on the category utility presented
in Equation (6.3), a decision is made for the incorporation of the instance. This decision
can be to incorporate the instance to an existing state concept, to generate a new state
from the instance, to merge the two states best fitting the instance (merge operator in
Section 6.2.3), to eliminate a state concept and replace it by its children (split operator
in Section 6.2.3).

When the decision is made and the state concept is created or updated, MILES verifies
whether the tracked object has changed its state for this level in the hierarchy. If this is
the case, an event occurs and an event entity as described in Section 6.1.1 is updated if
the entity already exists, or created if not.

If the currently chosen state concept has siblings, the learning process stops if the current
state concept passes a cutoff criteria.

Definition 6.3 Cutoff: The cutoff is a criteria utilised for stopping the creation of
children by a learning process. It can be defined as:

cutoff =

(

true if {µ
(Sk)
ni

− Vni
≤ Avi

|∀i ∈ {1, .., I}} ∧ {P(Vsj
|sj

(Sk)) = 1|∀j ∈ {1, .., J}}
false else

, (6.5)

where Vni
is the value of the i-th numerical attribute of the processed instance, and Vsj

is the value of the j-th symbolic attribute of the processed instance. The value µ
(Sk)
ni

corresponds to the mean value of the numerical attribute ni for the state Sk.

This equation means that the learning process for the instance will stop at state Sk if
no meaningful difference exists between a numerical attribute value of the instance and
the mean value of the attribute for the state Sk (based on the acuity for the attribute),
or if every symbolic attribute value in he instance is totally represented in the state Sk

(probability equal to one for the attribute value). This means that the learning process will
stop if no noticeable difference between the attribute values is found.

This different way of considering the cutoff and acuity concepts with respect to the
utilisation proposed in CLASSIT algorithm (see Section 2.4.5) constitutes one of the
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contributions of the approach to the incremental concept formation models domain.

The following Sections describe different details of the learning process of MILES. Section
6.2.1 describes the incremental updating process for information contained in the state
and event concepts of a hierarchy, given the arrival of a new object instance, and how the
reliability measures can control the incorporation of new information according to their
quality. Then, in Section 6.2.2 the learning process is described in detail. Finally, Section
6.2.3 describes how merge and split operators are applied for modifying the hierarchy of
state and event concept hierarchy.

6.2.1 Reliable Information Incorporation

Upon the arrival of a new state instance represented by a contextualised object CO, the
attribute information of the instance must be used to update the state and event concept
information. According to the type of attribute the information updating process differs.

For the case of a numerical attribute n, the information about the mean value µn and the
standard deviation σn must be updated. The proposed updating functions are incremental
in order to improve the processing time performance of the approach. The incremental
updating function for the mean value µn of a numerical attribute n is presented in
Equation (6.6).

µn(i) =
Vn·Rn + µn(i− 1)·Sumn(i− 1)

Sumn(i)
, (6.6)

with

Sumn(i) = Rn + Sumn(i− 1), (6.7)

where Vn is the value for the new instance for the attribute n and Rn corresponds to its
reliability. Hence, the reliability Rn weights the contribution of the new attribute value
Vn to the mean value for n. Sumn function corresponds to the accumulation of reliability
values Rn for the numerical attribute n.

The incremental updating function for the standard deviation σn of a numerical attribute
n is presented in Equation (6.8).

σn(i) =

√

Sumn(i− 1)

Sumn(i)
·
(

σn(i− 1)2 +
Rn· (Vn − µn(i− 1))2

Sumn(i)

)

. (6.8)

In the case that a new state concept is generated from the attribute information of the
instance, the initial values taken for Equations (6.6), (6.7), and (6.8) with i = 0 correspond
to µn(0) = Vn, Sumn(0) = Rn, and σn(0) = An, where An is the acuity for the attribute
n, as defined in Section 6.1.2.

In case that, after updating the standard deviation Equation (6.8), the value of σn(i)
is lower than the acuity An, σn(i) becomes equal to An. This way, the acuity value
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establishes a lower bound for the standard deviation of an attribute, avoiding the
possibility of zero division in the category utility function at the Equation (6.1).

For symbolic attributes it is necessary to update the conditional probability P(s = V
(j)
s |S)

of each possible value V
(j)
s for a symbolic attribute s, given the state concept S. For this

purpose, reliability measures Rs are utilised in order to weight the quality of new incoming
information, as presented in Equations (6.9), (6.10), and (6.11).

P(s = V (j)
s |S)[i] =



























Sum
(j)
Vs

(i)

Sums(i)
if Vs = V

(j)
s

Sum
(j)
Vs

(i− 1)

Sums(i)
else

(6.9)

with

Sum
(j)
Vs

(i) = Rs + Sum
(j)
Vs

(i− 1), (6.10)

and

Sums(i) = Rs + Sums(i− 1), (6.11)

where Vs is the value for the new instance for the symbolic attribute s and Rs corresponds
to its reliability. V

(j)
s is the j-th possible value for the symbolic attribute s, with

j ∈ {1, . . . , Ls} (Ls is the number of possible values for s). The functions Sum
(j)
Vs

(i)
correspond to the accumulated reliability for each s attribute value Vs, while the function
Sums(i) corresponds the overall accumulated reliability for the attribute s. This way, the

probability P(s = V
(j)
s |S) corresponds to the ratio between the accumulated reliability

for the attribute value V
(j)
S , over the overall accumulated reliability for the attribute s.

Notice that only the accumulated reliability for the attribute value corresponding to the
value of the current instance is updated.

The right choice of the reliability functions determining the reliability associated to the
attributes of a contextualised object can be of great help on increasing the robustness of
MILES. For the attributes utilised by the dynamics models presented in Section 5.2.2,
reliability measures have been already proposed that can be directly used in update
Equations (6.6) and (6.7) for numerical attributes, as can, for instance, be appreciated at
the temporal coherence reliability Equations (5.5) and (5.13).

For symbolic attributes and other numerical attributes not updated by the tracking
dynamics model, the reliability measures must be defined. They can be conceived in
multiple forms. For instance, a combination of the already defined reliability measures,
the object probability measure of Equation (5.15) (defined in Section 5.2.2) as a general
attribute reliability measure, or a combination of general and specific measures could be
utilised for this purpose.
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6.2.2 Events Tree Generation Algorithm

In this Section, the proposed incremental event learning algorithm MILES is described in
detail. A pseudo-code representation is displayed below.

function MILES (P, CO, O) returns RE and H

Input

P: Learning Processes List.

CO: Contextualised objects list.

O: Tracked objects list.

Output

RE: Recognised states and events.

H: List of updated hierarchies of states and events.

Begin

If O is new_mobile then

co = initialiseContextualisedObject ( O, P );

insertContextualisedObject ( co, CO );

Else

co = getContextualisedObject ( CO, O );

End If

For Each p in P do

h = getAssociatedHierarchy(p);

I = getStateInstance ( p, co );

L = updateStates( h, I );

If firstFrame( co ) then

updateCurrentStates( co, L );

Else

oldL = getCurrentStates( co );

For Each l in oldL do

If stateChanges( l, L ) then

updateEvents( co, l, L );

End If

End For

updateCurrentStates( co, L );

End If

End For

H = empty_set;

RE = extractRecognisedStatesAndEvents(CO);

For Each p in P do

h = getAssociatedHierarchy(p);

H = insertHierarchy(h, H);

End For

return RE and H;
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End

MILES algorithm utilises all tracked objects for updating the hierarchies of state and
event concepts. The algorithm first initialises the contextualised object co associated
to a new object O with the function initialiseContextualisedObject. This function uses
the learning contexts information associated to each of learning process in the list P , as
described in Section 6.1.2, to determine for which of these learning processes the object
O is valid to extract the proper information accordingly.

Hence, for each learning process, this function checks if the type of the tracked object O
corresponds to the allowed object types for the learning context associated to the learning
process. If the type is valid, the triplets (v; V ; R) are extracted from the object O attribute
information and used to initialise the contextualised object co, with V corresponding to
the value of attribute v, and R to its reliability.

After, the initialised contextualised object co is inserted to the list of contextualised
objects CO using function insertContextualisedObject. If the tracked object O is not new,
the existing contextualised object co is recovered with function getContextualisedObject.

Then, for each of the learning processes in list P , the currently learnt hierarchy
of states and events h associated to the current learning process is extracted with
function getAssociatedHierarchy. Also, the object instance I of the contextualised object
co containing the attribute information necessary for the current learning process, is
extracted with function getStateInstance. Then h and I are used to update the states
of the hierarchy, using the function updateStates. This function is very important as it
corresponds to the incremental concept formation model utilised for learning the hierarchy
of states, and it is described in detail at Section 6.2.2.1. The updateStates function returns
a list composed by the current state concepts at each level of the hierarchy.

Finally, the events associated to a state transition of the tracked object O are updated. If
the currently processed object O is a new object, just the current states for each level in
the hierarchy are updated with function updateCurrentStates. If the tracked object O is
not new, the states stored from the previous frame for the tracked object O are extracted
from its associated contextualised object co with function getCurrentStates. Then, for
these previously stored state concepts for each level of the hierarchy, the occurrence of a
state transition is verified with the function stateChanges. This verification is made by
checking if the analysed state is present in the list of updated states returned by function
updateStates.

If a change of states is detected, the function updateEvents updates the events information
according to the detected change of state. The occurrence of a state transition updates
all the events representing the combinations between the analysed state concept from the
stored list, where the possible combinations are:

• All the states of a lower level in the new list, if the state at its same level in the new
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list is different than the analysed state.

• The state at its same level in the new list if it is different than the analysed state.

• All the states at a higher level in the new list which does not have a kinship relation
with the analysed state

Examples of these state combinations can be found in Figure 6.7.

Definition 6.4 A kinship relation between two states Sm and Sn in the hierarchy exists
if Sm is (directly or indirectly) the ascendant or one of the descendants of the state Sn in
the hierarchy. This means that the one state is related to the other as parent, or son, or
grand-parent, or grand-son, and so on.

0S

S1.1 S1.2 S1.3

S1 S2

1.1.1S S1.1.3 S1.3.1 S1.3.21.1.2S

(a)

0S

S1.1 S1.2 S1.3

S1 S2

1.1.1S S1.1.3 S1.3.1 S1.3.21.1.2S

(b)

Figure 6.7: Examples of list comparisons for determining the events to update. Blue
elements represent the previously stored states for a tracked object. Green elements
represent the updated states obtained with the function updateStates. The red box
represents the state concept which is common to both lists. The dashed red lines represent
the events to update for two different cases. Figure (a) shows the previous state S1.1

generating events at the same level and a lower level in the hierarchy, and the state
concept S1.1.2 generating events at the same and higher levels in the state and event
concepts hierarchy. Figure (b) shows the previous state S2 generating events at the same
level and at lower levels in the hierarchy.

If an event E corresponds to a first detected event, a new event representation is created
and associated to the generating state Sa and the arriving state Sb. The mean time
staying at state Sa, µTSa

is initialised with the accumulated time in current state T
S

(Lq)
a

,

with q corresponding to the time staying in the starting state Sa at level q. The standard
deviation for the time σTSa

is initialised to 0.0.
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If an event E corresponds to an existing event representation, the µTSa
and σTSa

values
are updated using the Equations (6.12) and (6.13), respectively.

µTSa
(i) =

TSa
+ µTSa

(i− 1)·NE)

NE + 1
, (6.12)

where NE is the number of times the event E has been detected.

σTSa
(i) =

√

NE

NE + 1
·
(

σTSa
(i− 1)2 +

(TSa
− µTSa

(i− 1))2

NE + 1

)

. (6.13)

Then, the updated list of current states at different levels in the hierarchy is utilised
to update the current states information of the contextualised object co, utilising the
function updateCurrentStates.

Finally, the list of updated hierarchies H is built with the updated hierarchies, and
the recognised states and events are collected from the information contained in the
contextualised object list CO. Then, the currently recognised states and events for
each mobile object are returned, and also the updated hierarchies of states and events
associated to each learning process.

6.2.2.1 States Updating Function

The states updating function requires special attention as it corresponds to the
incremental concept learning component of the approach. This function works in a similar
way compared with COBWEB algorithm [Fisher 1987]. A pseudo-code representation of
this function is displayed below.

function updateStates ( h, I ) returns L

Input

h: Current state in the event and state concept hierarchy.

I: Contextualised object instance.

Output

L: List of current states for instance I.

Begin

If emptyTree ( h ) then

insertRoot ( h, I );

Else If isTerminalState ( getRootOfHierarchy(h) ) then

If cutoffTestPassed ( getRootOfHierarchy(h), I ) then

createNewTerminals ( h, I );

End If

incorporateState ( getRootOfHierarchy(h), I );

Else

If lastOperation != Split then

incorporateState ( getRootOfHierarchy(h), I );
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End If

P = highestScoreState ( h );

W = categoryUtilityScore ( P );

Q = newStateConcept ( h, I );

X = categoryUtilityScore ( Q );

If numberOfChildren( getRootOfHierarchy(h) ) > 2 then

R = secondScoreState ( getRootOfHierarchy(h) );

Y = mergeCategoryUtilityScore ( P, R );

Else

Y = 0.0;

End If

If numberOfChildren( P ) > 0 then

Z = splittingScore ( P );

End If

If W is bestScore then

updateStates ( getSubTree(h, P), I );

Else If X is bestScore then

insertChild ( Q, h );

Else If Y is bestScore then

O = mergeStates ( P, R, h );

updateStates ( getSubTree(h, O), I );

Else If Z is bestScore then

splitStates ( P, h );

updateStates ( h, I );

End If

End If

insertCurrentState ( getRootOfHierarchy(h), L );

End

For the arrival of the first object instance to the states hierarchy (function emptyTree),
the state updating process first initialises the hierarchy to a single state (function
insertRoot), setting the values of the state concept attributes as the values of the first
processed instance, as described in Section 6.2.1.

Then, for the case that the currently considered state getRootOfHierarchy(h)
(where getRootOfHierarchy returns the root state of the analysed tree) in the
hierarchy corresponds to a terminal state (function isTerminalState), which does
not have any children, a cutoff test if performed by function cutoffTestPassed.
This test consists in checking if the new object instance is sufficiently different
to the state getRootOfHierarchy(h). The test will be passed if the difference
between every numerical attribute n, between the instance I and the state concept
getRootOfHierarchy(h), is lower than the acuity An associated to attribute n, and
if each symbolic attribute s has the same value Vs in I and getRootOfHierarchy(h).
This way of defining the cutoff criterion differs from the one used by COBWEB, which
considers a fixed threshold.
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If the cutoff test is passed, the function createNewTerminals generates two children
for current state concept getRootOfHierarchy(h), one initialised with the instance
information and the other as a copy of getRootOfHierarchy(h). Then, passing
or not passing the cutoff test, the information of I is incorporated to the current
state concept getRootOfHierarchy(h) by function incorporateState, which utilises the
updating functions described in Section 6.2.1. Then, the process of updating the hierarchy
using the object instance I stops when a terminal state getRootOfHierarchy(h) is
considered.

If the current state concept getRootOfHierarchy(h) is not a terminal state, meaning
that it has children, first the object instance I is immediately incorporated to
getRootOfHierarchy(h) with function incorporateState (if the last operation in the
hierarchy was not a split). Then, different possibilities of evolution in the hierarchy
for the object instance I must be evaluated among all the children of the current state
concept getRootOfHierarchy(h), choosing the alternative with best category utility
score (obtained with function categoryUtilityScore). This category utility score has been
previously defined in Equations (6.1), (6.2), (6.3), and (6.4), at Section 6.2, and defines
a measure for evaluating the quality of a given class partition. The different alternatives
for the evolution of I in the hierarchy are:

• The incorporation of the instance I to an existing state concept P gives the best
category utility score W (function highestScoreState). In this case, the function
updateStates is recursively called, using the state getSubTree(h, P ) as current state,
where function getSubTree returns the subtree of h considering P as root.

• The generation of a new state concept Q from instance I gives the best
category utility score X (function newStateConcept). In this case, the function
insertChild inserts the new state Q as child of the current state concept
getRootOfHierarchy(h), and the updating process with instance I stops.

• If the number of children of the current state getRootOfHierarchy(h) is higher than
two, a state merge process can be evaluated. The second best state R is determined
(function secondScoreState), and the category utility score Y of considering a merge
between best state P and state R is obtained (function mergeCategoryUtilityScore).
If the category utility obtained from the merge process gives the best score, the
hierarchy is modified by the merge process performed by the function mergeStates,
and the function updateStates is recursively called, using the state getSubTree(h,O),
resulting from the merge process, as the current state. This merge process is detailed
in Section 6.2.3.

• If the best score state P has children, a state split process can be evaluated. The
category utility score Z of considering a split operation of the best state P is obtained
(function splittingScore). If the category utility obtained from the split process
gives the best score, the hierarchy is modified by the split process performed by
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the function splitStates, and the function updateStates is recursively called, using
again the state getRootOfHierarchy(h) as the current state. This is why the
incorporation of I is not performed if a split operation have been performed before,
as the incorporation of I has been already made to getRootOfHierarchy(h) at the
previous step. This split process is also detailed in Section 6.2.3.

Finally, each current state getRootOfHierarchy(h) is stored in the list of current state
concepts L, by the function insertCurrentState.

6.2.3 Operators for the State and Event Concepts Hierarchy

As described in previous Section 6.2.2.1, three operations can modify the structure of the
state and event concepts hierarchy. The first one is the creation of a new state concept
from an object instance, which just consist in adding a new state concept initialised with
attribute values of the object instance. The other two operations are more complex as
they perform more drastic modifications to the hierarchy. They correspond to the merge
and split operator which are detailed in the following Sections.

6.2.3.1 Merge Operator

The merge operator consists in merging two state concepts Sp and Sq into one state SM ,
while Sp and Sq become the children of SM , and the parent of Sp and Sq becomes the
parent SM , as depicted in Figure 6.8.

0S

S4

S1

S2

3S

S3.1 S3.2

SM

0S

S4S1 S2 3S

S3.1 S3.2

Merge

Figure 6.8: Merging states and events in MILES algorithm. Blue boxes represent the
states to be merged, and the green box represents the resulting merged state. Red dashed
lines represent events, while the green dashed lines are the new events appearing from the
merging process.
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In order to generate the state SM several considerations must be made:

• The number N(SM) of instances represented in SM , will correspond to the
summation of the number of instances represented by Sp and Sq. The probability
P(SM) for the new state SM will then be the number of instances N(SM), over the
number of represented instances by the parent of SM .

• The number NE(SM) of event occurrences starting from SM will correspond to the
summation of the number of event occurrences N(E) of all event E having as a
starting state Sa the state Sp, or Sq, and as an ending state Sb a state not having a
kinship relation with SM (see Definition 6.4).

• Each numerical attribute nM for SM can be updated using the Equations (6.14),
and (6.15) for mean and standard deviation of nM , respectively.

µnM
=

Sumnp
·µnp

+ Sumnq
·µnq

Sumnp
+ Sumnq

, (6.14)

σnM
=

√

Sumnp
· ((µnM

− µnp
)2 + σ2

np
) + Sumnq

· ((µnM
− µnq

)2 + σ2
nq

)

Sumnp
+ Sumnq

, (6.15)

where Sumnp
and Sumnq

correspond to the reliability values accumulation of
attribute n for merging states Sp and Sq, respectively, as previously defined in
Equation (6.7). Then, the values for µnM

and σ2
nM

correspond to the mean between
µn and σ2

n for states Sp and Sq, weighted by the reliability values accumulation
Sumn for numerical attribute n. The value of σnM

is also adjusted for considering
the drift between the new mean µnM

, and the mean values µnp
and µnq

.

• Each symbolic attribute sM for SM can be updated using the Equation (6.16), for
the conditional probability P(sM)(j), for the j-th value of the symbolic attribute
sM .

P(sM = V (j)
sM
|SM)[i] =

Sum
(j)
Vsp

+ Sum
(j)
Vsq

Sumsp
+ Sumsq

, (6.16)

where Sum
(j)
Vsp

and Sum
(j)
Vsq

correspond to the reliability values accumulation of

the j-th value for symbolic attribute s for merging states Sp and Sq, respectively,
as previously defined in Equation (6.10). In the same way, Sumsp

and Sumsq

correspond to the overall reliability values accumulation for symbolic attribute
s for merging states Sp and Sq, respectively, as previously defined in Equation
(6.11). Then, conditional probability Equation (6.16) corresponds to the total

accumulated reliability for value V
(j)
sM of the symbolic attribute sM , over the overall

total accumulated reliability for the symbolic attribute sM .

The last task for the merging operator is to represent the events incoming and leaving
states Sp and Sq, corresponding to the green dashed lines in Figure 6.8, by generating new
events which generalise the transitions as the events incoming and leaving the state SM .
For the incoming events to these states the event merge process is described as follows:
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• If a state Sn is the starting state for an event En→x arriving to only one state Sx of
the merging states Sp and Sq (as event ES2→S3 between states S2 and S3 in Figure
6.8), a new event En→M between states Sn and SM must be generated with the same
information as event En→x, except for the arriving state that becomes the state SM .

• If a state Sn is the starting state for the events En→p and En→q arriving to both
states Sp and Sq (as events ES4→S1 and ES4→S3 in Figure 6.8), a new event En→M

between states Sn and SM must be generated as follows:

– The number of occurrences N(En→M) will be the sum between the event
occurrences N(En→p) and N(En→q).

– The probability of occurrence P(En→M) will be the number of occurrences
N(En→M), over the number of event occurrences NE(Sn) for the starting state
Sn.

– The starting and ending states will be the states Sn and SM , respectively.

– The mean value µ
(En→M )
TSn

and the standard deviation σ
(En→M )
TSn

of the time TSn

staying in the starting state Sn for the new event En→M are determined using
Equations (6.17), and (6.18), respectively.

µ
T

(En→M )

Sn

=
P(En→p)·µT

(En→p)

Sn

+ P(En→q)·µT
(En→q)

Sn

P(En→p) + P(En→q)
, (6.17)

σ
T

(En→M )

Sn

=

√

√

√

√

P(En→p)·σ2

T
(En→p)

Sn

+ P(En→q)·σT
(En→q)

Sn

P(En→p) + P(En→q)
, (6.18)

Merging events leaving the states Sp and Sq is the hardest task for the merging
operator, as the staying time at the new starting state Sm must be represented based
on the information provided by the events starting from its children states Sp and Sq.
The problem is that the time of the starting event SM can not be absolutely certain,
because the children states Sp and Sq can perform several state transitions between them,
before performing a state transition to a state which does not have a kinship relation with
SM (see Definition 6.4). This problem is also depicted in Figure 6.8, where events exist
in both directions for merging states S1 and S3, generating a loop between the states.

Taking this problem into consideration and considering an arriving state Sn, for the events
leaving the states Sp and Sq, the event merge process is described as follows:

• The number of occurrences N(EM→n) will be the sum between the event occurrences
N(Ep→n) and N(Eq→n).

