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AbstratIn this thesis we address the problem of image and video segmentation witha ognitive vision approah. More preisely, we study two major issues of thesegmentation task in vision systems: the seletion of an algorithm and the tuningof its free parameters aording to the image ontents and the appliation needs.We propose a learning-based methodology to easily set up and ontinuously adaptthe segmentation task.Our �rst ontribution is a generi optimization proedure to automatiallyextrat optimal algorithm parameters. The evaluation of the segmentation qualityis done with regards to referene segmentations. In this way, the user task isredued to provide referene data of training images, as manual segmentations.A seond ontribution is a twofold strategy for the algorithm seletion issue.This strategy relies on a training image set representative of the problem. The�rst part uses the results of the optimization stage to perform a global rankingof algorithm performane values. The seond part onsists in identifying di�erentsituations from the training image set and then to assoiate a tuned segmentationalgorithm with eah situation.A third ontribution is a semanti approah to image segmentation. In this ap-proah, we ombine the result from the previously (bottom-up) optimized segmen-tations to a region labelling proess. Regions labels are given by region lassi�erswhih are trained from annotated samples.A fourth ontribution is the implementation of the approah and the develop-ment of a graphial tool urrently able to arry out the learning of segmentationknowledge (automati parameter optimization, region annotations, region las-si�er training, and algorithm seletion) and to use this knowledge to performadaptive segmentation.We have tested our approah on two real-world appliations: a biologial appli-ation (detetion and ounting of pests on rose leaves) for the stati segmentationpart, and video surveillane appliations for the video �gure-ground segmenta-tion part. Results, quantitative evaluations, and omparisons with non-adaptivesegmentations are presented to show the potential of our approah.For the segmentation task in the biologial appliation, the proposed adaptivesegmentation approah over performs a non-adaptive segmentation in terms ofsegmentation quality and thus allows the vision system to ount the pests with abetter preision. iii



For the �gure-ground video segmentation task, the main ontribution of myapproah takes plae at the ontext modelling level. By ahieving dynami bak-ground model seletion based on ontext analysis, my approah allows to enlargethe sope of surveillane appliations to high variable environments.The main limitation of my approah is its lak of adaptation to unforeseensituations. An improvement ould be to use ontinuous learning tehnique toadapt the segmentation to new situations.keywords: Image segmentation, video segmentation, ognitive vision, mahinelearning, segmentation performane evaluation, optimization tehniques.



RésuméDans ette thèse, nous abordons le problème de la segmentation d'image dansle adre de la vision ognitive. Plus préisement, nous étudions deux problèmesmajeurs dans les systèmes de vision : la séletion d'un algorithme de segmen-tation et le réglage de ses paramètres selon le ontenu de l'image et les besoinsde l'appliation. Nous proposons une méthodologie reposant sur des tehniquesd'apprentissage pour failiter la on�guration des algorithmes et adapter en on-tinu la tâhe de segmentation.Notre première ontribution est une proédure d'optimization génériquepour l'extration automatiquement des paramètres optimaux des algorithmes.L'évaluation de la qualité de la segmentation est faite suivant une segmentationde référene. De ette manière, la tâhe de l'utilisateur est réduite à fournir desdonnées de référene pour des images d'apprentissage, omme des segmentationsmanuelles.Une seonde ontribution est une stratégie pour le problème de séletiond'algorithme. Cette stratégie repose sur un jeu d'images d'apprentissage représen-tatif du problème. La première partie utilise le résultat de l'étape d'optimisationpour lasser les algorithmes selon leurs valeurs de performane pour haque im-age. La seonde partie onsiste à identi�er di�érentes situations à partir du jeud'images d'apprentissage (modélisation du ontexte) et à assoier un algorithmeparamétré ave haque situation identi�ée.Une troisième ontribution est une approhe sémantique pour la segmenta-tion d'image. Dans ette approhe, nous ombinons le résultat des segmen-tations optimisées ave un proessus d'étiquetage des régions. Les labels desrégions sont données par des lassi�ateurs de régions eux-même entrainés àpartir d'exemples annotés par l'utilisateur. Une quatrième ontribution estl'implémentation de l'approhe et le développement d'un outil graphique dédiéà l'extration, l'apprentissage, et l'utilisation de la onnaissane pour la segmen-tation (modélisation et apprentissage du ontexte pour la séletion dynamiqued'algorithme de segmentation, optimization automatique des paramètres, anno-tations des régions et apprentissage des lassi�eurs).Nous avons testé notre approhe sur deux appliations réelles : une applia-tion biologique (omptage d'insetes sur des feuilles de rosier) et une appliationde video surveillane. Pour la première appliation, la segmentation des insetesobtenue par notre approhe est de meilleure qualité qu'une segmentation non-v



adaptative et permet don au système de vision de ompter les insetes ave unemeilleure préision. Pour l'appliation de video surveillane, la prinipal ontri-bution de l'approhe proposée se situe au niveau de la modélisation du ontexte,permettant d'adapter le hoix d'un modèle de fond suivant les aratéristiquesspatio-temporelles de l'image. Notre approhe permet ainsi aux appliations devideo surveillane d'élargir leur hamp d'appliation aux environnement fortementvariables omme les très longues séquenes (plusieurs heures) en extérieur.A�n de montrer le potentiel et les limites de notre approhe, nous présentons lesrésultats, une évaluation quantitative et une omparaison ave des segmentationsnon-adaptatvie.mot-lés : Segmentation d'image, segmentation de vidéos, vision ogni-tive, tehniques d'apprentissage, évaluation de la segmentation, tehniquesd'optimization.
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Chapter 1Introdution1.1 MotivationsThis thesis deals with image segmentation in vision systems. Image segmentationonsists in grouping pixels sharing some ommon harateristis. In vision sys-tems, the segmentation layer typially preedes the semanti analysis of an image.Thus, to be useful for higher-level tasks, segmentation must be adapted to thegoal, i.e. able to e�etively segment objets of interest. The very �rst problem isthat a unique general method still does not exist: depending on the appliation,algorithm performanes vary. This is illustrated in Figure B.1 where two di�erentalgorithms are applied on the same image. The �rst one seems to be visuallymore e�ient to separate the ladybird from the leaf. The seond one produestoo many regions not very meaningful.
Figure 1.1: An example of the segmentation of an image with two di�erent algorithms. The �rstalgorithm forms regions aording to a multi-sale olor riteria while the seond uses a loalolor homogeneity riteria.Basially, two popular approahes exist to set up the image segmentation taskin a vision system. A �rst approah is to develop a new segmentation algorithmdediated to the appliation task. A seond approah is to empirially hoose anexisting algorithm, for instane by a trial-and-error proedure. The �rst approahleads to develop an ad ho algorithm, from srath, and for eah new appliation.The seond approah does not guarantee adapted results and robustness. So, aneed exists for developping a new approah to the algorithm seletion issue.When faing di�erent algorithms, this approah should be able to automatially



2 Introdutionhoose the one best suited with a segmentation goal.When designing a segmentation algorithm, internal parameters (e.g., thresh-olds or minimal sizes of regions) are set with default values by the algorithmauthors. In pratie, it is often up to an image proessing expert to supervise thetuning of these free parameters to get meaningful results. As seen in Figure B.2, itis not lear how to hoose the best parameter set regarding the segmented images:the �rst one is quite good but several parts of the inset are missing; the seondone is also good, sine the inset is well outlined, but too many meaningless re-gions are also present. However, omplex interations between free parametersmake the behavior of the algorithm fairly impossible to predit. Moreover, thisawkward task is tedious and time-onsumming. Thus, the algorithm parame-ter tuning is a real hallenge. To solve this issue, optimization methods shouldbe investigated in order to automatially extrat optimal parameters.
Figure 1.2: Illustration of the problem of algorithm parameter tuning. An image is segmentedwith the same algorithm (based on olor homogeneity) tuned with two di�erent parameter sets.In real world appliations, when the ontext hanges, so does the appearaneof the images. This is partiularly true for video appliations where lightningonditions are ontinuously varying. It an be due to loal hanges (e.g., shadows,re�etions) and/or global illumination hanges (due to meteorologial onditions),as illustrated in Figure B.3 where images are extrated from the same sene atdi�erent hours of the day. The onsequenes on segmentation results an bedramati. This ontext adaptation issue emphasizes the need of automatiadaptation apabilities.
Figure 1.3: illustration of the problem of ontext variations on a video surveillane appliation.



1.2 Objetives 31.2 ObjetivesMy objetive is to propose a ognitive vision approah to the image segmentationproblem. More preisely, we aim at introduing learning and adaptability apa-ities into the segmentation task. Traditionally, expliit knowledge is used to setup this task in vision systems. This knowledge is mainly omposed of image pro-essing programs (e.g., speialized segmentation algorithms and post-proessings)and of program usage knowledge to ontrol segmentation (e.g., algorithm sele-tion and algorithm parameter settings). To this end, three main issues of imagesegmentation task in vision systems should be solved:
• The �rst issue is to extrat optimal parameters of segmentation algorithmsin order to obtain a segmentation adapted to the segmentation task, i.e.a goal-oriented segmentation. The tuning of segmentation algorithm pa-rameters is known to be a triky task and often requires image proessingskills. So, our objetive is threefold: �rst, we want to automate this task inorder to alleviate users' e�ort and prevent subjetive results. Seond, the�tness funtion used to assess segmentation quality should be generi (i.e.not appliation dependent). Third, no a priori knowledge of segmentationalgorithm behaviors is required, only ground truth data should be providedby users.
• One all the algorithms have been optimized, a seond issue is to selet thebest one. The seletion strategy should be based on a quantitative evalu-ation of eah algorithm performane. However, when images of the appli-ation domain are highly variable, it remains quite impossible to ahieve agood segmentation with only one tuned algorithm. In this ase, a seletionstrategy depending on the image ontent analysis should be preferred.
• In many omputer vision systems at the detetion layer, the goal is to sep-arate the objet(s) of interest from the image bakground. When objetsof interest and/or image bakground are omplex (e.g. omposed of severalsub-parts), a low-level algorithm annot ahieve a semanti segmentation,even if optimized. For this reason, a third issue is to re�ne the (optimized)segmentation to provide a semantially meaningful segmentation to highervision modules.Our �nal objetive is to show the potential of our approah through two dif-ferent segmentation tasks in real-world appliations.
• The �rst segmentation task we fous on is image segmentation in a biologi-al appliation related to early pest detetion and ounting. This implies torobustly segment the objets of interest (mature white �ies) from the om-plex bakground (rose leaves). Our goal is to demonstrate that the ognitivevision platform oupled with our adaptive segmentation approah ahieves abetter detetion rate of white �ies than tuned with an ad ho segmentation.



4 Introdution
• The seond segmentation task we fous on is �gure-ground segmentationin a video surveillane appliation. The goal is to detet moving objets(e.g., walking people) in the �eld of view of a �xed video amera. Detetionis usually arried out by using bakground subtration methods. However,illumination hanges make the bakground modeling problem di�ult. Ourobjetive is to show that a dynami seletion of bakground model allows toenlarge the sope of surveillane appliations to high variable environments.1.3 Context of the StudyThis work takes plae in the Orion projet-team at INRIA Sophia AntipolisMéditerranée, Frane. Orion is a leading team in sene understanding at thefrontier of omputer vision, knowledge-based systems, and software engineering.Orion has a ognitive vision approah. It aims to ahieve robust, resilient, adapt-able omputer vision funtionalities by endowing them with a ognitive faulty.This means the ability to learn, to adapt, and to weight alternative solutions,and develop new strategies for detetion, reognition, and interpretation. Re-ently, Hudelot [Hudelot, 2005℄ proposed a ognitive vision platform for seman-ti image interpretation. This platform is based on the ooperation of threeknowledge-based systems of whih one is dediated to the intelligent managementof image proessing programs. Maillot [Maillot, 2005℄ has endowed this platformwith learning failities and ontology-based semanti knowledge representation andmanagement for objet reognition. Currently, the detetion layer of the platformrely on ad ho segmentation. This means that all the segmentation operators havebeen tuned deep in ode one and for all. In this ontext, my work aims to enrihthis ognitive vision platform at the image segmentation level to enable adaptivesegmentation.1.4 ContributionsMy main ontribution is to propose a ognitive vision approah to image segmen-tation by solving the issues listed above:
• I propose a generi optimization proedure to automatially extrat opti-mal algorithm parameters. This proedure is based on three independentomponents: a segmentation algorithm with one or several free parametersto tune, a performane evaluation metri, and an optimization algorithm.The evaluation of the segmentation quality is done with regards to a refer-ene segmentation (e.g. manual segmentation). The performane evaluationmetri is generi, has a low-omputational ost, and an be used for a broadrange of segmentation purposes. In this way, the user task is redued toprovide referene data: manual segmentations of training images.
• I propose two strategies for the algorithm seletion issue. These strategiesuse the results of the optimization stage applied on a training image set



1.5 Outline 5representative of the problem. The �rst one is based on a global ranking ofalgorithm performane values. The seond strategy is to identify di�erentsituations, alled ontexts, from the training image set and to assoiate atuned segmentation algorithm with eah ontext.
• I also propose an approah to semanti image segmentation. In this ap-proah, we onsider the segmentation re�nement problem as a region la-belling problem. It is hene designed for region-based segmentation algo-rithms only. The goal is to assess the membership of eah region to apre-de�ned set of regions sharing the same label. The assessment relies ona preliminary supervised learning stage where region-lassi�ers are trainedwith training samples. The role of the user is to label the regions of theground truth segmentations. The originality of this approah is twofold.First, we use the optimized segmentations as input of the region-lassi�ers.Seond, the sub-tasks of the learning proess, namely region feature ex-tration, region feature seletion, and lassi�er training, are automatiallyoptimized in a wrapper sheme to get the best lassi�ation performanes.In the sope of the two previously desribed segmentation tasks, my ontribu-tions are the following:
• For the segmentation task in the biologial appliation, the proposed adap-tive segmentation approah overperforms the ad ho segmentation in termsof segmentation quality and thus allows the system to ount the pests witha better preision.
• For the �gure-ground segmentation task, my main ontribution takes plaeat the ontext modeling level. By ahieving dynami bakground modelseletion based on ontext analysis, my approah allows to enlarge the sopeof surveillane appliations to highly variable environments.Eah step of the proposed approah is tested and evaluated on several imagedata sets. This helps us to show the strengths and the limitations of the approahin terms of performane, omputational ost, and sensitivity to key parameters.1.5 OutlineThis manusript is strutured as follows. Chapter 2 introdues the reader to imagesegmentation in the ontext of omputer vision systems. We propose an overviewon four topis losely related to our problem: image segmentation in omputervision systems, segmentation approahes, performane evaluation, and segmen-tation optimization. Chapter 3 introdues the proposed approah, and gives ourobjetives and assumptions for the di�erent segmentation issues. Chapter 4 de-tails eah step of our approah: algorithm parameter optimization, algorithmseletion, and semanti region labelling. Chapter 5 is dediated to the validationof the approah for a real world appliation. In partiular, we are interested in



6 Introdutionthe segmentation step of a ognitive vision system dediated to the reognitionof biologial organisms. In hapter 6, we present how our approah an be usedfor the adaptive �gure-ground segmentation in video surveillane appliations.Conluding remarks and suggestions for future work are disussed in hapter 7.



Chapter 2State of the Art2.1 The plae of the Image Segmentation Task in Vi-sion SystemsIn the beginning of the eighties, Marr [Marr, 1982℄ proposed a theory of the humanpereptual vision. This theory is the �rst omplete methodology for the design ofinformation systems. He suggested three levels of abstration for the analysis ofsuh omplex systems:The omputational level: it desribes what is the goal of the system. It has amore abstrat nature than the next two levels and spei�es all informationalonstraints neessary to map the input data into the desired output.The algorithmi level: it states how the omputational theory an be arriedout in terms of methods. It is related to the spei�ation of algorithms withtheir input and output representations.The implementational level: it desribes how an algorithm is embodied as a�physial� proess. It has the lowest desription level, e.g. the hardwareimplementation and the software ode.An important harateristi of this reonstrutive approah of vision is the in-reasing number of solutions while dereasing the abstration level. For example,there are several algorithms to solve the omputational task �edge detetion�, andthere are many possible ways to implement eah of them.Inspired from the Marr's theoretial framework, most existing arti�ial visualreognition systems, alled vision systems, follow the paradigm depited in Fig-ure 2.1. An image is �rst pre-proessed in order to highlight information whih isimportant for the next stages. Classially, it often refers to the segmentation task.Then, the desriptor mapping module enodes the remaining low-level data intoa symboli form more appropriate for the reognition and analysis stage, whih�nally identi�es the image ontent.This arhiteture has yet one drawbak: errors in the �rst stages, e.g., in thesegmentation, will be further propagated into later stages, degrading the quality
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Figure 2.1: The three stages of visual proessings usually found in vision systems.of the whole system. Thus, great attention has been direted to the problem ofsegmentation. Hundreds of publiations in this �eld appear every year, eah tryingto �nd an optimal solution for one spei� appliation or for general purposes.However, a uni�ed, generally aepted de�nition of image segmentation does notyet exist. Most authors agree on the following fats about segmentation:
• its task is to partition the image into several segments or regions (this pointwill be developed in setion 2.2.1);
• it is an early proessing stage in omputer vision systems. Within theomputational model for omputer vision (Figure 2.1), it belongs to thepreproessing module;
• it is one of the most ritial tasks in automati image analysis.2.1.1 Knowledge-Based ApproahesEarly approahes in vision systems use expliit knowledge to de�ne the seg-mentation task. In [Nazif and Levine, 1984℄, an expert system for low-level im-age segmentation is proposed. The system is based on hundreds of produtionrules that manipulate ombinations of regions and lines obtained from two basisegmentation algorithms. Another example an be found in the SIGMA sys-tem [Matsuyama and Hwang, 1990℄ whih uses a low-level vision expert moduledediated to handle segmentation and feature extration tasks for aerial imageunderstanding. One weakness of these systems is their appliation dependeny.The knowledge aquisition neessary to build the rules is also a big problem.Then, researhers have tried to oneive more versatile systems by inorpo-rating veri�ation and knowledge aquisition omponents. In [Ossola, 1996℄, anapproah based on the ooperation of two knowledge-based systems (KBS) is pre-sented. Program supervision tehniques [Moisan and Thonnat, 1995℄ are used toproess images in an intelligent way, e.g. to dynamially set up the segmentationtask with respet to variable onditions. A general program supervision arhite-ture ontains three main parts: a library of programs, a knowledge base, and areasoning engine. The reasoning engine is in harge of seleting and sheduling theprograms of the library whih are best satisfying a user query. The engine iteratesthe following loop omposed of four steps, until a satisfatory solution is reahed:planning (e.g., seletion of programs), exeution (e.g., initial parameter setting),evaluation (e.g., assessment of output results), and repair (e.g., adjustment of



2.1 The plae of the Image Segmentation Task in Vision Systems 9some parameters). The knowledge base ontains a delarative representation (i.e.frame and prodution rules) of the programs alled operators. These operatorsare hierarhially organized in several levels of abstration and an be primitivesor omposites (i.e. ombination of several primitives) ones. We an ite theOCAPI environment in [Clément and Thonnat, 1993℄ as a general tool for thedevelopment of KBS dediated to the supervision of programs. The strength ofthe program supervision arhiteture is the ability to reuse programs for variousappliations as demonstrated in [Crubézy, 1999℄ for the supervision of medialimagery programs or in [Thonnat, 2002℄ for the reognition of omplex objets.A related approah for the automati generation of image proessing appli-ations alled BORG an be found in [Clouard et al., 1999℄. By opposition tothe program supervision approah, the system uses hierarhial and opportunis-ti behavior in order to onstrut a solution plan. A plan is represented by anation graph of �ve �xed levels: requests, tasks, funtionalities, proedure, andoperators. Eah level orresponds to a more or less oarse version of the solution.The system dynamially onstruts a parametrized plan from an initial user'squery. A drawbak of this approah is that the ation graph is onstrained to a�xed number of levels supposed to over all the solution spae and thus limits the�exibility for modeling a problem.One advantage of knowledge-based approahes is the semanti rihness whihenables user-friendly interation with the end-users. Nevertheless, one drawbakis that they are appliation dependent and thus requires a strong expertise in thedomain to build the knowledge bases: they are thus limited to a lose world.2.1.2 Learning ApproahesThis setion deals with the use of deision theory as a basis for intelligent imageproessing. The main idea is to redue as muh as possible the role of the humanexpertise in the building of vision systems by mahine learning tehniques. Thispriniple was introdued by Draper [Draper et al., 1996℄ who argues that KBS aretoo ad ho and too dependent on human expertise during their design. Indeed,the use of expliit knowledge is not really suited for modeling the variability, thehanges, and the omplexity of the world.Case-Based Reasoning (CBR) is a problem solving approah whih solvesnew problems by adapting previously suessful solutions to similar problems.In partiular, the ase based approah has been used for algorithm parameterlearning. Some interesting works an be found in [Fiet-Cauhard et al., 1999℄and [Frui et al., 2007℄. A ase ontains an image, ontextual information (asimage aquisition information) and algorithm parameters. Finding the best seg-mentation for the urrent image is done by retrieving similar ases in the asebase. Similarity is omputed using non-image and image information. The eval-uation is done by a measure of dissimilarity between the original image and thesegmented image. If the evaluation is bad, the learning module is ativated tobuild a new ase. The main advantage of ase based reasoning systems lies inthe easiness of their reasoning strategies. Nevertheless, the hoie of an adequate



10 State of the Artrepresentation of ases is an appliation dependent problem.In [Peng and Bahnu, 1998℄, an adaptive integrated image segmentation andobjet reognition system is proposed and applied to reognize ars in outdoorimagery. The authors stress the importane of the adaptability to real worldhanges of the segmentation problem, in order to improve the interpretation pro-ess. They propose to use the model mathing on�dene degree as feedbakto in�uene the segmentation proess. A team of stohasti learning automata isused to represent both global and loal image segmentation. Reinforement learn-ing is applied to lose the loop between model mathing and image segmentation.The main advantage of reinforement learning is that it only requires knowledgeof the goodness of the system performane rather than details on the algorithm.As a onsequene, their method is independent of any segmentation algorithmbut dependent of the reognition algorithm.
2.1.3 Towards Cognitive VisionFrom the previous desribed approahes, two open problems still remain: �rst,knowledge aquisition bottlenek when a large amount of knowledge is neededand, seond, lak of robustness when faed with varying onditions. Thus, lassi-al vision systems are often brittle. To overome this brittleness, a new disiplinealled ognitive vision has reently emerged; a researh road-map an be foundin [ECVISION, 2005℄. A ognitive vision system is de�ned by its ability to rea-son from a priori knowledge, to learn from pereptual information, and to adaptits strategy to di�erent problems. This new disipline thus involves several ex-isting related ones (omputer vision, pattern reognition, arti�ial intelligene,ognitive siene, et.). Some systems have started to implement ognitive visionideas, mainly for human behavior reognition relying on di�erent tehnologies.For example, in [Vinze et al., 2006℄ a ognitive system ombining low-level im-age omponents and high-level ativity reasoning proesses has been developedto reognize human ativities. This system integrates various tehniques suh asonnetionism, Bayesian networks, omponent framework, and robotis. A og-nitive vision platform has been proposed in [Hudelot and Thonnat, 2003℄ for thereognition of omplex natural objets in images with reusable omponents. Theauthors propose an original distributed arhiteture based on three KBS for theinterpretation, the anhoring, and the image proessing levels. Conerning theimage proessing KBS, they propose an image proessing ontology whih is appli-ation independent but dependent on the data strutures of a library of programs.Program supervision tehniques are used to manage the knowledge of programs.Finally, in their onlusion, they stress the need of integrating mahine learningtehniques for image segmentation to redue the neessary program supervisionknowledge and to improve the robustness of the semanti image interpretation.



2.2 Segmentation Approahes 112.1.4 DisussionWe have presented the segmentation task through omputer vision approahes.We have seen that segmentation is a ruial task and demands strong e�ortsto vision system designers in building omplex and exhaustive knowledge bases.However, KBS are not approved unanimously by the omputer vision researhommunity. As Draper said [Draper et al., 1996℄, we must avoid to build adho systems, based on lose world assumptions. Even if program supervisiontehniques gain to be used for enabling ontrol and reuse of vision algorithms, theystill fail to adapt themselves to unknown situations. The ognitive vision approahhas been reently introdued to ahieve more robust, reusable, and adaptableomputer vision systems. This approah aims at endowing vision systems mostlywith learning and adaptability failities. In this ontext, the segmentation taskhas several hallenges to be takled: starting from a generi solution (e.g., froma default parametrization), algorithms an be dynamially tuned by means oflearning tehniques to reah the spei� goal de�ned by the user.To fully understand the segmentation problem, a �rst and essential task is todraw a state-of-the-art on existing approahes. This is the role of the next setion.2.2 Segmentation ApproahesMany segmentation methods are based on two basi properties of the pixels inrelation to their loal neighborhood: disontinuity and similarity. Methods basedon some disontinuity property of the pixels are alled boundary-based meth-ods, whereas methods based on some similarity property are alled region-basedmethods. Before it an be properly stated, some fundamental onepts have tobe spei�ed.2.2.1 De�nition of Image SegmentationImage segmentation an be formalized through its region-based de�nition as fol-lows:De�nition 1 (Image region) An image region R is a non-empty subset of theimage I, suh that R ⊆ I,R 6= ∅A region does not need to be topologially onneted. The existene of an unbro-ken path from one region element (i.e. a pixel) to another one inside the regionis su�ient.De�nition 2 (Image partition) A partition of I is a set of n regions Ri, i =
1, . . . , n suh that ⋃n

i=1Ri = I and Ri ∩Rj = ∅, ∀i 6= jThis de�nition states that the partition has to over the whole image and tworegions annot overlap.



