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Abstract.
Extracting automatically the semantics from visual data isa real

challenge. We describe in this paper how recent work in cognitive
vision leads to significative results in activity recognition for visu-
alsurveillance and video monitoring. In particular we present work
performed in the domain of video understanding in our PULSAR
team at INRIA in Sophia Antipolis. Our main objective is to analyse
in real-time video streams captured by static video camerasand to
recognize their semantic content. We present a cognitive vision ap-
proach mixing 4D computer vision techniques and activity recogni-
tion based on a priori knowledge. Applications in visualsurveillance
and healthcare monitoring are shown. We conclude by currentissues
in cognitive vision for activity recognition.

1 INTRODUCTION

This paper is focused on activity recognition. Activity recognition is
a hot topic in the academic field not only due to scientific motiva-
tions but also due to strong demands coming from the industryand
the society; in particular for videosurveillance and healthcare. In fact,
there is an increasing need to automate the recognition of activities
observed by visual sensors (usually CCD cameras, omni directional
cameras, infrared cameras). More precisely we are interested in the
real-time semantic interpretation of dynamic scenesobserved by
video cameras. We thus study spatio-temporal activities performed
by mobile objects (e.g. human beings, animals or vehicles) interact-
ing with the physical world.

What does it mean to understand a video ? Is it just to perform
statistics on the appearance of images and to recognize an image
from a set of already seen images? If we really want to understand the
activities performed by the physical objects 2D analysis isnot suffi-
cient. We need to locate the physical objects in the 3D real world. The
dynamics of the physical objects is a major cue for activity recogni-
tion. The computer vision community is very active in the domain of
motion detection, mobile object tracking and more recentlytrajec-
tory analysis. Very often these analyses are performed in the image
plane and are thus dependant of the sensor parameters as its field of
view, position and orientation. However for reliable activity recogni-
tion the dynamics of the physical objects must be computed inthe
4D space.

Is there a unique objective interpretation of a dynamic scene? For
instance the scenes shown in figures 1 and 2 can be interpretedmore
or less precisely in function of the a priori knowledge of theobserver.
In the first case (shown in figure 1) without information on thelo-
cation of the scene one can recognize an indoor scene where two
men are walking together towards a door; a videosurveillance ex-
pert knowing the location (a bank agency), its spatial configuration
as well as security rules will interpret the same scene as a bank attack
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with the unautorized person accessing together with an employee to
a fordidden area. In the second case (shown in figure 2) without in-
formation on the location of the scene one can recognize a woman
standing alone; a medical expert knowing the patient will interpret
the same scene as an active elderly preparing a meal in her kitchen.
In fact, the interpretation of a video sequence is not uniquebut it de-
pends on the a priori knowledge of the observer and on his/hergoal.

Figure 1. A scene with different valid interpretations: two people walking
together towards a door or a bank attack with an access to a forbidden area

by an unauthorized person and an employee.

Figure 2. A scene with different valid interpretations: a person standing in
a room or an active elderly preparing a meal in a kitchen.

2 4D APPROACH

We present a cognitive vision approach mixing 4D computer vision
techniques and activity recognition based on a priori knowledge. The
major issue in semantic interpretation of dynamic scenes isthe gap
between the subjective interpretation of data and the objective mea-
sures provided by the sensors.
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Figure 3. From sensor data to high level interpretation; global structure of an activity monitoring system built with VSIP[1].

Our approach to address this problem is to keep a clear boundary
between the application dependent subjective interpretations and the
objective analysis of the videos. We thus define a set of objective
measures which can be extracted in real-time from the videos, we
propose formal models to enable users to express their activities of
interest and we build matching techniques to bridge the gap between
the objective measures and the activity models.

Figure 3 shows the global structure of a videosurveillance system
built with this approach. First, a motion detection step followed by
a frame to frame tracking is made for each video camera. Then the
tracked mobile objects coming from different video cameraswith
overlapping fields of view are fused into a unique 4D representation
for the whole scene. Depending on the chosen application, a combi-
nation of one or more of the available trackers (individuals, groups
and crowd tracker) is used. Then scenario recognition is performed
by a combination of one or more of the available recognition al-
gorithms (automaton based, Bayesian-network based, AND/OR tree
based and temporal constraints based). Finally the system generates
the alerts corresponding to the predefined recognized scenarios.

For robust semantic interpretation of mobile object behaviour it is
mandatory to rely on correct physical object type classification. It can
be based on simple 3D models like parallelepipeds [12] or complex
3D human body configurations with posture models as in [2]. Figure
4 shows examples of such postures.