• The probability of occurrence P(EM→n) will be the number of occurrences
N(EM→n), over the number of event occurrences NE(SM) for the starting state
SM .
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SM

SA BS

Sn

p
AB

p
BA

p
Bn

Figure 6.9: Simplified scheme of the problem of estimation of the parameters for the

time of permanence in the starting state of an event T
(EM→n)
SM

, for an event occurring
between the merge result state SM and a state Sn not having a kinship relation with
SM (see Definition 6.4). Red dashed lines represent events, while the green dashed line
corresponds to the new event appearing from the merging process. Notice that a loop of
events is occurring between the children states SA and SB of the state SM .

• The starting and ending states will be the states SM and Sn, respectively.

• As previously described, the mean value µ
(EM→n)
TSM

and the standard deviation σ
(EM→n)
TSM

of the time TSM
staying in the starting state SM for the new event EM→n must

consider the different possibilities of time spent in transitions between the children
states Sp and Sq before leaving to the state Sn. These inner transitions can be even
infinite, when the children states form a loop, as depicted in Figure 6.9.

Consider that SB is a child state of SM with non-zero transition probability
P(EB→n), and state SA is the other child state of SM , as in Figure 6.9. For
simplicity, also consider the probabilities PAB = P(EA→B), PBA = P(EB→A),
and PBn = P(EB→n), the mean values of staying state time µAB = µ

T
(EA→B)

SA

,

µBA = µ
T

(EB→A)

SB

, and µBn = µ
T

(EB→n)

SB

, and the standard deviations of staying state

time σAB = σ
T

(EA→B)

SA

, σBA = σ
T

(EB→A)

SB

, and σBn = σ
T

(EB→n)

SB

.

In order to solve this problem, only an approximation to µ
(EM→n)
TSM

and σ
(EM→n)
TSM

can be obtained. Hence, these approximations are defined at Equations (6.19), and
(6.25), for the approximations µ

τ
(EM→n)

SM

and σ
τ
(EM→n)

SM

of the mean value and the
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standard deviation, respectively.

µ
τ
(EM→n)

SM

(SA, SB) =
ΛA + ΛB

∆A + ∆B

, (6.19)

with
ΛA = P(SA)·

∑

i∈Ω

P i+1
AB · P i

BA· (i·µBA + (i + 1)·µAB + µBn), (6.20)

ΛB = P(SB)·
∑

i∈Ψ

P i
AB· P i

BA· (i· (µBA + µAB) + µBn), (6.21)

∆B = P(SB)·
∑

i∈Ψ

P i
AB· P i

BA, (6.22)

and
∆A = P(SA)·

∑

i∈Ω

P i+1
AB · P i

BA, (6.23)

where set Ψ = {i ∈ N | P i
AB· P i

BA ≥ Pmin} and set Ω = {i ∈ N | P i+1
AB · P i

BA ≥ Pmin},
with Pmin is a pre-defined minimal conditional probability threshold.

The function ΛA represents the accumulated mean time of different sequences
of state transitions between states SA and SB, starting from state SA, until the
final transition to the state Sn. Each sequence of state transitions is weighted by
the conditional probability P(SA)· P i+1

AB · P i
BA, which represents the probability of

starting from state SA, next to perform i loops between states SA and SB, and
finally arriving to SB to perform the transition to the state Sn. The set Ω limits
the inclusion of accumulated mean time values to a minimal pre-defined value Pmin

for the afore mentioned conditional probability.

In the same way, the function ΛB represents the accumulated mean time of different
sequences of state transitions between states SA and SB, but this time starting
from state SB, until the final transition to the state Sn. Similarly, each sequence of
state transitions is weighted by the conditional probability P(SB)· P i

AB· P i
BA, which

represents the probability of starting from state SB, and next to perform i loops
between states SA and SB, to finally perform the transition to the state Sn. The set
Ψ limits the inclusion of accumulated mean time values to the same minimal Pmin

for this conditional probability.

Functions ∆A and ∆B are used in the mean time Equation (6.19) to accumulate the
considered conditional probabilities starting from SA and SB respectively. These
functions are utilised for normalising the weighted sums ΛA and ΛB.

Then, in order to obtain the estimation of the mean value µ
(EM→n)
TSM

of the time

TSM
, the Equation (6.24) can be utilised.

µ
(EM→n)
TSM

=
P(EB→n)·µ

τ
(EM→n)

SM

(SA, SB) + P(EA→n)·µ
τ
(EM→n)

SM

(SB, SA)

P(EB→n) + P(EA→n)
. (6.24)
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This equation calculates the mean value µ
(EM→n)
TSM

as the weighted mean of the

estimators µ
τ
(EM→n)

SM

, considering rather than the child SA is the state which generates

the outgoing event to the state Sn and the child SB is considered as the other child,
or vice-versa. The weights correspond to the probabilities of transition from the
children states SA and SB, to the state Sn.

Notice that if the event between the states SA and Sn does not exist (P(EA→n) = 0),

the Equation (6.24) simplifies to µ
(EM→n)
TSM

= µ
τ
(EM→n)

SM

(SA, SB). In the same way, if

the event between the states SB and Sn does not exist (P(EB→n) = 0), the Equation

then simplifies to µ
(EM→n)
TSM

= µ
τ
(EM→n)

SM

(SB, SA).

For the standard deviation the idea is similar, as defined in Equation 6.25.

σ
τ
(EM→n)

SM

(SA, SB) =

√

ΓA + ΓB

∆A + ∆B

, (6.25)

with

ΓA = P(SA)·
∑

i∈Ω

P i+1
AB · P i

BA·
i2·σ2

BA + (i + 1)2·σ2
AB + σ2

Bn

2· (i· (i + 1) + 1)
(6.26)

and

ΓB = P(SB)·
∑

i∈Ψ

P i
AB· P i

BA·
i2· (σ2

BA + σ2
AB) + σ2

Bn

2· i2 + 1
(6.27)

Similar to the function ΛA, the function ΓA represents the weighted standard
deviation summation of the SM staying time for different sequences of state
transitions between states SA and SB, starting from state SA, until the final
transition to the state Sn. Each sequence of state transitions is weighted by the
conditional probability P(SA)· P i+1

AB · P i
BA as in function ΛA, and limited by the set

Ω in the same way.

Similar now to the function ΛB, the function ΓB represents the weighted standard
deviation summation for different sequences of state transitions between states
SA and SB, now starting from state SB, until the final transition to the state
Sn. Each sequence of state transitions is weighted by the conditional probability
P(SA)· P i+1

AB · P i
BA as in function ΛB, and limited by the set Ψ in the same way.

As with the mean time function in the Equation (6.19), functions ∆A and ∆B are
used by the standard deviation function of time in Equation (6.25) to accumulate
the considered conditional probabilities starting from SA and SB, respectively, and
utilised for normalising the weighted sums ΓA and ΓB.

Then, in the same way as Equation (6.24), in order to obtain the estimation of the
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standard deviation σ
(EM→n)
TSM

of the time TSM
, the Equation (6.28) can be utilised.

σ
(EM→n)
TSM

=

√

√

√

√

P(EB→n)·σ2

τ
(EM→n)

SM

(SA, SB) + P(EA→n)·σ2

τ
(EM→n)

SM

(SB, SA)

P(EB→n) + P(EA→n)
. (6.28)

This equation calculates the standard deviation σ
(EM→n)
TSM

as the weighted mean of

the estimators σ
τ
(EM→n)

SM

, in the same way as Equation (6.24).

Functions ΛA, ΛB, ΓA, ΓB, ∆A, and ∆B where built to represent the hardest situation
where states SA and SB form an event loop, as depicted in Figure 6.9. These functions
can be extremely simplified in more simple cases where the event loop is broken. If there
is no event defined from the state SB to the SA, the functions simplify to:

ΛA = P(SA)· PAB· (µAB + µBn),

ΛB = P(SB)·µBn,

ΓA = P(SA)· PAB· (σ2
AB + σ2

Bn),

ΓB = P(SB)·σ2
Bn,

∆A = P(SA)· PAB,

∆B = P(SB)

(6.29)

If there is no event defined from the state SA to the SB, the functions then simplify to:

ΛA = 0,

ΛB = P(SB)·µBn,

ΓA = 0,

ΓB = P(SB)·σ2
Bn,

∆A = 0,

∆B = P(SB)

(6.30)

Then, considering these simplifications, the Equations (6.24) and (6.28) reduce to
µ

τ
(EM→n)

SM

= µBn and σ
τ
(EM→n)

SM

= σBn, respectively.

The approximated solution proposed for the events starting at state SM is based on
two assumptions. The first assumption is to consider that the time of permanence in the
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state SM , TSM
∼ N (µ

(EM→n)
TSM

, σ
(EM→n)
TSM

) follows a Gaussian distribution. This assumption

had been already considered for the definition of an event, in Section 6.1.1.

The second assumption is that the considered time variables TS to combine are
independent. This is a verifiable assumption, as two variables TSc

and TSd
in the hierarchy

of states concepts are dependent only if the states Sc and Sd have a kinship relation
between them (see Definition 6.4), but a state transition never happens between states
with a kinship relation.

These assumptions allow to calculate the mean and variance for TSM
as a linear

combination of the mean and variance of other states or sequences of states, as the
properties of the weighted sum of independent variables following a Gaussian distribution
allow.

6.2.3.2 Split Operator

The split operator consists in replacing a state S with its children, as depicted in Figure
6.10. This process implies to suppress the state concept S together with all the events in
which the state is involved. Then, the children of the state S must be included as children
of the parent state of S.

The split process corresponds to the inverse process of the merge operator. However,

0S

S3.1 S3.2 S3.3S1.2S1.1

S2 3SS1

0S

S3.1 S3.2 S3.3

S1.2S1.1

S2S1
Split

Figure 6.10: Split operator in MILES algorithm. The blue box represents the state to
be split. Red dashed lines represent events. Notice that the split operator suppresses
the state S3 and its arriving and leaving events, and ascends the children of S3 in the
hierarchy.

the process involved in the split process is much more simple than the process for the
merge operator. The reason for this difference in complexity is that the merge operator
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has to create a state, events, and estimate parameters, while the split operator has just
to destroy the proper elements. It is clear that it is always easier to destroy than to build.

6.2.4 Illustration of the Incremental Event Learning Algorithm

In order to better understand the learning process of the proposed algorithm for
incremental event learning, an illustration example is presented in this section. The
example consists in ten persons evolving in a metro scene, starting at different positions
and time instants. A top view of the scene is depicted in Figure 6.11. The evolution of
the persons in the scene is represented by ten hand-crafted trajectories (T0 - T9) of eight
coordinate points (x,y) in the ground plane of the scene.

The scene consists of three Access/Exit zones (referenced in the Figure 6.11 as A,
C and D), and a zone with a ticket vending machine, represented as a red box in Figure
6.11. The ten persons evolve in the scene over 13 time instants, as depicted in Table 6.1.

The idea is to utilise the (x,y) person positions presented in Table 6.1 as input of

Time Instant

ID 1 2 3 4 5 6 7 8 9 10 11 12 13

T0 (104,922) (180,794) (213,712) (260,614) (305,477) (348,360) (385,238) (397,105)

T1 (77,916) (146,782) (181,707) (226,604) (275,470) (322,358) (354,231) (363,99)

T2 (407,74) (552,173) (705,298) (702,293) (703,295) (649,411) (691,594) (880,681)

T3 (412,83) (520,138) (608,199) (680,296) (689,290) (702,293) (730,480) (872,659)

T4 (396,98) (365,258) (327,377) (289,488) (244,608) (202,721) (192,792) (98,912)

T5 (389,84) (442,154) (516,273) (553,388) (601,472) (648,590) (703,635) (881,676)

T6 (872,698) (699,651) (593,608) (553,490) (501,407) (459,302) (438,174) (382,103)

T7 (102,918) (193,790) (216,707) (272,613) (313,475) (352,351) (391,241) (401,115)

T8 (415,101) (553,183) (702,298) (704,293) (705,295) (690,350) (691,523) (875,691)

T9 (870,701) (702,654) (594,607) (561,492) (515,404) (465,297) (436,169) (387,104)

Table 6.1: Ground-plane position (x,y) in the scene of the persons evolving in the scene of
the illustration example. Positions are in centimetres. Blank spaces denote the absence
of the person in the scene at the corresponding time instant.

the proposed event learning approach. Then, the evolution of the hierarchy of states and
events in time can be analysed to understand the event learning process, and the relations
between the obtained states and events and the trajectories of the persons can be studied
to understand how the hierarchical representation represents the situations occurring in
this scene.
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Figure 6.11: Top view of the metro scene illustration example. The plane (x,y)
corresponds to the coordinates of the ground plane of the scene. The ten hand-crafted
trajectories (T0 - T9) are displayed. The zones A, C, and D correspond to Access/Exit
zones, while zone B corresponds to a ticket vending machine zone (where the vending
machine is represented as a red box).

More formally, the learning context utilised by the event learning approach is described
below:

Learning Context Position {
Involved Objects: Person
Attributes:

Numerical x : 200 [cm]
Numerical y : 200 [cm]

}

Note that the acuity value for the position attributes x and y has been fixed as 200
centimetres. This high value is intentionally high to control the size of the resulting
hierarchy and allow its analysis. Next section describes how the learning process
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constructs the hierarchy of states and events from the ground-plane position of the persons
in the scene.

6.2.4.1 Incremental Event Learning Process

In order to understand the evolution of the hierarchy of states and events upon the arrival
of new instances, the learning process is analysed at different time instants, explaining
how the instances have influenced the creation, update, or deletion of the states and events
of the hierarchy.

• Learning up to Time instant 1:

At this instant two persons (represented by T0 and T1) arrive from the access
zone D and two other persons (represented by T2 and T3) arrive from the access
zone A.

This situation is represented by two different states of the hierarchy, as depicted
in Figure 6.12, because the person positions entering at the two different zones were
similar enough to be represented in the same state concept. The positions of persons
T0 and T1 are then represented by the State 1, while the positions of persons T2
and T3 are represented by the State 2.

Figure 6.13(a) shows a top view of the scene where these the two new states

Figure 6.12: Hierarchy of states and events obtained for instant 1. No events have occurred
yet.

are represented. Figure 6.13(b) depicts the maximal marginal probability for each
point in the scene, given the current two states of the hierarchy.
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Figure 6.13: Graphical representation of the states and events hierarchy associated to
the position learning context, at instant 1. Figure (a) shows the position of the terminal
states in a top view scene. The oval surrounding the mean position of the state concept
represents the standard deviation of this position. The blue colour represents a state in
the first level of the hierarchy. Figure (b) depicts the maximal marginal probability of a
state of the hierarchy for a given position. A darker colour represents a higher probability.

• Learning up to Time instant 3:

The evolution of the hierarchy of states and events until this instant is depicted
in Figure 6.14.

At previous instant 2, two new persons (T4 and T5) have arrived from access
zone A. This situation has reinforced the probability of the State 2.

At the current instant 3, person T4 starts walking in the direction of the exit zone
D, while person T5 goes in the direction of exit zone C. The position of persons T4
and T5 is not different enough yet to generate a new state. Then the probability of
the State 2 is still reinforced.

The two persons represented by T0 and T1 walk in the direction of the exit zone
A, but their position is similar enough to the position represented in the State 1,
reinforcing its probability. Also, another person (T7) arrives from the access zone
D, reinforcing the probability of the State 1 even more.
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P = 1.0
N = 2

 = 1.5T

Figure 6.14: Hierarchy of states and events obtained up to instant 3. Events are coloured
in red.
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The persons T2 and T3 walk to the ticket vending machine B. Now, the position of
these persons is different enough to the position represented by the State 2, to induce
the creation of two children states of State 2, one state (State 3) representing the
position near the access zone A, and the other representing the new created State
4 near the ticket vending machine zone B. The new positions of persons T2 and T3
have also induced a change of state, represented by the first event in the hierarchy
between States 3 and 4. This event is depicted in Figure 6.14, and graphically
represented by an arrow between States 3 and 4, in Figure6.15(a).

Note in Figure 6.15(b) that the new created state does not have a strong probability,
compared with the other states of the hierarchy.
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Figure 6.15: Graphical representation of the states and events hierarchy associated to
the position learning context, up to instant 3. Figure (a) shows the position of the
terminal states and the events occurring between these states (represented as arrows with
a transition probability) in a top view of the scene. The blue colour represents a state
in the first level of the hierarchy, while the magenta colour a state on the second level.
Figure (b) depicts the maximal marginal probability of a state of the hierarchy for a given
position. A darker colour represents a higher probability.
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• Learning up to Time instant 4:

The evolution of the hierarchy of states and events until the instant 4 is depicted in
Figure 6.16. From now and for simplicity, the attention in the analysis is focused
on the person positions generating new states or events.

At this instant, persons T0 and T1 have advanced enough from access zone D
to induce the creation of two children from State 1 (States 5 and 6), inducing also
an event between these new states.

In the same way, person T4 becomes far enough from the position represented
by State 3, to induce the creation of States 7 and 8, and an event between them.
The new position of the person T5 at the current instant reinforces the probability
of occurrence of the event between States 7 and 8.

As State 7 represents the information of State 3 until the time instant before the
introduction of the new States 7 and 8, the State 7 also contains the event transitions
information inherited from State 3, and now considering the new event induced by
person T4 and reinforced by person T5, the outgoing events from state 7 share an
equal probability of occurrence of 0.5, as depicted in Figure 6.17(a).

Also at this time instant, the person T6 arrives to the scene from the access
zone C, inducing the creation of two new States 9 and 10, children of State 4.

Note in Figure 6.16 that a state transition induces the creation and update of the
states at all levels where there is no a kinship relation (see Section 6.2.2) between
them, as is the case for the events between States 7 and 9, and States 7 and 4.

Note also in Figure 6.17(b) that the probability near the ticket vending machine
B is gaining strength as persons T2 and T3 stay near the vending machine.
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Figure 6.16: Hierarchy of states and events obtained up to instant 4. Events are coloured
in red.
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Figure 6.17: Graphical representation of the states and events hierarchy associated to the
position learning context, at instant 4. Figure (a) shows the position of the terminal states
and the events occurring between these states in a top view of the scene. The magenta
colour represents a state in the second level of the hierarchy, while the cyan colour a state
on the third level. Figure (b) depicts the maximal marginal probability of a state of the
hierarchy for a given position. A darker colour represents a higher probability.

• Learning up to Time instant 5:

At this time instant, the new position of person T4 produces an adjustment of
the position of State 8, while the new position of person T5 induces the creation of
a new event between States 8 and 9, as depicted in Figure 6.18(a). Person T5 walks
in the direction of exit zone C, then the transition between States 8 and 9 seems
imprecise, but this is one of the costs of considering a coarse value for the acuity of
position attributes x and y.

Also, the person T9 arrives to the scene from the access zone C, reinforcing the
probability of State 10.

Note in Figure 6.18(b) that the permanence of persons T2 and T3 at the vending
machine zone B has reinforced the probability of the State S9 near this zone. Also
note that the reposition of State 8, induced by person T4, has also reinforced the
probability of occurrence of the State 8.
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Figure 6.18: Graphical representation of the states and events hierarchy associated to the
position learning context, at instant 5. Figure (a) shows the position of the terminal states
and the events occurring between these states in a top view of the scene. The magenta
colour represents a state in the second level of the hierarchy, while the cyan colour a state
on the third level. Figure (b) depicts the maximal marginal probability of a state of the
hierarchy for a given position. A darker colour represents a higher probability.

• Learning up to Time instant 6:

The evolution of the hierarchy of states and events until the instant 6 is depicted
in Figure 6.19. This figure shows the level of complexity that can be managed
with this representation. At this time instant several events have been induced and
reinforced.

The new position of person T6 has induced the creation of two children States
11 and 12, from State 10, and has also induced an event between these new states.

At this time instant, the last person T8 enters to the scene from access zone A.
Figure 6.20(a) shows the new events induced by the position of persons T4 (between
States 8 and 6), and T6 (between States 11 and 12).

Figure 6.20(b) shows the reinforcement of the probability of State 9 by persons
T2, T3 and T5.
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Figure 6.19: Hierarchy of states and events obtained up to instant 6. State graphical
representation have been reduced for simplicity. Events are coloured in red.
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Figure 6.20: Graphical representation of the states and events hierarchy associated to the
position learning context, at instant 6. Figure (a) shows the position of the terminal states
and the events occurring between these states in a top view of the scene. The magenta
colour represents a state in the second level of the hierarchy, the cyan colour a state on
the third level, and the yellow colour a state on the fourth level. Figure (b) depicts the
maximal marginal probability of a state of the hierarchy for a given position. A darker
colour represents a higher probability.

• Learning up to Time instant 7:

At this time instant, the hierarchy of states and concepts has arrived to a stable
number of states.

The new position of person T6 induces a new event between States 12 and 9. At
the same time, the position of person T2 induces a new event between States 9 and
12 (in that order), as depicted in Figure 6.21(a).

Figure 6.21(b) shows that even the probability map has arrived to a quite stable
state, where only slight differences can be observed.

From this time instant and until the end of the illustration example, the hierarchy
tree structure is very stable, only showing some new events and updates in the
probability of the states.

• Learning up to Final time instant 13:
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Figure 6.21: Graphical representation of the states and events hierarchy associated to the
position learning context, at instant 7. Figure (a) shows the position of the terminal states
and the events occurring between these states in a top view of the scene. The magenta
colour represents a state in the second level of the hierarchy, the cyan colour a state on
the third level, and the yellow colour a state on the fourth level. Figure (b) depicts the
maximal marginal probability of a state of the hierarchy for a given position. A darker
colour represents a higher probability.

The final result for the hierarchy of states and events of this illustration example at
the instant 13 is depicted in Figure 6.22. This figure shows that the hierarchy has
arrived to a stable state since time instant 6.

In Figure 6.23 only slight differences can be observed, with some few new events
and slight modifications in the probability map.

6.2.4.2 Summary

This illustration has served to show the incremental nature of the proposed event learning
approach.

The hierarchy of states and events has shown a consistent behaviour on representing
the frequency of states and events induced by the persons of the illustration example.
The representation has converged to a stable number of states at time instant 6. Figure
6.24 shows the evolution of the number of states and events over the complete learning
process.
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Figure 6.22: Final hierarchy of states and events obtained up to instant 13. For simplicity,
only events between terminal states are displayed.
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Figure 6.23: Final graphical representation of the states and events hierarchy associated
to the position learning context, at instant 13. Figure (a) shows the position of the
terminal states and the events occurring between these states in a top view of the scene.
The magenta colour represents a state in the second level of the hierarchy, the cyan colour
a state on the third level, and the yellow colour a state on the fourth level. Figure (b)
depicts the maximal marginal probability of a state of the hierarchy for a given position.
A darker colour represents a higher probability.

Note that the number of events grows far quicker than the number of states, as a
single state transition can induce the creation of events in several different levels in the
hierarchy. Nevertheless, both the number states and events show a converging behaviour
on the number of states and events.