12 State of the ArtDe�nition 3 (Image segmentation) For a ertain de�ned homogeneity predi-ate H, a segmentation S of I is a partition of I whih satis�es: H(Ri) = 1,∀iand H(Ri ∩R|) = ∅ for Ri and Rj adjaent, i 6= j.The �rst ondition states that eah region has to be homogeneous with respetto the prediate H. The seond ondition states that two adjaent regions annotbe merged into a single region that satis�es the prediate H.The nature of the prediate H is the key-element of the de�nition of segmenta-tion. It an be based only on pixel values, or it an judge the high-level relevaneof the partition. Sine the solution is not unique, this makes the segmentationan ill-posed problem in the sense of Hadamard. Then, to solve the problem, asolution onsists in de�ning the segmentation, i.e. de�ning a prediate H, foreah level of abstration. Figure 2.2 depits possible segmentation results at eahlevel of Marr's omputational model. At the image-based level, pixels are groupedaording to their feature values (e.g., their gray value). The surfae-based leveldetets surfaes, but not objets; for example the bakground keeps its pathes.The objet-based level detets a region per objet.
Figure 2.2: Ideal segmentation results at di�erent levels of Marr's vision omputational model.From left to right: original image, image-based level, surfae-based level, and objet-based level.2.2.2 Stati Image SegmentationSeveral surveys of segmentation tehniques have been published. Three ofthem [Pal and Pal, 1993, Skarbek and Koshan, 1994, Luhese and Mitra, 2001℄review about 300 publiations giving a fair overview of the state-of-the-art in seg-mentation at the image-based proessing level. Pal and Pal [Pal and Pal, 1993℄mainly evaluate algorithms for gray-valued images and introdue three of the �rstattempts to exploit olor information.Skarbek and Koshan [Skarbek and Koshan, 1994℄ onentrate their surveyon olor image segmentation. They lassify the algorithms aording to the un-derlying onepts of the homogeneity prediate H and identify four ategories:pixel-based, area-based, edge-based and physis-based approahes. Pixel-basedapproahes onsider a region as homogeneous, if the features of its elements be-long to the same luster in the feature-spae. Area-based tehniques de�ne aregion as a set of onneted pixels obtained for instane by growing from seeds,by joining smaller pixel bloks or by splitting non-uniform regions. The third,



2.2 Segmentation Approahes 13edge-based group, de�nes regions as those sets of pixels delimited by inhomo-geneities or disontinuities. This is the omplementary onept to area-based seg-mentation. Physis-based methods inlude knowledge about physial propertiesof the image formation proess to improve the detetion of regions orrespondingto objet surfaes. Physis-based methods are ategorized in the urrent work assurfae-based tehniques. They do not belong to the image-based stage, sine alladditional knowledge about physial properties of objet surfaes annot be re-garded as part of a low-level homogeneity prediate, but rather as external higherlevel information about the analyzed sene.Luhese and Mitra [Luhese and Mitra, 2001℄ also review exlusively olorsegmentation approahes and use a similar ategorization: feature spae based,image domain based and physis based tehniques. The ombination of area andedge-based methods into one image domain lass makes more sense nowadays,sine many modern approahes try to satisfy both onepts simultaneously.2.2.2.1 Feature-Spae Based ApproahesFeature-spae approahes generally neglet spatial relationships between imagepixels and analyze exlusively the on�guration of their feature values. Algorithmsin this ategory delimit setions in the feature spae and assign the same regionlabel to all image pixels falling into the same setion. Two priniples are ommon.The �rst one �nds setions deteting peaks in unidimensional or multidimensionalfeature histograms. The seond one uses traditional lustering algorithms.Histogram thresholdingHistorially, histogram thresholding is one of the �rst used tehnique for segment-ing images. Gray-level images histograms an be ommonly deomposed intopeaks and valleys whih haraterize objets and bakgrounds. A good surveyon these tehniques an be found in [Sahoo et al., 1988℄. Early methods for olorsegmentation work with several one-dimensional histograms, whih implies thatthe orrelation between di�erent dimensions is ignored. More reent algorithmswork in two or three dimensional olor spaes and are haraterized by di�erenttehniques to robustly detet peaks and their orresponding boundaries in thefeature spae. The hoie of the olor representation often plays a major part.An additional problem of this approah is the usually required smoothing of thefeature spae in order to keep the size of data strutures tratable. Many al-gorithms searh for peaks by approximating the histograms with a mixture ofGaussian, and fail if this assumption does not hold (a fat that, in real images, isalmost always the ase).Clustering tehniquesClustering approahes an be interpreted as unsupervised lassi�ation methods.Several onepts are based on the k-means and fuzzy c-means lustering algo-rithms applied on di�erent olor and texture spaes. One of the major drawbaks



14 State of the Artof the original lustering methods is that the number of lusters (k) must be knowna priori. Several heuristis have been suggested to ompute k automatially basedon some image statistis. A well-known lustering-based segmentation algorithmis the meanshift [Comaniiu and Meer, 2002℄ approah whih introdues a methodto automatially detet di�erent bandwidths from the data for eah setion of thefeature spae. The major drawbak of this onept is its omputational ost om-pared to simple k-means approahes. The generalization of the k-means algorithmfor olor images inluding spatial onstraints is introdued in [Chang et al., 1994℄.This algorithm onsiders the segmentation as a maximum a posteriori probabilityestimation problem. The algorithm starts with global estimates and progressivelyadapts the luster enters to the loal harateristis of eah region.2.2.2.2 Image-Domain Based ApproahesAnother way to ope with the image-based segmentation problem is to omparethe feature values of eah pixel in the image-domain, i.e. pixels are omparedwithin prede�ned spatial neighborhoods. Two major groups of algorithms anbe identi�ed: the �rst one de�nes regions through the feature similarity betweentheir elements (area-based approahes). The seond one identi�es feature dison-tinuities as boundaries between homogeneous regions (edge-based approahes).Many modern segmentation strategies try to satisfy both onepts simultane-ously [Munoz et al., 2003℄.Region Growing tehniquesTraditional area-based tehniques utilize one of two priniples: region growingor split-and-merge. Region growing methods assume the existene of some seed-points, to whih adjaent pixels will be added if they ful�ll a homogeneity rite-rion. An extensive review is detailed in [Fan et al., 2005℄. The main advantage ofthese methods is the reation of spatially onneted and ompat regions, whihontrast with the usually noisy image partition obtained with pure feature-basedsegmentation approahes. They are frequently applied to separate one single ho-mogeneous objet (e.g., bakground) from the rest of the image, but using severalseeds positioned at di�erent objets it is also possible to perform more sophisti-ated segmentations. The required seed seletion is a subtask of this approah,whih an be solved by taking advantage of lustering methods or morphologialoperations, among others.Split-and-Merge tehniquesSplit-and-merge algorithms proeed to suessively divide an image into smallernon-overlapping regions while some similarity riterion is not met. Aommon data struture used to implement this proedure is the quadtreerepresentation whih is a multi-resolution sheme. Delauney triangula-tion [Gevers and Smeulders, 1997℄ or Voronoi diagrams [Itoh and Matsuda, 1996℄



2.2 Segmentation Approahes 15are also employed as an alternative tehnique to the rigid retilinear nature of thequadtree struture. The end result of the splitting is an over-segmented image. Amerging proedure is then applied to join neighboring regions under the same ho-mogeneity prediate that was used for splitting. The omparison between adjaentregions an use simple statistis or an be based on more elaborated mathematialmodels, like Markov Random Fields (MRF), whih also permit merging regionsof similar texture [Panjwani and Healey, 1995℄.Edge based tehniquesEdges are disontinuities in the feature harateristis (e.g., intensity) of adjaentpixels. The magnitude of the gradient of a gray-valued image has been typiallyemployed, sine it is a relatively robust edgeness representation form. Its ap-proximation for disrete digital images has been analyzed in detail in the past.Most methods involve the use of well-known onvolution kernels, like the Roberts,Robinson, Prewitt, Kirsh, or Sobel operators. The detetion of edge pixels is justthe �rst stage of any edge-based segmentation approah. Further proessing isneessary in order to provide a valid segmentation as stated by De�nition 3. Sinestandard detetors like Canny's [Canny, 1986℄ or SUSAN [Smith and Brady, 1997℄usually leave some gaps between objet boundaries, some mehanisms are requiredto �ll them appropriately. Reently, a new generation of edge detetors based onthe Earth Mover's Distane have been proposed [Ruzon and Tomasi, 2001℄. Theyshow a better performane due to their apability to detet juntions and or-ners. However, their omputational ost is very high ompared to traditionaltehniques. A lassi�ed and omparative study of edge detetion algorithms anbe found in [Shari� et al., 2002℄.Morphologial watershed segmentations [Vinent and Soille, 1991℄ an also beategorized as an edge-based approah. They work on a topographial edgenessmap, where the probability of a pixel to be an edge is modeled by its altitude. A��ooding� step begins whih �lls the valleys with water. The watershed lines aredeteted when the water of two di�erent valleys enounters. The prinipal advan-tage of the watershed segmentation sheme over other edge based tehniques isthat it generates losed boundaries. The regions de�ned by the losed boundariesrepresent an over-segmentation of the image, sine the algorithm is sensitive tonoise. If the gradients are omputed at suessively higher sales, the number ofloal minima (i.e. �ood basins) in the gradient magnitude image will derease.The available tehniques work on gray-valued images obtained usually as the gra-dient of the intensity.Ative ontour models, also known as �snakes�, is another family of edge-basedalgorithms [Kass et al., 1988, Ronfard, 1994℄. An interesting and powerful prop-erty of an ative ontour model is its ability to �nd subjetive ontours and inter-polate aross gaps in edge hains. An ative ontour model represents an objetboundary or some other salient one dimensional image feature as a parametriurve that is allowed to deform from some arbitrary initial positions towards thedesired �nal ontour. The problem of �nding this initial ontour is ast as an



16 State of the Artenergy minimization problem with the intention that it yields a loal minimumof the assoiated energy funtional. The original model inorporates two inter-nal energy terms related to ontour smoothness and regularity. Ative ontourmodels are well-adapted for segmenting objets in noisy images but they requirea priori knowledge of the objet shapes. Good illustrations of suh algorithmsare frequently found in medial appliations suh as in [Jehan-Besson et al., 2004℄and in optial �ow segmentation as in [Herbulot et al., 2006℄.Hybrid ApproahesAll previous methods have intrinsi drawbaks that an be partially ompensatedby ombining di�erent tehniques. For instane, lustering methods detet ho-mogeneous regions in the feature spae. However, sine spatial relationships areignored, the region boundaries in the image-domain are highly irregular. In re-ent years, numerous tehniques for integrating region and boundary informationhave been proposed. A detailed review of tehniques to ombine area-based andedge-based approahes an be found in [Munoz et al., 2003℄. One of the mainfeatures of the hybrid approahes is the timing of the integration: embedded inthe region detetion, or after both proesses are ompleted. The most ommonway to perform integration in the embedded strategy onsists of inorporatingedge. Region growing and split-and-merge are the typial region-based segmenta-tion algorithms [Zugaj and Lattuati, 1998℄. Post-proessing integration is basedon fusing results from single segmentation methods, attempting to ombine themap of regions (generally with thik and inaurate boundaries) and the map ofedge outputs (generally with �ne and sharp lines, but disloated) with the aimof providing an aurate and meaningful segmentation. Another example of hy-brid approah an be found in [Chen and Wang, 2004℄ whih ombines olor andtexture-based segmentations using border re�nement.2.2.2.3 Objet Based ApproahesWhile the image-based approah has been dealt with a relative suess, the hal-lenge of aggregating pixels into segments representing meaningful parts of objetsis muh di�ult. In fat, segmentation is also losely related to the problemof extrating objet from images. One of the oldest approahes to objet-basedsegmentation is template mathing. The idea of template mathing is to reatea model of an objet of interest (the template, or kernel) and then to searhover the image of interest for objets that math the template. The simplestmethods, based on orrelation or omparable mathing operators, an only de-termine the position of the template. The main di�ulty in this tehnique stemsfrom the large variability in the shape and appearane of objets within a givenlass. Consequently, the segmentation may not aurately delineate the objet'sboundary.A reent development in this area is presentedin [Borenstein and Ullman, 2004℄ then updated in [Borenstein and Malik, 2006℄.



2.2 Segmentation Approahes 17The proposed approah relies on learnt pathes from training image samplesand a bottom-up proess used to derive a segmentation graph. Partial templatesare used to detet objet parts of a given lass (horses in the experiment) bymathing to the segmentation graph, even though the global appearane ofthe objets in the test images slightly di�ers from the learnt material. Themethods beome more omplex and time onsuming if further parameters likeorientation or sale need to be estimated. Sine the number of objets and theirorientation in an image are unknown in the urrent appliation, the searh spaefor mathing approahes beomes intratable.In [Shnitman et al., 2006℄, an approah induing semanti segmentation fromexamples is desribed. They argue that determining whether an entity belongsto a partiular semanti part is easier done at the fragment level than on a pixel-by-pixel basis. Starting from an example, path sets representing a olletionof homogeneous fragments are built. Then, a test image is �rst over-segmentedand the labelling of eah fragment is indued from the minimization of a globallabelling ost. They apply the graph-uts multi-label optimization tehnique for�nding the globally optimal labelling. Sine this example-based approah allowsto use a non-parametri model of the objet's parts, they assume that the learntfragment-label pairs are representative of the possible image variations, i.e. illu-mination, resolution, and sale harateristis. Finally, they onede that theirapproah is only appropriate for images depiting losely similar senes. A simi-lar approah is desribed in [He et al., 2006℄ where a probabilisti model assignslabels to eah region of an over-segmented image based on loal, global, and pair-wise features. As depited by the author, their model auray is limited by thereliane and the amount on training data.2.2.2.4 SummaryIn this setion, we have presented a didati survey on image segmentation teh-niques. The goal of this review was to familiarize the reader with lassial teh-niques rather than to give an extended review of all existing algorithms. To givean overall view, a summary is drawn up in Table 2.1, inspired by the one presentedin [Alvarado Moya, 2004a℄.Finally, we an onlude this study by making some important remarks, loselyakin to the onlusions of [Skarbek and Koshan, 1994℄ in their survey:1. General purpose algorithms are not robust and usually not algorithmiallye�ient.2. All tehniques are dependent on parameters, onstants and thresholds whihare usually �xed on the basis of few experiments. Tuning and adaptingparameters is rarely performed.3. As a rule, authors ignore omparing their novel ideas with existing ones.4. As a rule, authors do not estimate the algorithmi omplexity of their meth-ods.
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FeatureSpae

+ Detetion of homogeneity in a global ontext.
− Spatial relationship between pixels is ignored.
Histogram + Multiple 1D histogram methods are omputationally inexpensive
− Noise sensitive.
− 1D approahes ignore orrelation between di�erent feature spaedimensions.
− Models used to �t histograms (e.g., multi-gaussians) usually do notorretly math the real distributions.
− Limited to binary segmentation problems.Clustering + Simultaneous onsideration of all dimensions of the feature spae.
+ Suitable for olor and texture segmentation.
+ Relatively e�ient algorithms exist.
− Size or number of lusters must be known a priori.

ImageDomain
+ Produe smoother and more aurate region boundaries than featurespae-based approahes.
− Edge detetors falls into the edge linking problem.
Area-based

+ Creation of onneted ompat regions.
+ Fast algorithms available.
− Key-parameters tuning an be a triky task.Region growing + Suitable for segmentation of omplex objets havinghomogeneous bakground.

− Prior information on optimal number and position of seedsmay be needed.
− Result depends on order in whih pixels are examinedSplit & Merge + Fast and �exible implementation.
− Traditional tessellation mehanisms produe too oarsespatial quantization artifats.

Edge-based Edge detetors + Aurate loal disontinuity detetion
− Sensitive to noise and parameter hanges.Watershed + Detetion of losed ontours.
− Image is often over-segmented.Snakes + Robust to noise.
− Di�ult automati initialization of the ontour.Hybrid + Combination of several methods an be appropriately adapted to the needs ofeah appliation.

− High omputational ost.
Objet-based + Combine top-down and bottom-up approahes to ahieve semantiallymeaningful segmentation.
− Robustness relies on the learning apaities from examples or pathes.
− Appliability is restrited by appearane onstraints on objets suh shape andsale.Table 2.1: Comparison between di�erent image segmentation tehniques.



2.2 Segmentation Approahes 195. It seems that separating proesses for region segmentation and for objetreognition is the reason of failure of general purpose segmentation algo-rithms.6. Several di�erent olor spaes are employed for image segmentation. Never-theless, no general advantage of one of the olor spaes with regard to theother olor spaes has been found yet.2.2.3 Image Sequene SegmentationIdentifying moving objets from a video sequene is a fundamental and ritialtask in video appliations suh as video surveillane, tra� monitoring and analy-sis, human detetion, traking, and gesture reognition. We have seen in previoussetions that segmenting semantially meaningful omponents of a stati imageis fairly impossible with onventional approahes based on primitive grouping.In image sequenes, it is more pratial to segment moving objets from dy-nami sene with the aid of motion information ontained in it. The goal of thissetion is to give an overview of existing tehniques devoted to the segmenta-tion of moving objets in image sequenes. We limit our review on tehniquesdevoted to segment video frames aptured from a single stati amera. A moredetailed review of segmentation of moving objets in image sequene an be foundin [Zhang and Lu, 2001℄ and [Cheung and Kamath, 2004℄.Optial FlowThe displaement or optial �ow of a pixel is a vetor representing the mo-tion between a pixel in one frame and its orrespondent pixel in the followingframe [Barron et al., 1994℄. Traditionally, the motion alulation is pixel-based,exploiting the gradient ues [Horn and Shunk, 1992, Nagel and Gehrke, 1998,Stiller and Konrad, 1999℄. An advantage of this tehnique is that it an be usedeven in presene of amera motion. A drawbak of this tehnique is that the om-putation of derivatives for eah pixel is often required, thus making the methodomputationally expensive. First-order motion sensors also su�er from the aper-ture problem, whih means that they an detet motion only perpendiular to theorientation of the ontour that is moving. While segmentation based on �nding�ow disontinuities is straightforward, it is unlikely to ahieve expeted resultswithout ombination with a spatial segmentation tehnique. However, alterna-tives to this pixel-based approah exist. For instane, in [Coimbra et al., 2003℄the authors propose to use MPEG-2 motion vetors as a basis for obtaining themotion �eld. Then, they apply spei� rules and �lters to obtain a smooth motion�eld. In onsequene, this alternative is able to work in real-time onditions andto ahieve region-based segmentation.



20 State of the ArtBakground ModelingA ommon approah for identifying the moving objets is bakground subtration,where eah video frame is ompared against a referene or a bakground model.Pixels in the urrent frame that deviate signi�antly from the bakground areonsidered to be moving objets. These �foreground� pixels are further proessedfor objet loalization and traking. In order to distinguish between relevanthanges due to motion of objets or brightness hanges, and irrelevant temporalhanges due to noise, the frame di�erene has to be ompared to a threshold
T . The reliable deision, that a spatial position (x, y) belongs to a hangedregion, is only possible if the frame di�erene exeeds this threshold. Basially,the bakground model at eah pixel loation is based on the pixel's reent history.In many work, suh history is just the previous n frames, or a weighted averagewhere reent frames have higher weight. The bakground model is omputed asa hronologial average from the pixels history.Basi methods onsider bakground as the average or the me-dian [Prati et al., 2003℄ of the previous n frames. If this method is ratherfast, the memory requirement is n × size(frame). Without no more memoryrequirements, bakground is often modeled as the running average:

Bt+1(x, y) = α ∗ Ft(x, y) + (1− α) ∗Bt(x, y) (2.1)where α is the learning rate typially equals to 0.005, Bt(x, y) is the bakgroundmodel value at the position (x, y) and at the time t, and Ft(x, y) is the urrentpixel value at the same position. In order to prevent the bakground model tobe polluted by foreground pixels, the running average an be ahieved with aseletivity riteria:
Bt+1(x, y) =

{

α ∗ Ft(x, y) + (1− α)Bt(x, y) ifFt(x, y)background
Bt(x, y) otherwise

(2.2)Based on a single value, the previous tehniques fail to model multiple modalbakground distributions. To ope with this issue, probability density funtions(pdf) of the bakground model an be estimated by �tting one Gaussian distribu-tion G(µ, σ) over the histogram [Wren et al., 1997℄. In that way, the bakgroundpdf is updated by the running average on µ and σ. This tehnique has beenextended to deal with multimodal bakground histograms by using generalizedMixture of Gaussians (MoG) [Stau�er and Grimson, 1999℄ where the number ofmodes is arbitrarily pre-de�ned (usually from three to �ve). An inrementalexpetation-minimization (EM) algorithm is used to learn and update the param-eters (µi,t, σi,t, ωi,t) of the model, where ωi,t is the portion of the data aountedfor by the i-th omponent. If MoG are widely used, the tuning of initial pa-rameters remains a di�ult task. Moreover, depending on the learning rate andthe number of gaussians, MoG faes problems to �nd the best trade-o� betweenadaptability to fast variations versus robustness.To overome the weaknesses of MoG-based approahes, a non-parametri approah based on kernel density estimators (KDE) is proposed



2.2 Segmentation Approahes 21in [Elgammal et al., 2000℄ and updated in [Mittal and Paragios, 2004℄. Thebakground pdf is given by the histogram of the n most reent pixel values, eahsmoothed with a Gaussian kernel. This tehnique is able to adapt very quiklyto hanges in the bakground model and to detet targets with high sensitivity.However, this non-parametri approah annot be used when long-time peri-ods are needed to su�iently sample the bakground due mostly to memoryonstraints.Among the widely-used tehniques, we an also ite those based on Kalman�ltering [Wren et al., 1997℄ and Meanshift estimation [Han et al., 2004℄. Anotherinteresting bakground subtration approah is proposed in [Kim et al., 2005℄. Inthis paper, inspired by Kohonen [Kohonen, 1989℄ Self-Organizing Map (SOM),sample bakground values at eah pixel are quantized into odebooks whih rep-resent a ompressed form of bakground model for a long image sequene. Thequanti�ation riteria is based on a olor distortion metri together with bright-ness bounds. The lusters represented by quantized values (alled odewords) donot neessarily orrespond to a single Gaussian or other parametri distributions.The odebook representation has the advantage to be e�ient in memory andspeed ompared with the previously desribed approahes. The major problem ofthese tehniques is that no expliit method is provided to hoose the foregroundthreshold or to tune the initial parameters. Moreover, no spatial orrelation isused between di�erent (neighboring) pixel loations.Spatio-temporal ApproahesTo address this issue, an integrated region and pixel-based information approahto bakground modeling is disussed in [Cristani et al., 2002℄. The goal is to om-bine a region-based stati segmentation to a pixel-based motion segmentation inan adaptive manner in order to better manage sudden hanges in bakground.In [Seki et al., 2003℄, the authors exploit the strong orrelation of image varia-tions at neighboring image bloks to narrowly onstrut their bakground model.In [Toyama et al., 1999℄ a three level bakground maintenane system is proposed.The pixel level omponent performs Wiener �ltering to make probabilisti pre-ditions of the expeted bakground; the region-level omponent �lls in homo-geneous regions of foreground objets; and the frame-level omponent detetssudden, global hanges in the image and swaps in better approximations of thebakground. If spatio-temporal approahes overperform motion-based approahesin di�ult situations, they are muh slower due to the omputation time neededby their spatial segmentation omponents and are sensitive to key-parameterstuning.2.2.4 DisussionWe have reviewed the di�erent families of image sequene segmentation algo-rithms. A summary with performane omparison is given in Table 2.2. It anbe seen from this table that all robust segmentation algorithms are ahieved at



22 State of the Artthe ost of high omputation omplexities. The odebook approah seems to bewell-adapted to ope with both mixture of gaussians and kernel density estima-tors issues but require a tedious parameter tuning stage to obtain optimal results.Combining spatial and temporal features is the key-element for improving imagesequene segmentation. However, more researh is needed to improve robustnessagainst environment noise with an aeptable omputational ost.Approahes Strength Weakness ComputationComplexityOptial Flow motion detetionauray aperture problem,assumption onloal smoothness high
BakgroundM
odeling Running Average simple toimplement, fast aperture problem lowMoG able to modelomplexbakgrounds parameters tuning,fail to model fastvariations mediumKDE high sensitivity,quik adaption,non-parametri limited by memoryonstraints highCodebooks non-parametri,fast, robust parameters tuning lowSpatio-temporal meaningfulsegmented regions slow highTable 2.2: Comparison between di�erent image sequene segmentation tehniques.2.3 Segmentation Performane EvaluationConsidering the inreasing number of segmentation algorithms, the problem ofperformane segmentation evaluation beomes a primordial task. Two reasonsmotivate this statement: researhers must be able to ompare their algorithmto another ones, and end-users must be able to hoose an algorithm dependingon the problem to solve. Usually, segmentation results are visually assessed bythe algorithm's designer, whih only allows subjetive and qualitative onlusionson the algorithm performane. A generi method for the segmentation evaluationtask does not exist, but many approahes have been proposed and an be lassi�edinto two prinipal lasses: unsupervised methods and supervised methods (seeFigure 2.3). The �rst lass gathers the methods whih do not require any apriori knowledge of segmentation results to evaluate. Their priniple onsists inestimating empirial riteria based on image statistis. The seond lass groupstogether evaluation methods based on a priori knowledge as a referene segmentedimage, usually named a ground truth (GT). A good survey of all these methodsan be found in [Zhang, 1996℄ and in [Rosenberger et al., 2005℄.