Figure 4. Different 3D models of human body postures

3 3D MAP

We use 3D maps as a means to model the a priori knowledge of the
physical environment captured by the sensors. More precisely the 3D
maps contain the a priori knowledge of the empty scenes:

• Video Cameras:3D position of the sensors, calibration matrix,
fields of view,...

• 3D Geometry: the geometry of the static structure of the empty
scene (for instance the buildings and road structure for outdoor

scenes or the walls and doors for indoor scenes) as well as the
main static 3D objects (for instance the furniture in indoorscenes)
and the 2D zones of interest. This geometry is defined in termsof
3D position, shape and volume.

• Semantic information: for each part of the map semantic infor-
mation is added as its type (e.g. 3D object, 2D zone), its character-
ics (e.g. yellow, fragile) or its function (e.g. entrance zone, seat).

We can see on figure 5 a 2D map of an indoor flat and on figure
10 two partial views of the 3D map built for monitoring elderly at
home. In this map in addition to the main structure of the rooms
(walls, doors, etc.), the equipment and the furniture are defined as
well as the information related to the sensors.

Figure 5. Top view of the flat

Figure 6. 3D map: the kitchen area and the top view of a flat for
monitoring elderly at home

4 ACTIVITY MODELLING

In order to express the semantics of the activities a modelling effort
is needed. The models correspond to the modeling of all the knowl-
edge needed by the system to recognize video events occurring in the
scene. To allow security operators to easily define and modify their
models, the description of the knowledge is declarative andintuitive



(in natural terms). We propose a video event ontology to share com-
mon concepts in video understanding and to decrease the effort of
knowledge modelling.

4.1 The Video Event Ontology

The event ontology is a set of concepts for describing physical ob-
jects, events and relations between concepts:

The physical objectsare all the concepts to describe objects of
the real world in the scene observed by the sensors. The attributes of
a physical object are pertinent for the recognition. These attributes
characterize the physical object. There are two types of physical ob-
jects: contextual objects (which are usually static and whenever in
motion, its movement can be predicted using contextual information)
and mobile objects (which can be perceived as moving in the scene
and as initiating their motions, without the possibility topredict their
movement).

The eventsare all the concepts to describe mobile object evolu-
tions and interactions in a scene. Different terms are used to describe
these concepts and categorized into two categories:state (including
primitive/composite state) and event (including primitive/composite
event, single/multi-agent event).

A primitive state is a spatio-temporal property valid at a given
instant or stable on a time interval which is directly inferred from au-
diovisual attributes of physical objects computed by low level signal
processing algorithms.

A composite stateis a combination of states. Aprimitive event
is a change of states. Acomposite eventis a combination of states
and events. A single-agent event is an event involving a single mobile
object. A multi-agent event is a composite event involving several (at
least two) mobile objects with different motions.

Currently this ontology contains 151 concepts used for different
applications in video understanding. This ontology is implemented
in Protege to be independant of a particular activity recognition for-
malism.

4.2 Activity Models

A formalism for expressing an activity is directly based on the con-
cepts of the video event ontology. A composite event model iscom-
posed of five parts: ”physical objects” involved in the event (e.g.
person, equipment, zones of interest), ”components” correspond-
ing to the sub-events composing the event, ”forbidden compo-
nents” corresponding to the events which should not occur during
the main event, ”constraints” are conditions between the physical
objects and/or the components (including symbolic, logical, spatial
and temporal constraints including Allen interval algebraoperators,
and ”alarms” describing the actions to be taken when the event is
recognized.

Primitive states, composite states and primitive events can be de-
scribed using the same formalism. Please see [10] and [9] formore
details of the formalism.

5 ACTIVITY RECOGNITION

The algorithm proposed in [9] and in [10] enables to process effi-
ciently (i.e. in realtime) a data flow and to recognize pre-defined ac-
tivities. Alternative approaches based on probabilistic methods [6]
or [7] can also be used. In the following we concentrate on thefirst
approach because it is directly based on the formalism and the ontol-
ogy presented in the previous section. The video event recognition

algorithm recognizes which events are occurring using the primitive
video events. To recognize an event composed of sub-events,given
the event model, the recognition algorithm selects a set of physical
objects matching the remaining physical object variables of the event
model. The algorithm then looks back in the past for any previously
recognized state/event that matches the first component of the event
model. If these two recognized components verify the event model
constraints (e.g. temporal constraints), the event is saidto be rec-
ognized. In order to facilitate complex event recognition,after each
event recognition, event templates are generated for all composite
events, the last component of which corresponds to this recognized
event. For more details see [9].

6 APPLICATIONS

This approach has been applied to a large set of applicationsin visu-
alsurveillance.

6.1 Visualsurveillance

A typical example of complex activities in which we are interested is
aircraft monitoring (see figure 7 in apron areas . In this example the
duration of the servicing activities8 around the aircraft is about one
hour and the activities involve interactions between several ground
vehicles and human operators.