6.3 Discussion

The proposed learning approach has been conceived to be able to learn state and event
concepts in a general way. Depending on the availability of tracked object attributes, the
possible combinations for learning contexts is enormous. The attributes already proposed
by the object tracking approach presented in Chapter 5.3 give a sufficient information
to flexibly explore a large variety of scenarios. Anyway, users can always define more
object attributes, by either combining existing attributes or by creating new ones from
new object descriptors.
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Figure 6.24: Evolution of the number of states and events over the complete learning
process in the illustration example.

The incremental nature of the proposed event learning algorithm MILES, allows to obtain
a learning performance that can be utilised in on-line learning for real world applications.
The main contributions of MILES with respect to its predecessors are the following:

• The main contribution of MILES is the utilisation of incremental concept learning
models to learn the states as a hierarchy of concepts and to extend the incremental
concept learning hierarchy to learn the events as first order temporal relations
between the learnt states.

• Another contribution is the way of utilising the concepts of cutoff and acuity.
Before, these concepts were treated as general parameters for an incremental concept
learning algorithm. Now, the acuity is utilised as a way of representing the interest
on an attribute for a given learning context. The cutoff is now defined as a function of
the acuity values and of the symbolic attribute differences for the analysed learning
context.

• Also, the extension to event learning has implied the redefinition of the existing
merge and split hierarchy operators.

• Another important contribution is the consideration of reliability measures
associated to the input data, which are utilised to guide the learning process through
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the most reliable information.

• Finally, the definition of multiple learning contexts allows MILES to simultaneously
learn several hierarchies of state and event concepts.

The proposed event learning approach presents the following limitations:

1. The first limitation is related to the order of instances processed by the learning
approach. From the state of the art on incremental concept formation, it can be
inferred that the distribution of state and event concepts in the generated hierarchy
often depends in certain extent on the processing order of the object state instances.
This means that different hierarchies can be obtained from different ordering of the
same instances. This situation is not a serious issue as the objective of the learning
approach is to build an adequate representation of the states and events occurring
in the scene, not to find a unique optimal representation. Nevertheless, it seems
interesting in the future to analyse the influence of the instance ordering in the
quality of representation.

2. A second limitation can be identified with respect to the capability of the learning
approach to represent relations between objects evolving in the scene. As the
learning approach utilises the information related to each tracked object evolving in
the scene separately, it does not seem inherent to the approach to represent relations
between tracked objects. Nevertheless, the flexibility of the proposed approach
allows the definition of attributes relating different tracked objects. For example, in
a learning context regarding events where an object follows another object evolving
in the scene, it is necessary to verify the speed attribute of the analysed object (an
object following or followed is not stationary), and to define attributes evaluating
the difference in the velocity direction between two objects (objects with similar
direction of movement), the difference in the speed magnitude (objects with similar
speed), and the distance between the objects (the objects should not be that far
between each other).

3. A final limitation is the difficulty on determining the usefulness of the state hierarchy
for the user, as state and event frequency is not equivalent to meaningful or
interesting states and events.

A partial limitation of the approach is the limited capability of the state and event
concept hierarchy on representing interactions between mobile objects, as no explicit way
of representing these interactions is still available. This limitation is just partial because
in most of the cases it is always possible to define mobile object attributes representing
these interactions. For example, the learning context object following object can be defined
with an attribute describing the distance between the objects and attributes describing
the most stable velocity vector difference and distance between a mobile object and the
other mobile objects evolving in the scene, and all these attributes can be calculated
starting from the currently available attributes of the mobile objects.
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The following Chapter 7 presents the evaluation of the complete video understanding
framework, applying different experiments for validating general and specific
functionalities of the approach.





Chapter 7

Evaluation and Results of the
Proposed Approach

In order to evaluate the whole proposed video understanding framework, several
experiments have been developed. The main objectives of these experiments are to
validate the different phases of the video understanding framework, to highlight interesting
characteristics of the approach, and to evaluate the potential of the framework for real
world applications.

The performed experiments consist of:

• An evaluation of the classification algorithm for real world applications. In this
experiment, two videos were tested for a parking lot and a bank locked chamber
application. For more details, refer to Section 7.2.1.

• A comparative performance analysis of the proposed tracking approach, utilising
four benchmark videos publicly accessible1. The tracking approach has been
tested using the evaluation framework proposed in ETISEO project [Nghiem et al.
2007]. ETISEO is a video understanding evaluation project which covers video
understanding applications in real contexts, providing ground truth data for all
the video sequences, created manually including camera calibration information,
evaluation metrics, and automatic evaluation tools. The evaluation of the proposed
tracking approach considers the metric for object tracking proposed in ETISEO.
This experiment is presented in Section 7.2.2.

• Finally, an evaluation of the complete video understanding framework in a real world
application is performed. It consists in analysing video sequences from GERHOME
project for elderly care at home [GERHOME 2005], [Zouba et al. 2007] with several
learning contexts that can be interesting in real world applications. This experiment
has multiple objectives, as evaluating the influence of the utilisation of reliability
measures, the processing time performance of the framework, and the capability of

1Access to ETISEO project videos at http://www-sop.inria.fr/orion/ETISEO/download.htm
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the system of bridging the gap between image processing and event learning tasks
in video understanding. The experiment is detailed in Section 7.2.3.

This chapter is organised as follows. First, Section 7.1 describes the metrics utilised in
the evaluation of the video understanding framework. Second, the different performed
experiments are described in Section 7.2. Finally, Section 7.3 presents a conclusion about
the experiments.

7.1 Evaluation Metrics

Different metrics have been used according to the nature of the experiment.

For the classification algorithm experiment (Section 7.2.1), the utilised metrics are:

• True Positive (TP): It corresponds to the number of objects correctly classified
according to the ground truth.

• False Positive (FP): It corresponds to the number of objects which class does not
correspond to the ground truth.

• False Negative (FN): It corresponds to the number of not classified objects, which
are present in the ground truth.

• Sensitivity: The sensitivity measures the proportion of actual positives which are
correctly identified as such. A sensitivity of 100% means that the test recognizes all
the actual positives as such. Then, this metric is formally defined as:

sensitivity =
TP

TP + FN
(7.1)

• Precision: The precision metric can be seen as a measure of exactness or fidelity.
The precision for a class corresponds to the number of instances correctly labelled as
belonging to the class divided by the total number of elements labelled as belonging
to the class. Then, this metric is formally defined as:

precision =
TP

TP + FP
(7.2)

Note that, when an object is classified with a class different from the ground truth, this
situation is considered as two errors at the same time (one FP and one FN), while not
classifying it at all is considered as just one FN.

For the tracking algorithm experiment (Section 7.2.2), the Tracking Time metric
utilised in ETISEO project for evaluating object tracking has been used. This metric
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measures the ratio of time that an object present in the reference data has been observed
and tracked with a consistent ID over tracking period. The match between a reference
datum RD and a physical object C is done with the bounding box distance D1 and with
the constraint that object ID is constant over the time. The distance value D1 is defined
in the context of ETISEO project as the dice coefficient, as twice the overlapping area
between RD and C, divided by the sum of both the area of RD and C (Equation (7.3) ).

D1 =
2· area(RD ∩ C)

area(RD) + area(C)
(7.3)

This matching process can give as result more than one candidate object C to be associated
to a reference object RD. The chosen C candidate corresponds to the one with the greatest
intersection time interval with the reference object RD. Then the tracking time metric
corresponds to the mean time during which a reference object is well tracked, as defined
in Equation (7.4).

TTracked =
1

NBRefData

∑

RefData

card(RD ∩ C)

card(RD)
, (7.4)

where the function card() corresponds to the cardinality in terms of frames.

For the video understanding framework experiment (Section 7.2.3), the metrics
corresponding to the Number of States NBS and Number of Events NBE of a
hierarchy on a given image frame are utilised, in order to analyse the evolution of the
growth of the hierarchy in time.

Also, the metric of Recognition rate metric is utilised for evaluating the quality of
matching between a recognised state and an instance. This metric is defined in Equation
(7.5).

Pr =
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, (7.5)

where R
(f)
i is the reliability of the value for the attribute i for the instance associated

to a state at the f video frame. P(V
(f)
i |v(f)

i ) is the probability of occurrence of an

instance attribute value V
(f)
i given the model of an attribute v

(f)
i in the associated state, at

video frame f . For numerical attributes this probability follows a Gaussian distribution,
while for symbolic attributes this probability is explicit for each possible value of the
attribute. The recognition rate metric Pr is the summation of the mean of all probabilities
P(V

(f)
i |v(f)

i ) weighted by the reliability R
(f)
i of the instances attribute values Vi for all the

F frames that the object has been associated to the state, divided by this number of
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frames.

Also, the following processing time performance measures are utilised for evaluating
the tracking and learning tasks:

• Tp for mean processing time per frame.

• Fp for mean frame rate.

• σTp
for the standard deviation of the processing time per frame.

• T
(max)
p for the maximal processing time utilised in a frame.

Next Section 7.2 presents the performed experiments in order to validate this thesis
work.

7.2 Performed Experiments

The next sections present the experiments performed to evaluate the proposed video
understanding framework. Section 7.2.1 presents an experiment for evaluating the
capability of the classification algorithm for real world applications. Then, Section 7.2.2
presents a comparative analysis for the proposed tracking approach. Finally, Section 7.2.3
presents an experiment for evaluating the whole video understanding framework.

7.2.1 Classification Algorithm Applications

In this experiment, two types of videos have been tested for evaluating the object
classification approach presented in Chapter 4 in real world applications. The first type
of videos corresponds to a parking sequence where cars and persons interact. Two object
models are used for this sequence. The evaluation objective of this video is to validate the
capability of the approach for coping with the problem of object orientation and relative
position to camera.

The second type of videos corresponds to a lock chamber from a bank camera, with
high 2D change in shape of the detected blobs because of the proximity of persons to the
camera. For these videos, three models representing one person and groups of two and
three persons are defined (the space of the chamber allows a maximum of three persons
at the same moment). The lock chamber video is used to validate the approach capability
to detect objects which highly change in shape, and to differentiate between very similar
classes.

Ten short video sequences of 20 frames have been utilised for each type of videos, giving
a total of 400 analysed frames. The selected sequences consider situations of different
distances between objects and the camera focal point, and different object orientations.
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A computer Intel Pentium IV, Xeon 3000 Mhz, has been used for performing these tests.
For each sequence, the evaluation counts true positives, false positives, and false negatives.

The precision and sensitivity evaluation metrics have been also calculated for these
tests. In Figures 7.1, 7.2, and 7.3, each detected object is enclosed by a 2D bounding box
and by the corresponding 3D parallelepiped. The base of parallelepiped is represented by
blue lines, while projected lines in height h are represented by green lines. 2D bounding
boxes take different colours according to the classified object (person: red, 2 persons:
green, 3 persons: blue, car: brown). Cars in parking sequence that seem not detected are
considered as part of the background of the scene.

7.2.1.1 Results

For the parking sequence, 3D models for persons and cars were pre-defined. The results
for this sequence are shown in Table 7.1 and images of these results are shown in Figures
7.1 and 7.2. Parking results show a very good performance, obtaining a global precision
of 0.98. The encountered errors have been caused by poor segmentation in some frames
because of illumination changes and shadows. The method has been able to discriminate
objects at different orientations and positions relative to the camera. For instance, Figure
7.1(b) shows the same person in two different frames detected as a person, showing the
method capability for coping with different positions relative to the camera.

Figure 7.2(b) shows a very difficult case of person detection, because of its distance to
the camera (left image), is successfully detected in the classification task (right image).
Figures 7.1(c) and 7.1(d) show the capability of the method for coping with different
positions and orientations of cars and for coping with more than one object class at the
same frame.

For the bank locked chamber sequence, models for one, two and three persons have

Name Description TP FP FN Precision Sensitivity
Borel 1 1 car parking right 20 0 0 1.0 1.0
Borel 2 1 person to bottom 20 0 0 1.0 1.0
Borel 3 1 car going far 20 0 0 1.0 1.0
Borel 4 1 car parking left 20 3 0 0.86 1.0
Borel 5 1 car and 1 person 39 3 1 0.93 0.98
Borel 6 2 cars 40 0 0 1.0 1.0
Borel 7 2 persons bottom 40 0 0 1.0 1.0
Borel 8 1 person very far 20 0 0 1.0 1.0
Borel 9 2 persons walking 40 0 0 1.0 1.0
Borel 10 2 cars very near 40 0 0 1.0 1.0

Mean Values 29.9 0.6 0.1 0.98 0.99

Table 7.1: Obtained classification results for parking video.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Results for different frames of the parking video. Figures (b) and (e)
correspond to zoomed versions of captured frames. Parked vehicles are considered as
background.
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(a) (b)

(c) (d)

Figure 7.2: More results for different frames of the parking video. Figure (b) corresponds
to a zoomed version of the captured frame. Parked vehicles are considered as background.



196 Chapter 7. Evaluation and Results of the Proposed Approach

been defined, where the model of one person is identical to the person model used in the
parking video. The results for the bank locked chamber sequence are shown in Table 7.2
and images of these results are shown in Figure 7.3.

Locked chamber results show a very good performance, obtaining a global precision
of 0.95. The encountered errors have been principally caused by the proximity between
pre-defined models. The obtained results for some sequences are sometimes very similar
with the next class (one person similar with two persons, or two persons similar with three)
because of some postures and configurations of persons, that lead to some misclassification.
However, in terms of results, the method shows the different configurations with similar
likelihood that could occur, which could be a beneficial situation for other purposes.

Table 7.3 shows the confusion matrix of the classification results for bank locked chamber

Name Description TP FP FN Precision Sensitivity
Sas 1 1 p. with folder 20 0 0 1.0 1.0
Sas 2 1 mean height p. 20 0 0 1.0 1.0
Sas 3 1 tall p. 17 3 3 0.85 0.85
Sas 4 2 p. semi-ext. arms 20 0 0 1.0 1.0
Sas 5 2 p. not aligned 18 2 2 0.90 0.90
Sas 6 2 p. aligned 20 0 0 1.0 1.0
Sas 7 2 p. extended arms 15 5 5 0.75 0.75
Sas 8 3 p. 1 20 0 0 1.0 1.0
Sas 9 3 p. 2 19 1 1 0.95 0.95
Sas 10 3 p. 3 20 0 0 1.0 1.0

Mean Values 18.9 1.1 1.1 0.95 0.95

Table 7.2: Obtained classification results for bank locked chamber video.

application. Each row represents ground truth and each column represents the detected
object. Notice that committed errors were always associated with the detection of more
or less one person, compared with the real number of persons.

Another application for the bank locked chamber sequence consists in generating alarms

1p 2p 3p
1p 57 3 0
2p 0 73 7
3p 0 1 59

Table 7.3: Confusion matrix for classification results for bank locked chamber video,
considering objects one-person (1p), two-persons (2p) and three-persons (3p).

if more than one person is at the same time in the locked chamber. In this case, a TP
corresponds to the detection of more than one person when more than one person is
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

Figure 7.3: Results for different frames of the bank locked chamber video. Ten frames for
the selected sequences are shown. Figures (a), (c), and (d) show examples of classification
for the three different classes. Figure (b) shows the case of a tall person, who has been
sometimes misclassified as two persons. The bounding box of one person is coloured in
red, of two persons in green, and of three persons in blue.
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present on the scene, a TN corresponds to the detection of one or zero person when one
or zero person is in the scene, a FP corresponds to the detection of more than one person
when one or zero persons are present in the scene, and FN corresponds to the detection
of one or zero person when more than one person is in the scene. Here, 140 TP, 57 TN,
3 FP and 0 FN were found, giving a precision of 0.98 and a sensitivity of 1.

7.2.1.2 Experiment Conclusion

This experiment has shown good results in object classification, with high success rate
for both analysed videos. The proposed approach has been able to cope mainly with
the problems of object position relative to the camera position, object orientation and
dimensional deformation caused by camera proximity, with high classification rates.

The analysis of the results obtained in the locked-chamber video in the bank application
shows that the classification method is able to discriminate even between very similar
object models, with very low error rate.

7.2.2 Comparative Analysis of the Object Tracking Algorithm

The objective of this experiment is to evaluate the performance of the proposed tracking
approach, presented in Chapter 5. For this purpose four benchmark videos publicly
accessible have been evaluated. These videos are part of the evaluation framework
proposed in ETISEO project [Nghiem et al. 2007]. The obtained results have been
compared with other algorithms which have participated in the ETISEO project.

From the available videos of the ETISEO project, the four chosen videos are:

• AP-11-C4: Airport video of an apron (AP) with one person and four vehicles
evolving in the scene over 804 frames (Figure 7.4(a)).

• AP-11-C7: Airport video of an apron (AP) with five vehicles evolving in the scene
over 804 frames (Figure 7.4(b)).

• RD-6-C7: Video of a road (RD) with approximately 10 persons and 15 vehicles
evolving in the scene over 1200 frames (Figure 7.4(c)).

• BE-19-C1: Video of a building entrance (BE) with three persons and one vehicle
over 1025 frames (Figure 7.4(d)).

The tests were performed with a computer with processor Intel Xeon CPU 3.00 GHz, with
2 Giga Bytes of memory. For obtaining the 3D model information, two parallelepiped
models have been pre-defined for person and vehicle classes. The precision on 3D
parallelepiped height values to search the classification solutions has been fixed in 0.08[m],
while the precision on orientation angle has been fixed in π/40[rad].
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(a) (b)

(c) (d)

Figure 7.4: Benchmark videos utilised for the evaluation of the proposed object tracking
approach. Figures (a) and (b) correspond to apron videos. Figure (c) shows a road video.
Figure (d) shows a building entrance video.

7.2.2.1 Results

The Tracking Time metric TTracked and the processing time metrics Tp, Fp, σTp
, T

(min)
p ,

and T
(max)
p (defined in Section 7.1) have been utilised for this experiment.

In terms of the Tracking Time metric, the results are summarised in Figure 7.5. The
results are very competitive with respect to the other tracking approaches. Over 15
tracking results, the proposed approach has the second best result on the apron videos,
and the third best result for the road video. The worst result for the proposed tracking
approach has been obtained for the building entrance video, with a fifth position. For
understanding these results it is worthy to analyse the videos separately:

• AP-11-C4: For the first apron video, a Time Tracking metric value of 0.68 has
been obtained. According to the appearance of the obtained results, it seemed that
the metric value would be higher, as apparently no track has been lost over the
analysis of the video. The metric value could have been affected by parts of the
video where tracked objects become totally occluded until the end of the sequence.
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Figure 7.5: Summary of results for the Tracking Time metric TTracked for the four analysed
videos. The labels at the horizontal axis represent the identifiers for anonymous research
groups participating to the evaluation, except for the MZ label, which represents the
proposed tracking approach. Horizontal lines at the level of the obtained results for
the proposed approach have been added to help in the comparison of results with other
research groups.

In this case, the tracking approach discarded these paths after certain number of
frames. Results of the tracking process for this video are shown in Figure 7.6.

• AP-11-C7: For the second apron video, a Time Tracking metric value of 0.65 has
been obtained. Similarly to the first video sequence, a higher metric value was
expected, as apparently no track had been lost over the analysis of the video. The
metric value could have been affected by the same reasons of video AP-11-C4.
Results of the tracking process for this video are shown in Figure 7.7.

• RD-6-C7: For the road video, a Time Tracking metric value of 0.50 has been
obtained. This video was hard compared with the apron videos. The main
difficulties of this video were the total static occlusion situations at the bottom
of the scene. At this position in the scene, the objects were often lost, because
they were poorly segmented and when the static occlusion situation occurred no
enough reliable information was available to keep their track until they reappear
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Figure 7.6: Tracking results for the apron video AP-11-C4. A green bounding box
bounding an object means that the currently associated blob has been classified, while a
red one means that the blob has not been classified. The white bounding box bounding
a mobile corresponds to its 2D representation, while yellow lines correspond to its 3D
parallelepiped representation. Red lines following the mobiles correspond to the 3D central
points of the parallelepiped base found during the tracking process for the object. In the
same way, blue lines following the mobiles correspond to the 2D representation centroids
found.
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Figure 7.7: Tracking results for the apron video AP-11-C7. A green bounding box
bounding an object means that the currently associated blob has been classified, while a
red one means that the blob has not been classified. The white bounding box bounding
a mobile corresponds to its 2D representation, while yellow lines correspond to its 3D
parallelepiped representation. Red lines following the mobiles correspond to the 3D central
points of the parallelepiped base found during the tracking process for the object. In the
same way, blue lines following the mobiles correspond to the 2D representation centroids
found.
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in the scene. Nevertheless, several objects were appropriately tracked and even the
lost objects by static occlusion were correctly tracked after the problem, showing a
correct overall behaviour of the tracking approach. Results of the tracking process
for this video are shown in Figure 7.8.

• BE-19-C1: For the building entrance video, a Time Tracking metric value of
0.26 has been obtained. This video was the hardest of the four analysed videos,
as presented dynamic occlusion situations and poor segmentation of the persons
evolving in the scene. Results of the tracking process for this video are shown in
Figure 7.9. As only four mobiles were evolving in the scene, a tracking error affected
drastically the value of the Time Tracking metric. Moreover, several tracking errors
have occurred analysing this video scene:

– First, a person descending from the vehicle was not detected until she was
completely separated from the vehicle. This problem is due that the tracking
approach does not utilises appearance models that could be useful for coping
with this type of situations.

– Second, the same person leaving the vehicle, is almost immediately occluded
by a second person evolving in the scene. This situation caused that the first
person has been immediately lost, and that the track of the second person was
lost because of the noise caused by the first person.

– Finally, the second person arrives to the zone of the vehicle and in some moment
the blobs of the person and the vehicle are merged, causing the person track to
be lost again. This situation (as the previous lost track situation) was supposed
to be solved by the tracking approach as it corresponds to an over-segmented
object situation, as described in Section 5.3.4. Hence, this situation was an
error of implementation of the tracking algorithm which has been corrected
after the evaluation. This tracking failure is depicted in Figure 7.10.

The processing time performance of the proposed tracking approach has been also
analysed in this experiment. Unfortunately, ETISEO project has not incorporated the
processing time performance as one of its evaluation metric, thus it is not possible to
compared the results obtained by the proposed approach. Table 7.4 summarises the
obtained results for the processing time metrics. The results show a high processing
time performance, even for the road video RD-6-C7 (Fp = 42.7[frames/sec]),
which concentrated several objects simultaneously evolving in the scene. The fastest
processing times for videos AP-11-C7 (Fp = 85.5[frames/sec]) and BE-19-C1 (Fp =
86.1[frames/sec]) are explained from the fact that there was a part of the video where no
object was present in the scene, and because of the reduced number of objects. The high
performance for the video AP-11-C4 (Fp = 76.4[frames/sec]) is because of the reduced
number of objects.