2.3 Segmentation Performane Evaluation 23

Figure 2.3: Segmentation evaluation diagram starting from an input image and returning asegmentation assessment value.The �rst goal of this setion is to give a non-exhaustive overview of lassial andpopular methods in order to draw their advantages and drawbaks. The ultimategoal is to show that among the vast number of proposed approahes, some of themould be applied to reah both a good level of generiity for algorithm performaneomparison and a good level of �exibility to �t the user's requirements.2.3.1 Unsupervised Methods2.3.1.1 Empirial MethodsEmpirial methods rely on quantitative riteria from segmented images. Most ofthese riteria are established in aordane with the de�nition of (a good) region-based segmentation whih is based on the inter-region variability and the intra-region homogeneity. Among the most used and ited methods in the literature,we present hereafter some of them.In [Weszka and Rosenfeld, 1978℄, the authors proposed an intra-region uni-formity riterion that quantify the e�et of noise to evaluate thresholded images.Based on the same idea, Levine and Nazif also de�ned in [Levine and Nazif, 1985℄a riterion that alulates the uniformity of a region harateristi (e.g., gray-level,olor, et.) based on the variane of this harateristi. Another riterion to mea-sure the intra-region uniformity was developed by Pal and Pal [Pal and Pal, 1989℄.It is based on a thresholding that maximizes the loal seond-order entropy of re-gions in the segmentation result. In the ase of slightly textured images, these



24 State of the Artriteria of intra-region uniformity prove to be e�etive and very simple to use.However, the presene of textures in an image often generates improper results dueto the overin�uene of small regions. Complementary to the intra-region unifor-mity, Levine and Nazif [Levine and Nazif, 1985℄ de�ned a disparity measurementbetween two regions to evaluate the dissimilarity of regions in a segmentationresult. Borsotti et al. [Borsotti et al., 1998℄ identi�ed this limitation of Liu andYang's evaluation riterion [Liu and Yang, 1994℄ and modi�ed it, so as to morestritly penalize the segmentation results presenting many small regions as wellas heterogeneous ones. These modi�ations permit to make the riterion moresensitive to small variations of the segmentation result. Zeboudj [Zeboudj, 1988℄proposed a measure based on the ombined priniples of maximum inter-regionsdisparity and minimal intra-region disparity measured on a pixel neighborhood.This riterion has the drawbak of not orretly taking into aount stronglytextured regions. Considering the types of regions (textured or uniform) in thesegmentation result, Rosenberger presented in [Rosenberger, 1999℄ a riterion thatenables to estimate the intra-region homogeneity and the inter-regions disparity.Reently, [Zhang et al., 2004℄ proposed an objetive evaluation metri based oninformation theory. The method uses the entropy as the basis for measuring theuniformity of pixel harateristis (the luminane in the paper) within a segmen-tation region. However, sine entropy is a global measure, it does not onsiderloal information or inorporate any measure about the shapes of the regionsthemselves.2.3.1.2 SummaryThe major advantage of unsupervised methods is that they do not require theintervention of an expert, just the de�nition of a metri of quality measure bythe user is needed. Thus, these methods are totally automati. However, de�ninga metri that ould math all the segmentation objetives de�ned by the useris not a triky task. Hene, quality measures are at best heuristi, sine nospei� knowledge of objet(s) to segment is available. In general, the authorsnote that suh methods are not well-adapted for textured images beause thetexture properties and the appliation are losely linked. Authors also point outthat a bias exists when using these methods for the assessment of algorithms basedon the same tehnique: for instane, the evaluation of a segmentation algorithmrelying on a riterion of intra-region uniformity with an evaluation metri basedon the same riterion will inevitably produes biased measures. This tends toonsider unsupervised performane evaluation method not very pertinent.2.3.2 Supervised MethodsReferene segmentations are ahieved generally by hand or by generating synthetiimages. In the last ase, the ground truth data are objetive and preise, in theontrary of subjetive and impreise hand-made expert drawing. These methodstry to determine how far the atually segmented image is from the referene image



2.3 Segmentation Performane Evaluation 25in a quantitative manner.2.3.2.1 Region-based MethodsYasno� et al. proposed in [Yasno� et al., 1977℄ an intuitive set of lassi�ationerror measures omputed from the pixel-wise lass onfusion matrix and based onomparison of both pixel lass proportions and spatial distributions. The Vinet'sdistane [Vinet, 1991℄ is also a well-known measure. This distane omputes adissimilarity measure between two segmentations based on the maximal overingof regions. However, it does not take into aount all the information (among oth-ers the spatial dispersion of pixels). It assumes that two regions an be mathedif they have a maximal number of ommon pixels. This hypothesis is restritiveand favors big regions.2.3.2.2 Edge-based MethodsFor edge-based methods, there are three disrepany measures (under-detetion,over-detetion, and loalization error) between edge pixels of the segmented im-age and edge pixels of the ground truth. One of the most used method isthe empirial measure proposed by Pratt [Pratt et al., 1978℄ based on the dis-tane between an edge pixel in the segmented image and the losest one inthe ground truth. This measure is not sensible to under-detetion errors andto erroneous shape but is sensible to over-detetion and loalization errors.Odet [Odet and Benoit-Cattin, 2002℄ proposes an interesting salable divergenemeasure for a multi-sale error evaluation of binary segmentation by using a spa-tial notion.2.3.2.3 Multi-objetive Methods[Correia and Pereira, 2000℄ proposed a method whih relies on the evaluation ofeah region by verifying several similarity onditions relating to shape, geometri,edge pixel, and region ontent statistis. All theses measures are weighted in orderto math with human evaluation results. In the same way, [Mezaris et al., 2003℄proposed an objetive evaluation metri whih takes into aount not only theauray of the boundary loalization but also the under and over-segmentatione�ets. In [Martin et al., 2004℄, the authors de�ne an interesting metri based onglobal and loal onsisteny between segmentation of di�erent granularity (i.e.re�nement). The orrespondene proedure is tolerant to small loalization er-rors and ahieve good results in the olletion of the Berkeley image database.In the same way, Cardoso [Cardoso and Corte-Real, 2005℄ introdues, in a strongtheoretial study, two metris based on symmetri and asymmetri distanes. Ev-eringham [Everingham et al., 2002℄, more than de�ning a new measure, attemptsto aggregate �tness funtions using the Pareto front. A solution is said to bePareto optimal if it is not dominated by any other solution in the searh spae.In omplex searh spaes wherein an exhaustive searh is infeasible, it is very di�-ult to guarantee Pareto's optimality. Therefore, instead of the true set of optimal



26 State of the Artsolutions (Pareto Set), one usually aims to derive a set of non-dominated solutionsas possible (Pareto Front) of the Pareto Set. More reently, [Zhang et al., 2006℄proposed a meta-evaluation framework in whih any set of base evaluation meth-ods are ombined by a mahine learning algorithm that oaleses their evaluationsbased on learnt weighted deision trees. The learning omponent tailors its perfor-mane to a partiular set of images through the training data, whih is omposedof a set of examples, eah of whih inludes a raw image, two segmentations, anda label, provided by a human, indiating whih of the segmentations is the bestone. After the labelling of eah training image, a deision tree is omputed foreah base evaluator. Eah internal node in a deision tree is set by onsideringdi�erent partitions of global image features (e.g., based on the LUV olor spae,wavelet oe�ient) and segmentation attributes (e.g., number of regions, texturefeatures, et.). This method improves the evaluation auray ompared to thestand-alone evaluators but it also requires heuristi knowledge of global imagefeatures to extrat (whih olor spae, whih texture features, et.?) and thresh-olds for the tree partitioning. Finally, objetive evaluation of video segmentationquality has also been studied. The main di�erene with stati image segmentationevaluation is the use of temporal auray and stability measures. A good reviewan be found in [Correia and Pereira, 2003℄.2.3.2.4 SummaryThe use of a ground truth is double-edged: it makes this lass of methods po-tentially the most general and the less biased but this also supposes that groundtruth are easily available. From this study, it also learly appears that multi-objetive methods yield better results than stand-alone methods (edge-based orregion-based). However, the manner to ombine measures remains an issue.2.3.3 DisussionIf we take a look at the number of publiations around the segmentation eval-uation problem, we an see that at present, this number is about one thousandonerning the segmentation algorithms, one hundred onerning the evaluationmethods, and does not raise ten onerning the omparison of evaluation meth-ods. If more e�orts have been reently put on segmentation evaluation, it is stilldi�ult to de�ne wide-ranging performane metris and statistis. Several ex-planations justify this limitation: (1) no ommon mathematial model or generalstrategy for evaluation is available espeially for analyti methods, (2) no sin-gle evaluation an over all aspets of segmentation algorithms, (3) appropriateground truths are hard to determine objetively. Then, to overome suh lim-itations, potential researh diretions may explore methods ombining multiplemetris in an e�etive manner (e.g., using learning) and methods onsidering the�nal goal of the segmentation.Researh is urrently underway in terms of using these metris as a meanto optimize parameters within a segmentation algorithm or to selet the best



2.4 Segmentation Optimization 27adapted algorithm. This involves to use an optimization proedure whih is alsoa hallenge in the ontext of image segmentation. The next setion disusses thisissue.2.4 Segmentation OptimizationIn this setion, we address the problem of segmentation optimization by meansof algorithm parameter tuning and algorithm seletion. We �rst draw up a bak-ground on optimization tehniques, then relate some optimization approahesused to optimize the segmentation by parameter tuning and algorithm seletion.2.4.1 Bakground on Optimization TehniquesThe basi goal of an optimization proess is to systematially �nd the values ofreal or integer variables that minimize or maximize an objetive funtion (see anexample on Figure 2.4). This result is alled an optimal solution. There are manyoptimization algorithms available (more than four thousands). However, somemethods are only appropriate for ertain types of problems. It is important to beable to reognize the harateristis of a problem and identify an appropriate so-lution tehnique. Within eah lass of problems, there are di�erent minimizationmethods, whih vary in omputational requirements, onvergene properties, andso on. Optimization problems are lassi�ed aording to the mathematial har-ateristis of the objetive funtion, the onstraints, and the deision variables.Interesting surveys on optimization tehniques an be found in [Flether, 1987℄and more reently in [C. A. and P. M., 1996℄ and [Bliek et al., 2001℄. In this sub-setion, we do not intend to draw up a omplete review on optimization tehniquesbut rather to summarize methods with speial emphasis on the ones ompatiblewith our segmentation optimization purpose.

Figure 2.4: Simple unonstrained optimizationThe main elements of any optimization problem are:Variable(s): The variables usually represent tunable free parameters of the prob-lem. They are not known when the problem starts.



28 State of the ArtObjetive funtion: This is the mathematial expression that ombines thevariables to express the goal. The objetive funtion will be either maxi-mized or minimized in order to �nd the best solution of the problem (seeFigure 2.4).Constraint(s): In the ase of a onstrained problem, the onstraints are math-ematial expressions that ombine the variables to express limits on thepossible solutions. For example, they may express that the value of thevariable x1 should always be smaller than the variable x2.Formally, an optimization problem an be desribed by:
min /max

x∈X
f(x), f : R

n → R, X ⊆ R
nwhere X = x1, . . . , xn is a n-dimensional variable and f is the objetive smoothfuntion to minimize/maximize.The searh of funtion extrema is equivalent to solve a system of n equationswith n variables, linear or not:

∂f

∂xi
(x1; . . . ;xn) = 0 (2.3)A linear funtion subjet to linear onstraints de�nes a linear programming 1 (LP)optimization problem stated in the form:

min
x∈X
{cT x : Ax = b, x ≥ 0} (2.4)where c ∈ R

n is the ost vetor and A ∈ R
n×m is the onstraint matrix. Thefeasible region desribed by the onstraints is a polytope, or Simplex, and atleast one member of the solution set lies at a vertex of this polytope. If theobjetive funtion is not linear, it is a nonlinear programming (NLP) optimizationproblem. From the large literature on this subjet, we an ite two reent surveyson LP [Ignizio and Cavalier, 1994℄ and NLP [Vasaru and Hong, 1996℄.Beyond these mathematial onsiderations, optimization methods are also las-si�ed within some omputing restritions. When users are faed with problems forwhih funtion evaluations are very expensive (i.e. results of omplex omputersimulations), and/or it is not appropriate to determine derivatives diretly (e.g.,results from physial measurements), and/or data are noisy (e.g., the alulatedvalue of f depends on disretization or sampling on a grid) the following strategiesan be onsidered.Diret Searh MethodsThe �rst, and maybe simplest, is to apply diret searh optimization methods.This term appears in the paper [Hooke and Jeeves, 1961℄ but sine then, has1The word �Programming� is used here in the sense of �planning�: the neessary relationshipto omputer programming was inidental to the hoie of name.



2.4 Segmentation Optimization 29beome a ath-all phrase that is often applied to any optimization method thatdoes not require an expliit representation of the gradient. Diret searh methodsare haraterized by the absene of the onstrution of a model of the objetive. Inone hand, when the funtion to be optimized is smooth and its alulated valueshave full preision, a standard option is to use �nite-di�erenes (with a smallinterval) to obtain derivative estimates that are aurate enough to be treated asexat gradients in a quasi-Newton method [Gill et al., 1981℄. In the other hand,this brings us to the problems of noise and nonsmoothness. The term non-smoothoptimization is typially used in onnetion with funtions that are disontinuous,for example, in simulating a system that undergoes a disrete hange of state. Thebasi logi of the method is depited in Figure 2.5.

Figure 2.5: The basi Diret-searh logiThe most known and widely used derivative free optimization method is theSimplex re�etion algorithm of Nedler and Mead [Nelder and Mead, 1965℄ or itsmodern variants [Lewis et al., 2000℄. The algorithm starts with an initial basifeasible solution (bfs) and tests its optimality. If some optimality ondition isveri�ed, then the algorithm terminates. Otherwise, the algorithm identi�es anadjaent bfs, with a better objetive value. The optimality of this new solutionis tested again, and the entire sheme is repeated, until an optimal bfs is found.Sine every time a new bfs is identi�ed the objetive value is improved and theset of bfs's is �nite, it follows that the algorithm will terminate in a �nite numberof steps (iterations).In the N -dimensional spae, a Simplex is a polyhedron with N + 1 verties.Starting with an initial Simplex, the method iteratively updates the worst pointby four operations: re�etion, expansion, ontration, and shrinkage. Figure 2.6illustrates these operations in a three-dimensional variable spae. Re�etion in-volves moving the worst point (vertie) of the Simplex (where the value of theobjetive funtion is the highest) to a point re�eted through the remaining Npoints. If this point is better than the best point, then the method attempts toexpand the Simplex along this line. This operation is alled expansion. On theontrary, if the new point is not muh better than the previous point, then theSimplex is ontrated along one dimension from the highest point. This proe-
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Figure 2.6: Four basi operations in the Simplex methoddure is alled ontration. Moreover, if the new point is worse than the previouspoints, the Simplex is ontrated along all dimensions toward the best point andsteps down the valley. This proedure is alled shrinkage. By repeating this seriesof operations, the method �nds the optimal solution.We give the notation used to desribe formally the algorithm: Let qo be astarting point in segmentation algorithm parameter spae, and let λi, i = l, . . . , nbe a set of sales. Let ei, i = 1, . . . , n be n orthogonal unit vetors in n-dimensionalvariable spae, let pO, . . . , pn be (n + 1) ordered points in n-dimensional variablespae suh that their orresponding funtion values satisfy fo 6 f1 6 . . . 6 fn,let p̄ =
∑n−1

i=0
pi

n
be the entroid of the n best (smallest) points, let [pipj] bethe n-dimensional Eulidean distane from pi to pj, let α = [prp̄]

[pnp̄] , β = [pcp̄]
[pnp̄] <

1, γ = [pep̄]
[pnp̄] > 1, σ ∈ [0, 1] be the re�etion, ontration, expansion and shrinkageoe�ient, respetively, and let T be the threshold for the stopping riterion. Fora problem with n ontrol variables, the Nelder-Mead algorithm works as indiatedin Figure 2.7.Diret searh methods and partiularly the Simplex algorithm remain popularbeause of their simpliity, �exibility, and reliability. That is why they have beenwidely applied in ontemporary tehno-soio-eonomi appliations. The mainweakness of the Simplex algorithm is the requirement of initial parameter values
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Figure 2.7: The Simplex algorithm, with its four operations of re�etion, ontration, expansion,and shrinkage.for searh exploration.Evolutionary AlgorithmsEvolutionary algorithms (EAs) are adaptive heuristi searh methods that taketheir inspiration from natural seletion and survival of the �ttest in the biologialworld. A good introdution to this area is given in [Ashlok, 2006℄. EAs di�erfrom more traditional optimization tehniques in that they involve a searh froma population (alled hromosomes or the genotype or the genome) of solutions(alled individuals or phenotypes), not from a single point. Eah iteration of anEA involves a ompetitive seletion that weeds out poor solutions. The solutionswith high �tness are stohastially reombined with other solutions by swappingparts of a solution with another. Solutions are also mutated by making a smallhange to a single element of the solution. Reombination and mutation are usedto generate new solutions that are biased towards regions of the spae for whihgood solutions have already been seen. Pseudo-ode for a geneti algorithm (GA),whih is the most popular type of EA is presented in algorithm 1.An e�etive GA representation and meaningful �tness evaluation are the keysof the suess in GA appliations. A standard representation of the solution is an



32 State of the ArtAlgorithm 1: Geneti Algorithm pseudo-ode1: Initialize the population2: Evaluate the �tness of the initial population members3: repeat4: Selet pairs from the population to be parents, with a �tness bias5: Copy the parents to make hildren6: Perform ross-over on the hildren (optional)7: Mutate the resulting hildren (probabilisti)8: Plae the hildren in the population9: Apply geneti operators to generate new solutions10: Evaluate the �tness of the hildren11: until some onvergene riteria are satis�edarray of bits as string of 0s and 1s. The main property that makes these genetirepresentations onvenient is that they failitates simple rossover operation. Tra-ditionally, the initial population is generated randomly, overing the entire rangeof possible solutions (the searh spae). The next operations as seletion andreprodution an be more spei�, depending on the nature of the appliation.For instane, ertain seletion methods rate the �tness of eah solution and pref-erentially selet the best solutions. Other methods rate only a random sampleof the population, as this proess may be very time-onsuming. Popular andwell-studied seletion methods inlude roulette wheel seletion and tournamentseletion. The proesses of seletion and reprodution ultimately result in thenext generation population of hromosomes that is di�erent from the initial one.Generally the average �tness will have inreased by this proedure, sine only thebest organisms from the �rst generation are seleted for breeding, along with asmall proportion of less �t solutions to keep the diversity of the population large,preventing premature onvergene on poor solutions. This generational proessis repeated until a termination ondition has been reahed. It an be based ona �xed number of generations, the highest ranking solution's �tness value or aombination of the above.In many problems, GAs may have a tendeny to onverge towards loal optimaor even arbitrary points rather than the global optimum of the problem. Thismeans that it does not "know how" to sari�e short-term �tness to gain longer-term �tness. Obviously, it depends on the shape of the �tness landsape: ertainproblems may provide an easy asent towards a global optimum, others may makeit easier for the funtion to �nd the loal optima. To alleviate this problem, asolution is to use di�erent �tness funtions, inreasing the rate of mutation, or toapply seletion tehniques that maintain a diverse population of solutions. To thisend, it an be also quite e�etive to ombine GA with other optimization methods.For instane, simple hill limbing tehniques are quite e�ient at �nding absoluteoptimum in a limited region. Thus, alternating GA and hill limbing an improvethe e�ieny of GA while overoming the lak of robustness of hill limbing.



2.4 Segmentation Optimization 33Simulated AnnealingSimulated annealing (SA) is a generalization of a Monte Carlo approah for min-imizing multivariate funtions. Monte Carlo approahes are based on randomwalks in referene to the Monte Carlo asinos. Simulated annealing is a stohas-ti searh method modeled aording to the physial annealing proess whihis found in the �eld of thermodynamis. Annealing refers to the proess of athermal system initially melting at high temperature and then ooling slowly bylowering the temperature until it reahes a stable state (ground state), in whihthe system has its lowest energy. The sequene of temperatures and the numberof iterations applied to thermalize the system at eah temperature omprise anannealing shedule. [Kirkpatrik et al., 1983℄ initially proposed an e�etive on-netion between simulated annealing and ombinatorial optimization, based onoriginal work by [Metropolis et al., 1953℄.To apply simulated annealing, the system is initialized with a partiular on�g-uration. A new on�guration is onstruted by imposing a random displaement.If the energy of this new state is lower than that of the previous one, the hange isaepted unonditionally and the system is updated. If the energy is greater, thenew on�guration is aepted probabilistially. This is the Metropolis step, thefundamental proedure of simulated annealing. This proedure allows the systemto move onsistently towards lower energy states, yet still `jump' out of loal min-ima due to the probabilisti aeptane of some upward moves. If the temperatureis dereased logarithmially, simulated annealing guarantees an optimal solution.A pseudo-ode is given in Algorithm 2.SA's major advantage over other methods is an ability to avoid beomingtrapped at loal minima. The algorithm uses a random searh whih not onlyaepts hanges that derease objetive funtion f , but also some hanges thatinrease it. The downside to SA is the need to set multiple parameters beforeexeution: initial temperature, ooling shedule, and halting riteria. Choosinggood parameters is a searh task in itself. The initial temperature must be largeenough to allow some freedom to make bakward moves, but not too large as tobeome totally random exploration of the searh spae. An exponential oolingshedule is standard, but by no means neessary. The halting riteria is just asarbitrary as the initial temperature. Most of these settings require domain-spei�knowledge about the problem to hoose appropriate values.Reinforement LearningReinforement learning (RL) is the problem faed by an agent that mustlearn behavior through trial-and-error interations with a dynami environ-ment [Kaelbling et al., 1996℄. There are two main strategies for solvingreinforement-learning problems. The �rst is to searh in the spae of behav-iors in order to �nd one that performs well in the environment. The seond is touse statistial tehniques and dynami programming (DP) methods to estimatethe utility of taking ations in states of the world. In the standard reinfore-



34 State of the ArtAlgorithm 2: Simulated Annealing pseudo-ode1: Selet an initial state i ∈ S {S is the searh spae}2: Selet an initial temperature T > 03: Set the best state i∗ ← i4: Set temperature hange ounter t← 05: repeat6: Set Repetition ounter n← 07: repeat8: Generate state j = random(S)9: Calulate δf ← f(j)− f(i) {f is the energy funtion}10: if δf < 0 then11: i← j12: if (f(i) < f(i∗) then13: i∗ ← i14: end if15: else if random(0, 1) < exp
(

− δf
T

) then16: i← j17: end if18: n← n + 119: until n = S(t) {S is the ooling shedule funtion}20: t← t + 121: T ← T (t) {T is the temperature derease funtion}22: until stopping riteria true23: return best found solution i∗ment learning model (i.e. when RL an be formulated as lass of Markov deisionproblems), an agent is onneted to its environment via pereption and ation.This model is shematized in Figure 2.8, on eah step of interation the agent re-eives as input some indiation of the urrent state, s, of the environment T ; theagent then hooses an ation, a, to generate as output. The ation hanges thestate of the environment, and the value of this state transition is ommuniatedto the agent through a salar reinforement signal, r. The agent's behavior, B,should hoose ations that tend to maximize the long-run sum of values of thereinforement signal. It an learn to do this over time by systemati trial anderror, guided by a wide variety of algorithms. The most lassial model-free al-gorithms are temporal-di�erene learning (TD) and Q-learning. TD learning is aombination of Monte Carlo ideas and dynami programming ideas. Like MonteCarlo methods, TD methods an learn diretly from raw experiene without amodel of the environment's dynamis. Like DP, TD methods update estimatesbased in part on other learnt estimates, without waiting for a �nal outome (theybootstrap). The relationship between TD, DP, and Monte Carlo methods is areurring theme in the theory of reinforement learning. A good study of theseapproahes an be found in [Sutton and Barto, 1998℄ and [Kaelbling et al., 1996℄.Reinforement learning di�ers from the more widely studied problem ofsupervised learning in several ways. The most important di�erene is that thereis no presentation of input/output pairs. Instead, after hoosing an ation the
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Figure 2.8: The standard reinforement learning model.agent is told the immediate reward and the subsequent state, but is not toldwhih ation would has been in its best long-term interests. It is neessary forthe agent to gather useful experiene about the possible system states, ations,transitions and rewards atively to at optimally. Another di�erene fromsupervised learning is that on-line performane is important: the evaluation ofthe system is often onurrent with learning.This setion has reviewed several famous optimization methods. Althoughthis study is non-exhaustive, it will serve to appreiate the following sub-setionswhere a state-of-the-art on segmentation optimization is drawn up.2.4.2 Algorithm Parameter OptimizationIn this sub-setion, we relate some work dealing with segmentation algorithmparameter optimization. All the following approahes rely on three independentomponents: a segmentation algorithm with its free-parameters to tune, a seg-mentation quality assessment funtion and a global optimization algorithm asseen in Figure 2.9.

Figure 2.9: The segmentation parameter optimization framework.In [Bahnu et al., 1995℄, an adaptive image segmentation system using geneti



36 State of the Artand hybrid searh (GA plus hill limbing) methods for optimal parameter ex-tration and learning is presented. The system inorporates a feedbak looponsisting of a mahine learning subsystem, a segmentation algorithm with twofree-parameters, and an evaluation omponent whih is a weighted ombinationof di�erent global and loal riteria. Experimental results on outdoor TV imageryare presented. The main advantage of the approah is that image features and ex-ternal image variables are represented and manipulated using both numerial andsymboli forms within the generi knowledge struture. For example, this allowsto onstrut a multiobjetive evaluation funtion based on image olor features(i.e. numerial values) and environmental fators suh as the presene of rain orfog (symboli values). Although this interesting approah is desribed as beingvery fundamental in nature, it deserves deeper experienes, i.e. to be tested onother algorithms and image databases, to fully demonstrate its potential.Another attempt to ontrol parameter of segmentation algorithms was on-duted in [Peng and Bahnu, 1998℄. The presented system applies delayed re-inforement learning to indue a mapping from input images to orrespondingsegmentation parameters. This is aomplished by using the on�dene level ofmodel mathing as a reinforement signal for a set of learning agents to searhthe optimal parameters during training. The model is a polygonal representa-tion of the objet of interest and the evaluation proess is not ahieved at thesegmentation level but at the objet reognition level.In [Mao and Kanungo, 2000℄, the authors poses the automati training of apage segmentation algorithm as an optimization problem. A textline-based per-formane metri is de�ned to onstrut a multivariate non-smooth funtion to beminimized with the Simplex algorithm. Starting from randomized initial parame-ters, the method founds optimal values in aordane with the objetive funtion.The optimization is performed for the four parameters simultaneously with a num-ber of funtion evaluations of 100 in mean. This makes the method suitable forother appliations. Atually, this framework has been suessfully applied for theparameter optimization of a video segmentation algorithm in [Gelasa et al., 2003℄with a di�erent evaluation metri based on objetive spatial auray of regions.In [Pignalberi et al., 2003℄, a geneti algorithm is used to optimize theparametrization of two range image segmentation. The objetive �tness funtionis supervised and takes into aount two levels of errors (pixel level and surfaelevel). The tested algorithms have up to ten parameters to tune. Results ob-tained with the method over-performs the segmentation quality for one algorithmagainst default parameters, and reahes similar quality for the other one but with-out having any knowledge about the nature of the parameters. They have alsoproposed an interesting extension of the approah in [Cinque et al., 2002℄ wherethe searh strategy ombines two tehniques in asade: a geneti algorithm toobtain a rough seed point set and a simulated annealing to have a more preisere�nement of suitable solutions. They ahieve quite similar results but above allshorten the required number of iterations. However, this implies to �nely tunethe SA's parameters whih is a triky task.