The goal is to recognize these activities through formal ac-
tivity models as shown in figure 9 and data captured by a net-
work of video cameras (such as the ones shown in figure 7). For
more details, refer to [3] and the related European project website
http://www.avitrack.net/.

a b

c d

Figure 7. Different views of an apron area captured by video cameras for
aircraft monitoring

6.2 Healtcare monitoring

In this application the objective is to monitor elderly at home (see fig-
ure 10). In collaboration with gerontologists, we have modeled sev-
eral primitive states, primitive events and composite events. First we



Figure 8. Activity recognition problem in airport: the main servicing
operations around an aircraft (refuelling, baggage loading, power supply,

etc...) and the location of the 8 video cameras (in blue)

Figure 9. Activity recognition problem in airport: example of an activity
model enabling to describe an unloading operation with a high-level

language

Figure 10. healthcare

are interesting in modelling events characteristic of critical situations
such as falling down. Second, these events aim at detecting abnormal
changes of behavior patterns such as depression. Given these objec-
tives we have selected the activities that can be detected using video
cameras [11]. We have modeledthirty four video events. In par-
ticular, we have defined fourteen primitives states, four ofthem are
related to the location of the person in the scene (e.g. inside kitchen,
inside livingroom) and the ten remaining are related to the proposed
3D key human postures. We have defined also four primitive events
related to the combination of these primitive states:”standing up”
which represents a change state from sitting or slumping to standing,
”sitting down” which represents a change state from standing, or
bending to sitting on a chair,”sitting up” represents a change state
from lying to sitting on the floor, and”lying down” which represents
a change state from standing or sitting on the floor to lying. We have
defined also six primitive events such as: stay in kitchen, stay in liv-
ingroom. These primitive states and events are used to definemore
composite events. For this study, we have modeled ten composite
events. In this paper, we present just two of them:”feeling faint”
and”falling down” .

The model of the ”feeling faint” event is shown in figure 4. The
”feeling faint” model involves one physical object (one person), and
it contains three 3D human posture components and constraints be-
tween these components.
CompositeEvent(PersonFeelingFaint,
PhysicalObjects( (p: Person) )
Components

( (pStand: PrimitiveState Standing(p))
(pBend: PrimitiveState Bending(p))
(pSit: PrimitiveState SittingOutstretchedLegs(p)))

Constraints
((Sequence pStand; pBend; pSit)
(pSit’s Duration>= 10))

Alarm( AText(”Person is Feeling Faint”)
AType(”URGENT”)) )

”Feeling faint” model.

We have also modelled the ”falling down” event. There are
different ways for describing a person falling down. Thus, we have
modelled the event ”falling down” with three models:
Falling down 1: A change state from standing, sitting on the
floor (with flexed or outstretched legs) and lying (with flexedor
outstretched legs).
Falling down 2: A change state from standing, and lying (with
flexed or outstretched legs).
Falling down 3: A change state from standing, bending and lying
(with flexed or outstretched legs).

An example of the definition of the model ”falling down 1” is
shown below.
CompositeEvent(PersonFallingDown1,
PhysicalObjects( (p: Person) )
Components

( (pStand: PrimitiveState Standing(p))
(pSit: PrimitiveState SittingFlexedLegs(p))
(pLay: PrimitiveState LyingOutstretchedLegs(p)))

Constraints
( (pSit beforemeet play)
(pLay’s Duration>= 50))

Alarm
(AText(”Person is Falling Down”)
AType(”VERYURGENT”)) )

”Falling down 1” model.

Figure 11 and figure 12 show respectively the camera view and
the 3D visualization of the recognition of the ”feeling faint” event.



Figure 11. Recognition of the ”feeling faint” event

Figure 12. 3D visualization of the recognition of the ”feeling faint” event

Figure 13 and figure 14 show respectively the camera view and the
3D visualization of the recognition of the ”falling down” event.

Figure 13. Recognition of the ”falling down” event

Figure 14. 3D visualization of the recognition of the ”falling down” event

7 CONCLUSION

We have shown a 4D semantic approach for activity recognition of
dynamic scene. There are still a lot of open issues among which a full
theory of visual data interpretation, reliable techniquesfor 4D analy-
sis able to deal with changing observation conditions and scene con-
tent. From an activity recognition point of view the three main points
are the development of shared operational ontologies, of formalisms
for activity modelling with good properties such as scalability and
learning techniques for model refinement. In particular a large set of
learning issues are rised by this 4D semantic approach for instance:
learning contextual variations for physical object detection and im-
age segmentation [5], learning the structure of the activity models [8]
or learning the visual concept detectors [4].
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