The maximal processing time for a frame T
(max)
p is never greater than one second, and

the Tp and σTp
metrics show that this maximal value can correspond to isolated cases.
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Figure 7.8: Tracking results for the road video RD-6-C7. A green bounding box bounding
an object means that the currently associated blob has been classified, while a red one
means that the blob has not been classified. The white bounding box bounding a mobile
corresponds to its 2D representation, while yellow lines correspond to its 3D parallelepiped
representation. Red lines following the mobiles correspond to the 3D central points of the
parallelepiped base found during the tracking process for the object. In the same way,
blue lines following the mobiles correspond to the 2D representation centroids found.
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Figure 7.9: Tracking results for the building entrance video BE-19-C1. A green bounding
box bounding an object means that the currently associated blob has been classified,
while a red one means that the blob has not been classified. The white bounding box
bounding a mobile corresponds to its 2D representation, while yellow lines correspond to
its 3D parallelepiped representation. Red lines following the mobiles correspond to the 3D
central points of the parallelepiped base found during the tracking process for the object.
In the same way, blue lines following the mobiles correspond to the 2D representation
centroids found.
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Figure 7.10: Tracking failure at the building entrance video BE-19-C1. The top image
shows the beginning of the problems between a tracked person and the tracked vehicle.
Note that the 2D bounding box for the person is coloured red, meaning that it has not
been classified at the current frame. Nevertheless, the coherence of data allows to keep the
correct estimation of the 3D representation (yellow parallelepiped). The bottom image
shows some few frames later when the track of the person is lost, and the blob is enclosing
both the person and the vehicle.
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Video Length Fp[frames/s] Tp[s] σTp
[s] T

(max)
p [s]

AP-11-C4 804 76.4 0.013 0.013 0.17
AP-11-C7 804 85.5 0.012 0.027 0.29
RD-6-C7 1200 42.7 0.023 0.045 0.56
BE-19-C1 1025 86.1 0.012 0.014 0.15
Mean 70.4 0.014

Table 7.4: Evaluation of results obtained for both analysed video clips in terms of
processing time performance.

7.2.2.2 Experiment Conclusion

The comparative analysis of the tracking approach has shown that the proposed algorithm
can achieve a high performance in terms of quality of solutions for video scenes of
moderated complexity. The results obtained by the algorithm are encouraging as they
were always over the 69% of the total of research groups.

In terms of processing time performance, with a mean frame rate of 70.4[frames/s]
and a frame rate of 42.7[frames/s] for the hardest video in terms of processing, it can be
concluded that the proposed object tracking approach can have a real-time performance
for video scenes of moderated complexity.

The road and building entrance videos have shown that there are still unsolved issues. The
problems found in tracking the objects of the building entrance video highlight deficiencies
in the implementation of the algorithm which have to be analysed. Also, both road and
building entrance videos show the need of new efforts on the resolution of harder static
and dynamic occlusion problems. The interaction between the proposed parallelepiped
model with appearance models can be an interesting first approach to analyse in the
future.

7.2.3 Evaluation of the Video Understanding Framework

The objective of this experiment is to evaluate different important aspects for the
objectives of this thesis analysing a real world application. For this purpose two videos
from GERHOME project for elderly care at home [GERHOME 2005], [Zouba et al. 2007])
are utilised. The video scene corresponds to an apartment with a table, a couch and a
visible kitchen, as shown in Figure 7.11. The two utilised videos correspond to an elderly
man (Figure 7.11(a)) and an elderly woman (Figure 7.11(b)), both performing performs
tasks of everyday life as cooking, sitting, and having lunch. Each video sequence have a
length of 40000 frames, giving a total of 80000 analysed frames and approximately two
hours of video.
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The walls of the apartment and the objects in the video scene (sofa, table, and kitchen)

(a)

(b)

Figure 7.11: Video sequences selected from GERHOME project for elderly care at home.
Figure (a) shows the analysed elderly man, while figure (b) shows the analysed elderly
woman.

have been modelled in 3D, as depicted in Figure 7.12. The modelled objects allow to
define 3D attributes accounting for the distance between the analysed person and these
objects. All the experiments were performed with a computer with processor Intel Xeon
CPU 3.00 GHz, with 2 Giga Bytes of memory. For obtaining the 3D model information,
one parallelepiped models have been pre-defined for a person, with standing and crouching
postures modelled as follows (values are in centimetres):

• Standing Posture:
w ∼ N (µw = 50, σw = 80), [minw = 30; maxw = 100]
l ∼ N (µl = 60, σl = 40), [minl = 20; maxl = 90]
h ∼ N (µh = 160, σh = 50), [minh = 100;maxh = 200]

• Crouching Posture:
w ∼ N (µw = 60, σw = 60), [minw = 30; maxw = 100]
l ∼ N (µl = 60, σl = 40), [minl = 20; maxl = 90]
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Figure 7.12: Modelled context of the apartment of GERHOME project. Figure (a) shows
an image of the modelled scene, while figure (b) shows a top view of the scene showing the
coordinates of the ground plane of the scene. Red coloured elements represent the walls
in the scene, while cyan coloured elements represent the objects present in the scene.

h ∼ N (µh = 110, σh = 50), [minh = 50; maxh = 130]

The main experiment consists in first learning the hierarchy of states and events from
the video of the elderly man. Then, the resulting hierarchy is used as input for the
second video of the elderly woman, and the hierarchy is updated with the information
generated by the analysis of the woman. Then, the results are evaluated in terms of the
quality of learnt states on representing real world situations, and the results for learning
contexts containing symbolic or numerical attributes is compared. Also, the influence of
the reliability measures on guiding the learning process is analysed. This experiment is
presented in Section 7.2.3.1.

Another experiment is performed for evaluating the processing time performance of the
approach, and to establish the influence of the number of attributes in the computer time
performance. This experiment is presented in Section 7.2.3.2.

Finally, another experiment is performed by analysing the same learning context,
considering different acuity values for the analysed attributes. This experiment is
presented in Section 7.2.3.3.
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7.2.3.1 Exploring Learning Results

This experiment has three objectives:

• To illustrate the quality of representation of obtained state and event concepts of
real situations.

• To illustrate the capability of the approach on bridging the gap between numerical
and symbolic information.

• To evaluate the influence of reliability measures on guiding the learning process.

• To evaluate the capability of the learning approach on recognising the states and
events associated to a mobile object.

This experiment first utilises all the 40000 frames of the the elderly man video to
learn a hierarchy of states and events. Then, the first 30000 frames of the second video
of the elderly woman are utilised for continuing the learning process, starting from the
previously learnt hierarchy. Then, the last 10000 frames of the second video are learnt
and used to analyse the recognised states and events for the elderly woman, as a way of
validated the recognition capability of the approach.

Two learning contexts are utilised in this experiment, in order evaluate the capability
of the approach on bridging the gap between numerical and symbolic information:

• Purely Numerical Learning Context: This learning context combines the 3D
position attributes (x, y), the 3D parallelepiped attributes w, l and h, and the
distances Dtable, Dsofa, and Dkitchen between the person and three objects present in
the scene (table, sofa, and kitchen table). This distances have a maximal value of
100[cm], representing the limit for considering a person as far from the object. This
learning context allows to relate position of the person, its posture in terms of the
dimensions of the parallelepiped, and her/his position relative to objects present in
the scene. Formally, this learning context is defined as:

Learning Context Position−Dimensions−Distance {
Involved Objects: Person
Attributes:

Numerical x : 100 [cm]
Numerical y : 100 [cm]
Numerical w : 40 [cm]
Numerical l : 40 [cm]
Numerical h : 50 [cm]
Numerical Dkitchen : 50 [cm]
Numerical Dtable : 50 [cm]
Numerical Dsofa : 50 [cm]

}
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• Numerical and Symbolic Learning Context: This learning context combines
the 3D position attributes (x, y), a symbolic attribute for standing and crouching
postures of a person, and symbolic distance attributes SymDtable, SymDsofa, and
SymDkitchen between the person and three objects present in the scene (table, sofa,
and kitchen table), considering three possible values: FAR for distances greater than
100[cm], NEAR for distances between 50[cm] and 100[cm], and V ERY NEAR for
distances lower than 50[cm]. As the previously defined context, this learning context
also allows to relate position of the person, its posture, and her/his position relative
to objects present in the scene, and it has been defined for evaluating the influence of
numerical and symbolic attributes representing the same characteristic of a person.
Formally, this learning context is defined as:

Learning Context Position− Posture− SymbolicDistance {
Involved Objects: Person
Attributes:

Numerical x : 100 [cm]
Numerical y : 100 [cm]
Symbolic Posture : { STANDING,

CROUCHING }
Symbolic SymDkitchen : { V ERY NEAR,

NEAR,
FAR }

Symbolic SymDtable : { V ERY NEAR,
NEAR,
FAR }

Symbolic SymDsofa : { V ERY NEAR,
NEAR,
FAR }

}

Representation of Real World Situations by the Hierarchical Structure

In order to illustrate the representation of real situations by the obtained hierarchies
and the capability of the approach on bridging the gap between numerical and symbolic
information, two situations found in the analysed videos are studied after processing the
first 40000 frames of the elderly man, establishing a parallel between the obtained results
for both analysed learning contexts and the real situation occurred in the scene.

After finishing the learning process for the first video, a hierarchy of 801 states and
33493 events has been learnt for the learning context Position−Dimensions−Distance
and a hierarchy of 505 states and 17955 events have been learnt for the learning context
Position− Posture− SymbolicDistance.
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The studied situations and their representations in the obtained hierarchies are now
presented:

• Going from the kitchen to the table: This situation consists in the analysed
person going from the zone near the kitchen, to the table zone, as depicted with the
images shown in Figure 7.13. In the hierarchy obtained from the learning context

(a) (b) (c)

Figure 7.13: Situation where the person goes from the kitchen to the table. Figures (a),
(b), and (c), in this order, describe the way this situation occurs in the scene.

Position − Posture − SymbolicDistance, the situation is described by the states
and events depicted in Figure 7.14.

Note that three states representing each of the displayed images in Figure 7.13. The

P = 0.02

= 0.86
N = 11

T
= 1.6T

 Max  = 5.8T

 Min  =0.15T

P = 0.14

= 0.43
N = 19

T
= 0.54T

 Max  = 2.5T

 Min  =0.04T

Figure 7.14: Representation of the situation where the person goes from the kitchen
to the table in the hierarchy obtained for the learning context Position − Posture −
SymbolicDistance.

probability of occurrence of the first state 25 is 9888/40000 = 0.25, as the elderly
man spends a long time in the kitchen zone. Note that this state is well describing
the fact that the man is all the time very near of the kitchen, also showing that at
this state the man is not standing all the time, but also crouching approximately a
quarter of the total of time spent at this state.
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For the same reason that the elderly man spends a long time in the kitchen zone,
the events generated for this state are concentrated between states occurring in the
kitchen and the conditional probability of the first event is very low (0.02), giving a
marginal probability of occurrence for the event of 0.25· 0.02 = 0.005. The second
state represents an intermediate passage zone near the kitchen and the table, where
the person passes most of the time standing. Note that the time staying at the
previous state displayed in the second event, denotes also that the second state is
just a transition zone between the kitchen and the table as its mean value of 0.43
seconds indicates that the person normally does not stop at this zone.

The conditional probability of the second event is higher (0.14), giving a marginal
probability of occurrence for the event (starting from state 25) of 0.25· 0.02· 0.14 =
0.0007, showing that the occurrence of this whole situation is quite infrequent. The
third state represents the position very near the table. Here, the person has a
crouching posture approximately a third of the total time spent in this state.

In the hierarchy obtained from the learning context Position − Dimensions −
Distance, the situation is described by the states and events depicted in Figure
7.15.

Note that now just two states represent the same situation. The first state

P = 0.02

= 0.73
N = 11

T
= 1.04T

 Max   = 3.3T

 Min  =0.14T

Figure 7.15: Representation of the situation where the person goes from the kitchen to
the table in the hierarchy obtained for the learning context Position − Dimensions −
Distance.

represents almost the same situation represented by the first state for the hierarchy
associated to the learning context Position−Posture−SymbolicDistance, showing
a distance to the kitchen of 19.9[cm]. The dimensions of the parallelepiped show
intermediate values compared to the pre-defined models of postures, which seems
to also represent the fact that both standing and crouching postures occur in this
state.
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The probability of occurrence of the first state 46 is 9292/40000 = 0.23, a very
similar probability compared to the first state of the other representation.

The event of this representation also presents a similar behaviour compared with the
first event of the other representation as the conditional probability is also (0.02),
giving a marginal probability of occurrence for the event of 0.23· 0.02 = 0.0046. The
second and last state 4 represents the arrival of the man to the table, presenting
a value of distance to the table 0f 37.3[cm]. The dimensions of the parallelepiped
also show intermediate values between those of the pre-defined models of postures.
More detailed versions of the attributes are available for the children of the State 4.

• Crouching and then standing at the table: This situation consists in the
analysed person passing to a crouching posture and then returning to the standing
posture, at the zone near the table, as depicted with the images shown in Figure
7.16. In the hierarchy obtained from the learning context Position − Posture −

(a) (b) (c)

Figure 7.16: Situation where the person passes to the crouching posture and then returns
to the standing posture, near the table. Figures (a), (b), and (c), in this order, describe
the way this situation occurs in the scene.

SymbolicDistance, the situation is described by the states and events depicted in
Figure 7.14.

Note that three states representing each of the displayed images in Figure 7.16.
The probability of occurrence of the first state 131 is not very high 0.04, as the
elderly man does not spend a long time in the table zone, compared with the time
spent in the kitchen zone. This state is describing that the man is all the time very
near of the table at a standing posture.

The first event has a high conditional probability (0.4), giving a marginal probability
of occurrence for the event of 0.04· 0.4 = 0.016. The second state represents a person
still very near of the table but now in a crouching posture.
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Figure 7.17: Representation of the situation where the person passes to the crouching
posture and then returns to the standing posture in the hierarchy obtained for the learning
context Position− Posture− SymbolicDistance.

The conditional probability of the second event is also high (0.4), giving a marginal
probability of occurrence for the event (starting from state 131) of 0.04· 0.4· 0.4 =
0.0064, showing that the occurrence of this whole situation is less infrequent than
the first situation. The third state represents the return to the standing posture.

The high number of event transitions between these states, compared with the
observed video, together with a high difference between the mean and maximal
staying time of the states, highlights a problem inherent to the discretisation process
to obtain symbolic attributes: the error is amplified. Here the situation can be that
the person, because of errors in the estimation of the dimensions due to a bad
segmentation, gave as result the wrong posture, forcing wrong transitions between
both states.

In the hierarchy obtained from the learning context Position − Dimensions −
Distance, the situation is described by the states and events depicted in Figure
7.18.

For this situation, a good representation of three states has also been found. The
main difference with the symbolic representation is the number of events between
these states which approaches to the observed number of events in the elderly man
video. This result denotes a behaviour of the numerical attributes which is more
tolerant to errors.

Note that the attributes influence is important in the structure of a hierarchy of states and
events. For the same situation both hierarchies are able to represent it appropriately, but
the results are far from being identical. As a valid representation can be ground for each
representation, the gap between symbolic and numerical information is correctly bridged
for the presented situations.
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Figure 7.18: Representation of the situation where the person passes to the crouching
posture and then returns to the standing posture in the hierarchy obtained for the learning
context Position−Dimensions−Distance.

The numerical representation gave a more accurate description of the situation, but the
symbolic representation is able to give a representation more interpretable for a human,
as the values of the symbolic attributes are defined precisely for this purpose. Also, the
numerical attributes will allow a hierarchical representation with less errors in the state
transitions, as the error of discretisation is avoided.

Explaining Event Recognition Results

One of the most important aspects in the evaluation of the proposed learning
approach is the capability of automatically recognising real world situations utilising
the learnt event hierarchy. For this purpose, an experiment has been performed which
consists in recognising in which events the elderly woman is involved, considering the
hierarchy of states and events trained with the first 68000 frames (40000 corresponding
to the elderly man video, plus 28000 from the beginning of the elderly woman video)
as input for performing the recognition of the event instances. The learning context
Position − Posture − SymbolicDistance, previously defined, has been utilised for this
experiment.

The experiment considers 2000 frames from the elderly woman video for event recognition.
The evolution of the elderly woman in the sequence is depicted in Figure 7.19. The
recognised events correspond to those events detected in the learning process and
associated to the corresponding contextualised object, filtered by a pre-defined temporal
stability threshold of 1.0[s] for filtering events possibly induced by attribute value changes
due to noise in the video.

The recognition process has obtained as result 45 detected events with a duration
higher than 1[s]. From these events, 21(46.7%) were induced by attribute changes due to
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Figure 7.19: Top view of the input for the experiment consisting of the position in the
ground plane of the apartment scene and the posture of the elderly woman, in the video
sequence utilised for evaluating the event recognition capability of the learning approach.
The colour of the dots represents the occurrence of a specific human posture: red dots
represent that the woman is in a crouching posture, while blue dots represent the standing
posture.

a bad segmentation, while 25(53.3%) were representing real events. The two events with
the longest staying time of its starting state are detailed.

• Recognised Event: Standing from the Table Zone.

This event has been detected when the elderly woman has begun to stand from
the chair. With the available information it is not possible to say that the elderly
woman was sitting in the chair, but just that she has changed her posture after a
stable period being in a crouching posture. This event is depicted in Figure 7.20.

• Recognised Event: Start Going to Kitchen Zone.

This event has been detected when the elderly woman has begun to walk to the
kitchen, after watching the television (the television is not visible from the camera
view). With the available information it is not possible to say that the woman
has been watching the television, but just that she has changed her position in a
noticeable extent after a stable period being standing approximately in the same
position, near the table and the sofa. This event is depicted in Figure 7.21.
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Figure 7.20: Event standing from the table zone recognised in the video sequence utilised
for evaluating the event recognition capability of the learning approach. The event is
coloured red. The right-top image corresponds to the video frame found in the middle
of the interval staying in the starting state of the event, while the right-bottom image
corresponds to the video frame which has caused the occurrence of the event. The
information in the black square, corresponds to the information about the starting state
obtained in the moment of occurrence of the event.
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Time staying at State 688:     3.8[s]
Frames Interval:                      671-707
Number of Frames:                 37
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Figure 7.21: Event start going to the kitchen zone recognised in the video sequence
utilised for evaluating the event recognition capability of the learning approach. The
event is coloured red. The right-top image corresponds to the video frame found in the
middle of the interval staying in the starting state of the event, while the right-bottom
image corresponds to the video frame which has caused the occurrence of the event. The
information in the black square, corresponds to the information about the starting state
obtained in the moment of occurrence of the event.
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The obtained recognition rate metric Pr values (referenced in the Figures 7.20 and 7.21
as Mean Recognition Rate) show that the instances are appropriately represented by the
attribute models of the states in the hierarchy. The results show that the system is able to
recognise real events occurring in the scene. This video presented a real challenge as the
segmentation results were always very noisy, producing a lower performance of every task
of the video understanding process. This situation has caused a lower number of correctly
recognised events. The system is able to manage noisy data in several situations, but
when this noisy data become persistent and consistent, the situation is assumed as normal
and the framework fails to manage the wrong data. Figures 7.22, 7.23, and 7.24 show
segmentation data of different quality in order to explain the capability of the framework
on handling noise.

In the presence of segmentation of good quality (Figure 7.22), the recognition process

(a) (b)

Figure 7.22: Segmentation data of good quality, producing the appropriate results by
the tracking approach. Figure (a) shows the result of the segmentation process. Figure
(b) shows a correct result of the tracking process, utilising as input the segmented region
shown in Figure (a). In Figure (a), the moving pixels are coloured in white, while the blob
surrounding the moving region is coloured in orange. In Figures (b), the white bounding
box bounding a mobile corresponds to its 2D representation, while yellow lines correspond
to its 3D parallelepiped representation. Red lines following the mobiles correspond to
the 3D central points of the parallelepiped base found during the tracking process for
the object. In the same way, blue lines following the mobiles correspond to the 2D
representation centroids found. Next similar figures follow the same colour schema.

can be able of recognise events of longer time duration, and to produce a minimal
number of recognition errors. In the presence of bad quality segmentation (Figure 7.23),
the framework is able to cope with this noise and to provide the appropriate input to
the recognition process. If these noisy data are persistent and consistent in time, the
framework will interpret that the moving region is sufficiently stable to not be considered
as noise, producing a failure in terms of estimation of the attributes or the detection of
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(a) (b)

Figure 7.23: Noisy segmentation data of poor quality, not having consequences in the
results obtained by the tracking task. Figure (a) shows the poor result of the segmentation
process. Figure (b) shows a correct result of the tracking process, utilising as input the
poorly segmented regions shown in Figure (a).

(a) (b)

Figure 7.24: Noisy segmentation data persistently and consistently occurring, which
induces the tracking approach to erroneous results. Figure (a) shows the result of the poor
segmentation process. Figure (b) shows the obtained result, where a standing person is
detected as crouching out of the zone of interest of the scene, utilising as input the poorly
segmented regions shown in Figure (a).
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an object inexistent in the real world, which triggers the recognition of erroneous events,
as the event described in Figure 7.25. This erroneous event shows the situation where the
segmentation persistently (15 frames) gives as result wrong data (sub-segmented in this
case). The tracking task utilises this wrong data and checks that it is coherent in time,
and that can be a person crouching in a farther position compared with the position of
the real person. After, the person is also erroneously detected as a person standing in
the far position, which produces the recognition of an event with an acceptable amount
of time staying at the starting state.

In conclusion, the proposed video understanding framework is able to recognise events
even in presence of noisy data, but the level of noise can not be excessive. From this
fact, it is very important to point as future work the exploration of different segmentation
techniques and how the reliability of the obtained data can be estimated.

Reliability versus No Reliability

In this experiment, the influence of the reliability measures on guiding the learning
process can also be studied. For this purpose, tests have been made for the same learning
contexts defined for this experiment, one considering The evolution of the states number,
and events number metrics comparing between contexts considering and not considering
reliability measures for guiding the learning process. The results for both learning contexts
are summarised in Figure 7.26

The results show that the utilisation of reliability measures in both learning contexts
drastically increases the complexity of the hierarchical representations as a higher number
of states is generated. This behaviour is explained from the fact that reliability
measures diminish the influence of noisy information in the state attributes computation,
producing lower standard deviation values for numerical attributes and less erroneous
values considered for symbolic attributes, resulting in a better discrimination between
state concepts which at the same time induces the creation of a higher number of new
concept states.
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Time staying at State 351:      1.1[s]
Frames Interval:                      488-502
Number of Frames:                 15
Mean Recognition Rate:         0.57

Figure 7.25: Erroneous event detection, caused by noisy data persistently obtained by the
segmentation task. The information in the black square, corresponds to the information
about the starting state obtained in the moment of occurrence of the event.
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Figure 7.26: Evolution of the number of hierarchy states in time, considering or not
considering the utilisation of reliability measures for both studied learning contexts. NR
stands for not considering reliability, while R for considering it.

7.2.3.2 Processing Time Performance

In order to analyse the processing time performance, five learning contexts have been
evaluated for the first 5000 frames of the elderly man video. The experiment consists in
augmenting the number of attributes by one for each learning context, to be also able of
evaluating the influence of the number of attributes in the processing time performance
of the approach.

The five considered attributes are the numerical attributes x, y, w, l, and h, obtained
from the 3D parallelepiped representation. The results of this experiment are summarised
in Figure 7.27.