2.4 Segmentation Optimization 37In [Abdul-Karim et al., 2005℄, an automated method is presented for seletingoptimal parameter settings for vessel/neurite segmentation algorithms using theminimum desription length priniple and a reursive random searh (RRS) al-gorithm. It trades o� a probabilisti measure of image-ontent overage againstits oniseness. The method is applied to 223 images of human retinas and ul-tured neurons, using a single algorithm with eight free parameters. Most of theimprovement in segmentation quality ours in the �rst hundred iterations of theRRS. However, the method is not fully automated sine the user have to set aparameter whih ontrols the trade-o� between overage and oniseness.2.4.3 Algorithm SeletionIn this setion, we fous on the algorithm seletion problem. Here, the goal is notto �nd the best parameter setting but rather to �nd the most suitable algorithmamong several ones for a given segmentation task. Due to the still inreasingnumber of algorithms, this problem has taken a big interest during the last deade.Basially, researhers takle the problem with two di�erent philosophies: modelrepresentation approah versus expert system approah.In [Xia et al., 2005℄, Xia et al. make the assumption that the hoie of asegmentation algorithm an be predited from a global feature vetor. In otherwords, this means that a relationship between algorithm behaviors and globalimage harateristi variations an be easily established. More preisely, they at-tempt to diretly �nd the best adapted algorithm from image features by meansof learning tehniques. Given a training image set and a set of algorithms, seg-mentation results are evaluated by users within four lasses (from worst to best)used to rank the algorithms. Then a preditor (a support vetor mahine, SVM)is trained using as input a feature vetor (a gray-level histogram) for eah train-ing image and as output the best ranked segmentation algorithm identi�er. Inuse mode, the feature vetor is omputed on the test image then the SVM re-turns the assessment value for eah tested algorithm. This approah is testedon a syntheti image base (1000 images with various noise levels) and with fourlassial unsupervised thresholding algorithms. Results demonstrates the au-ray of the proposed algorithm seletion model with 85% of orret lassi�ations.The prinipal advantage is that this approah does not require (in using mode)any segmentation evaluation proess as in trial-and-errors methods and thus, isomputationally muh more e�ient. The prinipal drawbak is that the trainingproess is imitated by the user assessment reliability. The task of visual algorithmranking is time-onsumming and then hardly oneivable in the ase of large imageand algorithm sets. As depited by the authors, objetive performane evalua-tion riteria (i.e. automati) should be investigated to free users from the tedioustraining stage.In [Zhang and Luo, 2000℄, the authors propose a framework for automati al-gorithm seletion based on knowledge driven hypothesis-and-test optimizationmodel. An expert system is designed to use evaluation knowledge, heuristiknowledge, and high-level knowledge to segment an image with the best adapted



38 State of the Artsegmentation algorithm. The knowledge base is onstruted by extrating basisegmentation assessment riteria from omparison between segmentation resultsand syntheti image models. Another type of knowledge, alled high-level knowl-edge is also inorporated into the base. It refers to a priori restritions aboutdomain dependent objet features (e.g., objet's size, shape, et.). Based on suhknowledge, three generi frame types are used in a blakboard representation: re-quest frame for input and output data estimation and measurements, target framefor ontrol operator hoie and evaluation, and operator frame for the parameterinitialization and operator adjustment. Tests are onduted on various simplebiologial images with lassial thresholding algorithms. However, few detailsare given onerning the evaluation metri and the degree of domain dependentknowledge used for the experimentation. Moreover, the di�ulty to model seg-mentation knowledge into prodution rules, makes this approah unsuitable forsophistiated algorithms.Globally, the two approahes rely on strong hypothesis onerning their �eldof appliations: variations between images must be easy to model, algorithm be-haviors within the images must be well-established, and high-level knowledge ofobjets to segment must be provided as a key-element of the performane evalua-tion. Atually, the lak of theory on segmentation rules out these approahes to beuniversally appliable. Indeed, appliation domains with image variations di�ultto model disable the model representation approah, and the expensive knowledgeaquisition task needed to build expert systems limits their appliability.2.4.4 DisussionResearhers have experiened many segmentation optimization approahes duringthe last deade. Almost all of the free derivative optimization tehniques havebeen tested. In the worst ase, results of optimized segmentations are equivalentto the ones obtained with default parameters. In most of the ases, segmenta-tion quality is improved and time spent to tune algorithms is drastially redued.The authors present their frameworks as generi by nature and then widely ap-pliable. This a�rmation is well-founded in an analytial point of view sine thethree main omponents are onsidered separately. Nonetheless, eah desribedframework has been set up for a partiular segmentation task where the �tnessfuntion has been spei�ally elaborated for the appliation using impliit do-main knowledge. Thereby, it has not be proved how the �tness funtion ana�et the performane of the optimization. Moreover, if authors have often as-sessed their optimization methods against default segmentations, they did notmake any quantitative evaluation regarding to other optimization tehniques. Aomparative study of optimization algorithms has to be done. Conerning thealgorithm seletion problem, the model representation approah appears to bemore realisti in a omputing point of view as ompared to expert systems. How-ever, the learning framework based on image statistis seems too brittle for themajority of appliations where variations between images are di�ult to model.



2.5 Conlusion 392.5 ConlusionIn this hapter, we have reviewed the segmentation task in the �eld of omputervision systems. If researhers agree that segmentation is one of the fundamentalproblem in omputer vision, the e�orts devoted to ope with this issue sine thelast four deades have still not led to a uni�ed solution. Most of the vision sys-tems are appliation dependent and their segmentation step is based on heuristirules for, as example, the tuning of algorithm parameters. It is, however, well-established that suh a priori knowledge is determined by domain experts fromthe ontext in whih the segmentation takes plae. Hene, the generalization toother domain of appliation is strongly limited. Nonetheless, it appears that thereent ognitive vision approah [ECVISION, 2005℄ has identi�ed some avenuesof researhes to ope with these limitations, as integration of mahine learningtehniques into the knowledge aquisition task.The non-uniqueness solution of the segmentation problem has also been ex-posed through the review of prinipal existing segmentation tehniques (for bothstati and sequene of images) drawn in setion 2.2. From pure low-level ap-proahes to elaborated multi-ues objet-based frameworks, none of them is ableto provide a omplete solution to general segmentation purposes without makingsome assumptions. Partiularly, we an highlight two reurrent issues: �rst, thequality of the �nal results relies on the tuning of key-parameters, almost all algo-rithms; and seond, the lak of diret algorithm omparison possibilities, like theavailability of soure ode or generalized standard testbeds makes the problemeven worse.In setion 2.3, a study on the segmentation performane evaluation problem,as a primordial task for algorithm omparison, is presented. The lak of generaltheory on segmentation has also indued a plethora of tehniques for assessingthe performane of segmentation algorithms. In one hand, supervised approahessu�er from the subjetivity of manual segmentations. In the other hand, unsu-pervised approahes are either designed for a spei� appliation, or too generito onsider the �nal goal of the segmentation. The most promising approahesare propably the o-evaluation frameworks [Zhang et al., 2006℄ whih attempt tooalese di�erent basi evaluation methods in order to build a goal-adapted �tnessfuntion.The setion 2.4 has explored the segmentation tuning paradigm. To opti-mize the segmentation parametrization, researhers have developed several op-timization frameworks mainly based around three independent omponents: asegmentation algorithm, a performane evaluation funtion, and an optimizationalgorithm. All the authors argue that their frameworks are generi and ouldbe applied to wide range of appliations and algorithms. To rule on the generinature of the optimization framework, a deeper analysis of the impat of boththe hosen performane evaluation metri and the optimization algorithm on theresults is yet needed.
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Chapter 3Approah Overview3.1 IntrodutionIn this hapter, we present an overview of our ognitive vision approah to imageand video segmentation. We have de�ned in hapter 1 the expetations of thesegmentation task in omputer vision systems (algorithm seletion and tuning,ontext adaptation). We have seen in hapter 2 that these hallenging issues havebeen takled by many di�erent approahes. Our goal is to propose a methodologythat takes the best of eah approah.In the ontext of ognitive vision, we propose a framework with a reusabilityproperty to ease the set up of the segmentation task in vision systems. More pre-isely, our framework does not require image segmentation skills: the omplexityof this triky task is hidden by means of automati algorithm parameter tun-ing and segmentation assessment. Moreover, the aquisition of the segmentationknowledge is made onvenient by user-friendly interativity.The seond property of ognitive vision we are aiming at is the property ofgeneriity. In our framework, the di�erent omponents are not appliation-dependent. Consequently, this framework an be used with di�erent segmentationalgorithms and for di�erent real-world appliations. In this hapter, we desribethe framework for adaptive image segmentation and adaptive video segmentation.Another property of our framework is its adaptation faulty to image ontentand to appliation needs. To this end, we use learning tehniques for dynamialgorithm seletion and parameter tuning.The following setions fous on the proposed methodology. The detailed de-sription and analysis of our solutions will be the topis of the three next hapters.3.2 The Proposed ApproahOur approah is omposed of two modules: a supervised learning module whereknowledge of the segmentation problem is extrated and f from training data, anda seond module where this knowledge is dynamially used to perform an adaptive



42 Approah Overviewsegmentation of new images. This approah an be applied to image segmentationtasks (setion 3.2.2) and to video segmentation tasks (setion 3.2.3).3.2.1 HypothesesOur approah makes some hypotheses onerning the segmentation algorithmsand the training data:
• Segmentation algorithms: we suppose that the free parameters of the seg-mentation algorithms are known as well as their range values.
• Training image set: we suppose that training images are available and rep-resentative of the expeted situations.
• Ground truth data: the supervised learning stage uses two kinds of groundtruth data: manual segmentations and semanti region labels. A manualsegmentation represents the expeted �nal result. We suppose that theuser is able to provide suh manual segmentations for all of the trainingimages. Region labels help to re�ne a segmented image into a semantiallymeaningful result. The user's task is thus to annotate some training samples(i.e. regions of the manual segmentations) in aordane with its needs.3.2.2 A Framework for Adaptive Image SegmentationOur proposed approah relies on two segmentation frameworks: a parameter op-timization framework and a region-based lassi�ation one. The �rst frameworkaims to optimize bottom-up image segmentation by ontrolling of the algorithmseletion and parametrization. The seond framework relies on high-level seg-mentation knowledge (i.e. semanti region labels) to re�ne the segmentation ina top-down proess. The goal is to train region lassi�ers w.r.t. the annotatedmanual segmentations of the training images. The learning module of the frame-work is skethed in Figure 3.1. It onsists in building a segmentation knowledgebase.

Figure 3.1: The learning module shema of the proposed framework for adaptive image segmen-tation.



3.2 The Proposed Approah 43The originality of our approah is to ombine these two frameworks in a omple-mentary manner: in a �rst step, segmentation is optimized by dynami algorithmseletion and parameter tuning. Then, the bottom-up segmentation is re�nedthanks to region labelling to ahieve the expeted semanti segmentation. We de-sribe below the di�erent steps of the learning module: segmentation parametertuning, algorithm seletion, and semanti image segmentation.3.2.2.1 Learning for Segmentation Parameter TuningOur framework is able to optimize several free parameters of a segmentationalgorithm w.r.t. the parameter spae bounds. The optimization proedure is notembedded into the segmentation algorithm so as to be independent of its internalmehanisms. Segmentation performane is evaluated using a global measure ofthe segmentation quality. To this end, manual segmentation of training images isused to assess segmentation errors. The de�nition of the performane evaluationmetri is thus a key-element of the proedure. We use a boundary pixel-basedmetri whih rates the missed and false deteted region boundary pixels againstmanual segmentation results. Then, a global optimization algorithm exploresthe parameter spae of the segmentation algorithm driven by the segmentationassessment, as skethed in Figure 3.2. At the end of the proess, for eah trainingimage and for eah segmentation algorithm, an optimal parameter set and theorresponding �nal assessment value are returned. The main advantage of thisproedure is that the searh proess is independent of both the segmentationalgorithm and the appliation domain. Therefore, it an be systematially appliedto automatially extrat optimal segmentation algorithm parameters. To enfore

Figure 3.2: Proposed segmentation parameter optimization framework. Input and output arein bold font.the relevane of our approah, we have tested it on several on�gurations inludingdi�erent optimization algorithms.



44 Approah Overview3.2.2.2 Learning to Selet a Segmentation AlgorithmIn our approah, the seletion of a segmentation algorithm is free of a priori knowl-edge of algorithm properties. The di�erent algorithms are ompared aordingto the segmentation quality. Obviously, getting a fair omparison involves thateah algorithm has been optimized beforehand. This step thus follows the param-eter tuning step. Segmentation is very sensitive to image variations. Hene, theseletion (and tuning) of an algorithm must be dynamially �tted to di�erent sit-uations (e.g., di�erent lighting onditions), that we alled ontexts. This seletionemphasizes the need of ontext modelling. We takle this problem by performingan unsupervised lustering of the training images based on an analysis of globalimage harateristis like olor variations. At the end of the lustering proess,eah luster gathers training images sharing similar global features, i.e. images ofthe same ontext. This proess is shown in Figure 3.3.
Figure 3.3: Training image set lustering based on image-ontent analysis. Input and outputare in bold font.Then, by ranking the �nal performane sores of the di�erent andidate seg-mentation algorithms, we an selet the one whih performs the best segmentationfor eah luster. Finally, for eah luster we assoiate a ontext identi�er witha segmentation on�guration, i.e. the best ranked algorithm tuned with a meanparameter set omputed from optimal values (see Figure 3.4).

Figure 3.4: Learning shema for algorithm seletion. Input and output are in bold font.In the adaptive segmentation stage, the seletion of an algorithm is only basedon the image-ontent analysis. So, the main advantage of this approah is thatthe algorithm seletion does not need to perform any segmentation, it is an apriori deision.



3.2 The Proposed Approah 453.2.2.3 Learning for Semanti Image SegmentationThe last step of our framework onsists in learning the mapping between highlevel knowledge of the segmentation task (i.e. expeted region labels) and regionharateristis (i.e. region features) as skethed in Figure 3.5. The main obje-tive of this approah is to reah a semantially meaningful segmentation from aninitial optimized pixel-based segmentation. The user �rst de�nes a set of lassesaording to the segmentation goal (e.g. bakground, foreground, objet of interest#1, objet of interest #2, et.). This set is used to annotate regions of the manualsegmentations. Then, for eah training image, the regions of the previously op-timized segmentations are automatially annotated aording to the annotationsof the manual segmentation. The goal is to train region lassi�ers in order toimprove the quality of the segmentation by providing a semanti segmentation.Based on region features (e.g., olor distribution, texture features), a region las-si�er returns a prediate on the region label with probability estimates. The lasswith the best estimated probability is returned.

Figure 3.5: Proposed region lassi�er training shema. Input and output are in bold font.



46 Approah Overview3.2.2.4 Adaptive Image SegmentationSegmentating a new image (i.e. not belonging to the training set) is ahieved bythe adaptive segmentation module in four steps (see Figure 3.6) using the seg-mentation knowledge base (learnt lusters of training images, learnt parameters,and trained region lassi�ers):1. Context Identi�ation: a global feature vetor is extrated from the im-age. The feature vetor is lassi�ed among the previously identi�ed lusters.The lassi�ation is based by assessing the distane of the feature vetor tothe luster enters.2. Algorithm seletion: from the identi�ed ontext, the orresponding seg-mentation algorithm with learnt parameters is seleted.3. Segmentation: the image is segmented using the seleted algorithm. Thisalgorithm is tuned with the learnt parameters spei� to the identi�ed on-text.4. Region labelling: for eah region of the segmented image, features areextrated and given as input to the region lassi�ers. The most probablelabel is assigned to the region. The �nal labelled partition representing thesemanti segmentation of the image is returned to the user.3.2.3 Adaptive Video SegmentationIn this task, the goal is to detet moving objets (e.g. a person) in the �eld of viewof a �xed video amera. Detetion is usually arried out by bakground modellingmethods. In this situation, annotations of the di�erent lasses of foregroundobjets are useless. Only bakground is modeled. Consequently, the semantiimage segmentation step of our framework desribed in setion 3.2.2.3 is not used.Video segmentation algorithms an be deomposed into two lasses: algorithmswhih rely on a training stage for bakground modelling (e.g., mixture of Gaus-sians or odebook models) and others (e.g., optial �ow, running average). In the�rst ase, the quality of segmentation mostly depends on the quality of the bak-ground model training. In the seond ase, it mostly depends on the parametriza-tion of some key paremeters, suh as the detetion threshold. The learning stepof our framework for parameter tuning ould be used to learn the parametrizationof suh algorithms. However, this implies to manually segment a lot of trainingsamples with foreground objets. We prefer to spare the user this tedious task andwe fous more on the learning-based video segmentation algorithms. In this ase,strong e�orts have been done to ope with quik-illumination hanges or longterm hanges, but oping with both problems altogether remains an open issue.For this task, we propose an approah for dynami bakground model seletionbased on ontext analysis.
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Figure 3.6: Adaptive segmentation of an input image based on algorithm seletion, parametertuning, and region labelling.



48 Approah OverviewOur approah is based on a preliminary weakly supervised learning module (seeFigure 3.7) during whih the knowledge about ontext variations is aquired. Therole of the user is limited to establish a training image set omposed of bakgroundsamples that point out ontext variations. The lustering proess of the trainingimage set is the same as the one desribed in Figure 3.3.
Figure 3.7: The learning module in video segmentation task.Here, the goal of lustering is to make the bakground modelling task more re-liable by restriting the model parameter spae. This approah is partiularlyinteresting for motion segmentation algorithms relying on a training stage ofmodels as mixture of Gaussians [Stau�er and Grimson, 1999℄ or odebook mod-els [Kim et al., 2005℄.For a new input image, global features are �rst extrated; then, a bakgroundmodel is seleted and �gure-ground segmentation is performed. A temporal on-text �ltering step is applied before segmentation to prevent from inoming erro-neous ontext identi�ation as skethed in Figure 3.8.

Figure 3.8: Adaptive �gure-ground segmentation shema based on ontext identi�ation andbakground model seletion.3.3 ConlusionThis hapter has given an overview of our ognitive vision approah to image andvideo segmentation. We have presented a methodology whih aims at endowing



3.3 Conlusion 49the segmentation task of vision systems with reusability, onveniene, gener-iity, and adaptation faulties. The proposed framework an be applied for bothimage and video segmentation tasks. Our approah mainly relies on supervisedlearning tehniques for segmentation algorithm seletion and parameter tuningaording to users' needs and image ontents. Training data, omposed of repre-sentative image samples with their manual segmentation and region annotationsare requested from the users. The main ontribution of our approah to adaptiveimage segmentation is to ombine, in a general sheme, a bottom-up approah forparameter tuning and algorithm ranking with a top-down approah for semantiimage segmentation. Our framework an also be used for video segmentation.However, we propose an alternative learning module based on weak supervision,more appropriate to video segmentation tasks. Our main ontribution is at thelevel of bakground model seletion. Our approah enables to ontrol the seletionof di�erent bakground models by image ontent analysis.
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Chapter 4A Framework for Adaptive ImageSegmentation4.1 IntrodutionIn this hapter, we detail our framework for adaptive image segmentation intro-dued in Chapter 3. The framework is omposed of two modules: a learningmodule dediated to extrat and learn segmentation knowledge for algorithm se-letion, parameter tuning, and semanti segmentation; a module for adaptiveimage segmentation relying on the learnt segmentation knowledge.The �rst setion of the hapter fouses on the learning for segmentation param-eter tuning. We desribe our performane evaluation metri for the segmentationquality assessment and our optimization proedure. We also disuss the hoieof the optimization algorithm. The seond setion deals with our strategy forlearning to selet a segmentation algorithm based on image-ontent analysis andalgorithm ranking. The third setion is devoted to the desription of our learningapproah for semanti image segmentation. The goal is to train region lassi�ersto improve the segmentation quality and provide a semanti segmentation. Thelast setion desribe the adaptive segmentation of new images based on the learntsegmentation knowledge.4.2 Learning for Segmentation Parameter TuningIn this setion, we detail our parameter optimization proedure. The goal isto optimize the parametrization of segmentation algorithms aording to groundtruth segmentations of training images. For this task, the user must provide:1. Manual segmentations of the training images with losed outlined regions.2. Segmentation algorithms with their free parameters, i.e. the sensitive pa-rameters to be tuned, as well as their range values. This kind of knowledgeis often given by the algorithm's author.



52 A Framework for Adaptive Image Segmentation4.2.1 Formalization of the Optimization ProblemLet I be an image of the training image set I, GI be its ground truth (e.g. manualsegmentation), A be a segmentation algorithm and pA a vetor of parameters forthe algorithm A. The segmentation of I with algorithm A is de�ned as A(I,pA).We de�ne the segmentation quality EA
I with the assessment funtion ρ as follows:

EA
I = ρ

(

A(I,pA), GI

) (4.1)The value EA
I is an assessment value of the mathing between the segmentationwhen using algorithm A and the ground truth. This an be a goodness measureor a disrepany measure.The purpose of our optimization proedure is to determine a set of parametervalues p̂A

I whih minimizes/maximizes ρ:p̂A
I = arg min /maxpA

ρ
(

A(I,pA), GI

) (4.2)The �nal assessment value ÊA
I and the optimal parameter set p̂A

I make a pair sam-ple noted (p̂A
I , ÊA

I

). This pair forms the segmentation knowledge for the image Iand the algorithm A. The set of all olleted pairs onstitutes the segmentationknowledge set S suh that:
S =

⋃

I∈I

(

p̂A
I , ÊA

I

) (4.3)One key-point of this optimization proedure is the de�nition of the assessmentfuntion ρ. The quality of the �nal result varies aording to this �tness funtion.So the hoie of a segmentation performane evaluation metri is fundamental. Itis disussed in the next setion.4.2.2 De�nition of the Segmentation Performane EvaluationMetriAs stated in setion 2.3, it is not obvious to selet a performane evaluation metribeause no single metri an over all aspets of segmentation algorithms. Wepropose to use a boundary-based metri and evaluates the segmentation in termsof both loalization auray and the shape auray of the extrated regions.The biggest advantage of boundary-based metris against region-based metris istheir lower omputational ost. It is always faster to ount and ompare someboundary pixels than a lot of region pixels.The region boundary set for the ground truth and for the segmentation resultare noted BG
I and BA

I respetively. Two types of errors are onsidered: missingboundary rate eB
m and false boundary rate eB

f . The former, eB
m, spei�es theperentage of the points on BG

I that are mistakenly lassi�ed as non-boundary



4.2 Learning for Segmentation Parameter Tuning 53points; while the latter, eB
f , indiates the perentage of the points in BA

I that areatually false alarms. Therefore,
eB
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and eB
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I |

(4.4)where
T1 = {x | (x ∈ BG

I ) ∧ (x /∈ BA
I )}and T2 = {x | (x ∈ BA
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I )}

(4.5)and |.| is the ardinal operator. We de�ne the segmentation quality EA
I with theassessment funtion ρ as follows:
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) (4.6)with EA
I ∈ [0, 1]. The value EA

I = 0 indiates perfet boundary pixel mathingbetween the segmentation result and the ground truth when using algorithm A.The value EA
I = 1 indiates that all pixels are mislassi�ed. However, it is easy toshow that this metri omes up against unadapted response to under-segmentedresults, as illustrated in Figure 4.1. Segmentation in panel (a) shows two regionswith a quite good ground truth overlap, only three pixels are mislassi�ed. In thepanel (b), the segmentation shows only one region and the quality sore is logiallyless than in (a). In the last panel (), two regions are present but the enter regionbadly overlaps the orresponding ground truth enter region. In opposition withvisual assessment, the segmentation quality is worst than in Figure 4.1().The metri is improved by introduing two weighting terms wB

f and wB
m whihquantify the average distane between mislassi�ed points to the ground truthboundary suh that:
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I the losest pixel to x belonging to BG

I . dist(x1, x2) is the eulideandistane between two pixels x1(u, v) and x2(u, v) in a 4-neighborhood suh that:
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m have no �xed upper bounds, the normalization fator isuseless and the segmentation quality measure beomes:

EA
I = wB

m × eB
m + wB

f × eB
f

= 1
|BG

I
|

∑

x∈T1

dist
(

x, x̌A
I

)

+ 1
|BA

I
|

∑

x∈T2

dist
(

x, x̌G
I

)

(4.10)



54 A Framework for Adaptive Image Segmentation

(a) (b) ()
eB

m = 3

48
, eB

f = 3

47
eB

m = 12

48
, eB

f = 0

36
eB

m = 12

48
, eB

f = 20

56

EA
I = 0.063 EA

I = 0.125 EA
I = 0.304Figure 4.1: Limitation of the segmentation evaluation metri when weighting terms (wB

m and
wB

f ) are not used.The searh of x̌A
I (resp. x̌G

I ) is made easier by the use of a distanemap [Maurer et al., 2003℄ omputed from BA
I (resp. BG

I ). This operation isexempli�ed in Figure 4.2.
(a) region-based segmenta-tion omposed of 2 regions (b) region boundary repre-sentation of the segmenta-tion in (a) () distane map of (b), thegray-level value of a pixel repre-sents the eulidean distane tothe nearest boundary pixelFigure 4.2: An example of a distane map from a binary ontour segmentation.By taking bak the example in Figure 4.1 with the new de�nition of the eval-uation metri, the values of EA

i for the ases (a), (b), and () are respetively
0.168, 0.75, and 0.679, yielding a good orrelation with a visual assessment.One our performane evaluation metri is de�ned, the goal is now to minimizethe segmentation error EA

I in order to learn optimal segmentation parameters.