The results of this experiments show a high computer time performance of the learning
approach with a mean processing time of 0.75 milliseconds per frame, or a frame rate
of 1326 frames per second, for the largest learning context (five attributes), showing the
real-time capability of the learning approach.

The evolution of the processing time performance versus the number of attributes time
shows a nearly linear behaviour. As expected, the influence of the number of attributes
increases the mean processing time, and it seems that this relation is not linear, probably
logarithmic, as depicted in Figure 7.28 for 5000 frames.
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Figure 7.27: Evolution of the processing time performance over 5000 frames, for learning
contexts with 1, 2, 3, 4, and 5 attributes. Figure (a) displays the results in terms of total
processing time, while figure (b) shows the results in terms of mean time per frame.
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Figure 7.28: Evolution of the mean processing time while augmenting the number of
attributes to be learnt, for 5000 processed frames.

7.2.3.3 Influence of the Acuity

In order to evaluate the influence of the acuity of numerical attributes in the resulting
hierarchy of states and events, one learning context is considered, adjusting the acuity
values for five different values. The considered learning context is described below:

Learning Context {
Involved Objects: Person
Attributes:

Numerical x : A [cm]
Numerical y : A [cm]
Numerical V : A [cm]

}

, where (x, y) corresponds to the position of the person in the ground plane of the scene,
V corresponds to the velocity magnitude of the person, and A corresponds to the acuity
of all attributes, with A ∈ {10, 50, 100, 150}.

The number of states and number of events metrics are evaluated for the 40000 frames of
the elderly man video and the first 20000 frames of the elderly woman video. The results
are summarised in Figure 7.29.

Results show that different acuity values produce a similar behaviour in the evolution of
the number of states and events of a hierarchy, but also shows that a lower acuity value
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Figure 7.29: Evolution of the number of state and number of events metrics over 60000
frames, for a fixed learning context with numerical attributes acuity value of 10, 50 100,
150. Figure (a) displays the results for the number of states metric, while figure (b) shows
the results for the number of events metric.
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induces the creation of a higher number of states and events. This is due to the fact that
higher acuity values make the cutoff criteria more constraining, as higher differences in
attribute values are considered as non significant. Also, the acuity value influences the
decision of the instance incorporation process, giving a higher chance to the best state
criteria to incorporate the instance, in despite of of creating a new state.

The evolution of the number of states versus the acuity value seems to show a negative
exponential behaviour, as depicted in Figure 7.30 for 60000 frames.
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Figure 7.30: Evolution of the mean processing time while augmenting the acuity value,
for 60000 processed frames.

7.2.3.4 Experiment Conclusion

The presented experiment for evaluating the incremental learning framework in a real
world application has resulted in the following main conclusions:

• The framework seems to be able of bridging the gap between numerical and symbolic
information, giving appropriate representations of real world situations.

• The framework is able to recognise events occurring in real world videos, even if
the received information is noisy. The level of noise can not be excessive and
other segmentation techniques must be tested to improve the event recognition
performance.

• The utilisation of reliability measures for guiding the learning process induces more
discriminative states by reducing the influence of noisy instance attributes.
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• The incremental nature of the learning approach ensures a real-time performance of
the learning process.

• The relation of the number of attributes and the number of states metric has nearly
linear behaviour, ensuring the scalability of the system.

• The relation of the acuity value and the number of states metric seems to have
negative exponential behaviour, highlighting the importance of fixing acuity values
coherent with the interest of the user or the scale of the attribute. This concern
allows to avoid the explosion in the complexity of the obtained hierarchy and to
have a better processing time performance.

7.3 Conclusion from Experiments

This chapter has shown the evaluation of the complete proposed video understanding
framework, by also evaluating classification nd tracking tasks.

The classification task has shown its potential to be applied in real world applications.

The tracking task has shown to be very competitive in terms of quality of solutions,
compared with other tracking approaches evaluated over benchmark videos publicly
accessible. The approach has also shown a processing time performance near real-time.

The event learning approach has shown its capability of representing real world situations
in an appropriate way, being also able of bridging the gap between numerical and symbolic
information. Its event recognition capability makes this approach interesting for several
applications, as automatic human behaviour recognition and the detection of abnormal
situations. From the results obtained in event recognition, it can be concluded that
is compulsory to integrate other segmentation techniques in order to ensure a minimal
quality of the input data. Also, it will be important to study how reliability measures can
be utilised to detect the level of noise in the obtained moving regions.

The learning process has shown that can have a real-time processing time performance
and the obtained hierarchical representation can be useful as input for other higher-
level applications in video understanding, as video data mining [Benhadda et al. 2007],
automatic or interactive image and video retrieval [Le et al. 2008], and semantic
recognition of composite events [Vu et al. 2003], [Zouba et al. 2007].

The processing time performance of the learning approach has shown its capability of
performing in real-time.

Next Chapter 8 presents the conclusion and future work of this thesis.





Chapter 8

Conclusion

The goal of this thesis on proposing a video understanding framework for general event
learning addressing real world applications has been achieved. A new video understanding
framework has been proposed, which is able to incrementally learn general descriptions
of the events occurring in a video scene. The incremental nature of the event learning
process is well suited for real world applications as it considers the incorporation of new
arriving information with a minimal processing time cost. Incremental learning of events
can be useful for abnormal event behaviour recognition and to serve as input for higher
level event analysis.

Addressing real world applications also implies that the video understanding framework
must be able to properly handle the information extracted from noisy videos. This
requirement has been considered by proposing a generic mechanism to measure in
a consistent way the reliability of the information in the whole video understanding
process. More concretely, reliability measures associated to the object attributes have
been proposed in order to measure the quality and coherence of this information.

The proposed video understanding framework involves a complete framework for event
learning including video frame segmentation, object classification, object tracking, and
event learning tasks. This approach have proposed an automatic bridge between the low-
level data obtained from objects evolving in the scene and higher level information which
considers the temporal aspect.

Next chapters present the conclusion for each task of the video understanding framework.
Section 8.1 presents the conclusion for the proposed object classification method. Then,
Section 8.2 concludes about the proposed object tracking approach. Next, Section 8.3
presents the conclusion for the new incremental event learning method. Finally, Section
8.4 presents the limitations and future work for the video understanding framework.
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8.1 About Object Classification

The proposed classification method is suitable for real world applications for several
reasons:

• The method has shown a high processing time performance for scenarios of
moderated complexity.

• The classification results are highly independent from the camera view and
orientation of the object, having an appropriate flexibility for been utilised in diverse
real world applications.

• The method is capable of coping with even severe static occlusion situations.

• The approach proposes methods for disambiguation between several geometrically
plausible alternatives.

• The parallelepiped model utilised by the classification approach is capable of
representing a large variety of objects, even those which change their posture, with
acceptable 3D attribute values. This simple model also allows users to easily define
new mobile objects that could be present in the scene.

• Visual reliability measures have been proposed for the parallelepiped model
attributes measuring the degree of visibility of these attributes. These measures
have been used by the proposed tracking approach to guide the estimation of object
features utilising the most reliable information. The estimation of these measures
is the first step for estimating the reliability of the information in the whole video
understanding framework.

The estimated 3D attributes for the proposed parallelepiped model have allowed the
tracking approach to perform a better filtering of hypothesis by evaluating the coherence
of these attributes in time.

The evaluation results have shown that the classification approach can even be interesting
by itself.

8.2 About Object Tracking

The proposed tracking method presents similar ideas in the structure for creating,
generating, and eliminating mobile object hypotheses compared to the MHT methods.
The main differences from these methods are induced by the object representation utilised
for tracking and the fact that this representation differs from the point representation
normally utilised in the MHT methods. The utilisation of a representation different
from a point representation implies the consideration of the possibility that several
visual evidences could be associated to a mobile object. This consideration implies the
conception of new methods for creation and update of object hypotheses.
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The tracking approach proposes a new dynamics model for object tracking which keeps
redundant tracking of 2D and 3D object information, in order to increase robustness.
This dynamics model integrates a reliability measure for each tracked object feature,
which accounts for quality and coherence of utilised information. The calculation of
this features considers a forgetting function (or cooling function) to reinforce the latest
acquired information. The reliability measures are utilised to control the uncertainty in
the obtained information, learning more robust object attributes and knowing which is
the quality of the obtained information. These reliability measures are also utilised in the
event learning task of the video understanding framework to determine the most valuable
information to be learnt.

The proposed tracking method has shown that is capable of achieving a high processing
time performance for sequences of moderated complexity. But nothing can still be said
for more complex situations. The approach has also shown its capability on solving static
occlusion, sub-segmentation, and object segmented by parts problems. The dynamic
occlusion problem resolution capability has shown limitations that are described in Section
8.4. Several features of the proposed tracking approach point to the objective of obtaining
a processing time performance which could be considered as adequate for real world
applications:

• The proposed tracking approach explicitly cooperates with the object classification
process, by guiding the classification process using the previously learnt mobile
object attributes. This way, the tracking process is able to indicate a starting
point and the bounds of search for the parallelepiped attributes to be found by the
classification approach. This cooperation scheme allows a considerable reduction
in the processing time dedicated to 3D classification. As mobile information can
become more reliable as more visual evidence is available, the cooperation scheme
can be also considered to improve its quality in time, as more reliability implies
a more accurate mobile dynamics model and less variability of mobile attributes,
establishing tighter bounds to the search space.

• When a mobile object pass to ensure mode, even a better performance can be
obtained by the 3D classification process, as the parallelepiped is estimated just
for one object class. In the other extreme, when information is still unreliable to
perform 3D classification, only 2D mobile attributes are updated as a way to avoid
unnecessary computation of bad quality tentative mobiles.

• The determination of the involved blob sets allows to control the number of possible
blob associations for a mobile object and to separate the tracking problem into sub-
problems according to the proximity of the blobs representing the visual evidence.
Then, the involved blob sets determination presents a two-fold contribution to the
early control of the combinatorial explosion, as less possible associations per mobile
and less related mobiles per tracking sub-problem imply the immediate reduction
in the number of hypotheses to generate, contributing to the improvement of the
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processing time performance.

• The new proposed hypothesis updating process have been oriented to optimise
the estimation of the updated hypothesis set, in order to obtain the most likely
hypotheses avoiding to generate unlikely hypotheses that must be eliminated later.
The new method for generation of the mobile tracks utilises a similar principle,
generating the initial solution nearest to the estimated mobile attributes, according
to the available visual evidence, and then generating the other mobile track
possibilities starting from this initial solution. This way, the generation is focused in
optimising the processing time performance by warrantying the generation of good
quality solutions, instead of generating all the possible combinations and pruning
the solutions with bad quality.

• Even if the hypothesis updating process is focused in generating the minimal possible
number of hypotheses, the processing load for the next frame can be reduced by
filtering redundant, not useful, or unlikely hypotheses.

• Finally, the split process for hypothesis sets, represents another mechanism to
improve the processing time performance as it immediately reduces the number
of mobiles in a same hypothesis set, generating different hypothesis sets, which can
be treated as separated tracking sub-problems.

The estimation of reliability measures in the tracking approach has a direct impact in
the learning task as the tracking approach gives to the event learning task the necessary
elements for determining the most valuable object attribute information to be learnt.

The results on object tracking have shown to be really competitive compared with other
tracking approaches in benchmark videos. However, there is still work to do in refining
the capability of the approach on coping with occlusion situations.

8.3 About Event Learning

The proposed event learning approach has been conceived to be able to learn state and
event concepts in a general way. The definition of multiple learning contexts endows the
learning process with a flexible mechanism for learning events occurring in a video scene.
Depending on the availability on tracked object features, the possible combinations for
learning contexts is enormous. The attributes already proposed by the object tracking
approach give a sufficient flexibility to explore a large variety of scenarios. Anyway, users
can always define more object attributes, by either combining existing attributes or by
creating new ones from new object descriptors.

For performing the learning process a new incremental event learning algorithm called
MILES (Method for Incremental Learning of Events and States) have been proposed.
The incremental nature of MILES, allows to obtain a learning performance that can be
utilised in on-line learning.
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The main contribution of MILES is the utilisation of incremental concept learning models
to learn the states as a hierarchy of concepts and to extend the incremental concept
learning hierarchy to learn the events as first order temporal relations between the learnt
states. The extension to event learning has implied the redefinition of the existing merge
and split hierarchy operators.

Another contribution is the way of utilising the concepts of cutoff and acuity. Before,
these concepts were treated as general parameters for an incremental concept learning
algorithm, and now the acuity is utilised as a way of defining the difference in an attribute
considered interesting for a given learning context, and the cutoff as a function of the
defined acuity values, and symbolic attribute differences for the analysed learning context.

The approach has shown its capability on recognising events, starting from noisy image-
level data, and with a minimal configuration effort. The multiple possible extensions and
applications for this approach are encouraging for exploring the behaviour of the approach
in different scenarios and learning contexts.

8.4 Limitations of the Approach and Future Work

The general nature of the proposed video understanding framework for event learning
allows that this approach can be extended in an huge number of new studies. The
purpose of this section is to analyse the future work for the proposed video understanding
framework, as extensions to the approach and as possible solutions to its limitations.
These limitations are organised in terms of the period of time it could take to solve them
(short term and long term limitations).

8.4.1 Short Term

In short term, the video understanding approach can be extended in several ways:

1. The calculation of reliability measures in the segmentation task can be an interesting
extension of the approach. These reliability measures could be associated to the
detected moving regions in order to account for the quality of segmentation in
terms of the influence of illumination changes, level of contrast between the moving
objects and the background of the scene, and the possibility of the presence of
shadows, among other aspects.

2. The proposed reliability measures for the object attributes have been arbitrarily
defined in this approach. Further analysis on different reliability measures can be
performed in order to establish the measures which better represent the quality or
coherence of the object attributes.

3. Background updating techniques should be considered in order to be able of coping
with illumination changes, and moving background, among other issues on motion
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segmentation. The information obtained from the proposed tracking approach,
together with the reliability measures, could serve as feedback for a background
updating method in order to better determine the background of the scene.

In addition to the presented future work, each task of the proposed video understanding
framework presents its own limitations and future work. Next sections are dedicated to
analyse the limitations and future work in the short term for the object classification
(Section 8.4.1.1) and event learning (Section 8.4.1.2) tasks.

8.4.1.1 On Object Classification

The future work related to the object classification approach in the short term can be
summarised as follows:

1. The resolution of the parallelepiped calculation problem presented in Section 4.1.1
has been formulated for focal point positions higher than the objects evolving in
the scene. An object higher than the focal point height will lead to an erroneous
calculation of the possible parallelepipeds associated to the object. This situation
can not be considered as an error, but as a missing feature of the approach that
has not been yet solved. The solution of this limitation implies the resolution of a
new system of equations for covering this situations. Due to time constraints, this
system of equations has not been solved in this thesis, and can be considered as
future work.

2. Tests for the object classification approach have shown a lack of precision in the
estimation of the object orientation angle α. Future work can point to the utilisation
of alternative representation of an object, when this situation is detected.

8.4.1.2 On Event Learning

The future work for the proposed event learning approach in the short term can be
summarised as follows:

1. In this thesis, few learning contexts have been utilised. The flexibility in the
definition of the learning contexts allows the consideration of infinite possibilities
for these contexts. Future work can focus on exploring different learning contexts.

2. The reliability measures utilised in the event learning approach are defined according
to the interest of the user. In the future, different ways of defining these reliability
measures can be explored.

3. In addition to the merge and split operators utilised by the proposed event learning
approach, other operators could be incorporated to the approach, as the operators
proposed by the INC learning algorithm presented in Section 2.4.4.
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8.4.2 Long Term

In long term, the video understanding approach can be extended in several ways:

1. The mutual cooperation scheme proposed between the classification and tracking
tasks can be considered as a first step to the cooperation between different tasks
of the video understanding process. Another interesting cooperation scheme can be
a feedback process between the tracking and segmentation tasks. The information
provided by the tracking approach can be utilised by the segmentation task to focus
the attention in the zones of the video image where movement can be more likely to
occur. Hence, the segmentation could focus the analysis of movement in the entry
zones of the scene and in the zones where moving objects have been detected, in
order to improve the processing time performance of the segmentation task.

2. The idea of having two levels of mobile object representation, in the 2D image
plane and in the 3D referential of the video scene, leads to the possibility of
considering other simultaneous representations for the objects evolving in the scene.
This multiple models can allow the video understanding approach to utilise the
most reliable information from different possible representations. At the same time,
these representations could be calculated or not depending on the availability and
pertinence of obtaining this information. For example, an articulated model of a
person could be interesting for being calculated if the proximity of the object to
the camera is sufficient for appreciating its parts, or an appearance model based on
colour could be interesting to be calculated if the level of contrast of the object with
respect to the background is sufficient for obtaining valuable information.

3. The video understanding approach has been evaluated utilising one camera view.
Multi-camera approaches could be studied in order to analyse how these techniques
could improve the estimation of 3D attribute information.

4. The 3D models utilised for determining the class and 3D attributes of an object
has been pre-defined. It could be an interesting subject of study to utilise learning
techniques for learning these object models.

In addition to the presented future work, each task of the proposed video
understanding framework presents its own limitations and future work. Next sections
are dedicated to analyse the limitations and future work in the long term for the
object classification (Section 8.4.2.1), object tracking (Section 8.4.2.2), and event learning
(Section 8.4.2.3) tasks.

8.4.2.1 On Object Classification

The future work related to the object classification approach in the long term can be
summarised as follows:

1. Even if the proposed representation of objects serves for describing a large variety
of objects, the result from the classification algorithm is a coarse description of the
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object. In order to evolve in the interpretation of more complex situations, more
detailed and class-specific object models could be utilised when needed. Future work
can point to the utilisation of more specific object representations according to the
application, as articulated models, object contour, or appearance models, among
others.

2. The classification approach has been proposed considering a pin-hole camera model.
The adaptation of the object classification method for other calibration models, as
the radial distortion model, can be an interesting subject of study.

8.4.2.2 On Object Tracking

The future work for the proposed object tracking approach in the long term can be
summarised as follows:

1. The tracking approach is able to cope with dynamic occlusion utilising the object
attribute information estimated in the previous frames to estimate the current
values for the object attributes. As the tracking approach only estimates the
current attributes based on previous information, the behaviour of the objects
during the occlusion period can not be determined, which can lead tracking to
errors of mistaken tracks. Then, the proposed tracking approach is able to cope
with dynamic occlusion situations where the occluding objects keep the coherence
in the observed behaviour previous to the occlusion situation. Future work can
point to the utilisation of appearance models utilised pertinently in these situations
in order to identify which part of the visual evidence belongs to each object.

2. The tracking approach is not capable to identify an object leaving the video scene
and the re-entering in the scene as the same object. This is due that the information
utilised for tracking is purely geometrical. In the future, the utilisation of appearance
models can serve to identify the objects returning to the scene.

3. Even if the hypothesis generation process of the tracking approach has been
optimised a large number of objects entering simultaneously entering in the scene
can produce a high number of initial object configuration hypotheses as no object
information is available when a new object enters in the scene. The use of alternative
object representation can also serve to better define the initial hypotheses for the
objects entering in the scene.

8.4.2.3 On Event Learning

The future work for the proposed event learning approach in the long term can be
summarised as follows:

1. From the state of the art on incremental concept formation, it can be inferred that
the distribution of state and event concepts in the generated hierarchy can depend in
certain extent to the processing order of the object state instances. This means that
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different hierarchies can be obtained from different ordering of the same instances.
Future work can point to analyse the influence of the instance ordering in the quality
of representation.

2. As the learning approach utilises the information related to each tracked object
evolving in the scene separately, it does not seem inherent to the approach to
represent relations between tracked objects. In the future, extensions of the
proposed hierarchical state and event concept representation could be studied in
order to explicitly consider the representation of object relations and interactions.

3. For several applications, the user can be interested in analysing the occurrence of
pre-defined events interesting for the application. Future work can focus in the way
these pre-defined events can be associated to the obtained hierarchical state and
event concepts description.

4. It can be very interesting to study how the obtained hierarchies can serve as input
for algorithms of semantic recognition, as building blocks for recognising composite
events. Applications as data mining, video retrieval could also use the results of the
proposed learning approach as the input data.

5. The potential of the proposed learning approach in applications of human behaviour
learning and abnormal behaviour recognition must be studied.





Appendix A

Degenerated Cases for the
Parallelepiped Model

Camera calibration is never perfect. For several reasons, the resulting perspective matrix
can give undesirable projection results, especially in the image frame borders. This error in
projection can be given by a poor calibration process, where selected pairs of calibration
points (X ↔ Y ) are imprecise, few, or not well distributed for representing the 3D
scene correctly. Also, the projection error can be caused by applying a linear calibration
process to a camera which presents some kind of distortion as, for example, the fish-eye
camera which presents strong radial distortion1. In the scope of this thesis, only linear
calibration with the Direct Linear Transform (DLT) [Abdel-Aziz and Karara 1971] has
been considered, because of its simplicity in calibration, calculation speed, and because
the majority of currently available cameras present a despicable level of distortion.

Considering Tj, with j ∈ {L,B,R, T} as the parallelepiped vertexes bounded by a 2D blob
b with 2D limits B = {Xleft, Ybottom, Xright, Ytop}. Normally, when no erroneous projection
results are occurring, each vertex Pi (ıin{1, 2, 3, 4}) associated to a variable Tj is bounded
by only one blob limit. When undesirable projection results are obtained while calculating
a parallelepiped model, , we can be in presence of a degenerate case, where a same vertex
is bounded by two blob limits at the same time, as depicted in Figure A.1.

When in presence of a degenerate case, a simplification to the projection equations
presented in Equation (4.7) occurs. Formally, consider blob limits Bj ∈ B and Bk ∈ B,
with Bj 6= Bk. Then, consider a vertex Tj bounded by the limit Bj, and a vertex Tk

bounded by the limit Bk, so that Tj = Tk = Pi(xi, yi) representing a degenerate case
vertex. Then, as two limits share the same point (xi, yi), considering the two projection
Equations from (4.7):

(p20 × xj + p21 × yj + p22 × h× In h(Tj) + p23)×Bj

1To represent appropriately the effect of radial distortion in the mapping between 2D image and 3D
scene coordinates, in [Tsai 1986] and [Tsai 1987], authors propose a calibration technique which represent
this kind of distortion. The result is a non-linear transform, where a cubic equation must be solved to
perform the mapping from 3D scene to 2D image coordinates.
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D2: Two Special PointsD1: One Special Point

Special point P 
simultaneously bounding
at top and right blob limits
in parallelepiped vertex P    .

Special point P  
simultaneously limiting
at left and bottom blob limits
in parallelepiped vertexes P     and P    .

k

j

k
(h)

j
(h)

j
(0)

Figure A.1: Degenerated cases for parallelepiped calculation. Two degenerated cases can
happen, where case D1 corresponds to one vertex point bounded by two blob limits, while
in case D2 two vertexes are limited by two blob limits.