4.2 Learning for Segmentation Parameter Tuning 55This is the role of our losed-loop global optimization proedure.4.2.3 Choie of the Optimization AlgorithmOf primary importane in this optimization proedure is �nding an optimal seg-mentation parameter setting p̂A
I for eah I ∈ I. We also aims at providing agood evaluation study of the tested optimization tehniques in terms of perfor-mane versus omputational ost and parameter setting. In the family of freederivative tehniques, we propose the following riteria to assess the optimizationalgorithms:1. Sine the segmentation of an image is the most expensive proess in theoptimization loop, the number of maximum segmentation algorithm allsmight be set as a parameter. Indeed, even if the ultimate goal of an op-timization proedureis to �nd a global optimum, the omputational ostshould remain realisti.2. The optimization algorithm must be able to onverge whatever the evalu-ation pro�le, i.e. robust enough to �nd (quasi-)global optimum of variousnon-smooth funtions.3. The �nal quality of the optimization proedure should no be too depen-dent of the tuning of the optimization algorithm parameters, whatever thesegmentationalgorithm.We have seen in our survey (see setion 2.4.2) that several optimization tehniqueshave been applied to takle the segmentation optimization problem. Although allof them are suitable with our problem, no omparative study exists to help us inour hoie. Thus, we have deided to fous on two tehniques whih are worthbeing ompared. The �rst one is the Simplex algorithm [Nelder and Mead, 1965℄and the seond is a standard geneti algorithm [Goldberg, 1989℄ using non-overlapping populations and optional elitism. In one hand, simplex is easy to use,fast to onverge, but requires to de�ne a initializing strategy (starting point(s) andstarting step) and do not guarantee to �nd a global optimum. In an other hand,geneti algorithms are robust but are slower to onverge and their parametersmust be set arefully. Table 4.1 summarizes the set up of these two algorithms.4.2.4 DisussionIn this setion, we have presented our approah for learning the parametrizationof segmentation algorithms. Our optimization proedure relies on three indepen-dent omponents: a segmentation algorithm, a performane evaluation metri,and an optimization algorithm. The goal is to �nd a parameter set to ahieve asegmentation as losed as possible to the ground truth segmentation. We have de-�ned a supervised quantitative evaluation metri assessing the mathing betweenthe segmentation result and the manual segmentation. This metri is broadlyusable sine it mainly relies on generi onepts (false and missed boundary pixel



56 A Framework for Adaptive Image SegmentationMost signi�ant parameters to tuneSimplex (see Figure ??) Geneti Algorithm
• starting values: pA(t0) • initial population size
• starting step values: pA(t0 + 1) • initial number of generations
• ending riteria = f(max nb of alls, T ) • number of generations to onvergene
• simplex oe�ients (α, β, γ, σ) • ross-over probability rate
• maximum number of alls • mutation probability rateTable 4.1: Optimization algorithm parameters.rates). The simplex algorithm and a geneti algorithm are preferred to solve theoptimization problem for their ability to optimize a large spetrum of non-smoothfuntions. The main di�ulty lies in �nding the right parametrization of these al-gorithms to prevent from exessive omputation time or weak performane. Thispoint will be a part of our evaluation study in the next hapter.After all pair samples (p̂A

I , ÊA
I

) have been extrated for all segmentation algo-rithms to test, the next step is to selet and tune the one(s) whih will be learnt.The following setion disusses our seletion strategy.4.3 Learning to Selet a Segmentation AlgorithmThe previous parameter optimization step allows us to objetively ompare thesegmentation algorithms with regards to their best performane sores ÊA
I . Astraightforward strategy for the seletion of an algorithm is thus to take the�rst best. Nevertheless, the problem beomes more di�ult when the trainingimages are heterogeneous, due for instane to global or loal variations in thebakground. In this ase, one segmentation algorithm ould be the best adaptedfor the segmentation of a training image subset and another one for another subset.We propose to takle this problem by assoiating one algorithm per subset. Morepreisely, we �rst identify the di�erent subsets from the whole training imageset and then rank the segmentation algorithms for eah identi�ed subset. Thenext two setions details this twofold strategy based on algorithm ranking andimage-ontent analysis.4.3.1 A Seletion Strategy Based on Algorithm RankingA �rst strategy to the algorithm seletion problem is to perform a global ranking ofthe algorithms and to selet the best one. Let us illustrate it with a toy example asin Figure 4.3. The graph on the left represents the performane of three optimizedsegmentation algorithms applied on �ve di�erent images. The best segmentationquality orresponds to EA

I = 0. In this example, the best algorithm is the oneperforming the best average performane on the image set, i.e. the algorithm 3with a mean sore of 2.6.
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ÊA

IAlgo 1 Algo 2 Algo 3
I1 5.5 2.0 3.0

I2 7.0 2.5 3.0

I3 7.5 5.0 0.5

I4 4.5 4.5 4.5

I5 5.0 1.5 2.0mean 5.9 3.1 2.6Figure 4.3: Algorithm seletion in a toy problem with �ve images and three segmentationalgorithms. The values of the table orrespond to the segmentation quality ÊA
I .For eah algorithm, a mean parameter set p̄A is omputed as follows:p̄A =

1

|IA|

∑

I∈IA

p̂A
I (4.11)where IA is the set of training images for whih the algorithm A has obtainedthe best evaluation results among the other algorithms. Then, for eah trainingimage and eah algorithm A tuned with p̄A, the segmentation quality is omputedagain. The algorithm having the best average performane on the training imageset is �nally seleted.This seletion strategy omes to selet the robustest algorithm based on ob-jetive omparisons, i.e. the algorithm whih an deliver the best results for thetraining image set with a globally relevant parameter set. However, this straight-forward ranking approah has two major drawbaks. First, by seleting onlyone algorithm and averaging its parameters, it redues the previously extratedsegmentation knowledge amount to one mean ase. Seond, even if the seletedalgorithm overperforms the others in most of the ases, the parameter averagingan have disastrous e�ets on the algorithm performane. Suh a situation isillustrated in Figure 4.4. Let us onsider two images omposing IA, i.e. I3 and

I4. On the two graphs, we show their evaluation pro�les (i.e. the drawing of theevaluation �tness funtions) with two di�erent possible shapes for I3. For simpli-ity, we suppose that pA is redued to one parameter (i.e. 1D pro�le). It is easyto understand that averaging optimized parameters in the left graph will weakenthe algorithm performane for both images I3 and I4. In the graph on the right,the averaging is less problemati sine the pro�le shapes are more orrelated.Finally, ranking algorithms and omputing a mean parameter set is reliableunder the following assumptions:
• The seleted algorithm is robust enough to provide good results over thewhole image set.
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(a) non-orrelated evaluation pro�les: av-eraging parameters is unsuitable. (b) roughly orrelated evaluation pro�les:averaging parameters is suitable.Figure 4.4: Consequene of parameter averaging in di�erent evaluation pro�le ases.
• The evaluation pro�les of the images must be quite good orrelated to makethe parameter averaging plausible.Depending on the appliation and the segmentation algorithms, these assumptionsare more or less reasonable. That is why we also propose to selet the algorithmdepending on the image ontents.4.3.2 An Algorithm Seletion Approah Based on Image-Content AnalysisThe seond part of our strategy for algorithm seletion is to takle the problema priori of the segmentation. In this ase, the goal is not to diretly selet thealgorithm depending on its relative performane evaluation but depending on theimage to segment. Usually, variations between images lead to a variability inthe segmentation. As a onsequene, similar images should be segmented withthe same algorithm and di�erent images should be segmented with di�erent algo-rithms or di�erent parameter setting. These variations an be indued by hangesin bakground appearane, hanges in illumination soure, hanges in imagery de-vie on�guration and so on. The goal is to identify the di�erent situations leadingto di�erent segmentation on�gurations. To this end, we de�ne the ontext of animage as the quantitative representation of its loal and global harateristis.Pratially, the ontext is desribed by a d-dimensional feature vetor v(I) ex-trated from the whole image (e.g., a olor histograms). The algorithm seletionproblem an be formalized as follows:

f : R
d −→ S

v(I) 7−→ (A, p̂A)
(4.12)



4.3 Learning to Selet a Segmentation Algorithm 59However, it is impossible to ontinuously predit the algorithm behavior aordingto image variations and therefore the funtion f annot be seen as a regressionmodel. Our approah is to takle this modelling problem by applying an unsu-pervised lustering of the training images to identify the di�erent ontexts, i.e.lusters of images having similar feature vetors.In our experiments, we have used a Density-Based Spatial lustering algorithmalled DBSan proposed by Ester et al. [Ester et al., 1996℄. This algorithm is well-adapted for lustering noisy data of arbitrary shape in high-dimensional spae ashistograms. Starting from one point, the algorithm searhes for similar points inits neighborhood based on a density riteria to manage noisy data. Non lusteredpoints are onsidered as `noise' points. The runtime of the algorithm is of theorder O(n log n) with n the dimension of the input spae. DBSCAN requires onlyone ritial input parameter, the Eps-neighborhood, and supports the user indetermining an appropriate value for it. A low value will raises to many smalllusters and may also lassify a lot of points as noisy points, a high value preventsfrom noisy point detetion but produes few lusters. A good value would be thedensity of the least dense luster. But it is very hard to get this information onadvane. Normally one does not know the distribution of the points in the spae.If no luster is found, all points are marked as noise. In our approah, we setthis parameter so as to have at the most 15% of the training images lassi�ed as`noise' data.We denote κ a luster of training images belonging to the same ontext θ. Theset of the n lusters is noted K = {κ1, . . . , κn} and the orresponding ontext set
Θ = {θ1, . . . , θn}. One the lustering is done, lusters are learnt. Then, for eahluster (i.e. images of the same ontext), segmentation algorithms are ranked andthe best one is learnt by following the same strategy as desribed in setion 4.3.1.We obtain a disrete funtion f taking a ontext identi�er θ as input and returningan algorithm A with a mean parameter setting p̄A suh as:

f : Θ −→ S

θ 7−→ (A, p̄A)
(4.13)The prinipal purpose of this strategy is to overome the drawbaks of the pureglobal ranking strategy by dividing the solution spae S and by restriting theranking proess onto eah subspae. The main advantage on ranking algorithmsinside a subspae is that evaluation pro�les are likely more orrelated.4.3.3 SummaryIn this setion, we have shown that the algorithm seletion problem annot beseparated from the parameter tuning problem. This statement means that a so-lution to the algorithm seletion issue is omposed of both an algorithm and aparameter setting. We have desribed our twofold strategy for learning the algo-rithm seletion based on algorithm ranking and image-ontent analysis. Startingfrom a training image set and segmentation algorithms, our approah �rst iden-ti�es di�erent situations based on image-ontent analysis, then selet the best



60 A Framework for Adaptive Image Segmentationalgorithm with a mean parameter set for eah identi�ed ontext based on opti-mized parameter values. At the end of the learning proess, ontexts are learntwith their assoiated pairs (A, p̄A).The next step is devoted to semanti image segmentation.4.4 Learning for Semanti Image SegmentationIn this setion, we propose an approah for semanti image segmentation basedon high-level knowledge aquisition and learning. Even if the segmentation isoptimized, low-level segmentation algorithms annot reah a semanti partition-ing of the image. Thus, ompared to the ground truth, some regions remainover-segmented, as illustrated in Figure 4.5. If we an assign the right label toeah region, neighboring regions with similar labels are merged and, as a on-sequene, the residual over-segmentation beomes invisible. This means to beable to map region features onto a symboli onept, i.e. a lass label. Weuse the example-based modelling approah as an impliit representation of thelow-level knowledge. This approah has been applied suessfully in many ap-pliations suh as detetion and segmentation of objets from spei� lasses(e.g., [Shnitman et al., 2006, Borenstein and Malik, 2006℄). Starting from repre-sentative path-based samples of objets (e.g., fragments), modelling tehniques(e.g., mixture of Gaussian, neural networks, naive Bayes lassi�ers) are imple-mented to obtain odebooks or lass-spei� detetors for the segmentation ofimages. Our strategy follows this impliit knowledge representation and asso-iates it with mahine learning tehniques to train region lassi�ers. The followingsub-setions desribe this stage in details.4.4.1 Class Knowledge Aquisition by Region AnnotationsIn our ase, region annotations represent the high-level information. This ap-proah assumes that the user is able to gather, in a �rst step, a representative setof manually segmented training images, i.e. a set that illustrates the variability ofobjet harateristis whih may be found. Then, the user must de�ne a domainlass ditionary omposed of k lasses as Y = {y1, . . . , yk}. This ditionary mustbe designed aording to the problem objetives. For instane, y1= bakgroundlass, y2= objet lass #1, et. One Y is de�ned, the user is invited, in a super-vised stage, to label the regions of the manually segmented images with respetto Y. From a pratial point of view, an annotation is done with the help of agraphial user interfae we have developed. This tool allows to interat with aregion-based segmentation of an image by liking into a region r and by seletingthe desired lass label y (see Figure 4.6).At the end of the annotation task, we obtain a list of labeled ground truthregions whih belong to lasses de�ned by the user. Sine the segmentation resultis not exatly the same than the manual segmentation, the next step is to map,for eah training image, the labels of ground truth regions onto the regions of the
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(a) original image (b) ground truth

() segmentation with default param-eters (d) segmentation with optimized pa-rametersFigure 4.5: An example of a parameter optimization loop. The �nal result (d) is not perfetsine some regions are over-segmented with respet to the ground truth (b).
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Figure 4.6: Region annotations with the developed graphial tool.region map RA
I resulting from the segmentation of the image I with the seletedalgorithm A tuned with the parameter set p̄A, as desribed in setion 4.3. Themapping is done by majority overlap suh as for eah region r ∈ RA

I ,
y(r) =

{

yi

∣

∣i = arg maxhr, if max h(r)
|r| > T

y0, else
(4.14)with |r| the number of pixels of the region r, T a threshold, and h(r) =

{h1(r), . . . , hi(r), . . . , hk(r)} the label histogram of the region r suh that fora pixel u and a label yi, hi(r) = card {u ∈ r | y(u) = yi} , i ∈ 1, . . . , k.If the ratio of the most represented lass in r does not reah the threshold T(here �xed at 0.8), the region label is set to y0 /∈ Y. This prevents from labelingbadly segmented region as skethed in Figure 4.7.We also denote the set of all region annotations RAI suh as:
RAI =

⋃

I∈I

⋃

r∈RA
I

{y(r) | y(r) 6= y0} (4.15)and the set of all annotated regions RI suh as:
RI =

⋃

I∈I

⋃

r∈RA
I

{r | y(r) 6= y0} (4.16)For eah region, a feature vetor x(r) is extrated and makes with the label a pairsample noted (x(r), y(r)). The set of all olleted pair samples from I onstitute
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Figure 4.7: Example of the mapping between a labelled ground truth regions and segmentedregions.the training data set TI (see Algorithm 3) suh as:
TI =

⋃

I∈I

⋃

r∈RA
I

{(x(r), y(r)) | y(r) 6= y0} (4.17)
TI represents the knowledge of the segmentation task and is omposed, at thistime, of raw information. In the following setion, we address the problem ofknowledge modelling by statistial analysis.4.4.2 Segmentation Knowledge ModellingThe �rst step towards learning statistial models from an image partition is toextrat a feature vetor from eah region. But whih low-level features the mostrepresentative for a spei� region labeling problem? In more general terms, whihfeatures are useful to build a good model preditor? This fundamental question,referring to the feature seletion problem, is a key issue for most of the lass-basedsegmentation approahes.Feature ExtrationWhen de�ning a set of features for lassi�ation problems, two approahes anbe onsidered: a �rst approah aims at building relevant feature sets, while a



64 A Framework for Adaptive Image Segmentationseond approah more fous on the usefulness of eah feature. In the �rst ase,the hoie of relevant features mostly relies on knowledge of the domain. Inthe seond ase, the goal is learly to selet features useful for building a goodpreditor, even if some relevant features may be exluded. We propose a trade-o�approah: starting from heuristially seleted features we aim at training robustregion lassi�ers. To this end, we ombine generi features, suh as olor andtexture and apply a feature seletion algorithm.In our approah, olor histograms represent the olor information of eah seg-mented region. Two parameters must be set: the olor spae (cs) as RGB, HSV,or XYZ, on whih the histograming is applied, and the quantization parameter qwhih de�nes the number of bins. Eah olor spae has its spei�ity aordingto the olor model it is based on. However, it is not obvious to selet the bestappropriate olor spae for a spei� problem, and most of the time, several ex-periments have to be onduted. In our approah, we do not state a priori therelevane of one olor spae against others. We rather onsider a olor spae asa parameter of the feature seletion problem. The same statement of fat an bedone for the setting of the quantization parameter: if it is easy to disriminatedata (e.g., two lasses represented by respetively red and green objets), q ouldbe set to a low value (i.e. few bins). On the ontrary, if the olor distributions ofdi�erent objet lasses are mixed, a higher quantization value might be used.Texture feature extration tehniques have reeived onsiderable attentionduring the past deades and numerous approahes and omparative stud-ies have been presented [Reed and du Buf, 1993℄. The most ommonly usedare the gray-level oourene matries introdued by Haralik [Haralik, 1979℄,the Law's texture energy [Laws, 1980℄, and the Gabor multi-hannel �lter-ing [Jain and Farrokhnia, 1991℄. Two surveys on texture feature extration teh-niques an be found in [Reed and du Buf, 1993℄ and [Randen and Husoy, 1999℄.For the haraterization of texture, we use oriented Gaussian derivatives (OGD)to generate rotation invariant feature vetors. OGD are equivalent to the Gaborfeatures but are omputationally simpler. The basi idea is to ompute the �en-ergy� of a region as a steerable funtion. This energy is omputed for di�erent�power� hannel, whih are the result of onvolving the region pixels with OGD�lters of a spei� order. In some way, the �rst order OGD omputes some edgeenergy while the seond order OGD ompute some line energy and then produea strong orrelation with the human vision theory. As olor histograms, texturefeature vetors depend on the q parameter.The �nal feature vetor representing a region is a onatenation of the featurevetors extrated from eah ue. The feature extration proess is applied on eahregion of the annotated regions set RI so as to build the training data set TI , asdepited in algorithm 3.Following our ognitive approah of the segmentation problem, we need toavoid manually seleted and tuned algorithms. At the feature seletion level,this means to be able to automatially selet and tune the feature extrationalgorithms.



4.4 Learning for Semanti Image Segmentation 65Algorithm 3: Algorithm pseudo-ode for the training data set buildinginputs : I, RI , RAI , q, csoutputs: TI
XI ← {} ;1
TI ← {} ;2 foreah I ∈ I do3 foreah r ∈ R̂A

I ⊂ RI do4
x(r)← regionFeatureExtrator(I, r, q, cs) ;5
XI ← XI ∪ x(r) ;6

TI ← {XI ,RAI} ;7 return TI8Feature SeletionThe feature seletion is used to redue the number of features, removeirrelevant, redundant, or noisy data, and it brings the immediate ef-fets of speeding up and improving the predition performane of learn-ing models. Sine feature seletion is a fertile �eld of researh, we re-fer the reader to surveys [Guyon and Elissee�, 2003, Kohavi and John, 1997,Blum and Langley, 1997℄ as good starting literatures. The optimality of a fea-ture subset is measured by an evaluation riterion. Feature seletion algorithmsdesigned with di�erent evaluation riteria broadly fall into two ategories: the�lters and the wrappers.Filters selet subsets of features as a pre-proessing step, independently of thehosen preditor. Well-known methods dediated to this purpose are basi lineartransforms of the input features like Prinipal Component Analysis (PCA) andFisher Linear Disriminant Analysis (LDA). PCA is an unsupervised tehniqueuseful for data set dimensionality redution. For supervised feature seletion,i.e. when feature samples are labelled, LDA is more appropriated. This teh-nique selets features that maximize the ratio of the between-lass satter to thewithin-lass satter. Tehniques based on iterative searh are also widespread assequential forward/bakward algorithms (e.g. SFFS, SBS, ReliefF).Wrappers utilize the learning mahine of interest (e.g., SVM, neural net-works) as a blak box to sore subsets of features aording to their preditivepower. Consequently, wrappers are remarkably universal and simple. An in-teresting omparative study of suh feature seletion algorithms an be foundin [Molina et al., 2002℄.The feature seletion approah we propose is derived from wrappers. Our goalis to �nd the best feature extrator on�guration whih minimizes the joint las-si�ation errors of the lass preditors applied on the training data set TI . Unlikelassial approahes, we at on the feature extrator parameters to generate dif-ferent feature vetors, instead of reduing the feature vetor itself. This approah



66 A Framework for Adaptive Image Segmentationis skethed in Figure 4.8.

Figure 4.8: Feature seletion shema based on tuning of the feature extrator parameters.The two free parameters of our seleted feature extrators are the olor spaeenoder for olor feature extrator, and the quantization level for both olor andtexture feature extrators. The goal is to �nd the best ombination able to induethe minimum region lassi�ation errors. The quality estimation is onduted viaa ross-validation proedure whih gives, for eah region lassi�er ci, the lassi�-ation Mean Square Error (MSE), noted ǫ(ci) ∈ [0, 1]. A global MSE, noted ǫ inAlgorithm 4, is then omputed by averaging all the ǫ(cy).We use an iterative searh strategy to over the value spaes of the two param-eters q and cs. This tehnique guarantees to �nd a global optimal solution but isomputationally expensive: �rst, it requires to run M × N × O region lassi�ertraining proedures, with M the number of quantization levels (typially equalsto 256), N the number of olor spaes, and O the number of lassi�ers to train;seond, when the value of q inreases, so does the size of the feature vetor v. So,to avoid an unreasonable omputational time, the hoie of the training algorithmmust take into aount this omputational onstraint.



4.4 Learning for Semanti Image Segmentation 67Algorithm 4: Algorithm pseudo-ode for the olor feature seletioninputs : RI , RAIoutputs: q (quantization level), cs (olor spae)
ǫ̂← 1 ;1 for q ← qmin to qmax do2 foreah cs ∈ CS do3

TI ←trainingDataSetBuilding(RI,RLI , q, cs);4 foreah y ∈ Y do5
cy ← regionClassifierTraining(y,TI) ;6
ǫ(cy)← rossValidator(cy,TI) ;7 if ǫ < ǫ̂ then8
ǫ̂← ǫ ;9
q̂ ← q ;10
ĉs← cs ;11 return (q̂, ĉs)12Training Algorithm for Class modellingAfter extrating a feature vetor for eah region of the training data set, the nextstep is to model the knowledge in order to produe region lassi�ers (one lassi�erper lass). For a feature vetor x(r) and a lass yi,

ci(r) = p
(

y(r) = yi | x(r)
) (4.18)with ci(r) ∈ [0, 1], is the estimated probability assoiated with the hypothesis:�feature vetor x(r) extrated from region r is a representative sample of the lass

yi�. The set of these trained region lassi�ers is noted C = {c1, . . . , ck}.A variety of tehniques have been suessfully employed to takle the prob-lem of knowledge modelling suh as naives Bayes networks, deision trees orsupport vetor mahine (SVM). We propose to use SVM [Burges, 1998℄ asa template-based approah. SVM are known to be e�ient disriminativestrategies for large-sale lassi�ation problems suh as in image ategoriza-tion [Chen and Wang, 2004℄ or objet ategorization [Huang and LeCun, 2006℄.SVM yields also state-of-the-art performane at very low omputational ost.SVM training onsists of �nding an hyper-surfae in the spae of possible inputs(i.e. feature vetors labeled by +1 or -1). This hyper-surfae will attempt tosplit the positive samples from the negative samples. This split will be hosen tohave the largest distane from the hyper-surfae to the nearest of the positive andnegative samples.Given training vetors xi ∈ R
n, i = 1, . . . , n and a vetor yi ∈ −1,+1, a C-support vetor lassi�ation [Vapnik, 1995℄ (C-SVC) solves the following primal



68 A Framework for Adaptive Image Segmentationproblem:
min
w,b,ξ

1

2
wTw + C

l
∑

i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

(4.19)Its dual is:
min

α

1

2
αT Qα− eT α

subject to yT α = 0,

0 ≤ αi ≤ C, i = 1, . . . , l

(4.20)where e is the vetor of unity, C > 0 is the penalty parameter of the error term,
Q is an l by l positive semide�nite matrix, Qij ≡ yiyjK(xi,xj), and K(xi,xj) ≡
φ(xi)

T φ(xj) is the kernel. Here training vetors xi are mapped into a higher(maybe in�nite) dimensional spae by the funtion φ.For any testing instane x, the deision funtion f (preditor) is:
f(x) = sgn

(

l
∑

i=1

yiαiK(xi,x) + b

) (4.21)The most ommonly used kernels are the following:
• linear: K(xi,xj) = xT

i xj

• polynomial: K(xi,xj) = γ(xT
i xj + r)d, γ > 0

• radial basis funtion (RBF): K(xi,xj) = exp
(

− γ ‖xi − xj‖
2 ), γ > 0

• sigmoid: K(xi,xj) = tanh(γxT
i xj + r)Here, γ, r, and d are kernel parameters to be a priori de�ned.We adopt a one-vs-rest multilass sheme with probability informa-tion [Wu et al., 2004℄ to train one region evaluator c per lass y. We use SVM withradial basis funtion as region lassi�ers. There are two parameters while usingRBF kernels: C (penalty parameter of the error term) and γ (kernel parameter).It is not known beforehand whih C and γ are the best for one problem; onse-quently some kind of model seletion (parameter searh) must be done. To �t the

C and γ parameters, we adopt a grid-searh method using 5-fold ross-validationon training data. Basially, pairs of (C, γ) are tried and the one with the bestross-validation auray is piked (see algorithm 5). This straightforward modelseletion e�iently prevents over�tting problems. As seen in Figure 4.9, themodel seletion is wrapped in the feature seletion shema with whom it sharesthe ross-validation step.The training stage ends up when all ombinations of {(q, cs), (C, γ)} have beentested. The one giving the lowest global lassi�ation error is piked and theregion lassi�ers are trained a last time with this on�guration.



4.4 Learning for Semanti Image Segmentation 69

Figure 4.9: Model seletion shema based on tuning of the preditor parameters.



70 A Framework for Adaptive Image SegmentationAlgorithm 5: Model seletion algorithm pseudo-odeinputs : yi ∈ Y, TIoutputs: cy,ǫ̂
T ′
I ← TI ;1 foreah (x(r), y(r)) ∈ T ′

I do2 if y(r) = yi then3
y(r)← +1 ;4 else5
y(r)← −16

ǫ̂← 1 ;7 for C ← Cmin to Cmax do8 for γ ← γmin to γmax do9
cy ← preditorTraining(T ′

I, C, γ) ;10
ǫ(cy)← rossValidation(cy,T

′
I) ;11 if ǫ(cy) < ǫ̂ then12

Ĉ ← C ;13
γ̂ ← γ ;14
ǫ̂← ǫ ;15

cy ← preditorTraining(TI′,Ĉ,γ̂) ;16 return cy,ǫ̂174.5 Adaptive Image SegmentationFor a new inoming image I not belonging to the training set, a feature vetoris �rst extrated then lassi�ed into a luster. The lassi�ation is based on theminimization of the distane between the feature vetor and the luster set {κi}as follows:
I ∈ θi ⇔ v(I) ∈ κi | i = arg min

i∈[1,n]
dist (v(I), κi) (4.22)The pair (A, p̄A) assoiated with the deteted ontext θi, is returned.One the algorithm is seleted and tuned, the image is segmented. For eahregion, a feature vetor is extrated using the (q̂, ĉs) parameter set and given asinput to eah trained region lassi�ers ci. Classes are sored aording to thelassi�er responses {ci(r)} and �nally, the returned label y(r) is suh as:

y(r) = arg max
i

ci(r) (4.23)When all regions are labelled, neighboring regions with the same label are mergedto form a semanti partitioning of the image. This �nal segmentation is returnedto the user, as desribed in Algorithm 6.



4.6 Framework Conlusion 71Algorithm 6: Algorithm pseudo-ode for adaptive image segmentationinputs: I /∈ I, C, ĉs, q̂

v(I)← GlobalFeatureExtrator(I) ;1
θI ← ContextClassifiation(v(I)) ;2
(A, p̄A)← θI ;3
RA

I ← A(I, p̄A) ;4 foreah r ∈ RA
I do5

x(r)← regionFeatureExtrator(r,ĉs,q̂) ;6
y(r)← RegionClassifiation(x(r),C) ;7 forall (ri, rj) ∈ RA

I , i 6= j do8 if (ri IsNextTo rj) ∧ (y(ri) = y(rj)) then9 RegionMerger(ri,rj) ;10 return semanti segmentation of I114.6 Framework ConlusionIn this hapter, we have presented our framework for adaptive image segmenta-tion. We have detailed eah step of the learning module for algorithm parametertuning, algorithm seletion, and semanti image segmentation. The algorithmparametrization issue is takled with a generi optimization proedure based onthree independent omponents. We have designed our performane evaluationmetri to be broadly appliable and with a low omputational ost. It allowsto assess a large variety of segmentation algorithms and only relies on manualsegmentations. However, further experiments need to be done to assess the per-formanes and the auray of the two optimization algorithms (the Simplexalgorithm and a Geneti Algorithm). Our strategy for algorithm seletion an besummarized as follows:
• The user is assumed to provide a training image set representative of thedi�erent situations.
• The training image set is lustered in order to divide the algorithm seletionproblem into sub-problems more tratable, eah sub-problem representingan image ontext. To this end, an unsupervised lustering algorithm isused to luster feature vetors extrated from the training image set. Thisstrategy assumes, in a way, the existene of a link between a quantitativeimage representation and a tuned segmentation algorithm.
• For eah identi�ed luster, one algorithm is seleted based on performaneranking. A mean parameter set is omputed. This ranking strategy reduesthe number of aeptable solutions to one mean solution.The �nal step of the learning module is to train region lassi�ers to re�ne thesegmentation aording to semanti region labelling. In this task, the user must



72 A Framework for Adaptive Image Segmentationannotate the regions of the manually segmented images with lass labels. Ourapproah is based on the disriminative power of the SVM Classi�ers to groundlow-level region features into symboli lasses. We have also proposed an unsu-pervised method for the learning of SVM and region feature extrator parameters.The goal is to optimize the performane of the lassi�ers without the help of theuser.The module for adaptive image segmentation makes use of the learnt segmenta-tion knowledge. For a new image, the algorithm seletion and tuning is fast sineit only relies on the omputation of a global feature vetor. Then, eah region islabelled aording to the region lassi�ers responses and the �nal semanti imageis returned to the user.The next two hapters are dediated to the validation of this framework onreal-world appliations.



Chapter 5Experiment and Evaluation forImage SegmentationThis hapter is dediated to the validation of the framework presented in the pre-vious hapter for image segmentation in real world appliations. In partiular, weare interested in the segmentation step of a ognitive vision system dediated tothe reognition of biologial organisms. We �rst present the biologial problemand the experimental protool. Then we give a brief desription of the ognitivevision system used to solve the biologial problem. The last setion is dediatedto the detailed assessment of the vision system with a partiular fous on the seg-mentation level. We also give some evaluation results on a publi image databaseat the end of the hapter.5.1 A Major Biologial Challenge: the Early Detetionof Plant Diseases5.1.1 A Major Challenge for Integrated Pest ManagementIntegrated Pest Management (IPM) is a knowledge-based approah to rop pro-tetion. It is an important tool for the management of insets, pathogens, weeds,and ultural problems in greenhouse. The goal of IPM is to integrate ultural,physial, biologial, and hemial praties to grow rops with minimal use of pes-tiides. This approah is partiularly promising in the ontext of ornamental ropsin greenhouses beause of the high level of ontrol needed in suh agrosystem. In-deed, early detetion of plant diseases makes it possible to operate e�iently atthe beginning of an infetion to limit the plant damage. Thereby, it an reduethe amount of pestiide appliations and thus redue the ontrol ost. However,no automati methods are available to preisely and periodially evaluate the bi-oti status of plants. In fat, the detetion of biologial objets as small as suhinsets (dimensions are about 2 mm) is a real hallenge, espeially when onsider-ing greenhouses dimensions (10 to 100 meters long). Traditionally in produtiononditions, visual observations are made eah week by human experts (greenhouse



74 Experiment and Evaluation for Image Segmentationsta�), often on olored stiky traps. Sine this tehnique does not allow to pre-isely study the epidemi spatial model, observations on natural support (i.e. onleaves) are preferred. But it is di�ult or even not possible to perform a ontinu-ous (typially daily) human ontrol and to examine every leaf in the greenhouse.Moreover the auray of the observations depends on the human eye resolution,even if magni�ation tools are used.5.1.2 Context of the ExperimentThis part of the work onsists in a researh ooperation between the Orion teamof INRIA Sophia Antipolis and the Integrated Researh in Hortiulture Unit(URIH) of INRA Sophia Antipolis (National Institute for Agriultural Researh).The ontext of this work is also the region PACA (Provene Alpes C�te d'Azur)whih is the leading hortiultural region of Frane1.5.1.3 Choosing a rop and a bioagressor as a model studyFor this study, we �rst hose a model �rop × bioagressor�. On the one hand,rose, an ornamental rop, was hosen beause it attrats various bioagressors andit requires high level standard quality for �owers as well as leaves. On the otherhand, white �y Trialeurodes Vaporariorum was hosen beause this bioagressorrequires early detetion and treatment to prevent durable infestation. Eggs andlarvae identi�ation and ounting by vision tehniques are di�ult beause ofritial dimension (eggs) and weak ontrast between objet and image bakground(larvae). For these reasons we deided to fous �rst on adults. Eggs, larvae andadults are present on bak faes of leaves.5.2 Experimental Protool5.2.1 Greenhouse experimentThe agrosystem was a 256 m2 plasti twin-tunnel greenhouse planted with roses.The management of limate, fertilization and irrigation was arried out by a on-trol/ommand omputer system designed at INRA. Two rose ultivars (SuellaTM,a yellow one, and Miss ParisTM, a red one) were planted. They are known fortheir di�erent resistane to powdery mildew and attrative powers to insets. Thetotal ultivation orresponds to 1200 plants. A map of the greenhouse is shownon Figure 5.1.5.2.2 Sampling strategyWe hose our sampling strategy based on the following requirements:1Roses are widely produed in PACA and early disease detetion is lassi�ed as a majorhallenge.
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Figure 5.1: Greenhouse map showing two hapels of 128 m2 eah.
• Spatially, data should be uniformly distributed, thus samples were random-ized (aording to a grid) over the whole greenhouse.
• Temporal sampling should be realisti, i.e. provide a good ratio data rele-vane versus sampling duration.The spatial sampling strategy onsists in a randomized sampling in the hori-zontal plane and optimized sampling along the vertial axis. Sine it is onvenientto onsider 12 plants or 2 m rok wool slab as a standard visual observation unit,it was deided to take a leaf sample (5 or 7 lea�ets) every seond meter alongplantation lines. We have done a pre-study on sample uts at various heights ofplant anopy to deide the optimal loalization of samples: for early detetion ofmature white �ies, growing stems have been preferred. Hene, 100 samples weretaken orresponding to 1200 plants. Samples are rose leaves, eah leaf being madeup of 5 or 7 lea�ets, ut in the entral part of the anopy where growing stemsare the most numerous. Both sides of leaves were sanned individually and 200images were reorded (see Figure 5.2 for an example). If we assume a LAI (LeafArea Index) of 3 for rose rop [Raviv and Blom, 2001℄, and with an e�etive ropsurfae of 100 m2, it means that around 0.36% of LAI (for one fae) is analyzedat eah survey by using the above sampling strategy2.Conerning the temporal sampling strategy, the time required to perform anautomati survey is of the same order of magnitude as the time neessary to makea hemial treatment on an equivalent surfae. Thus, this quik delivery of results,i.e. within half a day, is ompatible with rapid deision.2the survey ratio (SR) is omputed as follows: SR = (Nscan∗Sscan)/(LAI∗Scrop), with Nscanthe number of total sanned leaves (200), Sscan the e�etive sanned surfae per aquisition(0.0054 m2) and Scrop the e�etive rop surfae (100 m2)
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Figure 5.2: Example of a sanned rose leaf infested by white �ies.For this study, samples were manually ut and sanned diretly in the green-house by using a onsumer eletronis �atbed A4 sanner. This allowed a highimage quality and a short sanning/transfer time. A resolution of 600 dpi washosen. This orresponds to theoretial square pixel dimensions of 42 µm × 42
µm. Suh a resolution is a good ompromise: it is preise enough to digitize ob-jets as little as mature white �ies (500 pixels of area) and ompatible with dataaquisition/storage onstraints.One the data aquisition onditions �xed, the next step is to provide a systemthat automatially identi�es and ounts white �ies on the sanned images. Thissystem is presented in the next setion.5.3 The Cognitive Vision System for Pest Detetionand CountingFollowing a ognitive vision approah, we propose to use an automati imageinterpretation system that ombines image proessing, learning and knowledge-based tehniques for the detetion and the ounting of mature white �ies.Our approah follows previous work presented in [Hudelot and Thonnat, 2003℄and [Boissard et al., 2003℄ and enrihes it with learning and ontrol abilities atthe segmentation level.5.3.1 System OverviewAs human biologists do, a ognitive vision system has to analyze raw images andto label interesting regions that orrespond to objets of interest (e.g., insets). Toreognize a region as an inset, a human expert relies on (biologial and ontex-tual) domain knowledge about insets (e.g., speies features, life yle, host plant)as well as visual data that an be extrated from images (olor, texture, shape,and size). A software system must take into aount both kinds of knowledge. Toseparate the di�erent types of knowledge and the di�erent reasoning strategies,the ognitive vision platform proposes an arhiteture based on speialized mod-



5.3 The Cognitive Vision System for Pest Detetion and Counting 77ules, as shown in Figure 5.3. It onsists of two knowledge-based systems (KBS),a set of image proessing (IP) algorithms, and a learning module.

Figure 5.3: Cognitive vision system. The top part orresponds to the initial learning moduleand the bottom part to the automati system for routine exeution.Before routine exeution, a learning stage (Figure 5.3 top) is performed oneon a training image sub-set. This preliminary stage is used to omplement theknowledge neessary to run the two following KBSs.The lassi�ation KBS (Figure 5.3 bottom) aims at seleting interesting regionsin images. To this end it triggers image proessing requests and interprets thenumerial results into higher level onepts, i.e. (parts of) objets of interest. Itonly retains the regions orresponding to target insets and returns their numberto the user.The supervision KBS (Figure 5.3 bottom) is used to monitor the exeution of



78 Experiment and Evaluation for Image Segmentationthe image proessing requests. It selets and plans the best programs with thebest parameter values for eah image. From raw images provided by the end-user,the goal is to extrat numerial values needed by the lassi�ation KBS.5.3.2 Learning StageLearning tehniques are used for two purposes: to learn how to map low-levelfeatures to high-level domain onepts and how to tune parameters of imageproessing programs.5.3.2.1 Learning Visual ConeptsThe goal is to map objet desriptions in the knowledge base of the lassi�ationsystem to numerial values. Most of real objets an be desribed in terms ofonepts, suh as their shape, olor or texture. We all them visual onepts.Visual onepts are an intermediate level that helps mapping low-level numerialvalue to a domain lass desription. For instane, a length in millimeters and/ora olor in RGB values may be mapped to an inset body. Thus, eah biologiallass desription appearing in the lassi�ation knowledge base must be preiselyspei�ed in terms of visual onepts.We refer to a general ontology proposed by N. Maillot et al.in [Maillot et al., 2004℄ and in [Maillot, 2005℄, whih is a hierarhy divided intothree parts: spatio-temporal, olor and texture onepts. For instane, spatio-temporal onepts inlude shape, size, and spatio-temporal relations. The mainadvantage in using this ontology is to provide domain experts with a voabularyfor desribing domain lasses in visual terms (as shown in Figure 5.4) by meansof numerial desriptors. The role of these desriptors is to bridge the semantigap between low-level numerial values and visual onepts. A desriptor has anattahed numerial value that an be omputed by vision programs; for instane,a program an ompute an area length in millimeters. It also orresponds to a vi-sual feature meaningful for a human expert to desribe an objet; for instane, anexpert may selet the length desriptor of the size onept as relevant to desribean inset body.We refer also to [Maillot, 2005℄ for the learning of visual onept. Based on atraining set of images and for eah visual onept used by the expert, the learningmodule learns semi-automatially the range of possible values for all the numerialdesriptors neessary to reognize the onept.5.3.2.2 Learning Image Proessing ParametersOur goal is to provide a meaningful segmentation of white �ies for further in-terpretation purposes. Sine no dediated segmentation algorithm exists for thisspei� task, we started with a set of state-of-the-art region-based algorithms andthen, following our approah desribed in hapter 4, we optimized their free pa-rameters on a training image sub-set. At the end of the optimization proess,



5.3 The Cognitive Vision System for Pest Detetion and Counting 79eah algorithm was tuned with its optimal parameter setting. Then, a lusteringdeomposition was performed on the training image sub-set to identify the di�er-ent situations. The algorithm ahieving the best segmentation results (aordingto ground truth) for eah identi�ed luster is retained. Two region-lassi�ers weretrained to reah a goal-oriented segmentation: one for the mature white �y lassand one for the rose leaf lass. This part of the work is more detailed in setion 5.4.5.3.2.3 Learning IssuesAt the end of the learning stage, we get image proessing algorithm with �netuned parameters and desriptor ranges for all relevant numerial desriptors ofthe appliation.Note that this learning stage is done only one, for one (set of) inset(s) todetet and one set of programs to run. Provided that the aquisition onditions donot hange drastially, routine exeution only involves running the two followingknowledge-based systems, i.e. the lassi�ation system and the image proessingsupervision system.5.3.3 Classi�ation SystemThe role of the lassi�ation system is to reognize and to ount white �ies onan image. To this end its relies on knowledge about inset desriptions and onnumerial desriptor values provided by image proessing programs.The knowledge in this KBS onsists of desriptions of domain lasses and lasshierarhies, provided by biologists. We propose a dediated expert language todesribe these hierarhies. In the ase of white �y detetion, the knowledge basemainly ontains knowledge of these insets (see Figure 5.4). TheWhiteFly domainlass desribes how suh an inset may be reognized thanks to di�erent visualonepts seleted by the expert, namely its shape, size and olor. These oneptsrefer to general ones (suh as ColorConept) de�ned in the general ontology.Eah visual onept is in turn desribed by a relevant set of numerial de-sriptors and their assoiated fuzzy ranges of possible values, as learnt on thetraining set with the help of a domain expert during the initial learning stage (seesetion 5.3.2.1). For example, some values of the HSV olor of image areas arelinked with the white �y olor. Experts use the voabulary de�ned by the generalvisual onept ontology suh as the term �irularity� to haraterize the shapeof a white �y.It should be noted that we do not need to manage a omplete biologial hier-arhy of insets (i.e. with all sub-speies), but only the parts that are useful forthe reognition task. Indeed, it is useless (and often impossible with the urrentlyavailable vision tehniques) to preisely reognize the sub-speies of an inset,beause we know that not all sub-speies will infest a type of plant.To summarize, the lassi�ation KBS provides lass hierarhies and a desrip-tion of eah lass in terms of numerial desriptors. To get the real values of
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Domain Class WhiteFly SuperClass: BioagressorSHAPE: ShapeConeptDesriptors:
circularity [ 0.05 0.2 0.5 0.6 ]
excentricity [ 0.1 0.2 0.4 0.5 ]
rectangularity [ 0.5 0.6 0.8 0.85 ]
elongation [ 0.3 0.35 0.7 0.8 ]
convexity [ 0.7 0.75 1.0 1.1 ]
compacity [ 0.1 0.25 0.9 1.0 ]COLOR: ColorConeptDesriptors:
saturation [ 0.0 0.0 0.2 0.3 ]
lightness [ 120 130 240 260 ]
hue [ 80 90 170 180 ]SIZE: SizeConeptDesriptors:
area [ 0.5 0.6 1.2 1.3 ]
length [ 0.6 0.8 2.5 3.5 ]
width [ 0.2 0.3 1.0 1.3 ]Figure 5.4: High-level desription of a domain lass (white �y). Visual onepts are in SmallCaps. learnt fuzzy ranges are shown on the right. They are omposed of four numbers, or-responding respetively to the minimum admissible value, the minimum and maximum mostprobable values, and the maximum admissible value.



5.3 The Cognitive Vision System for Pest Detetion and Counting 81numerial desriptors, the orret image proessing algorithms must be launhedand ontrolled: this is the role of the image proessing supervision KBS.5.3.4 Image Proessing Supervision SystemThe image proessing task itself is ahieved by a program supervi-sion [Thonnat et al., 1998℄ knowledge-based system. Program supervision teh-niques make it possible to automate the use of omplex programs, i.e. to plan andontrol proessing ativities. In ognitive vision systems, the supervision systemontrols the use of the image proessing sub-tasks, suh as image segmentationand features extration. It is based on knowledge about the programs, their in-put/output data, their appliability onditions, their possible ombinations, andthe neessary information to run them in various situations. This knowledge isgiven by image proessing experts in the form of operators and deision rules toguide the supervision engine reasoning (e.g., to selet programs, initialize theirparameters, or assess their results). Suitable parameter initialization values havebeen learnt during the previous learning step, but more tuning is possible dynam-ially depending on the input image spei�ity. Operators and rules are formallydesribed in the knowledge base using an expert language (see an example Fig-ure 5.5).Composite Operator { name Segmentationomment �image segmentation operator�Input DataImage input_imageOutput DataImage output_image...BodyRegionBased | EdgeBasedChoie Rule { name RegionChoieIf onept == ShapeConeptThen useOperator RegionBased }}Figure 5.5: An example from the program supervision knowledge base. A omposite operatordesribes an alternative deomposition (denoted by a |) into two sub-operators: region or edge-based segmentation, and a rule selets the �rst one if the onept to reognize (as indiated bythe lassi�ation KBS) is Shape.One the objets have been extrated, the seond step of the image proessingtask, feature extration, omputes the attributes orresponding to eah region,aording to the domain feature onepts (e.g., olor, shape and size desriptors).Finally, the supervision KBS returns a set of andidate areas to the lassi�ationKBS. Eah area has an attahed set of omputed numerial desriptor values. Thelassi�ation KBS an use these desriptors in onjuntion with its own knowledgeto selet areas orresponding to white �ies and to return the number of reognized



82 Experiment and Evaluation for Image Segmentation�ies to the user.5.4 Approah AssessmentThis setion is dediated to the performane evaluation of the segmentation stepand of the ognitive vision system.5.4.1 Segmentation AlgorithmsIn this setion, we brie�y desribe the segmentation algorithms we used for ourexperiment. Our set is omposed of algorithms re�eting di�erent segmentationstrategies as developed in setion 2.2.2 namely region growing, split-and-merge,watershed, or thresholding tehniques.CSC: The Color Struture Code [Priese and Sturm, 2002℄ is a method ombiningthe advantages of loal (simpliity and fastness) and global (robustness andauray) tehniques. It is a hierarhial region growing method that isinherently parallel and therefore independent of the hoie of the startingpoint and the order of proessing. The generation of the CSC operatesessentially in three phases. In an initialization phase the image is partitionedinto small, atomi olor regions. These small olor regions are growing in thelinking phase in a hierarhial manner to omplete olor segments. Withinthe linking phase it is possible to detet that olor regions onneted bya hain of smoothly hanging olors have to be split again. This is donein the splitting phase. The most important parameter to set is the linkingthreshold based on the quadrati olor distane between two pixels.SRM: The SRM algorithm, for Statistial Region Merg-ing [Nok and Nielsen, 2004℄ is a region-based segmentation algorithmfollowing a partiular order in the hoie of regions. The merging riteria isbased on an adaptive statistial threshold merging prediate on olor han-nels that does not require to maintain dynamially the region adjaenygraph. The algorithm is able to ope with hard noise orruption, handleolusion, authorize the ontrol of the segmentation sale through a freeparameter Q.EGBIS: The E�ient Graph-Based Image Segmentation algo-rithm [Felzenszwalb and Huttenloher, 2004℄ is based on the de�nition of aprediate for measuring the evidene for a boundary between two regionsusing a graph-based representation of the image. The pairwise region om-parison prediate onsiders the minimum weight edge between two regionsin measuring the di�erene between them. An important harateristi ofthe method is its ability to preserve detail in low-variability image regionswhile ignoring detail in high-variability regions. A funtion parameter kontrols the degree of di�erene between two regions with respet to their



5.4 Approah Assessment 83internal di�erenes. The parameter σ ontrol the (optional) smoothing ofthe input image.Hysteresis thresholding: This straightforward algorithm onsiders any pixelabove the upper threshold Thigh and under the lower threshold Tlow as abakground pixel. It does not take into aount any spatial ohereny.CWAGM: CWAGM means Color Watershed - Adjaeny Graph Merge. Thealgorithm [Alvarado Moya, 2004b℄ omputes an over-segmentation with thewatershed transformation and merge the regions to minimize the meansquare error of a piee-wise onstant image approximation. To omputewhih threshold should be used in the watershed segmentation, the aumu-lative histogram of gradient values will be used as a probability distribution.It will be assumed that the probability for a gradient value to be relevantmust be greater than the given value p. The merge threshold m indiatesa square distane between mean values in the olor spae weighted by thearea of the regions.The Table 5.1 summarizes these algorithms and gives important informationonerning their free parameter with their ranges and default values provided bythe algorithm's authors.Algorithm Free Parameter Range Default ValueCSC t: region merging threshold 5.0-255.0 20.0SRM Q: oarse-to-�ne sale ontrol 1.0-255.0 32.0EGBIS σ: smooth ontrol on input im-age 0.0-1.0 0.50
k: olor spae threshold 0.0-2000.0 500.0Hysteresis thresholding Tlow: low threshold 0.0-1.0 -
Thigh: high threshold 0.0-1.0 -CWAGM m: region merging threshold 0.0-200.0 100.0
n: min. region number 1.0-100.0 10.0
p: min. probability for water-shed threshold 0.0-1.0 0.45Table 5.1: Components of the segmentation algorithm bank, their names, parameters to tune withrange and author's default values.5.4.2 Parameter optimization AssessmentBefore assessing the optimization proedure, we illustrate the optimization prob-lem with some examples of evaluation pro�les. We present 1D and 2D pro�les forthe di�erent segmentation algorithms (exept the EGBIS whih has a parameterspae in R

3) for the four training images of the Figure 5.6. The best segmentationquality orrespond to assessment value EA
I = 0.



84 Experiment and Evaluation for Image SegmentationConerning the CSC algorithm (see Figure 5.7), the shapes of the urves aresimilar for the four images and present a global minimum whih falls in the samepart of the parameter spae. The global optima for the SRM algorithm (seeFigure 5.8) are found in a very narrow band of the parameter spae. Manyloal optima haraterizes the urves of the EGBIS algorithm (see Figure 5.9).The thresholding algorithm behavior is more straightforward regarding to theobtained urves (see Figure 5.10). Globally, two performane levels are revealedwhere �good performanes� are ahieved for a large range of the parameter values.However, the global optima is more di�ult to see sine the di�erene betweenthe �good� performane level (in blue) and its level is very thin. From theseobservations, we an onlude that the evaluation pro�les are not always onvexhulls and their granularity an depend on the image.The set up of the Simplex algorithm and the Geneti algorithm used to �ndglobal minimum are desribed in Table 5.2.Simplex Algorithm Geneti Algorithm
• starting step value = 0.5 • initial population size = 40
• ending riteria = 0.001 • initial number of generations = 20
• simplex oe�ients (α=0.5, β=1.0, • nb of generations to onvergene = 5
γ=0.5, σ=2.0) • ross-over probability rate = 0.7
• maximum number of alls = 80 • mutation probability rate = 0.05Table 5.2: Set up of the optimization algorithms.Sine the Simplex algorithm does not guarantee to obtain a global optimum,we divide eah parameter spae into three sub-spaes and run an optimization oneah sub-spae. This means that 3N optimization loops are run for a segmentationalgorithm with N free-parameters.Table 5.3, and 5.4 present the optimization results of the �ve segmentation al-gorithms in terms of segmentation performane. Globally, all the algorithms reaha good level exept the EGBIS algorithm, as shown in Figure 5.11. This resultis due to the fat that this algorithm is sensitive to small gradient variations. Asexpeted, the EGBIS has a big standard deviation (due to the presene of manyloal optima) whereas the thresholding one is low (due to its straightforward be-havior). We have also ompared the performanes of the optimization algorithms(the Simplex and the GA) with a systemati searh method (see Table 5.5. Bysystemati, we means an iterative searh throughout the whole parameter spaewith a �xed sampling rate. The sampling rate depends on the dimensionality ofthe parameter spae. The global performane of the three methods are similarwith a very little advantage to the Simplex.To deide between the three di�erent methods, we have ompared them byonsidering their omputational ost as desribed in Table 5.6. The systematisearh is obviously the most ostly method. The Simplex is the fastest method toonverge apart from the CWAGM algorithm. Aording to the previous perfor-
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(a) img001 (b) gt001

() img009 (d) gt009

(e) img026 (f) gt026

(g) img077 (h) gt077Figure 5.6: Four representative training images and assoiated ground truth segmentations usedin �gure 5.7 to �gure 5.10.
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Figure 5.7: Evaluation pro�les of the CSC algorithm applied on the four training images presented in Figure 5.6. EA

I = 0 orresponds to the optimum.
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87Figure 5.8: Evaluation pro�les of the SRM algorithm applied on the four training images presented in Figure 5.6. EA

I = 0 orresponds to the optimum.
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Figure 5.9: Di�erent evaluation pro�les of the EGBIS algorithm applied on the four trainingimages presented in Figure 5.6. EA
I = 0 orresponds to the optimum. t and σ are the two freeparameters.Algorithm EA

I using the simplex algorithmmin max mean stdCSC 0.000 0.497 0.139 0.110SRM 0.000 0.522 0.126 0.114THRESH 0.000 0.351 0.113 0.092EGBIS 0.0620 0.734 0.366 0.142CWAGM 0.000 0.436 0.119 0.089Table 5.3: Statistis on the optimization performanes for the training image set using the Simplexalgorithm.
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Figure 5.10: Di�erent evaluation pro�les of the hysteresis thresholding algorithm applied on thefour training images presented in Figure 5.6. EA
I = 0 orresponds to the optimum. Tlow and

Thigh are the two free parameters.Algorithm EA
I using the genesti algorithmmin max mean stdCSC 0.000 0.462 0.134 0.099SRM 0.000 0.485 0.123 0.100THRESH 0.000 0.348 0.114 0.091EGBIS 0.118 0.708 0.371 0.140CWAGM 0.000 0.436 0.118 0.090Table 5.4: Statistis on the optimization performanes for the training image set using the genetialgorithm.
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(a) ground truth (b) CSC

() SRM (d) THRESH

(e) EGBIS (f) CWAGMFigure 5.11: Example of optimization results for the img026 ompared to the ground truth withtheir performane sores (0 = no di�erene).