= p00 × xj + p01 × yj + p02 × h× In h(Tj) + p03,

(p20 × xk + p21 × yk + p22 × h× In h(Tk) + p23)×Bk

= p00 × xk + p01 × yk + p02 × h× In h(Tk) + p03,

these Equation can be written as a function of (xi, yi), as (xi, yi) = (xj, yj) = (xk, yk):

(p20 × xi + p21 × yi + p22 × h× In h(Tj) + p23)×Bj

= p00 × xi + p01 × yi + p02 × h× In h(Tj) + p03,

(p20 × xi + p21 × yi + p22 × h× In h(Tk) + p23)×Bk

= p00 × xi + p01 × yi + p02 × h× In h(Tk) + p03.
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Now yi can be expressed in terms of xi, in both equations. And then, both equations can
be equalled:

(p00−p20×Bj)×xi+(p02−p22×Bj)×h×In h(Tj)+p03−p23×Bj
p21×Bj−p01

=
(p00−p20×Bk)×xi+(p02−p22×Bk)×h×In h(Tk)+p03−p23×Bk

p21×Bk−p01

Finally, without yet solving the system of equations, one point has been already
determined, as shown in Equation (A.1).

xi=
((p01−p21×Bj)×(p02−p22×Bk)×In h(Tk)−(p01−p21×Bk)×(p02−p22×Bj)×Inh(Tj))×h−(Bj−Bk)×(p03×p21−p01×p23)

(Bj−Bk)×(p00×p21−p01×p20)

yi=
(p00−p20×Bj)×xi+(p02−p22×Bj)×h×In h(Tj)+p03−p23×Bj

p21×Bj−p01

(A.1)
This way, a point Pi = (xi, yi) can be determined before the resolution of the system
of equations presented in Section 4.1.1. If the situation corresponds to degenerate case
D1, where only one vertex point is bounded by two blob limits, two variables are solved
and two equations are utilised, now having to solve the system for the eight remaining
variables with the eight remaining equations.

If the situation corresponds to degenerate case D2, where two vertexes are limited by
two blob limits, then four variables are solved and the four projection Equations (4.7)
are utilised, now having to solve the system for the six remaining variables with the six
remaining base Equations (4.8).

Notice that the utilisation of two equation for a degenerate case vertex, means that
physically exists one point Pi, with i ∈ {1, 2, 3, 4}, which is not bounded in any of its
possible vertexes at heights 0 and h. The same happens with two degenerate case vertexes,
where two points Pi will not be bounded by the blob limits.





Appendix B

Detailed Formulation of the Object
Tracking Process

A pseudo-code representation of the proposed tracking method, presented in Section 5.3,
is displayed below:

procedure reliabilityTracking (In newBlobs, In oldHypothesesSets,

Out mobilesList)

begin

newBlobs = preMerge(newBlobs);

oldHypothesesSets = involvedBlobs(oldHypothesesSets, newBlobs);

oldHypothesesSets = mergeHypothesesSets(oldHypothesesSets);

oldHypothesesSets = generateTracks(oldHypothesesSets, newBlobs);

newHypothesesSets = generateHypotheses(oldHypothesesSets);

for each hypothesesSet of newHypothesesSet do

for each hypothesis of hypothesesSet do

insertNewMobiles(hypothesis, hypothesesSet);

end for

end for

newHypothesesSets = createNewMobiles(newHypothesesSets);

newHypothesesSets = filterHypotheses(newHypothesesSets);

newHypothesesSets = splitHypothesesSets(newHypothesesSet);

return mobilesList = bestMobiles(newHypothesesSets);

end.
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First, a preMerge step performs preliminary merge operations over blobs presenting highly
unlikely initial features, reducing the number of blobs to be processed by the tracking
procedure. The pre-merge procedure is performed for blobs which size is too small to
represent any of the pre-defined 3D object models (e.g. merge body parts to build a
tentative mobile corresponding to a person). Blobs contained by another blob are also
candidates for immediate merge.

Then, the mobile hypothesis update process starts by the involvedBlobs procedure, used
for determining the blobs that can participate to the track updating process for a mobile.
A blob will be involved with a mobile, if this blob can be part of the visual evidence
for the mobile in the current analysed frame. A blob can be involved with a mobile
according to its proximity to the predicted state of the mobile in the current video frame.
Then, mergeHypothesesSet procedure merges visually related hypothesis sets, which were
separated until the current frame. This processes have been described in Section 5.3.1.

Next, the functions generateTrack and generateHypotheses are the constituting parts of
the hypothesis updating process, which is described in Section B.1.

First, in generateTrack process, the most coherent mobile tracks for each mobile are
calculated. First, a ranking of the most coherent track for each object is developed. The
construction of these tracks uses previous reliable information of the same mobile, in order
to start the search of tracks at the most coherent position and with the most coherent
object size. The process of mobile track generation is described in detail in Section B.1.1.

Then, in generateHypotheses procedure, new hypotheses are generated using the
previously calculated best tracks for each mobile. This process immediately generates the
optimal hypotheses from the best track rankings, by optimising the hypothesis likelihood
measure PH (Equation (5.1)) for each hypothesis. A hypothesis is accepted if its likelihood
measure relative to the hypothesis of highest likelihood exceeds a pre-defined threshold
and if the total number of accepted hypotheses does not exceed a pre-defined maximal
number of accepted hypotheses. The hypothesis generation process is fully described in
Section B.1.3.

If a hypothesis is not complete with respect to all visual evidence considered for the
hypothesis set, this visual evidence is then considered as potential new mobile objects
entering the scene for the incomplete hypothesis, and the procedure insertNewMobiles
exhaustively generates all possible combinations of new objects as no assumption can
be made about the validity of a mobile hypothesis at the entrance of a new object. In
the same way, procedure createNewMobiles generates mobiles from visual evidences not
matched with any of the mobiles present in the scene. These tasks have been described
in Section 5.3.3.

Then, a filter for hypotheses is applied (procedure filterHypotheses). Finally, hypothesis
sets with just one alternative can be separated in different hypothesis sets with one
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hypothesis containing just one mobile, if mobiles are currently not visually related,
simplifying later tracking process for these mobiles. The algorithm returns the set
of mobile objects with the highest likelihood hypotheses. These tasks have also been
described in Section 5.3.3.

B.1 Updating existing Mobile Hypotheses

The process of hypothesis updating can be separated in two parts which correspond to
the functions generateTracks and generateHypotheses defined at the global description of
the tracking approach presented in Section B. These functions are intended to update the
tracks of the mobiles represented in the hypotheses (Section B.1.1), and to generate the
new hypotheses based on the updated mobile alternative track solutions (Section B.1.3).

B.1.1 Generation of Tracks for Mobiles

For each mobile contained in the hypothesis set, the function generateTracks, presented
in Section B, associates to the mobile a list of the most likely tracks represented also as
mobiles updated with the visual evidence extracted from the current video frame.

The track generation method applies two different generation methods according to the
number of frames of mobile life-span. The first method is applied with a life-span of one
or two frames, as for first and second frames, it is not possible to determine the coherence
of the mobile velocity attributes.

This first generation method consists in considering all the blobs belonging to
the set of involved blobs, which have been previously obtained with the function
involvedBlobs, described in Section 5.3.1. This set of blobs is utilised to generate
the new evidence associated to the mobile as described in the pseudo-code algorithm
generateInitialMobileTracks below:

procedure generateInitialMobileTracks (In segmentedBlobs, In analysedMobile,

Out generatedMobiles)

begin

involvedBlobs = getInvolvedBlobs(segmentedBlobs, analysedMobile);

blobGroups = getBlobGroups(involvedBlobs);

for each group in blobGroups do

blobCombinations = getBlobCombinations(group);

for each combination in blobCombinations do

mergedBlob = mergeBlobs(combination);

if mergedBlob not alreadyIncluded(mergedBlob) then

newMobile = updateMobile(analysedMobile, mergedBlob);



248 Chapter B. Detailed Formulation of the Object Tracking Process

if coherentMobile(newMobile) then

insertMobile(newMobile, generatedMobiles);

end if

end if

end for

end for

return generatedMobiles;

end.

Using the set of involved blobs obtained with function getInvolvedBlobs, and previously
determined by function involvedBlobs (Section B), the generateInitialMobileTracks
algorithm generates all the coherent combinations of blobs that can be associated to
the analysed mobile.

For this purpose, the first function getBlobGroups separates involved blobs in groups
according to the possibility of these blobs to be merged between each other, according
to their proximity. Then, for each group of blobs, the function getBlobCombinations
generates all the possible blob combinations, also considering different number of
considered blobs in the combination.

Each of these blob combinations is merged by the function mergeBlobs, to obtain the
visual evidence to be associated to the currently analysed mobile. Before associating the
merged blob to the mobile, the function alreadyIncluded verifies if this merged blob really
represents a new visual evidence. This verification is necessary because in some cases
different blob combinations can give the same merged blob result.

Then, function updateMobile associates the visual evidence represented by the merged
blob to the currently analysed mobile, to generate a possible mobile track, represented by
a new mobile. This function represents the mobile updating process described in Section
B.1.2.

Minimal coherence of the new mobile is immediately checked by function coherentMobile,
which performs tests for the following temporal coherence reliability measures:

• CD3D: The temporal coherence reliability measure for 3D dimensional
data, presented in Equation (5.16), is evaluated using a pre-defined
MinimalDimensionalCoherence threshold. This threshold must be low, in order to
serve as filter of really invalid solutions. In practise, a value of the threshold equal
to 0.1 has shown a good behaviour. This measure is analysed when the number
of classified blobs in the buffer is higher than one, in order to be able to extract
dimensional information from at least two classified blobs and check their coherence.

• CV3D: The temporal coherence reliability measure for 3D velocity data, presented
in Equation (5.17), is evaluated using a pre-defined MinimalVelocityCoherence
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threshold. This threshold must be also low. In practise, a value of the threshold
equal to 0.1 has shown a good behaviour. This measure is analysed when the number
of classified blobs in the buffer is higher than two, in order to be able to calculate
at least two instant velocities from data and check their coherence.

• CD2D: The temporal coherence reliability measure for 2D dimensional
data, presented in Equation (5.16), is evaluated also using the pre-defined
MinimalDimensionalCoherence threshold. This measure is analysed when the
number of not lost blobs in the buffer is higher than one, in order to be able to
extract dimensional information from at least two blobs and check their coherence.

• CV2D: The temporal coherence reliability measure for 2D velocity data, presented
in Equation (5.17), is also evaluated using a pre-defined MinimalVelocityCoherence
threshold. This measure is analysed when the number of not lost blobs in the buffer
is higher than two, in order to be able to calculate at least two instant velocities
from data and check their coherence.

If all these four tests are passed, the function insertMobile then includes the new mobile in
the list of tracks for the analysed mobile ordered from higher to lower likelihood measure
pm (Equation (5.15)), obtaining an ordered list of valid mobiles as a final result of the
mobile generation process. If no coherent association has been found for the analysed
mobile, a new mobile is created and tagged as lost. The treatment for lost objects is
described in Section 5.3.4.

Finally, the first generation method ends by limiting the number of possible tracks for a
mobile. The new mobiles are suppressed if their likelihood measure pm, normalised by the
best pm measure, is lower than a pre-defined MinimalRelativeMobileLikelihood threshold.
As the pm value is normalised, the threshold can have a high value. In practise, values for
the threshold around 0.95 have shown good results. Then, the best surviving new mobile
number is limited to a pre-defined MaximumMobileTracks number.

The second generation method is applied with a life-span of more than two frames, as
now is possible to determine the coherence of the velocity attributes for the mobile. This
generation method consists in using the set of involved blobs to first generate the new
evidence associated to the mobile which best fits the estimated bounding box associated
to a mobile from its current attribute values, and then generates other mobile tracks using
the remaining involved blobs.

If no involved blobs have been found for the analysed mobile, a new mobile is created
and tagged as lost. The treatment of this case is the same as described in the first mobile
generation method.

If only one involved blob has been found for the currently analysed mobile, a new mobile
is immediately generated by updating the analysed mobile dynamics with the information
extracted from the involved blob. If the analysed mobile is in ensure mode the occurrence



250 Chapter B. Detailed Formulation of the Object Tracking Process

of the special situations is analysed, as presented in Section 5.3.4.

When the involved blob set size is higher than one blob, the algorithm
generateMobileTracks is applied, which is described in the pseudo-code algorithm below:

procedure generateMobileTracks (In segmentedBlobs, In analysedMobile,

Out generatedMobiles)

begin

involvedBlobs = getInvolvedBlobs(segmentedBlobs, analysedMobile);

initialBlob = getInitialBlob(involvedBlobs, analysedMobile);

if initialBlob found then

mergedBlob = getInitialMergeCombination(initialBlob,

involvedBlobs, analysedMobile);

else

mergedBlob = getBlobWithHighestBlobSupport(involvedBlobs, analysedMobile);

if initialBlob not found then

lostMobile = generateLostMobile(analysedMobile);

insertMobile(lostMobile, generatedMobiles);

return generatedMobiles;

end if

end if

newMobile = updateMobile(analysedMobile, mergedBlob);

if coherentMobile(newMobile) then

insertMobile(newMobile, generatedMobiles);

bestP_m = P_m(newMobile);

else

bestP_m = 0.0;

end if

if isInEnsureMode(analysedMobile) then

specialMobile = getSpecialMobile(currentMobile, mergedBlob);

insertMobile(specialMobile, generatedMobiles);

if coherentMobile(specialMobile) then

insertMobile(specialMobile, generatedMobiles);

end if

end if

validBlobs = getValidBlobs(involvedBlobs, mergedBlob, currentMobile);

blobCombinations = getBlobCombinations(validBlobs);
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for each combination in blobCombinations do

mergedBlob = mergeBlobs(combination);

if mergedBlob not alreadyIncluded(mergedBlob) then

newMobile = updateMobile(analysedMobile, mergedBlob);

if coherentMobile(newMobile)

and P_m(newMobile)/bestP_m > MinimalRelativeMobileLikelihood then

insertMobile(newMobile, generatedMobiles);

if P_m(newMobile) > bestP_m then

bestP_m = P_m(newMobile);

end if

end if

end if

end for

return generatedMobiles;

end.

Using the set of involved blobs obtained with function getInvolvedBlobs, and previously
determined by function involvedBlobs (Section B), the generateInitialBlob algorithm
searches the initial blob with mobileSupport higher than HighVisualSupportRate which has
the best blobSupport among the involved blobs, with respect to the estimated bounding
box generated with the analysed mobile attributes. This means that the algorithm
searches for the visual support blob inside the estimated bounding box which better
covers the area of the estimated bounding box.

If the initial blob is found, the function getInitialMergeCombination merges this initial
blob with other blobs which are near to the initially considered blob and inside the
estimated bounding box from the mobile attributes. The resulting blob is used as a
new initial blob for finding blobs inside the estimated bounding box which are near to
this resulting blob, and so on, until no other blob inside the estimated bounding box are
found. This way, the first initial visual support for the mobile is found.

If no initial blob is found, the process tries to get an initial blob with a second function
getBlobWithHighestBlobSupport, which returns the blob with the highest blobSupport
measure. This way, the initial blob is considered as the blob best covering the estimated
bounding box area, but not necessarily inside of the estimated bounding box. If still no
initial blob is found, a mobile representing the case of lost visual evidence is generated
(function generateLostMobile). This mobile track solution is inserted and the mobile track
generation stops.

Using the merged blob obtained with function getInitialMergeCombination or the initial
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blob obtained with function getBlobWithHighestBlobSupport, the track generation process
builds the updated mobile track (Function updateMobile) and inserts the solution to
the list of possible mobile tracks if this solution passes the coherency check function
coherentMobile (as in the first track generation method). If the new mobile track is
coherent, its pm likelihood measure (Equation (5.1)), obtained with function P m, is
utilised as the initial best pm value (bestP m), else the best pm value is initialised to zero.

If the analysed mobile is in ensure mode (function isInEnsureMode), possible special
cases are analysed for mobile tracks as presented in Section 5.3.4, by the function
getSpecialMobile. If the function finds that the current visual support blob represents
a special situation, the mobile representing the special case is generated and inserted to
the mobile track list if this mobile is coherent.

Then, function getValidBlobs generates a list of valid blobs from the involved blob
list, considering the blobs not considered in the initial blob solution which have a
blobSupport higher than zero. Then, as in the first generation method, the function
getBlobCombinations generates all the possible blob combinations, also considering
different number of blobs in the combination.

Each of these blob combinations are merged by the function mergeBlobs, to obtain the
visual evidence to be associated to the currently analysed mobile. Before associating the
merged blob to the mobile, the function alreadyIncluded verifies whether this merged blob
really represents new visual evidences, as in the first generation method.

Then, the function updateMobile generates the new mobile. The new track solution
is inserted to the list of tracks if the solution passes the coherency check function
coherentMobile and if the pm measure of the solution, normalised by the best found pm

measure bestP m, is higher than the MinimalRelativeMobileLikelihood threshold (already
defined for the first generation method). If the new mobile is inserted, the bestP m is
updated if the pm measure of the new mobile is higher.

Finally, after obtaining the new mobile track list from the algorithm generateMobileTracks,
the second generation method ends by limiting the number of possible tracks for a mobile,
as described at the end of the first mobile track generation method.

Hence, the result of the track generation process is a list of possible mobile tracks
ordered by the likelihood measure pm, for each mobile in every hypothesis contained
in the hypothesis sets. This result serves as input for the hypothesis generation process
presented in Section B.1.3.

B.1.2 Mobile Initialisation and Updating

In order to track a mobile object evolving in the video scene, its attribute information must
be updated with the information given by the visual evidence associated to the object in
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the current frame. The process of updating this information is determined by different
stages according to the mobile life-span and the coherence of its attribute information.

First, in order to ensure a minimal evidence of the mobile object existence, the visual
evidence on the first frames of existence of the tentative mobile is stored in a blob buffer.
At these first frames only the 2D information updates the dynamics model presented
in Section 5.2.2. This way, the unnecessary classification of blobs that are later lost is
avoided, improving the processing time performance.

The number of frames to be processed with only the 2D information are customisable,
but a reasonable value should be considered between three and the size of the blob buffer
associated to the mobile. Three values are necessary for a first verification of the temporal
coherency of the attribute velocity, as two pairs of blobs are needed for getting two instant
velocities. The blob buffer size is taken as an upper bound, which ensures to avoid the
loss of information, as blob information leaving the buffer is lost and next step uses this
blob information to estimate the initial 3D information.

Second, when the upper bound for processing only 2D information is reached, the updating
process initialises the 3D information as described in the following pseudo-code routine:

procedure initialise3DInformation (In blobsBuffer, In initialAttributes,

Out updatedAttributes)

begin

while (no coherent 3D solution is found) or (blobsBuffer reaches end) do

initialiseAttributes(updatedAttributes);

for each blob in blobsBuffer do

make3DClassification(blob);

if blob is classified then

PBest = 0.0;

for each classified expected object class in blob do

classAttributes = updatedAttributes;

updateAttributes(blob, class, classAttributes);

for each remainingBlob in blobsBuffer after blob do

classAttributes = guidedClassification(remainingBlob,

classAttributes);

updateAttributes(blob, class, classAttributes);

end for

if (P(classAttributes) > minimalMobileLikelihood)

and (P(classAttributes) > PBest) then

PBest = P(updatedClassAttributes);
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updatedAttributes = classAttributes;

end if

end for

if coherent 3D solution is found then

return updatedAttributes;

end if

update2DInformation(blob, updatedAttributes);

else

update2DInformation(blob, updatedAttributes);

end if

end for

end while

return initialAttributes;

end.

The 3D attribute initialisation procedure searches, for each blob in the blob
buffer (starting from the oldest one), a coherent 3D solution. When a blob is
successfully classified (function make3DClassification), the procedure searches for the best
configuration among all the classified expected object model classes. If this is the case,
for each classified object class, the procedure first executes the updateAttributes function,
which updates the mobile information according to the currently processed 2D blob and
3D class information in the blob buffer.

Then, for each remaining blob in the blob buffer, the function guidedClassification is
used to classify these blobs using the updated mobile information for the blob buffer. If
the mobile object m likelihood measure pm (obtained with function P (· )) is higher than
a pre-defined minimalMobileLikelihood threshold, the best 3D configuration in terms of
measure pm is stored and the updated attribute values for the class become the coherent
3D solution for the mobile.

More specifically, the guidedClassification function consists in performing the search of
the most coherent parallelepiped according to the current mobile attribute values, given
a specific object class. Attribute velocity information Va (Equation (5.11)) is utilised to
estimate the current position of the mobile object, attribute value standard deviations
σa (Equation (5.6)) and σVa

(Equation (5.14)) are utilised to determine the limits of
exploration for the 3D classifier, and mean attribute values ā (Equation (5.3)) are utilised
as the starting point for performing the search of the 3D parallelepiped model.

The utilisation of guidedClassification function has a twofold benefit: to search 3D
parallelepipeds which are coherent with the currently obtained mobile object information,
and to guide the 3D classification task in the search of the 3D solution, improving its
processing time performance.
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All information about other non-optimal coherent 3D solutions for other object classes
is also stored in order to give to the mobile attribute updating process the possibility to
change the 3D information in case that another object class becomes more likely than the
currently selected one.

If the classification of the initial blob does not give any class label or if no coherent
3D solution is found among all classes, only the 2D information is updated (function
update2DInformation) and the next blob in the blob buffer sequence is considered as
starting point to search for a coherent 3D solution. If no coherent 3D solution is found
at all, the attribute values obtained before starting the 3D information initialisation
procedure is considered, considering the mobile as an object of unknown class.

Third, for the following blob visual evidence associated to the mobile, after obtaining the
result from procedure initialise3DInformation, the attribute updating process continues
to apply the guidedClassification to classes with a previous found 3D solution, while the
function make3DClassification is applied to classes without associated 3D information in
order to find initial 3D information.

Fourth, if the number of classified blobs for the currently most coherent class arrives to a
pre-defined minimalNumberOfClassifiedBlobs and the mobile measure pm is higher than
a pre-defined minimalMobileLikelihoodToEnsure threshold, the mobile passes to ensure
mode. In this updating mode, just the currently most coherent class is evaluated with
the guidedClassification function, optimising the performance of the updating process by
considering that the currently associated class is the correct one for the mobile object.

B.1.3 Generation of Hypothesis from Mobile Tracks

The hypothesis generation process utilises as input the result of the mobile track
generation process described in previous Section B.1. This process consists in generating
for each hypothesis set, the new set of hypotheses with updated mobile information which
maximises the hypothesis likelihood measure PH presented in Equation (5.1). The idea is
to immediately generate these best hypothesis sets, instead of generating all the possible
hypotheses and then pruning the ones with lower PH .