5.4 Approah Assessment 91Algorithm EA
I using the systemati searhmin max mean stdCSC 0.000 0.462 0.129 0.097SRM 0.000 0.479 0.116 0.099THRESH 0.000 0.350 0.113 0.092EGBIS 0.126 0.708 0.392 0.140CWAGM 0.000 0.456 0.193 0.077Table 5.5: Statistis on the optimization performanes for the training image set using the systematisearh.mane sore tables, the simplex is de�nitively the best algorithm to optimize lowdimensional parameter spaes in a few number of iterations. For segmentationalgorithms with more than two free-parameters, the Geneti Algorithm shouldbe preferred, requiring less iterations for the same level of performane. Notethat we have limited the number of iterations � mainly for omputational ostreasons � for the systemati searh method to 2550 for the EGBIS algorithmand to 1250 for the CWAGM algorithm, respetively. These two algorithms arerelatively slow omparing to the others and the parameter spae to explore isreally huge, partiularly for the CWAGM.Algorithm mean number of iterationsSystemati searh GA SimplexCSC 1000 733 83SRM 1000 734 82THRESH 10000 840 404EGBIS 2550 840 497CWAGM 1250 840 1821Table 5.6: Computational ost of eah optimization method.The number of iterations is also dependent of the parametrization of the op-timization algorithm. For the Simplex algorithm, it mainly depends on the

maxCalls parameters whih spei�es the maximum allowed number of alls ofthe �tness funtion in an optimization loop. A too low value will ause the al-gorithm to break before optimization is omplete. A too high value will lead toneedless alls of the �tness funtion. Figure 5.12 shows the in�uene of this param-eter on the onvergene auray. We start the test on the img001 with maxCallset to 3 (minimum allowed by the algorithm) and inrease it up to 80. For aone-dimensional parameter spae, this means that the total number of iterationswill be between 9 (3× 3) and 240 (3× 80), for a two dimensional spae between27 (32 × 3) and 720 (32 × 80), and so on. The study of the graph brings us toseveral onlusions. First, for the CSC and SRM algorithms (one free-parameter),setting maxCalls to 8 (i.e. a total number of iterations equals to 24) su�es to



92 Experiment and Evaluation for Image Segmentationreah the best performane at the onvergene point. For the EGBIS and thresh-olding algorithms, the onvergene points are reahed after 45 and 117 iterations,orresponding to maxCalls = 5 and maxCalls = 13, respetively. 783 iterationsare needed for the CWAGM algorithm (maxCalls = 29). As a onsequene, thedimensionality of the parameter spae to explore has to be taken into aount forthe setting of maxCalls but exessive values are useless. This study also revealsthat the parameter spae is not explored in the same way, depending on the seg-mentation algorithm. Indeed, some algorithms, have parameter sub-spaes whihindue �at evaluation pro�les, as for instane the thresholding algorithm. In thesesub-spaes, the Simplex onverges in a few number of iterations. The same studyis done for the GA and the results are graphially reported in Figure 5.13. Wedeide to assess the GA sensitivity to the initial population size. The number ofinitial points is here independent of the segmentation algorithm and varies be-tween 20 and 840. The same onlusions an be drawn. We just an add thatthe EGBIS algorithm brings some problem to the GA whih falls in many loaloptima (peaks of the EGBIS urve in Figure 5.13).

Figure 5.12: Convergene auray of the Simplex algorithm by varying the maxCalls param-eter.5.4.3 Algorithm SeletionWe applied the DBSCAN [Ester et al., 1996℄ algorithm to luster the 20 trainingimages as desribed in setion 4.3.2. We obtain two lusters of 10 images (seeFigure 5.14 for examples). Visually, the �rst luster orresponds to the bak side



5.4 Approah Assessment 93

Figure 5.13: Convergene auray of the GA by varying the initial population size.images of the sanned rose leaves and the seond luster to the front side im-ages. For eah luster, mean parameter sets of the �ve segmentation algorithms

Figure 5.14: Examples of images for the two identi�ed lusters. Left = luster 1 (front side ofthe leaves), right = luster 2 (bak side of the leaves).are omputed w.r.t. their performane sores. The segmentation performanesof the tuned algorithms are evaluated on eah training image sub-set. The tunedalgorithm whih gets the best mean performane sore for eah luster is eleted.Before the last ranking step, the best algorithm for the �rst luster was the hys-teresis thresholding algorithm and the best for the seond luster was the CSCalgorithm. After the last ranking step, the CSC algorithm was found as the best



94 Experiment and Evaluation for Image Segmentationone for the two lusters but with di�erent parameter set. This means that evenif the thresholding algorithm performs better in individual ases, the CSC algo-rithm is more robust than the thresholding algorithm when tuned with a meanparameter set.5.4.4 Region-Classi�er Performane AssessmentFor eah identi�ed image luster, region labels of annotated manual segmentationsare mapped into regions of the segmented image following the method desribed inChapter 4.4.1. Then, for eah region lass, a region lassi�er is trained with regionfeatures as input. We used our wrapper sheme detailed in Chapter 4.4.2 to op-timize the lassi�er performanes. Three olor spae are used in this experiment:RGB, HSV, and XYZ. The performanes of the lassi�ers trained respetively onthe whole training set, the luster 1, and the luster 2 are plotted in Figure 5.15,Figure 5.16, and Figure 5.17. The study of these three graphs leads to someonlusions. First, HSV is the more disriminative olor spae in this problemexept for the luster 2 where better results are ahieved with the XYZ olorspae. The CIE XYZ olor spae was deliberately designed so that the Y param-eter was a measure of the brightness or luminane of a olor. For the ontext 2,the brightnesses of the lasses are very di�erent. That's why the XYZ olor spaeis here well-adapted. Seond, the optimization of the SVM parameters inreasesthe lassi�er performanes of 5-10%. The best ross-validation rates are reahedwith q (quantization level) values superior to 50.We have also tested texture features but their performanes are 10% inferiorin mean than with the olor features as shown in Figure 5.18.Finally, the lassi�ers are trained a last time with the on�gurations giving thebest ross-validation rates. The �nal set up of the di�erent algorithms is then asfollows (Table 5.7):Context Seg. Alg. Class Feature extrator param. SVM param.(param) Color spae q C γontext 1 CSC rose leaf HSV 112 4 1(light green leaves) (41.9) white �y HSV 112 1 4ontext 2 CSC rose leaf XYZ 21 64 4(dark green leaves) (48.74) white �y XYZ 21 256 0.25Table 5.7: Set up of the segmentation, the feature extrators, and the lassi�ers.5.4.5 Final Segmentation Quality AssessmentIn this setion, we present the segmentation results on the test set. We omparesix di�erent methods, omprising (parts of) our approah and a pure top-downsegmentation.
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Figure 5.15: Performanes of the region lassi�ers trained on the whole training set and di�erentolor features.
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Figure 5.16: Performanes of the region lassi�ers trained with the ten images of the luster 1(light green rose leaves) and di�erent olor features.
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Figure 5.17: Performanes of the region lassi�ers trained with the ten images of the luster 2(dark green rose leaves) and di�erent olor features.
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Figure 5.18: Performanes of the region lassi�ers trained with the whole training set and texturefeatures.
• method 1: ad ho segmentation, with the Hysteresis thresholding algorithmtuned with Tlow = 0.45 and Thigh = 1.0.
• method 2: algorithm seletion and tuning based on the learnt parametersfrom the whole training set (CSC is the best algorithm),
• method 3: method 2 + semanti segmentation (region labelling),
• method 4: algorithm seletion and tuning based on image ontent analysis(one algorithm with learnt parameters per ontext),
• method 5: method 4 + semanti segmentation,
• method 6: over-segmentation + semanti segmentationThe over-segmentation used in method 6 is performed with the CWAGM algo-rithm manually tuned with a very low region merging threshold (see Figure 5.19).Performane sores of the test set are summarized in Table 5.8 and some ex-amples of results for four test images are presented in Figure 5.20, Figure 5.21,Figure 5.23, and Figure ??. Methods 3 and 5 gives the best result. This result ispreditable sine the segmentation algorithm used for the method 5 is the same(CSC) and the parameter settings for the ontext 1 is lose to the one for theontext 2. The small di�erene between the performane sores of methods 3 and5 is at the method 3 advantage. The white �y region lassi�er for the ontext 2has been trained on few samples sine there are not many white �ies on the frontside of rose leaves. Consequently, the lassi�ation errors for the white �y lassare higher for the method 5 ontext 2 than for the method 3. In a biologial point
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Figure 5.19: Example of an initial over-segmented image used in method 6.of view, insets prefer to live hided on the bak side of the leaves, where they arebetter amou�aged (low ontrast, not visible, et.). Method 6 does not performbetter results even if its initial over-segmentation is more preise (i.e. less missedboundary pixels) than with the CSC algorithm in methods 2 to 5.method Performane sores of the segmentationmin max mean std1 0.000 0.351 0.095 0.0802 0.000 0.779 0.213 0.1643 0.000 0.654 0.122 0.1394 0.000 0.832 0.234 0.1705 0.058 0.617 0.123 0.1406 0.000 0.668 0.153 0.144Table 5.8: Statistis on the segmentation performanes for the test set using di�erent segmentationstrategies.5.4.6 Overall System AssessmentTo assess the quality of the ognitive system, the results have been omparedwith ground truth. Three human operators (one expert in agronomy, one expert inimage proessing and one non-expert neither in agronomy nor in image proessing)have manually ounted the white �ies on 180 images. Eah operator has a di�erentpoint of view when ounting. The expert in image proessing fouses on purevisual harateristis while the expert in agronomy fouses more on the semantimeaning of images. This an lead to di�erent ounting results as illustrated inFigure 5.24: the expert in agronomy ounts three white �ies, the expert in imageproessing only one (beause only one objet mathes the visual riteria), and thenon-expert two. This explains the size of some error bars on ground truths inFigure 5.25 (e.g., samples 142 and 148).
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Figure 5.20: Examples of results on a test image for di�erent segmentation on�gurations (1).
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Figure 5.21: Examples of results on a test image for di�erent segmentation on�gurations (2).
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Figure 5.22: Examples of results on a test image for di�erent segmentation on�gurations (3).
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Original image ground truth method 1 method 2

method 3 method 4 method 5 method 6

Figure 5.23: Examples of results on a test image for di�erent segmentation on�gurations (4).
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Figure 5.24: Example of an ambiguous image sample for ground truth estimation. The twowhite �ies on the top have moved during the sanning. This leads to olor �ikering whih donot orrespond to the normal white �y olor.We detail hereafter the result evaluation for early detetion of mature white�ies. From the 180 images omposing the test set, 162 ontain between zero and�ve white �ies. Figure 5.25 presents the detailed results for the whole test set.For eah image the average ground truth value (blue irle) is reported with itsassoiated error bar. Red rosses represent the values found by the system. Toprove the reliability of our learning approah, we have tested it against an adho segmentation (i.e. a manually tuned algorithm): a hysteresis thresholdingsegmentation on gray-saled normalized image (i.e. pixel values in [0, 1]) withlow threshold (Tlow) �xed to 0.45 and high threshold (Thigh) �xed to 1.0. Thetwo graphs present the results of mature white �y ounting. The top graphorresponds to the system on�gured with ad ho segmentation and the bottomgraph orresponds to the system on�gured with our learning approah.Globally, the detetion rate is satisfatory. To fully make use of the results,we an separate the test samples into two lasses depiting the most relevantsituations. The �rst lass (C1) represents images without any mature white �y(i.e. images for whih the ground truth error bar maximum is stritly inferiorto 1.0) and the seond lass (C2) represents images with at least one white �ydeteted (i.e. images for whih the ground truth error bar maximum is equal orsuperior to 1.0). We de�ne the False Positive Rate (FPR) as the rate of over-detetion (i.e. images for whih the number of deteted white �ies is greater thanthe ground truth error bar) and the False Negative Rate (FNR) as the rate ofunder-detetion (i.e. images for whih the number of deteted white �ies is lessthan the ground truth error bar). Table 5.9 summarizes the detetion results.The �gures represent the mean values of FNR and FPR for lass C1, C2, and forthe whole image test set.The FNRs are roughly similar for the two on�gurations. In fat, this revealsonfusing situations as the one presented in Figure ??: two overlapping white�ies have been segmented into one region whih has obviously not the shape ofa single white �y. Hene, the system ounts one white �y instead of three. Thishighlights the sale issue of our problem for whih highly variable small objetsare expeted to be deteted in a omplex natural environment. Conerning theFPRs, they are up to four times smaller with the learnt segmentation than with
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Figure 5.25: Evaluation of mature white �y ounting results in early detetion ases (i.e. between0 and 5 �ies per leaf). The upper graph presents the results for the system on�gured withtrained segmentation parameters, the lower one presents the results for the system on�guredwith an ad ho segmentation.



106 Experiment and Evaluation for Image SegmentationResults for early detetion of mature white �iesWith ad ho segmentation With learnt segmentationSamples FNR (%) FPR (%) FNR (%) FPR (%)
C1 (102) - 9.6 - 3.1
C2 (60) 24.7 9.0 29.6 2.0Whole set (162) 9.1 9.4 11.0 2.7Table 5.9: False Negative Rate (FNR) and False Positive Rate (FPR) for test images with nowhite �ies (lass C1), at least one white �y (lass C2) and for the whole test set.the ad ho one. This is due to our adaptive segmentation approah that allows toe�iently tune algorithm parameters with respet to variations in leaf olor andontrast.

Figure 5.26: Example of an ambiguous situation leading to a wrong interpretation result.5.5 Evaluation on a Publi Image DatabaseIn this setion, we present evaluation results of the parameter optimization stepon a publi image database.The goal of the Berkeley Segmentation Dataset and Benhmark (BSDB) imagedatabase [Fowlkes and Martin, 2007℄ is to provide an empirial basis for researhon image segmentation and boundary detetion. To this end, the authors haveolleted 6000 hand-labeled segmentations of 500 Corel dataset olor images from30 human subjets. The images depites natural senes with at least one fore-ground objet (e.g., an animal, a plant, a person, et.). The publi benhmarkbased on this data onsists of all of the segmentations for 300 images. The imagesare divided into a training set of 200 images, and a test set of 100 images. Theground truth are not labelled and the possible semanti lasses are too numerous.Consequently, we do not assess the semanti segmentation part of our frameworkon this image database.The evaluation metri proposed in this image database for the benhmarkingannot be used with region-based segmentation algorithms sine it relies on soft



5.5 Evaluation on a Publi Image Database 107boundary maps of edge-based segmentation results (e.g. maps of gradient mag-nitude). We thus prefer our segmentation performane metri. For eah image,several human segmentation exists (from three to eight) with di�erent levels ofre�nements. We have deided to take into aount the �nest ones. Then, for eahsegmentation algorithm of our algorithm bank and for eah image, algorithm pa-rameters are optimized thanks to the manual segmentation. As previously donein setion 5.4.2, we have ompared the optimized segmentation ahieved with thethree optimization algorithm based on: the Simplex algorithm (Table 5.10), theGeneti Algorithm (Table 5.11), and a systemati searh (Table 5.12). Globallythe three optimization algorithms performs in mean omparable results. Thison�rm the reliability of our parameter tuning approah for this image database.Algorithm EA
I using the Simplex algorithmmin max mean stdCSC 0.285 0.768 0.639 0.079SRM 0.246 0.702 0.529 0.079THRESH 0.193 0.680 0.510 0.081EGBIS 0.207 0.632 0.495 0.077CWAGM 0.224 0.691 0.530 0.081Table 5.10: Statistis on the optimization performanes using the Simplex algorithm.Algorithm EA
I using the geneti algorithmmin max mean stdCSC 0.373 0.756 0.633 0.086SRM 0.232 0.665 0.532 0.088THRESH 0.192 0.682 0.514 0.092EGBIS 0.202 0.618 0.499 0.081CWAGM 0.224 0.675 0.530 0.090Table 5.11: Statistis on the optimization performanes using the geneti algorithm.Algorithm EA
I using the systemati searhmin max mean stdCSC 0.252 0.762 0.594 0.087SRM 0.234 0.696 0.528 0.079THRESH 0.376 0.648 0.521 0.064EGBIS 0.337 0.600 0.509 0.066CWAGM 0.496 0.0677 0.589 0.091Table 5.12: Statistis on the optimization performanes using the systemati searh.



108 Experiment and Evaluation for Image Segmentation5.6 ConlusionIn this hapter, we have presented the validation of our framework for adaptiveimage segmentation on a biologial appliation. We have paid a speial attentionto the assessment of eah step of our learning module. We have seen that ouroptimization proedure is able to extrat optimal parameters of di�erent segmen-tation algorithms. The optimization is reasonable in terms of omputational ostand delivers ompatible results with the appliation needs. Then, region lassi-�ers have been trained on a relative small set of training images (50) for whih theuser has provided manual segmentations and, regions annotations for two objetlasses. The qualitative and quantitative evaluations of the results demonstratethe potential of our method for this appliation. On the test image set, our adap-tive segmentation outperforms an ad ho segmentation with in mean 50% lesssegmentation errors aording to our performane evaluation metri.We have also shown how our framework an be used into a ognitive visionsystem dediated to the detetion and ounting of insets on rose leaves to enrihthe segmentation task with learning and adaptability faulties. Global perfor-mane of the system has been improved thanks to our adaptive segmentation andderease the false rate detetion in a fator three.We have however limited our experiment to a �gure-ground segmentation prob-lem. Further experiments with more training data (i.e. more semanti lasses)are neessary to fully validate our framework.



Chapter 6Adaptive Figure-GroundSegmentation in VideoSurveillane Appliations
6.1 IntrodutionFigure-ground segmentation of videos onsists in separating the foreground pixelsof the bakground pixels. In video appliations, the variability of the two lassesmakes the detetion of foreground pixels fairly impossible to predit without mo-tion information. A widely used method to takle this problem is to model thebakground in order to detet only moving pixels. If some tehniques (e.g., median�ltering [Prati et al., 2003℄, mixture of Gaussian [Stau�er and Grimson, 1999℄,kernel density estimator [Elgammal et al., 2000℄, odebooks [Kim et al., 2005℄)have proved to be e�ient in spei� situations, the maintenane of bakgroundmodels in long-term videos of hanging environment is still a real hallenge. Morepreisely, these tehniques are still not able to ope with both gradual hanges(e.g., due to the hange of the loation of the sun) and sudden hanges (e.g., due tothe passage of louds in front of the sun). In video surveillane appliations, suhsituations are ommon, for instane in outdoor site or building entrane surveil-lane. Therefore, a need exists in improving the segmentation step to ahieve arobust detetion of moving objets of interest in every expeted situations.In this hapter, our objetive is to remove the restritions on the use of videosegmentation algorithms. More preisely, our aim is to show how our algorithmseletion method based on image ontext analysis an be used for the dynamiseletion of bakground model. The goal is to divide the bakground modellingproblem into more tratable sub-problems, eah of them being assoiated with aspei� ontext.



110 Adaptive Figure-Ground Segmentation in Video Surveillane Appliations6.2 Meta-Learning for video segmentation algorithms6.2.1 Targeted AppliationsWe onsider the problem of the �gure-ground segmentation task in video surveil-lane appliations where both quik-illumination hanges and long term hangesare present. In this ontext, the major di�ulty at the segmentation level is todeliver robust results whatever lighting hanges our in the sene. These lightinge�ets an be indued by weather onditions hanges in outdoor senes, by theswithing of an arti�ial lighting soure in indoor senes, or by a ombinationof hanges of di�erent natures. The onsequenes at the pixel level are varia-tions of intensity, olor saturation, or inter-pixel ontrast. At the image level,these hanges an a�et just a loal area or the whole image. Another soureof problems arises from the presene of non-stati objets in the bakground asswaying trees or mobile objets as hairs. All these bakground variations makethe foreground detetion problem very di�ult.6.2.2 Targeted AlgorithmsTo estimate the motion, a basi approah is to ompute the di�erene betweena bakground image, alled the referene image, and the urrent frame. Theresult is then thresholded to get a binary image of moving pixels. The resultis obviously very sensitive to the threshold. Most of the time, the user musttune this threshold in a trial-and-error proess. One di�ulty arises when thebakground pixels are varying along the time. In this ase, more elaboratedapproahes build a bakground model for eah pixel based on the pixel's reenthistory by using, for instane a hronologial average or median of the n previousframes. More reently, Mixture of Gaussian (MoG), Kernel Density Estimator(KDE), and odebook models have been proposed to ope with multiple modalbakground distributions. These algorithms are based on a training stage toestimate the Gaussian parameters (for MoG), to ompute the probability densityfuntions (for KDE), or to onstrut the odebooks. Eah of these tehniquesan provide aeptable auray in spei� appliations: MoG are adapted tomulti-modal bakground distributions but fail to provide sensitive detetion whenbakground has fast variations. KDE overomes this problem but are limited toshort-term videos due mostly to memory onstraints. Codebooks alleviate thisomputation limitation by onstruting a highly ompressed bakground modelbut produe too wide bakground models when the environment is highly variableas in long-term videos.Our approah fouses on algorithms assuming a training stage of thebakground model representation on bakground samples, i.e. a set offrames without any moving objets of interest. In partiular, we fous ontwo algorithms of this family: the generalized Mixture of Gaussian (MoG)model [Stau�er and Grimson, 1999℄ and the odebook model [Kim et al., 2005℄.The training stage of the Mog model onsists in estimating k Gaussian parameters



6.3 Context Analysis by Image Sequene Clustering 111set (ω, µ,Σ) for eah pixel using an expetation-minimization algorithm, where kis the number of gaussians in the mixture. For the odebook model, the learningstage onsists in onstruting the set of odewords (i.e. a odebook) for eah pixel.A odework is omposed of a vetor of mean RGB values and of a �ve-tuple vetorontaining intensity (brightness) minimum and maximum values, the frequenywith whih the odeword has ourred with its �rst and last aess time. Wehave hosen these two algorithms for the di�erenes they exhibit in their modelrepresentation and their training proess, and for their omparable performanesin the targeted appliations.6.2.3 HypothesisOur assumptions are the following:1. We suppose that the user is able to ollet a set of bakground samples forthe training of the bakground models. In a pratial point of view, theolletion an be ahieved by a manual seletion of frame sequenes whereno objet of interestis present.2. We suppose that this set is large enough to illustrate the di�erent variationsof the sene (the ontexts), e.g. the di�erent illuminations hanges thatould be enountered in real-time use.These two assumptions �t quite good with the targeted appliations where videosan be aquired ontinuously, typially 24 hours per day and seven days per week.The quik availability of data allows to build hene huge training image set.6.2.4 ExperimentThe experimental onditions are the followings: the video data are taken duringa period of 24 hours, at eight frames per seond, from a video surveillane amera�xed above an outdoor ash desk of a ar park. The video amera parametersare set in automati mode. The size of the images is 352 × 288 pixels and arestored in JPEG format. For the experiment, we have taken one frame on �vewhih orrespond to 138000 frames in total. Six samples piked from the imageset are shown in Figure 6.1. They have been hosen to illustrate the bakgroundmodelling problem. In the learning stage, we have manually de�ned a trainingimage set I omposed of 5962 bakground frames (i.e. without foreground objets)along the sequene. This orresponds to pik one frame every 15 seonds in meanand represents 4.3% of the whole image set.6.3 Context Analysis by Image Sequene ClusteringThis step slightly di�ers from the one presented for stati image segmentation fortwo reasons. First, the training image set is exlusively omposed of bakgroundimages and seond, the features used to haraterize the images variations are not
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(a) (b)

() (d)

(e) (f)Figure 6.1: Six frames representative of the bakground modelling problem.



6.4 Real-Time Adaptive Figure-ground Segmentation 113the same (olor histograms in stati segmentation). Here, the �eld of view of thevideo amera is �xed. This on�guration allows a more loal analysis of the imagevariations. To this end, a straightforward approah, based on a global histogram-ing of pixel intensity as in [Georis, 2006℄ is not fully adapted. Atually, suhhistograms lak spatial information, and images with di�erent appearanes anhave similar histograms. To overome this limitation, we use an histogram-basedmethod that inorporates spatial information [Pass et al., 1997℄. This approahonsists in building a oherent olor histogram based on pixel membership to largesimilarly-olored regions. For instane, an image presenting red pixels forming asingle oherent region will have a olor oherene histogram with a peak at thelevel of red olor. An image with the same quantity of red pixels but widely sat-tered, will not have this peak. This is partiularly signi�ant for outdoor senewith hanging lighting onditions due to the sun rotation, as in Figure 6.1(a,b).Figure 6.2 gives a quik overview of the feature distribution along the sequene.In this �gure, eah X-Z slie is an histogram whih represents the perentage ofthe number of pixels (Z axis) belonging to a given olor oherent feature (Xaxis). The oherent olor feature sale has been divided into 3 intervals for thethree HSV hannels. Histograms are ordered along the Y axis whih representsthe time in the ourse of a day. Several lusters of histograms an be easilyvisually disriminated as noti�ed for luster number 1, 14 and 2. Others lustersnot represented here are intermediate ones and mainly orrespond to transitionsstates between the three main lusters. Sixteen lusters are found (see Figure 6.3for ontext lass distribution). Three major lusters an be identi�ed (number1, 2 and 14). The order of lass representation does not neessary orrespond toonseutive time instants. Cluster 1 orresponds to noon (sunny ontext), luster2 orrespond to the morning (lower ontrast) and luster 14 to the night.Then, for eah identi�ed luster, the orresponding training frames are puttogether and used to train a bakground model (i.e. odebooks). The next stepis the real-time adaptive segmentation of the video using a dynami seletion oftrained bakground models.6.4 Real-Time Adaptive Figure-ground SegmentationThis task begins similarly to the one presented for the stati segmentation task.For a new image I, a global feature vetor v(I), here a oherent olor histogramin the HSV olor spae, is extrated and lassi�ed as a ontext. We also use atemporal �ltering step to redue instability of the lustering algorithm. Indeed, inluttered senes, foreground objets an strongly interat with the environment(e.g. light re�etions, projetion of shadows) and then add a bias to the ontextanalysis. So, it is important to smooth the analysis by ponderating the urrentresult with respet to previous ones. Our temporal �ltering riterion is de�ned asfollowsLet us de�ne θ the ontext luster identi�er (the bu�ered ontext), θI theluster identi�er for the inoming image I, and µθ the square mean of luster
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Figure 6.2: 3-D histogram of the image sequene used during the experiment (see Figure 6.1 forsamples).

Figure 6.3: Pie hart of the ontext lass distribution for the image sequene used for theexperiments.



6.5 Experimental Results 115probability omputed on a temporal window. α is a ponderating oe�ient relatedto the width w of the temporal �ltering window. To deide if θI is the adequateluster for an inoming image I, we ompare it with µθ as in Algorithm 7. In thisalgorithm, two ases are investigated. If θI is equal to θ, µθ is updated based onthe ontext probability p(θI) and α. Else if θI is di�erent to θ, the urrent p(θI)is tested against µθ. The square value of p(θI) is used to raise the sensibility ofthe temporal �ltering to large variations of p(θI).Algorithm 7: Context Temporal Filtering Algorithminputs : Ioutputs: θ (the bu�ered ontext identi�er)/*initializations for the first frame only */
θ ← 0 ; /*set urrent ontext identifier to `noise'*/1
µθ ← 0 ; /*set square mean of θ probability to 0*/2
α← 0 ; /*set weight parameter to 0*/3
[θI , p(θI)]← ontextAnalysis(I) ; /*θI = ontext ident. of I*/4 if θ = θI or θ = 0 then5

θ ← θI ;6
µθ ←

α×µθ+p2(θI)
α+1 ; /*update the value of µθ*/7 if α < w then8

α← α + 1 ;9 else if p2(θI) ≥ µθ then10
θ ← θI ;11
µθ ← p2(θI) ; /*update the value of µθ*/12
α← 1 ; /*reinitialize the weight α*/13 return θ14When the ontext is identi�ed, the orresponding bakground models are se-leted and the �gure-ground segmentation of I is performed.6.5 Experimental ResultsIn this setion, we present experimental results of real-time �gure-ground segmen-tation. Sine no ground truth are available for the ar park video, we are onlyable to present qualitative results. We ompare the results obtained with di�erentsegmentation settings (with or without the ontext adaption, et.) at di�erentmoments of the day and in several di�ult situations.Boundaries of the deteted regions (in green) have been dilated for a bettervisualization. We remember that we took one frame every �ve seonds in ourexperiment. ontext ID is the identi�er of the deteted ontext and prob is theestimate probability of the identi�ed ontext.