For performing this process, the function generateHypotheses, presented in Section B,
is explained in detail. A pseudo-code representation of this algorithm is presented below:

procedure generateHypotheses (In currentHypothesesSets,

Out updatedHypothesesSets)

begin

for each hypothesesSet in currentHypothesesSets do

clearNewGeneralHypothesesList(newHypotheses);

for each hypothesis in hypothesesSet do
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addedHypotheses = 0;

clearNewHypothesesList(hypothesis);

clearCombinationsList(combinationsToAnalyse);

mobilesList = getBestPHNewMobiles(hypothesis);

currentPH = getPHValue(mobilesList);

mobileContributions = getContributionsToPM(mobilesList);

indexToModify = 0;

bestCombination = makeCombination(bestMobilesList, currentPH,

indexToModify, mobileContributions);

markAdded(bestCombination);

insertCombination(bestCombination, combinationsToAnalyse);

newHypothesis = getHypothesisFromCombination(bestCombination);

if validHypothesis(newHypothesis) then

insertNewHypothesis(newHypothesis, hypothesis);

addedHypotheses = addedHypotheses + 1;

end if

numMobiles = numberOfMobiles(hypothesis);

maxHypotheses = numMobiles * maxPerMobile;

totalNumberOfFrames = 0;

for index = 0 to (numMobiles - 1) do

totalNumberOfFrames += getNumFrames(mobilesList[index]);

end for

while addedHypotheses < maximumHypothesisNumber

and addedHypotheses < maximumRetainedHypotheses

and combinationsToAnalyse not empty do

for each combination in combinationsToAnalyse tagged added do

currentIndex = getMobileIndexToModify(combination);

for indexToModify = currentIndex to (numMobiles - 1) do

if mobileListNotEnding(indexToModify, combination) then

mobilesList = getMobilesList(combination);

mobilesList[indexToModify]

= nextMobile(mobilesList[indexToModify]);

currentPH = getPH(combination);

mobileContributions = getContributions(combination);

currentPH -= mobileContributions[indexToModify];

mobileFrames = getNumFrames(mobilesList[indexToModify]);

mobileContributions[indexToModify]

= mobileFrames * P_m(mobilesList[indexToModify])

/ totalNumberOfFrames;
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currentPH += mobileContributions[indexToModify];

newCombination = makeCombination(mobilesList, currentPH,

indexToModify,

mobileContributions);

insertCombination(newCombination, combinationsToAnalyse);

end if

end for

end for

eliminateMarkAddedCombinations(combinationsToAnalyse);

if combinationsToAnalyse is not empty then

bestPH = 0;

for each combination in combinationsToAnalyse do

currentPH = getProbabilityValue(combination);

if currentPH < bestPH then

break for;

end if

bestPH = currentPH;

markAdded(combination);

newHypothesis = getHypothesisFromCombination(combination);

if validHypothesis(newHypothesis) then

insertNewHypothesis(newHypothesis, hypothesis);

addedHypotheses = addedHypotheses + 1;

end if

end for

end if

end while

end for

for each hypothesis in hypothesesSet do

insertNewHypothesesList(hypothesis, newHypotheses);

end for

eliminateExcessOfHypotheses(newHypotheses, maximumRetainedHypotheses);

newHypothesesSet = makeHypothesesSet(newHypotheses);

insertHypothesesSet(newHypothesesSet, updatedHypothesesSets);

end for

return updatedHypothesesSets;

end.
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The hypothesis generation process is independent for each hypothesis set. First,
function clearNewGeneralHypothesesList resets the list of new hypotheses for the currently
analysed hypothesis set. Then, for each hypothesis of the set, a counter of the new inserted
hypotheses addedHypotheses, a list of the new hypotheses associated to the analysed
hypothesis ordered by the likelihood measure PH , and a list of combinations to analyse
by the hypothesis generation process combinationsToAnalyse are considered.

Each combination in the combinationsToAnalyse list consists of the analysed mobile track
for each mobile, the value of the measure PH , the index of the currently analysed list of
tracks for a mobile, and the contribution to each of the analysed mobile tracks. The
combinationsToAnalyse list is also ordered by the measure PH .

The initial combination of mobiles is constructed by the function makeCombination (and
stored in bestCombination), which utilises several inputs:

• mobilesList: Returned by the function getBestPHNewMobiles, corresponds to the
leading positions for the track lists for each mobile in the hypothesis. As the track
lists are ordered by the pm measure, this first combination corresponds to the one
giving the highest PH measure for the hypothesis.

• currentPH: Returned by the function getPH, corresponds to the PH measure for the
given mobiles combination.

• mobileContributions: Returned by function getContributions, corresponds to the
list of contributions of each mobile to the measure PH , given by pm·Tm, as deduced
from Equations (5.1) and (5.2), for a mobile m.

• The indexToModify value which is initially set to zero, representing the mobile track
list currently analysed in the combination.

Then, the function markAdded tags the initial best combination as added, which means
that this combination has been already analysed and that new mobile combinations
can be generated from it. Next, this initial combination is inserted to the list
combinationsToAnalyse by the function insertCombination. The hypothesis associated
to this combination is generated (function getHypothesisFromCombination) and tested
for validation by function validHypothesis.

A hypothesis is considered valid if there is no severe collisions between the parallelepiped
bases of the mobile objects which have available and reliable 3D information. If this is
the case, the hypothesis is inserted in the list of new hypotheses of the currently analysed
hypothesis by the function insertNewHypothesis, and the addedHypotheses counter is
incremented.

Then, the variable totalNumberOfFrames is calculated, which accounts for the total
number of frames considering all the mobiles in the analysed hypothesis. This variable is
used as the normalising factor for the PH measure, as Tm is normalised for each mobile
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m in Equation (5.2).

At this point, the hypothesis generation process starts. The process will stop if
the addedHypotheses counter reaches the maximumHypothesisNumber bound or the
maximumRetainedHypotheses bound, or when the combinationsToAnalyse list is empty.
The maximumHypothesisNumber bound is a particular bound for the analysed hypothesis
which authorises a pre-defined number of hypotheses per mobile maxPerMobile, for each
mobile forming the analysed hypothesis. The maximumRetainedHypotheses bound is a
pre-defined maximum number of total hypotheses for each hypothesis set.

For each combination in the combinationsToAnalyse list tagged as added a list of new
combinations is generated. Starting from the mobile track lists index for the added
combination, a new combination is generated considering the modification of a mobile
at different mobile track lists. Each of these new combinations are updated by advancing
in the track list of the given track lists index to the next mobile, subtracting the
contribution of the previous mobile in the list from the PH measure, and updating the
mobile contribution to the PH measure, as the value given by the new analysed mobile
from the list.

All these new combinations, generated from all the currently tagged added combinations,
are stored in the combinationsToAnalyse list, and the currently tagged added
combinations are eliminated. Then, if the combinationsToAnalyse list is not empty,
the next combinations with the best PH value are converted to a hypothesis (function
getHypothesisFromCombination). This hypothesis is inserted in the list of new
hypotheses of the currently analysed hypothesis (function insertNewHypothesis), and the
addedHypotheses counter is incremented, if the hypothesis passes the test of function
validHypothesis.

Finally, the new hypotheses generated for each analysed hypothesis are stored in the global
newHypotheses list for the hypothesis set (function insertNewHypothesesList). Then,
eliminateExcessOfHypotheses leaves the newHypotheses list with the hypotheses with best
PH measures not exceeding the maximumRetainedHypotheses number, and the hypothesis
set is reconstructed using the final newHypotheses list (function makeHypothesesSet).
Then, this new hypothesis set is added to the updatedHypothesesSets list.





Appendix C

Introduction: Version Française

L’un des problèmes les plus difficiles dans le domaine de la vision par ordinateur et
l’intelligence artificielle est l’interprétation automatique des séquences d’images ou de
compréhension de la vidéo. La recherche dans ce domaine se concentre principalement
sur le développement de méthodes pour l’analyze des données visuelles à extraire et sur
le traitement des informations sur le comportement des objets physiques dans une scène
du monde réel.

L’avancement dans l’extraction des données visuelles de bas niveau dans la vidéo a permis
aux chercheurs de se concentrer sur des analyzes de plus haut niveau impliquant des
aspects temporels, comme la reconnaissance et l’apprentissage des événements. Dans les
dernières années, l’analyze des événements dans la vidéo est devenu l’un des plus grands
domaines d’intérêt dans la communauté de compréhension de la vidéo [Hu et al. 2004a],
même si le nombre d’études dans ce domaine est encore faible, par rapport aux autres
domaines de compréhension de la vidéo. L’extraction de l’information sur les événements
en vidéo implique généralement le traitement approprié des tâches du bas niveau, comme
la détection de mouvement, le classement des objets, et la suivi des objets, afin de générer
l’entrée appropriée pour les tâches d’analyze des événements.

L’objectif principal de cette thèse est de proposer un cadre de travail dans la
compréhension de la vidéo pour l’apprentissage et la reconnaissance des
événements en général, pour des applications du monde réel.

Un nombre croissant des approches pour l’analyze des événements ont été proposées
dans les dernières années. L’intérêt des chercheurs a été essentiellement focalisée sur
la reconnaissance des événements pré-définis [Howarth and Buxton 2000], [Medioni et al.
2001], l’apprentissage hors ligne des relations entre des événements pré-définis [Hongeng
et al. 2004], [Chan et al. 2006a], [Hamid et al. 2005], [Toshev et al. 2006]), et l’apprentissage
hors ligne des événements [Fernyhough et al. 2000], [Remagnino and Jones 2001], [Hu et al.
2006], [Niebles et al. 2006], [Xiang and Gong 2008]. À ce jour, très peu d’attention a été
accordée à l’apprentissage incrémental des événements dans la vidéo [Mugurel et al. 2000],
[Piciarelli and Foresti 2006], qui devrait être la suivante étape pour des applications en
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temps réel pour la reconnaissance des événements imprévus, ou pour la détection des
comportements anormaux.

L’analyze des événements en vidéo dispose de plusieurs applications intéressantes. La
surveillance vidéo est l’un des plus importants domaines d’application. Pour la sécurité
des lieux publics, la surveillance vidéo est couramment utilisé, mais la augmentation du
nombre de caméras a conduit à la saturation des moyens de transmission et de analyze de
l’information, car il est difficile de surveiller simultanément plusieurs centaines d’écrans.
Pour aider à l’utilisateur dans cette tâche difficile, des techniques de compréhension de la
vidéo peuvent être utilisées pour le filtrage et le tri des scènes qui peuvent être intéressantes
pour un opérateur humain. Par exemple, le projet AVITRACK de surveillance vidéo dans
les aéroports [AVITRACK 2002], génère des rapports aux opérateurs sur les activités qui
se produisent dans l’aire de trafic aérien (par exemple, l’opération de ravitaillement),
et génère des alarmes en cas de situations indésirables (par exemple, la collision entre
un véhicule de fret et un avion). Comme autre exemple, le projet CARETAKER pour
l’analyze des comportements dans les espaces publics [CARETAKER 2006], [Carincotte
et al. 2006], génère des alarmes en cas de situations indésirables (par exemple, des
personnes se battent dans un parc de stationnement), et effectue l’extraction des données
sur des séquences vidéo de longue durée pour analyser des schémas de comportement des
objets qui évoluent dans la scène.

Un autre domaine d’application intéressant est celui de surveillance de la santé des
personnes. Elle consiste dans la surveillance de l’activité d’une personne en utilisant
des caméras et de capteurs afin d’assurer son intégrité physique et mentale. Pour ces
applications, des techniques de compréhension de la vidéo peuvent être utilisées pour
générer automatiquement des alarmes en cas que la santé de la personne surveillée est en
danger. Par exemple, le projet GERHOME pour la garde des personnes âgées à domicile
[GERHOME 2005], [Zouba et al. 2007], utilise des capteurs de chaleur, de son et de porte,
avec des caméras vidéo pour surveiller les personnes âgées. Le système de compréhension
de la vidéo proposé dans le cadre du projet GERHOME est capable d’alerter la famille
ou de demande de soutien médical dans le cas où un accident est détecté (par exemple, la
personne tombe), et de surveiller le comportement de la personne pour alerter si certaines
actions nécessaires n’ont pas été effectués (par exemple, la personne n’a pas pris ses
médicaments, ou la personne n’a pas pris de l’eau pour une longue période dans une
saison chaude).

L’utilisation de l’apprentissage incrémental des événements en vidéo permet d’obtenir la
probabilité d’occurrence des événements dans une scène vidéo, qui peut être utilisée pour
la détection des situations anormales sur la base d’un modèle adaptative de la fréquence
des événements dans une scène vidéo. La détection de situations anormales peut être une
caractéristique intéressante pour des nombreuses applications pour la vidéo-surveillance
et pour la surveillance de la santé des personnes, car elle permet d’alerter un opérateur sur
l’apparition d’une nouvelle situation inconnue, qui pourrait être indésirable ou dangereuse.
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Cette thèse concentre son intérêt dans des applications pour l’apprentissage
incrémental des événements, où plusieurs objets de type divers peuvent interagir dans
la scène (par exemple, des personnes, des véhicules). Les événements d’intérêt sont
également diverses (par exemple, les événements liés à des trajectoires, la posture), car
l’intérêt se concentre dans l’apprentissage des événements en général. Les objets qui
évoluent simultanément dans la scène peuvent être nombreux, mais l’intérêt est centré sur
les objets qui peuvent être suivis individuellement afin d’être en mesure de reconnâıtre
les événements de chaque objet.

Pour la réalisation de l’objectif de cette thèse, une nouvelle approche de compréhension
de la vidéo pour l’apprentissage et la reconnaissance des événements en général est
proposée. Cette approche implique un cadre complet pour l’apprentissage des événements
qui comprends les tâches de segmentation d’images vidéo, de classification des objets, de
suivi des objets, et d’apprentissage des événements:

1. En premier lieu, pour chaque frame de la vidéo, une tâche de segmentation consiste
à détecter les régions mobiles, lesquelles sont représentées par des bôıtes englobantes
qui les délimitent.

2. En deuxième lieu, une nouvelle méthode de classification 3D associe à chaque
région mobile un label de la classe d’objet (par exemple, personne, voiture) et un
parallélépipède 3D décrit par sa largeur, sa hauteur, sa longueur, sa position, son
orientation, et des mesures de fiabilité associées à ces attributs.

3. En troisième lieu, une nouvelle approche de suivi d’objets multiples utilise ces
descriptions d’objet pour générer des hypothèses de suivi par rapport aux objets
évoluant dans la scène.

4. En dernier lieu, une nouvelle approche d’apprentissage incrémental d’événements
agrège en ligne les attributs et l’information de fiabilité des objets suivis afin
d’apprendre des concepts qui décrivent les événements se déroulant dans la scène.
Des mesures de fiabilité sont utilisées pour focaliser le processus d’apprentissage
sur l’information la plus pertinente. Simultanément, l’approche d’apprentissage
d’événements reconnâıt des événements associés aux objets suivis dans la scène.

La suivante Section 1.1 présente les hypothèses et les objectifs de ce travail de thèse.
Ensuite, la section 1.2 décrit la structure de cette thèse, où une brève description du
contenu de chaque chapitre est présenté.

C.1 Hypothèses et Objectifs de la Thèse

L’approche proposée prend les hypothèses suivantes:
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• Application Mono-caméra: L’approche a été conçu pour considérer une seule
caméra comme entrée. Cette approche fait une estimation des informations 3D des
objets physiques qui évoluent dans la scène, en utilisant les connaissances a priori
sur les objets qui devraient être présents dans la scène. Même si la contrainte de
mono-caméra semble très restrictive, dans les applications du monde réel, il est
souvent le cas de traiter séparément les caméras d’un grand réseau.

• Hypothèse de caméra fixe: L’approche considère une configuration de caméra
fixe. Cette hypothèse implique la disponibilité d’un modèle de transformation de
référentiel image 2D à un référentiel de points 3D dans la scène. Le processus de
recherche de cette transformation est connu dans la domaine du traitement de la
vidéo comme la calibration. Dans le cadre de cette thèse, un modèle de caméra
pin-hole est utilisée, lequel considère la correspondance entre les points d’image 2D
et les points 3D de la scène comme une transformation linéaire représenté par une
matrice de projection. Pour l’exécution du processus de calibration, un processus
off-line appelé l’algorithme de transformation linéaire directe (DLT) [Abdel-Aziz
and Karara 1971] est utilisé. DLT consiste à trouver la matrice de projection par la
résolution du problème linéaire X = AY , où chaque colonne xk ∈ X correspond à
un point 2D dans l’image, chaque colonne yk ∈ Y correspond au point 3D dans la
référentielle de la scène, et A correspond à la transformation à trouver. La matrice
de projection mentionné est souvent appelée la matrice perspective.

• Modèles 3D d’objets disponibles: Cette hypothèse est plus souhaitable que
obligatoire, car la disponibilité de modèles 3D d’objets permet aux différentes tâches
de l’approache d’effectuer une meilleure analyze de l’évolution des objets dans la
scène. La disponibilité de modèles 3D d’objet permet à la tâche de classification
de nourrir le processus de suivi avec une description plus précise des objets mobiles
présents dans la scène, permet à la tâche de suivi des objets de réaliser un analyse
plus détaillée des configurations possibles pour le suivi des objets, et permet à la
tâche d’apprentissage des événements d’apprendre à partir des attributs le plus
intéressants de l’objet.

• Applications du monde réel: L’application de l’approche doit être adaptée pour
apprendre des événements à partir de la vidéo. Cette aptitude implique que plusieurs
facteurs doivent être considérés:

– Qualité de la séquence vidéo: La qualité de la séquence vidéo analysée doit
être suffisante pour détecter l’évolution des objets dans la scène avec un niveau
acceptable de fiabilité. Un niveau excessif de bruit dans la vidéo, une taux trop
faible d’acquisition des images vidéo, ou un gros manque de contraste entre les
objets et l’arrière-plan de la scène, parmi d’autres, peuvent être les facteurs
qui empêchent la bonne détection d’un objet. Cette contrainte ne signifie pas
que l’intérêt est uniquement centré sur des séquences vidéo haute définition et
qualité. Tout au contraire, cette contrainte signifie que des mécanismes sont
prévus pour contrôler plusieurs de ces facteurs si leurs conséquences dans la
séquence vidéo ne sont pas graves.
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– Niveau de la surpopulation: Le nombre d’objets qui peuvent évoluer
simultanément dans la scène n’est pas limité, mais il est un fait que cela peut
affecter les performances, et alors celui est un aspect à prendre en considération.
La divisibilité des objets évoluant dans la scène est un facteur plus important,
car l’approche a besoin de l’information d’événements pour chaque objet
individuellement. Ce facteur ne signifie pas que l’occlusion dynamique entre
des objets ne peut pas se produire. Tout au contraire, ce facteur signifie que
des mécanismes existent dans l’approche pour faire face à l’occlusion. Ces
mécanismes fonctionneront correctement en fonction de la fiabilité obtenue
pour les attributs de l’objet dans les images précédentes.

– Des performances en temps réel: La performance en temps réel est un facteur
souhaitable dans l’approche proposé. Plusieurs aspects peuvent empêcher le
cadre de l’accomplissement de ce facteur, comme par exemple un nombre
excessif des objets évoluant dans la scène, une très haute précision démandée
pour les attributs d’objets, ou un très grand nombre de classes d’objets
possibles. Selon si une application a besoin ou non d’une réponse en ligne
de l’approche, ce facteur devient plus ou moins souhaitable.

Compte tenu de la complexité du problème à résoudre, ce travail de thèse tente de
répondre à plusieurs questions d’ordre général:

1. Comment faire pour diminuer l’écart entre les tâches bas niveau de
traitement vidéo et l’apprentissage des événements? Actuellement, la
reconnaissance et l’apprentissage des événements complexes en général est réalisé
en utilisant des événements d’intérêt basiques pré-définis par l’utilisateur. Lorsque
l’intérêt est également porté dans l’apprentissage de ces événements basiques, les
études ont centré leur attention en des types d’événements en particulier (par
exemple, les trajectoires).

2. Comment des événements génériques fréquents survenus dans une scène
peuvent être appris et reconnus en ligne, en gardant une performance en
temps de calcul suffisante pour des applications du monde réel?

3. Comment les informations nécessaires pour l’apprentissage d’événements
peuvent être extraites à partir de vidéos bruitées d’une façon robuste?

Pour répondre à ces questions, l’approche proposée établit deux objectifs globaux:

1. Proposer une approche générale pour l’apprentissage des événements
fréquents, capable de fonctionner correctement dans des applications du
monde réel. À cette fin, une approche d’apprentissage incrémental est proposé
afin d’être capable d’apprendre en ligne des événements simples, directement de
l’information des attributs des objets mobiles, avec un minimum de temps de
traitement pour l’apprentissage lorsque de nouvelles informations arrivent dans le
système. Les événements appris peuvent être utilisés pour réduire l’écart entre
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les tâches bas niveau de traitement vidéo et l’analyse haut niveau des événements
complexes pour des événements génériques, en considérant ces événements simples
comme des éléments qui peuvent être une partie des événements plus complexes.

2. Proposer une approche d’apprentissage capable de traiter l’information
bruité d’une façon robuste. Pour atteindre cet robustesse, une approche complet
a été proposé, qui utilise des mesures de fiabilité pour mesurer la qualité et la
cohérence des données acquises. La fiabilité des informations est associé aux
attributs des objets suivis, et calculées pour les différentes tâches de l’approche.

Ainsi, la contribution de cette approche sont les suivants:

1. Une nouvelle approche d’apprentissage incrémental des événements
capable d’apprendre la fréquence des événements génériques à partir
d’une séquence vidéo. Cette approche propose un lien automatique entre les
données de bas niveau obtenues à partir des objets qui évoluent dans la scène et des
informations de plus haut niveau qui considèrent l’aspect temporel. L’apprentissage
incrémental des événements peut être utile pour la reconnaissance des événements
anormaux et sa sortie peut servir comme entrée pour des analyses de plus haut
niveau.

2. Une nouvelle façon de gérer l’information bruité. L’approche propose
d’associer des mesures de fiabilité à l’information obtenue, afin d’être en mesure de
comptabiliser la qualité, la cohérence et la fiabilité de cette information. De cette
façon, les informations les plus valables peuvent être identifiées afin d’augumenter la
robustesse de la suivi, en concentrant l’attention du processus de suivi d’objets sur
les attributs les plus cohérents et précis, et d’orienter le processus d’apprentissage
sur les informations les plus fiables.

C.2 Structure de la Thèse

En premier lieu, le chapitre 2 décrit l’état de l’art lié à l’approche proposé. Comme
l’approche aborde plusieurs aspects liés au domaine de compréhension de la vidéo, ce
chapitre a été séparé en cinq sous-parties portant sur: la représentation des objets, la
suivi multi-objet, l’utilisation des mesures de fiabilité dans le domaine de compréhension
de la vidéo, apprentissage incrémental des concepts, et l’apprentissage des événements à
partir de la vidéo .

En deuxième lieu, le chapitre 3 présente une vue globale de l’approche proposée, en
donnant une description détaillée du problème à résoudre. Ce chapitre donne une
description générale de l’approche. Aussi, les solutions proposées pour résoudre les
problèmes présents à chaque tâche de l’approche sont mis en place. Les possibilités
d’interaction de l’utilisateur avec l’approche sont également décrites. Les trois chapitres
suivants donnent une description détaillée de chaque tâche de l’approche proposée.
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Dans le chapitre 4, la représentation d’objets utilisée est décrite en détail. Cette
description comprend la formulation mathématique du modèle de parallélépipède, le calcul
des différents modèles alternatifs, la détection des situations d’occlusion statique, et la
validation de la représentation de son utilisation dans des applications du monde réel.

Dans le chapitre 5, l’approche de suivi multi-object est décrite en détail. Cette description
comprend un cadre pour la modélisation des hypothèses, l’algorithme de suivi et des
méthodes de génération d’hypothèses.

Dans le chapitre 6, l’algorithme pour l’apprentissage et la reconnaissance des événements
proposée est décrit en détail. Cette description comprend la definition de l’entrée,
la représentation des états et des événement, et l’algorithme incrémental pour la
reconnaissance et l’apprentissage des événements.

Après, le chapitre 7 présente l’évaluation de l’approche proposée. L’évaluation pour les
tâches de classification et suivi ont été également effectués. Une évaluation complète
de l’approche a été réalisée, tenant en compte de différents aspects comme la capacité
d’apprentissage et de reconnaissance des événements, le temps de traitement, ainsi que
l’influence des mesures de fiabilité, entre autres études.

En dernier lieu, le chapitre 8 présente les conclusions de ce travail de thèse et les
perspectives de recherche futures pour les différentes contributions émanant de ce travail.





Appendix D

Conclusion: Version Française

L’objectif de cette thèse de proposer une approche pour l’apprentissage des événements
en général dans des applications du monde réel a été atteint. Une nouvelle approche a
été proposé, qui est capable d’apprendre de façon incrémentale une description générale
des événements qui se produisent dans une séquence vidéo. La nature incrémentale du
processus d’apprentissage des événements est bien adapté pour les applications du monde
réel, car il considère l’intégration de nouvelles informations qui arrivent avec un minimum
de temps de traitement. L’apprentissage incrémental des événements peut être utile pour
la reconnaissance des comportements anormals et peut servir comme entrée pour des
analyses de plus haut niveau.

Traiter des applications du monde réel implique également que l’approche doit être capable
de gérer correctement les informations extraites de vidéos bruités. Cette exigence a été
considérée, en proposant un mécanisme générique permettant de mesurer de manière
cohérente la fiabilité de l’information dans l’ensemble du processus de compréhension
vidéo. Plus concrètement, des mesures de fiabilité associées aux attributs des objets ont
été proposées afin de mesurer la qualité et la cohérence de cette information.

L’approche est un cadre complet pour l’apprentissage des événements, y compris les
tâches de segmentation des images vidéo, classification des objets, suivi des objets, et
d’apprentissage des événements. Cette approche a proposé une passerelle automatique
entre les données bas niveau obtenues à partir des objets qui évoluent dans la scène et
des informations de plus haut niveau qui considèrent l’aspect temporel.

Les chapitres suivantes présentent la conclusion de chaque tâche de l’approche. La
section D.1 présente la conclusion de la méthode de classification d’objets proposée.
Ensuite, la section D.2 conclut sur l’approche de suivi d’objets proposée. Après, la
section D.3 présente la conclusion de la nouvelle méthode d’apprentissage incrémentale
des événements. Enfin, la section D.4 présente les limitations et les travaux futurs de
l’approche.

269
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D.1 À propos de la Classification d’Objets

La méthode de classification proposée est appropriée pour des applications du monde réel,
pour plusieurs raisons:

• La méthode a montré une haute performance en temps de traitement pour des
scénarios de complexité modérée.

• Les résultats de classification sont indépendants par rapport à la vue de la caméra
et à l’orientation de l’objet. La méthode a donc une flexibilité appropriée pour être
utilisée dans diverses applications du monde réel.

• La méthode est capable de faire face à des situations d’occultation statique sévères.

• L’approche propose des méthodes pour résoudre des situations ambigus entre
plusieurs alternatives géométriquement plausibles. item Le modèle de
parallélépipède utilisé par la classification est capable de représenter une grande
variété d’objets, même ceux qui changent de posture, avec des valeurs acceptables
pour les attributs 3D. Ce modèle simple permet également aux utilisateurs de
facilement définir de nouveaux objets mobiles qui peuvent être présents dans la
scène.

• Les mesures de fiabilité visuelle ont été proposées pour les attributs du modèle de
parallélépipède pour mesurer le degré de visibilité de ces attributs. Ces mesures ont
été utilisées par la tâche de suivi d’objets pour orienter l’estimation des attributs
de un objet utilisant les informations les plus fiables. L’estimation de ces mesures
est la première étape d’estimation de la fiabilité de l’information dans l’ensemble de
l’approche.

Les attributs 3D estimés pour le modèle de parallélépipède ont permis à l’approche de
suivi d’effectuer un meilleur filtrage des hypothèses par l’évaluation de la cohérence de
ces attributs dans le temps.

Les résultats de l’évaluation ont montré que la classification peut être intéressant par
elle-même.

D.2 À propos du Suivi d’Objets

La méthode de suivi proposé présente des idées similaires à la structure pour la création, la
production, et l’élimination des hypothèses des objets mobiles par rapport aux méthodes
MHT. Les principales différences de ces méthodes sont induites par la représentation de
l’objet utilisé pour le suivi et le fait que cette représentation diffère de la représentation
normalement utilisée dans les méthodes MHT. L’utilisation d’une représentation différente
d’une représentation de point implique l’examen de la possibilité que plusieurs morceaux
visuelles peuvent être associées à un objet mobile. Cela implique la conception de nouvelles
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méthodes de création et de mise à jour des hypothèses pour un objet.

L’approche de suivi propose un nouveau modèle de dynamique de suivi d’un objet
qui permet une redondance dans l’information de suivi par les attributs 2D et 3D de
l’objet, afin d’accrôıtre la robustesse. Ce modèle dynamique intègre des mesures de
fiabilité pour chaque attribut de l’objet suivi, qui représente la qualité et la cohérence
des informations utilisées. Le calcul de ces attributs considère une fonction d’oublie (ou
fonction de refroidissement) pour renforcer les informations plus actuelles. Les mesures
de fiabilité sont utilisées pour le contrôle de l’incertitude dans les informations obtenues,
l’apprentissage plus robuste des attributs d’objets et obtenir une estimation de la qualité
des informations obtenues. Ces mesures de fiabilité sont aussi utilisées dans la tâche
d’apprentissage d’événements afin de déterminer les informations les plus valables à
apprendre.

La méthode de suivi proposée a montré qui est capable d’avoir une haute performance
en temps de traitement pour des séquences de complexité modérée. Cependant, rien ne
peut encore être dit pour des situations plus complexes. L’approche a également montré
sa capacité pour résoudre des problèmes d’occultation statique, de sous-segmentation, et
de segmentation de un objet par plusieurs morceaux. La capacité de résolution problème
d’occultation dynamique a montré des limitations qui sont décrites dans la section D.4.
Plusieurs caractéristiques de la approche de suivi proposée pointent à l’objectif d’obtenir
une performance en temps de traitement qui puisse être considéré comme approprié pour
des applications du monde réel:

• L’approche de suivi coopère explicitement avec le processus de classification d’objets,
guidant le processus de classification avec les attributs d’objets mobiles appris
antérieurement. De cette façon, le processus de suivi est en mesure d’indiquer un
point de départ et les limites de la recherche pour les attributs du parallélépipède
à trouver par le processus de classification. Cette coopération permet une
réduction considérable du temps de traitement dédié à la classification 3D. Comme
l’information du mobile peut devenir plus fiable avec l’arrivée de plus des evidences
visuelles disponibles, la coopération peut également être envisagée pour améliorer la
qualité de l’information dans le temps, car plus de fiabilité implique une plus précis
modèle dynamique du mobile et moins de la variabilité des attributs du mobile, ce
qui permet d’établir de limites plus strictes à la espace de recherche.

• Quand un objet mobile passe au mode rassuré, une encore meilleure performance
peut être obtenue par le processus de classification 3D, car le parallélépipède est
estimé seulement pour une classe d’objet. À l’autre extrême, lorsque l’information
est encore peu fiable pour effectuer la classification 3D, les attributs 2D du mobile
sont seulement mis à jour, comme un moyen d’éviter les calculs provisoires de
mauvaise qualité pour les attributs des mobiles.

• La détermination des ensembles de blobs impliqués permet de contrôler le nombre
d’associations de blob possibles pour un objet mobile et de séparer le problème
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de suivi en sous-problèmes en fonction de la proximité des blobs. Alors, la
determination des ensembles de blobs impliqués présente une double contribution au
control de l’explosion combinatoire, car le moins possible des associations par mobile
et le moins mobiles liés par le sous-problème de suivi impliquent une réduction
immédiate du nombre d’hypothèses à générer, ce qui contribue à l’amélioration de
la performance en temps de traitement.

• Le nouveau processus de mise à jour des hypothèses a été orienté à optimiser
l’estimation des ensembles des hypothèses, en vue d’obtenir le plus de chances
d’éviter de générer des hypothèses peu probables qui doivent être éliminées plus
tard. La nouvelle méthode de génération de configurations possibles pour les mobiles
utilise un principe similaire, créant la solution la plus proche de l’estimation des
attributs des mobiles selon les évidences visuelles disponibles, et puis générant
les autres configurations possibles des mobiles à partir de cette première solution.
Ainsi, la production est orientée sur l’optimisation de la performance en temps de
traitement en générant des solutions de bonne qualité, plutôt que de générer toutes
les combinaisons possibles et après de supprimer des solutions de mauvaise qualité.

• Même si la mise à jour des hypothèses est porté à générer le minimum possible des
hypothèses, la charge de traitement pour l’image suivante peut être réduite par un
filtrage des hypothèses superflues, inutiles, ou peu probables.

• Enfin, le processus de séparation des ensembles des hypothèses représente un autre
mécanisme permettant d’améliorer la performance en temps de traitement, car il
permet de réduire immédiatement le nombre de mobiles dans un même ensemble des
hypothèses, générant ensembles des hypothèses qui peuvent être considérés comme
sous-problèmes de suivi indépendents.

L’estimation des mesures de fiabilité dans l’approche de suivi a un impact direct
dans la tâche d’apprentissage d’événements, car l’approche de suivi donne à la tâche
d’apprentissage d’événements les éléments nécessaires pour déterminer les attributs les
plus valables à apprendre.

Les résultats sur le suivi d’objets ont montré d’être réellement compétitif par rapport
à d’autres méthodes de suivi dans des vidéos de référence. Cependant, il ya encore du
travail à faire dans la capacité de l’approche pour faire face aux situations d’occultation.

D.3 À propos de l’Apprentissage d’Événements

L’approche d’apprentissage des événements proposée a été conçu pour être en mesure
d’apprendre les concepts des états et des événements d’une manière générale. La définition
de multiples contextes d’apprentissage dote le processus d’apprentissage d’un mécanisme
flexible pour l’apprentissage des événements survenant dans une séquence vidéo. Selon
la disponibilité sur les attributs des objets suivis, les combinaisons possibles pour des
contextes d’apprentissage est énorme. Les attributs déjà proposés dans l’approche de
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suivi d’objets donnent suffisamment de flexibilité pour explorer une grande variété de
scénarios. Quoi qu’il en soit, les utilisateurs peuvent toujours définir plus des attributs
d’objets, soit en combinant les attributs existants ou en créer de nouveaux attributs à
partir de nouveaux descripteurs d’objet.

Pour effectuer le processus d’apprentissage une nouvelle approche d’apprentissage
incrémental des événements appelé MILES (méthode d’apprentissage incrémental des
événements et des états) a été proposée. La nature incrémentale de MILES, permet
d’obtenir une performance d’apprentissage qui peut être utilisée dans l’apprentissage en
ligne.

La principale contribution de MILES est l’utilisation des modèles d’apprentissage
incrémental des concepts pour apprendre les états comme une hiérarchie de concepts
et d’étendre la hiérarchie d’apprentissage incrémental des concepts pour apprendre des
événements comme les relations temporelles de premier ordre entre les états appris.
L’extension vers l’d’apprentissage des événement a impliqué la redéfinition des operateurs
de merge et de split utilisés pour modifier la structure de la hiérarchie.

Une autre contribution est la façon d’utiliser les concepts de cutoff et d’acuity. Avant, ces
concepts ont été traités comme des paramètres généraux d’un algorithme d’apprentissage
incrémental des concepts, et maintenant, l’acuity est utilisée comme un moyen de définir
la différence dans un attribut à être considérée comme intéressante dans un contexte
d’apprentissage, et le cutoff comme une fonction des valeurs d’acuity et les différences
pour les attributs symboliques analysés.

Cette approche a démontré sa capacité de reconnâıtre des événements, à partir des données
bruitées au niveau des images, et avec un minimum d’effort de configuration. Les multiples
extensions et applications possibles de cette approche sont encourageants pour explorer
le comportement de l’approche dans des différents scénarios et contextes d’apprentissage.

D.4 Limitations de l’Approche et Travail Futur

La nature générale de l’approche proposée permet qu’elle puisse être étendue à un grand
nombre de nouvelles études. Le but de cette section est d’analyser les travaux futurs de
l’approche, comme des extensions de l’approche et des solutions possibles à ses limitations.
Ces limitations sont organisées en fonction de la période de temps pour les résoudre (des
limitations à court terme et à long terme).

D.4.1 Court Terme

À court terme, l’approche peut être extendu de plusieurs façons:

1. Le calcul des mesures de fiabilité dans la tâche de segmentation peut être une
extension intéressante de l’approche. Ces mesures de fiabilité pourrait être associées
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aux régions mobiles détectés afin de tenir compte de la qualité de la segmentation
en fonction de l’influence de changements d’illumination, le niveau de contraste
entre les objets en mouvement et le fond de la scène, et la possibilité de la présence
d’ombres, entre autres aspects.

2. Les mesures de fiabilité proposées pour les attributs des objets ont été arbitrairement
définis dans cette approche. Une analyse plus approfondie sur des différentes
mesures de fiabilité peut être réalisé en vue d’établir les mesures qui permettent
de mieux représenter la qualité ou la cohérence des attributs des objets.

En plus du travail futur présenté, chaque tâche de l’approche présente ses propres
limitations et travail futur. Les sections suivantes sont consacrés à analyser ces limitations
et à proposer le travail futur à court terme pour les tâches de classification d’objets
(Section D.4.1.1) et d’apprentissage d’événements (Section D.4.1.2).

D.4.1.1 Sur la Classification d’Objets

Le travail futur relatif à la classification d’objets dans le court terme peut être résumé
comme suit:

1. La résolution du problème de calcul du parallélépipède présenté dans la section
4.1.1 a été formulé pour une position du point focal plus élevée par rapport aux
objets évoluant dans la scène. Un objet plus élevé que le point focal se traduira
en une erreur dans le calcul des parallélépipèdes possibles associées à un objet.
Cette situation ne peut pas être considérée comme une erreur, mais comme un
élément manquant de l’approche qui n’a pas encore été résolu. La solution de ce
problème implique la résolution d’un nouveau système d’équations pour couvrir
cette situation. Faute de temps, ce système d’équations n’a pas été résolu pendant
cette thèse, et peut être considéré comme de travail futur.

2. Les tests réalisés pour la tâche de classification d’objets ont montré un manque de
précision dans l’estimation de l’angle d’orientation α des objets. Du travail futur
peut pointer à l’utilisation d’une représentation d’objet alternative, lorsque cette
situation est détectée.

D.4.1.2 Sur l’Apprentissage d’Événements

Le travail futur relatif à l’apprentissage d’événements dans le court terme peut être résumé
comme suit:

1. Dans cette thèse, seulement quelques contextes d’apprentissage ont été utilisées.
La flexibilité dans la définition des contextes d’apprentissage permet considérer des
possibilités infinies pour ces contextes. Le travail futur peut se concentrer sur l’étude
des différents contextes d’apprentissage.

2. Les mesures de fiabilité utilisées dans l’approche d’apprentissage d’événements sont
définis en fonction de l’intérêt de l’utilisateur. À l’avenir, des différentes façons de
définir ces mesures de fiabilité peuvent être envisagées.
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3. En plus des opérateurs de merge et de split utilisés par l’approche d’apprentissage
d’événements, d’autres opérateurs pourraient être intégrées à l’approche, comme les
opérateurs proposés par l’algorithme d’apprentissage INC présenté dans la section
2.4.4.

D.4.2 Long Terme

À long terme, l’approche peut être extendu de plusieurs façons:

1. Le système de coopération mutuelle proposé entre les tâches de classification et
de suivi peut être considérée comme une première étape dans la coopération entre
des différentes tâches du processus de compréhension de la vidéo. Un autre point
intéressant de coopération peut être un processus de rétroaction entre les tâches
de suivi et de segmentation. Les informations fournies par l’approche de suivi
peut être utilisées par la tâche de segmentation pour attirer l’attention sur les
zones de l’image vidéo où le mouvement peut être plus susceptible de se produire.
Ainsi, la segmentation peut se concentrer dans l’analyse du mouvement dans les
zones d’entrée de la scène et dans les zones où les objets en mouvement ont été
détectés, dans le but d’améliorer la performance en temps de traitement de la tâche
de segmentation.

2. L’idée d’avoir deux niveaux de représentation pour un objet mobile, dans le plan
image 2D et dans le référentiel 3D de la scène vidéo, conduit à la possibilité
d’examiner simultanément d’autres représentations des objets évoluant dans la
scène. Ces multiples modèles peuvent permettre à l’approche d’utiliser les
informations les plus fiables à partir de différentes représentations. En même temps,
ces observations pourraient être calculés ou non en fonction de la disponibilité et
la pertinence de l’obtention de cette information. Par exemple, un modèle articulé
d’une personne pourrait être intéressant d’être calculé si la proximité de l’objet à la
caméra est suffisante pour apprécier ses parties, ou un modèle basé sur l’apparence
de couleur pourrait être intéressant d’être calculé si le niveau de contraste de l’objet
à l’égard de l’arrière-plan est suffisant pour obtenir des informations valables.

3. L’approche a été évaluée en utilisant une seule caméra. Des approches multi-caméra
pourrait être étudiées afin d’analyser comment ces techniques pourraient améliorer
l’estimation des attributs 3D.

4. Les modèles 3D utilisés pour la détermination de la classe et les attributs 3D
d’un objet ont été pré-définies. L’utilisation de techniques d’apprentissage pour
apprendre ces modèles d’objet pourrait être un intéressant sujet d’étude.

En plus du travail futur présenté, chaque tâche de l’approche présente ses propres
limitations et travail futur. Les sections suivantes sont consacrés à analyser ces limitations
et à proposer le travail futur à long terme pour les tâches de classification d’objets (Section
D.4.2.1), de suivi d’objets (Section D.4.2.2), et d’apprentissage d’événements (Section
D.4.2.3).
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D.4.2.1 Sur la Classification d’Objets

Le travail futur relatif à la classification d’objets dans le long terme peut être résumé
comme suit:

1. Même si la représentation des objets proposé sert pour décrire une grande variété
d’objets, le résultat de l’algorithme de classification est une description grossière
de l’objet. Afin d’évoluer dans l’interprétation des situations plus complexes, des
modèles plus détaillées et plus spécifiques à la classe objet pourraient être utilisés en
cas de besoin. Le travail futur peut pointer à l’utilisation de représentations d’objets
plus spécifiques selon l’application, comme par example des modèles articulés, le
contour d’un objet, ou les modèles d’apparence, entre autres.

2. L’approche de classification a a été proposée pour un modèle de caméra pin-hole.
L’adaptation de la méthode de classification d’objets pour d’autres modèles de
calibration, comme le modèle de distorsion radiale, peut être un intéressant sujet
d’étude.

D.4.2.2 Sur le Suivi d’Objets

Le travail futur relatif à la suivi d’objets dans le long terme peut être résumé comme suit:

1. L’approche de suivi est en mesure de faire face à l’occultation dynamique en utilisant
les attributs d’un objet estimés dans les frames précédentes pour estimer les valeurs
actuelles des attributs de l’objet. Comme l’approche de suivi seulement fait une
estimation des valeurs actuelles des attributs fondé sur des informations antérieures,
le comportement des objets au cours de la période d’occultation ne peut pas être
déterminé, ce qui peut conduire à des erreurs de suivi. Alors, l’approche de suivi
proposée est en mesure de faire face aux situations d’occultation dynamique où les
objets concernés maintient la cohérence dans le comportement observé précédente
à la situation d’occultation. Le travail futur peut pointer à l’utilisation des modèles
d’apparence, utilisés dans ces situations de façon pertinante afin de déterminer quelle
partie des evidences visuelles appartient à chaque objet.

2. La méthode de suivi n’est pas capable d’identifier qu’un objet qui quitte la scène
vidéo et le même objet à la ré-entrée. Cela est dû que les informations utilisées
pour le suivi sont purement géométriques. À l’avenir, l’utilisation des modèles
d’apparence peut servir à identifier les objets qui retournent à la scène.

3. Même si le processus de génération d’hypothèses de l’approche de suivi a été
optimisé, un grand nombre d’objets entrant en même temps dans la scène peut
produire un grand nombre initial d’hypothèses sur la configuration des objets dans
la scène, car aucune information n’est disponible sur les nouveaux objets entrant
dans la scène. L’utilisation d’autres représentations d’objet peut également servir à
mieux définir les hypothèses initiales pour les objets qui entrent dans la scène.
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D.4.2.3 Sur l’Apprentissage d’Événements

Le travail futur relatif à l’apprentissage d’événements dans le long terme peut être résumé
comme suit:

1. À partir de l’état de l’art sur la formation incrémentale de concepts, il peut être
déduit que la distribution des concepts d’états et d’événements dans la hiérarchie
générée peuvent dépendre, dans certaine mesure, de l’ordre de processement des
instances d’état. Ceci signifie que différentes hiérarchies peuvent être obtenues
auprès de différentes ordres de processement pour les mêmes instances. Le travail
futur peut pointer à analyser l’influence de l’ordres de processement dans la qualité
de la représentation.

2. Comme l’approche d’apprentissage utilise les informations relatives à l’évolution
de chaque objet suivi dans la scène séparément, il ne semble pas être inhérent
à l’approche de représenter des relations entre les objets suivis. Dans l’avenir,
des extensions de la représentation hiérarchique d’états et d’événements notion
pourraient être étudiées afin d’envisager explicitement la représentation des relations
et interactions entre les objets.

3. Pour plusieurs applications, l’utilisateur peut être intéressé à l’analyse de la survenue
d’événements pré-définis intéressants pour l’application. Le travail futur peut se
concentrer dans la façon dont ces événements pré-définis peuvent être associés à la
description hiérarchique de concepts d’états et d’événements obtenue.

4. Il peut être très intéressant d’étudier comment les hiérarchies obtenus peuvent servir
comme entrée à des algorithmes de reconnaissance sémantique, comme des éléments
de base pour la reconnaissance des événements composés. Des applications comme
data mining, et video retrieval pourrait aussi utiliser les résultats de l’apprentissage
en tant que données d’entrée.

5. Le potentiel de l’approche d’apprentissage dans des applications d’apprentissage des
comportements humains et de reconnaissance de comportements anormals doit être
étudié.
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