116 Adaptive Figure-Ground Segmentation in Video Surveillane Appliations6.5.1 Model Seletion E�etIn this setion, we show some examples Figure 6.4 where the seletion of thebakground model helps to improve the segmentation. In this �gure, the leftolumn orresponds to the odebook segmentation when trained on the wholetraining image set. The right olumn orresponds to the odebook segmentationresults thank to our ontext adaptation method, i.e. with a dynami seletion ofa bakground model. We an see that our approah ahieves a better detetionrate without adding false detetion.6.5.2 Temporal Filtering E�etsIn this setion, we present some situations where the temporal �ltering algo-rithm an help to orret lassi�ation mistakes. The olumns of Figure 6.5 andFigure 6.6 orresponds to the segmentation result with the odebook algorithmbased on respetively one bakground model (left olumn), dynami seletion ofthe bakground model (middle olumn), and dynami seletion of the bakgroundplus temporal �ltering (right olumn).When a foreground objet rosses the seneThe presene of a person modify the pixel distribution of the sene and thenperturbs the ontext lassi�ation. Consequentely, a `noise' ontext (ID:0) isoften deteted as shown in Figure 6.5. The temporal �ltering algorithm smoothsthe ontext analysis by integrating the results of the previous frames, and thenhelps in keeping a orret ontext lassi�ation in suh ases. We an also see onthe seond row that the man's shadow is not deteted. In fat, ontext number 1gathers frames from sunny and shaded illumination onditions of this sene part.The orresponding bakground model has thus integrated these values during thetraining.When an unadapted ontext is detetedWhen the lighting ondition suddenly hanges due to inoming re�etions on shinysurfaes for instane, the ontext lassi�ation is biased and returns an unadaptedontext identi�er. One more, the used of the temporal �ltering is well-adaptedfor these -not so rare- situations as seen in Figure 6.6.6.5.3 Borderline and Bad ResultsIn this setion, we give some examples where the results are not the expetedones. In partiular, we try to exhibit the limits of our approah at both modelseletion level and ontext �ltering level.
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Figure 6.4: Illustration of the segmentation improvement when a dynami seletion of a bak-ground model is applied (right olumn).



118 Adaptive Figure-Ground Segmentation in Video Surveillane Appliations

Figure 6.5: Illustration of the temporal �ltering e�et on the ontext analysis (1). Columns are,from left to right: without ontext adaptation, with ontext adaptation, with �ltered ontextadaptation. Rows are frame at time t and t + 1, 87s.

Figure 6.6: Illustration of the temporal �ltering e�et on the ontext analysis (2). Columns are,from left to right: without ontext adaptation, with ontext adaptation, with �ltered ontextadaptation.



6.5 Experimental Results 119Shadow removalUnlike Figure 6.5, Figure 6.7 shows a ase where shadows are not orretly in-tegrated into the bakground model. The ontext number 10 orresponds tothe night and the only possible shadows are oming from people oming out thepedestrian entrane of the ar park. This situation has not been learnt during thetraining stage of the odebook models.
Figure 6.7: Illustration of the shadow removal problem when the bakground model is nottrained to suh situations.Noise sensitivity of poorly trained bakground modelsThe problem with intermediate ontexts (i.e. representing a short period) is theirbrittleness to noise. Their assoiated bakground model has not been trainedenough and the detetion result has a greater false positive rate then wider lus-ters. This is the ase of the ontext number 4 as in Figure 6.8.

Figure 6.8: Illustration of the noise sensitivity of a poorly trained bakground model.Limitation in the quik adaptation to omplex hangesAt the end of the night, the street lighting is swithed o�. If the appearane ofthe sene is instantly modi�ed, the video amera needs several ouple of seondsto ompletely adapt its gain to the new illumination onditions. The modellingof this event is very di�ult beause it is a suession of small hanges: shadows



120 Adaptive Figure-Ground Segmentation in Video Surveillane Appliationsvanish, olor hanges, and the ontrast dereases. At the sale of 24 hours, thisstep is shown as a noise ontext, sine it �nally involves a short period (abouthalf a minute). Figure 6.9 shows what is happening at the segmentation levelwith or without ontext adaptation and temporal �ltering. When the street lightswithes o� (seond row), many false positive pixels are deteted and the ontextanalysis returns a noise ontext. The ontext analysis beomes orret again onlythree seonds later (third row). Conerning the temporal �ltering of the ontext,the neessary time to �nd bak a orret ontext adaptation is greater (7, 5s).This is due to the time lag added by the temporal window of the �ltering.6.5.4 Comparison with Mixture of GaussianIn this setion, we ompare our approah with the MoG approah. We use animplementation of the algorithm proposed in [Stau�er and Grimson, 1999℄. Weuse the default parameter setting. A MoG bakground model is trained for eahidenti�ed luster then dynamially seleted during the real-time segmentation.Figure 6.10 shows that MoG are more sensitive to shadows than odebooks.Figure 6.11 shows the high sensitivity of Mog to global hanges (�rst row) andthe e�ets of a too large learning rate: foreground pixels from the �rst row stillremains on seond row. We also see that the same false detetion problem ourswith Mog when models are not enough trained (third row). The last row showsthe di�ulty of the model to integrate noisy pixel value indues by the high gainlevel of the video amera.Figure 6.12 shows the same frames than the ones in Figure 6.9. We an seethat the MoG model enounters the same problem than the odebook and failsto quikly adapt to the bakground variations.6.6 ConlusionIn this hapter, we have presented the validation of our adaptive segmentationapproah for video surveillane appliations. We have foused on a di�ult long-term video surveillane appliation (outdoor ar park entrane surveillane) whereboth gradual and sudden hanges our. In this appliation, a huge amount ofdata are easily available sine images an be aquired ontinuously. In a weaklysupervised learning stage, the user's task is to ollet bakground samples il-lustrating the di�erent situations. The unsupervised lustering algorithm hassuessfully identi�ed meaningful lusters of training images like sunny ontext,night ontext, or dawn ontext. For eah identi�ed image luster, a bakgroundmodel has been trained using the odebook model [Kim et al., 2005℄. This ap-proah, onsisting in generating sub-goals and training learning-based algorithmson eah sub-goal is similar to a meta-learning approah. In real-time �gure-ground segmentation, the di�erent ontexts are suessfully retrieved thanks tothe temporal �ltering algorithm. However, some problems remain in the ontextadaptation espeially when unforeseen hanges our.
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Figure 6.9: Illustration of the limitation to quik adaptation of the ontext adaptation andtemporal �ltering. Columns are, from left to right: without ontext adaptation, with ontextadaptation, with �ltered ontext adaptation. Rows are frame at time t, t+0.62s, t+ 3.12s, and
t + 7.5s.
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Figure 6.10: Comparison between the proposed approah (left olumn) with the odebookmodel [Kim et al., 2005℄ and the MoG model [Stau�er and Grimson, 1999℄ (right olumn) (1).
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Figure 6.11: Comparison between the proposed approah (left olumn) with the odebookmodel [Kim et al., 2005℄ and the MoG model [Stau�er and Grimson, 1999℄ (right olumn) (2).
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Figure 6.12: Comparison between the proposed approah (left olumn) with the odebookmodel [Kim et al., 2005℄ and the MoG model [Stau�er and Grimson, 1999℄ (right olumn) onthe sequene of Figure 6.9.



6.6 Conlusion 125In this problem, our ontext analysis uses pixel values in the HSV olor spae.The transformation of the pixel values into this olor spae is ostly and thendegrades the frame-rate in real-time segmentation. Nevertheless, the motivationin using this olor spae to disriminate image ontext is based on the fat thatillumination hanges are more visible in the HSV spae than in the RGB spae.Indeed, the saturation hannel is very sensitive to hanges indued by shadows orsun illumination.If the temporal �ltering of the ontext has the expeted smoothing e�ets whenspurious ontexts are deteted, the algorithm mainly relies on the α parametersetting. A too large value will add a time lag in the ontext adaptation whereas atoo small value will make the algorithm too sensitive to spurious ontext detetion.So, depending on the appliation needs and the frame rate, a trade-o� value mightbe set.The odebook model has shown to be well-adapted to deal with this experi-ment. Comparisons with the MoG model reveal its robustness in di�erent situa-tions as quik illuminations hanges variations or shadows removal. Nevertheless,a quantitative evaluation study remains to be done to objetively assess our ap-proah against other algorithms.
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Chapter 7
Conlusion and Perspetives
In this thesis, I address the problem of image and video segmentation with aognitive vision approah. More preisely, I study two major issues of the seg-mentation task in vision systems: seletion of an algorithm and tuning of its freeparameters, aording to the image ontent and to the appliation needs. Mostof the time, this tedious and time-onsumming task is ahieved by an expert inimage proessing using a manual trial-and-error proess. Reently, some attemptsat automating the extration of optimal parameters of segmentation have beenmade but they are still too appliation-dependent. The re-usability of suh meth-ods is still an open problem. We have hosen to handle this issue with a ognitivevision approah. Cognitive vision is a reent researh �eld whih proposes toenrih omputer vision systems with ognitive apabilities, e.g., to reason from apriori knowledge, to learn from pereptual information, or to adapt its strategyto di�erent problems.In this thesis, I propose a supervised learning-based methodology for o�-lineon�guration and on-line adaptation of the segmentation task in vision systems.The o�-line on�guration stage requires minimal knowledge to learn the optimalseletion and tuning of segmentation algorithms. In an on-line stage, the learnedsegmentation knowledge is used to perform an adaptive segmentation of imagesor videos. This ognitive vision approah to segmentation is thus a ontributionfor the researh in ognitive vision. Indeed, it enables robustness, adaptation, andre-usability faulties to be full�led.The proposed approah has been implemented and validated on two typesof real-world appliations: adaptive stati image segmentation in a biologialappliation and �gure-ground segmentation in a video surveillane appliation.The �rst part of this hapter reviews my approah and disusses its ontribu-tions and its limitations. The seond part presents perspetives to improve themethod, in partiular onerning the learning topi.



128 Conlusion and Perspetives7.1 Review of the Proposed Approah and Contribu-tions7.1.1 A Generi Optimization ProedureOur optimization proedure automatially extrats the optimal parameters ofsegmentation algorithms based on a quantitative evaluation of the segmentedimage quality w.r.t. manual segmentations. The method is independent of theappliation and of the segmentation algorithms. Only the free parameters to tunewith their range values are required. This kind of knowledge is usually providedby the algorithms' authors. The riterion used to evaluate the segmentationquality makes no assumptions on the appliation nor on the algorithm behaviors.It has been applied to assess segmentation tasks in two appliations (a biologialappliation and a video surveillane one). It has also been applied to the Berkeleypubli segmentation database [Fowlkes and Martin, 2007℄. Two free-derivativeoptimization algorithms (a diret searh method and a geneti algorithm) havebeen suessfully used to minimize the riteria. In this �eld, my ontribution isa omparative study of the two optimization algorithm performanes. Thanks tothis study, we have identi�ed two situations: when the number of parameters isup to two, the Simplex provides good results in a minimal number of iterations.When the number of parameters is greater than two, the geneti algorithm shouldbe preferred.The main di�ulty of this supervised learning approah is the manual segmen-tation of images. This task is tedious, subjetive, and time-onsumming. User-friendly annotation tools should be used to alleviate users' e�orts. The strength ofthis approah is also dependent on the intrinsi performane of the segmentationalgorithms. As a onsequene, this approah supposes that at least one algorithmis able to perform good results for the target segmentation purpose.7.1.2 A Strategy for the Algorithm SeletionAfter that several segmentation algorithms have been optimized on a trainingimage set by using the proposed generi optimization proedure, the next issueis algorithm seletion. The goal of this step is to answer to the user's question:�whih algorithm is the best adapted to segment my image?�. The �rst part of mystrategy onsists in identifying di�erent situations in the training image set. Asituation, also alled a ontext, is represented by a sub-set of images sharing thesame global harateristis, suh as olor distributions. First, an unsupervisedlustering algorithm is used to identify these ontexts. The seond part usesthe results of the previous optimization stage to perform a loal ranking of theoptimized algorithms for eah ontext aording to their performane values.This strategy allows a dynami ontrol of the segmentation task (i.e. algorithmseletion plus optimal parameter setting) without the need of expliit a prioriknowledge of the appliation domain or the segmentation algorithms themselves.It should be noted that this strategy makes several assumptions. First, it sup-



7.1 Review of the Proposed Approah and Contributions 129poses that all possible ontexts are illustrated in the training image set. Seond,this strategy argues that for eah identi�ed ontext, a mean parameter set of thebest ranked algorithm exists to deliver good segmentation results.7.1.3 A Semanti Approah to Image SegmentationMost of the time, segmentation results provided by bottom-up algorithms aresemantially meaningless. I propose a semanti approah to image segmentationwhere high level region labels help to validate region segmentation results. Theregion labelling algorithm relies on three steps and makes use of the results ofthe previous stages (parameter optimization and algorithm seletion). In a �rststep, for eah training image, the user is invited to a�et semanti labels toregions of manual segmentations aording to the appliation needs. Then, anautomati region label mathing is ahieved between the regions of the manualsegmentation and the regions of the optimized segmentation. Finally, a set oflassi�ers (SVMs) are trained for eah label based on numerial features of regions.The originality of the approah is that eah step of the learning proess, i.e.feature extration and SVM training, is optimized in a wrapper sheme so as tomaximize the lassi�ation performane of the algorithm.Currently, region features are limited to olor and texture information. Themethod ould be improved by also taking into aount spatial information, suhas the relationships between the di�erent semanti lasses of regions.7.1.4 A Software Implementation of the MethodologyA software implementing this methodology for o�-line on�guration and on-lineadaptation of the segmentation is proposed. Starting from a training image setwith the orresponding manual segmentations, the system, via a graphial userinterfae, is able to:
• extrat optimal parameters for six segmentation algorithms (four for statiimage segmentation and two for video segmentation),
• perform the image luster deomposition,
• selet the best performing algorithm for eah identi�ed ontext,
• annotate the regions with respet to prede�ned lass labels,
• train region lassi�ers,
• ontrol the segmentation of new images with respet to the learned segmen-tation knowledge,
• visualize segmentation results.More development on the implementation in C++ ode is given in appendix ??.Finally, by addressing the problem of adaptive image segmentation, we havealso addressed underlying problems, suh as feature extration and seletion, andsegmentation evaluation and mapping between low-level and high-level knowledge.Eah of these well-known hallenging problems is not easily tratable and stilldemands to be intensively onsidered. We have designed our approah (and our



130 Conlusion and Perspetivessoftware) to be modular and upgradable so as to take advantage of new progressesin these topis.7.1.5 Contributions for the Cognitive Vision PlatformMy approah has enrihed the platform by enabling learning faulties at the seg-mentation level. Previously, segmentation algorithms were manually tuned by anexpert in image proessing and the dynami seletion relied on a knowledge basewritten by hand. The same algorithms are now automatially tuned and thusallow an adaptive segmentation of di�erent images, thanks to a training stage.The gain obtained at the segmentation level bene�ts to the higher level modulesof the platform.7.1.6 Contributions for the Biologial AppliationDespite the appearane, robust segmentation of mature white �ies on rose leavesis not a trivial task. The variability of leaves olor and texture ombined withthe semi-transparent nature of the white �y wings and the presene of number ofother objets (e.g., white �y eggs, larvae, hemial treatments traes, water drop,et.) makes the segmentation not so easy. Compared to an ad ho segmentationtuned by hand, our adaptive segmentation ahieves better results and thus leadsto a better ounting preision. Moreover, the semanti segmentation drastiallyredues the number of regions by merging the subparts of objets. This teh-nique dereases the omputational ost of the system sine less regions have to beproessed at the interpretation level.At present, the platform is able to manage the detetion and the ounting ofonly one biologial objet. Other bioagressors (e.g., green�y, aphids, et.) orother stages of development of white �ies (e.g., larvae, eggs) should be treated inorder to assess both our adaptive segmentation approah and the platform to amulti-lass problem (more than two). To this end, we need to aquire new data(i.e. images with manual segmentations and region annotations) as well as highlevel knowledge (i.e. desriptions of the objets in terms of visual onepts) forthe orret desriptions of the new objets.Finally, the platform is urrently also limited by its aquisition system (a�atbed sanner). We plan to overome suh a limitation by using video ameras.Another advantage of video ameras is that they provide temporal informationwhih is of great interest to disambiguate olusion situations, for instane.7.1.7 Contributions for Video Surveillane AppliationsIn this appliation, my main ontribution is the dynami bakground model sele-tion based on ontext analysis. This approah �ts partiularly well to appliationswhere both short-term and long-term illumination hanges may our. The unsu-pervised lustering algorithm uses image global harateristis integrating spatial



7.2 Future Work 131information so as to take into aount not only global hanges but also loal ones.We have also proposed an algorithm for temporal ontext �ltering.The �rst experiments have proved that the dynami seletion of bakgroundmodels is a good approah to deal with adaptation failities. Nevertheless, it islear that our approah is still unable to manage unforeseen situations, i.e. newontexts. An extension of this approah to enable ontinuous learning faility isthus atively needed.Finally, in this appliation, we do not ompletely follow up our strategy foralgorithm seletion. It should be interesting to see how di�erent �gure-groundsegmentation approahes ould ooperate together.7.2 Future Work7.2.1 Short-Term PerspetivesInremental learning for unforeseen situationsThe brittleness of our approah to unknown situations is urrently its majordrawbak. This onerns the ontext analysis level as well as the segmentationlevel. The onerned algorithms are the DBSCAN algorithm for image-ontentlustering and the SVMs for the semanti segmentation. Currently, neither thelustering algorithm nor the SVMS are able to adapt dynamially to new trainingdata: the learning proess must be run again on the whole training data set.The use of inremental mahine learning tehniques should be useful to ful�llthe property of ontinuous learning. The main idea of inremental learning forunforeseen situations is to dynamially adapt the lustering/lassi�ation methodw.r.t. to the lassi�ation error of new input data. In our problem, unexpetedsituations an be identi�ed thanks to the estimates of the ontext probabilityand the estimates of the SVM lassi�ation probabilities. For instane, in videosurveillane, when the `noise ontext' is deteted during several frames, an alarmould raise and the onerned frames ould be onsidered as new training images.In a supervised proess, a user ould be asked to validate the new training imagesby heking whether eah frame is a bakground frame or not. In an unsupervisedproess, the validation of the new training images ould be based on a spatialanalysis of the deteted moving pixels. Usually, when a `noise ontext' is deteted,many meaningless moving pixels are deteted all over the image. The use of anadaptive lassi�ation algorithm using robust inremental lustering as proposedin [Prehn and Sommer, 2006℄ will then allow to dynamially update the lusterand reate new ones if neessary.Meta-Evaluation of Image SegmentationThe assessment funtion for the evaluation of segmentation results we have pro-posed in hapter 4 is based on two fundamental riteria (ounting of miss- andover-deteted boundary pixels). It makes the metri re-usable for a large set of



132 Conlusion and Perspetivessegmentation tasks. Nevertheless, the way of weighting eah riteria is a key-pointelement of the metri. For instane, in some appliations, it should be better togive more weight to the miss-detetion rate than to the over-detetion rate. Itshould be also more adequate to use or to ombine n di�erent base evaluators ρ,e.g., boundary-based and region-based evaluators, depending on the appliationneeds suh as: EA
I = α1ρ1 + α2ρ2 + . . . + αnρn. We believe that in general itis di�ult to speify and exat form of the �tness funtion sine this requiresde�ning exat trade-o�s to be done between the di�erent measures. To this end,metaheuristi for the weighting of funtions as the Pareto front ould be investi-gated as in [Everingham et al., 2002℄. For eah segmentation algorithm and forall training images, the parameter spae is explored and gives a �tness funtiongraph for eah base evaluator and for eah training image. The goal is then toestimate the ombination of the di�erent base evaluators whih gives globally thebest performane sores (i.e. the Pareto front). To this end, a global optimizationalgorithm, as a geneti algorithm is used to �nd the optimal on�guration. An-other possibility is to use mahine learning meta-algorithms as in [?℄. The idea isto train a learning algorithm (e.g. a deision tree) that determines how to oalesethe results from the di�erent base evaluators applied on the training image set.The main advantage is to obtain a tuned evaluation metri for the type of imagesupon whih it is trained.Loal Tuning of the Parameters of Video Segmentation AlgorithmsThe goal of video Segmentation Algorithms as mixture of Gaussian, kernel densityestimators, and odebooks is to learn the possible range values of bakgroundmodels for eah pixel. During the learning proess, some thresholds are set tode�ne the bounds of the models. Usually, the values of these sensitive parametersare the same for all the pixels. In the ase of video surveillane appliationswith a �xed video amera, the parameters should be optimized for eah pixel.For instane, the detetion thresholds for pixels in a zone where a moving objetnever passes through should be set to produe a low false detetion rate. In theontrary, the detetion thresholds for the pixels of zone(s) of interest should beset to produe sensitive models. This is exampli�ed in Figure 7.1 where z1 isthe zone where objets of interest (people) never omes and z2 where they areexpeted to be visible. The detetion thresholds for eah pixel in z1 should be setto a lower value to the ones for z2.Spatio-Temporal Video SegmentationThe major problem of pixel-based approahes for video segmentation is that nospatial ohereny is taken into aount. To overome this limitation, a solutionis to ompute in parallel a region-based image segmentation. The objetive is tore�ne the segmentation obtained with a pixel-based motion segmentation. Thistehnique is illustrated in Figure 7.2. An input image (a) is segmented using aregion-based segmentation algorithm. The result is presented in (b). In paral-
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Figure 7.1: Example of a loal tuning based on a priori knowledge of the sene. The tuning ofthe detetion thresholds for pixels in z1 should be less sensitive to variations than for z2.lel, a �gure-ground segmentation () is omputed using the odebook model forinstane. The �nal result (d) is a ombination of the two segmentations withrespet to a majority overlap riteria. In this example, the region-based segmen-

Figure 7.2: Illustration of a spatio-temporal segmentation (d) ombining the results of a bak-ground subtration algorithm () with a region-based algorithm (b).tation algorithm has been manually tuned to produe an over-segmentation.



134 Conlusion and Perspetives7.2.2 Long-Term PerspetivesUse of a Visual Conept Ontology for Semanti SegmentationCurrently, the semanti segmentation is based on numerial features desribingindependently eah region. Complex objets like a person have several meaning-ful subparts (e.g., head, legs) whih annot be desribed with the same low-levelfeatures as olor or texture. Moreover, some of these subparts an have an in�nitespae of olor variations, depending on the lothes for instane. These subparts,belonging to the same semanti objet, an yet be linked together by spatial re-lations and hierarhial deompositions. Hene, several di�erent visual oneptsshould be used to ahieve a semanti segmentation even if the objet is di�ult tomodel. To this end, we ould take advantage of the visual onept ontology pro-posed by Maillot et al. in [Maillot and Thonnat, 2008℄ by mixing, in a struturedway, a priori knowledge of di�erent onepts (e.g., olor, texture, geometri, andspatial relation features). The goal should be to assess the membership of eahsegmented region aording to trained visual onepts.Use of Shared Visual FeatureFor very di�ult ases where intra-lass information (i.e. objet appearane) isvery heterogeneous and/or inter-lass information is poorly disriminative, theseletion of representative features is triky and leads to poor performanes. Inthis ase, approahes based on shared visual features [Torralba and Murphy, 2007℄aross the lasses as boosted deision stumps should be more appropriated ande�etive. Boosted deision stumps redue the omputational and the sampleomplexity by �nding ommon features that an be shared aross the lasses.The detetors for eah lass are trained jointly, rather than independently. Thisapproah is then partiularly e�ient for multi-lass problems with few trainingexamples.Video Segmentation BenhmarkingDatabases of videos for vision systems benhmarking exist but rarely refers tothe detetion level. Most of the ground truth data onsists in bounding boxsurrounding the moving objet(s). The building of bounding box relies onmerging blobs and thus requires some a priori knowledge of the objet to de-tet. Moroever, ommon metris for segmentation performane evaluation arebased on true and false detetion rates and/or boundary pixel auray. Hene,bounding box are de�nitively not suited to evaluate detetion level results suhas region-based segmentations. The best solution onsists in drawing, for ex-ample, the silhouette of a person in eah frame of a video sequene. Obvi-ously, this task requires a huge e�ort and annot be ahieved by only one usersine videos are usually omposed of several thousand of frames. This problemhas yet been takled for stati image databases as the Berkeley Segmentation



7.2 Future Work 135Dataset and Benhmark [Fowlkes and Martin, 2007℄ (6000 hand-labeled segmen-tations of 500 Corel dataset images from 30 human subjets) and the MIT La-belMe database [Russell et al., 2005℄ (more than 41300 annotated images). Thestrengths of these databases are their open aess to the sienti� ommunity andthe tools they provide to failitate the manual segmentations and annotationsof images. We believe that suh a strategy should be extended to annotate theontent of video sequenes.
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Appendix BFrenh IntrodutionB.1 MotivationsCette thèse traite de la segmentation d'images dans les systèmes de vision. Lasegmentation d'image onsiste à grouper des pixels partageant des aratéris-tiques ommunes. Dans les systèmes de vision, la ouhe de segmentation préèdehabituellement l'analyse sémantique d'une image. Ainsi, a�n d'être utile pour lestâhes de haut-niveau, la segmentation doit être adaptée au but, 'est-à-dire êtreapable de segmenter e�aement les objets d'intérêt. Le tout premier problèmeest qu'une méthode générale et unique n'existe pas : en fontion de l'appliation,les performanes de l'algorithme varient. Cei est illustré dans la Figure B.1 oùdeux algorithmes di�érents sont appliqués sur la même image. Le premier sembleêtre visuellement plus e�ae pour séparer la oinelle de la feuille. Le seondproduit trop de régions faiblement signi�atives.
Figure B.1: Un exemple de la segmentation d'une image ave deux algorithmes di�érents. Lepremier algorithme onstruit les régions en fontion d'un ritère ouleur multi-éhelle alors quele seond utilise un ritère loal d'homogénéité ouleur.De manière générale, il existe deux approhes populaires pour on�gurer latâhe de segmentation dans un système de vision. La première approhe estde développer un nouvel algorithme de segmentation dédié à l'appliation. Uneseonde approhe est de hoisir de manière empirique un algorithme existant,par exemple dans un proessus d'essai-erreur. La première approhe onduit àdévelopper an algorithme ad ho à partir de rien et pour haque nouvelle applia-tion. La deuxième approhe ne garantie pas des résultats adaptés et la robustesse.



140 Frenh IntrodutionAinsi, un besoin existe pour le développement d'une nouvelle approhe du prob-lème de la séletion d'algorithme. Fae à di�érents algorithmes, ette approhedoit être apable de hoisir automatiquement le plus adapté à un but donné desegmentation.Lors de l'élaboration d'un algorithme de segmentation, des paramètres internes(par exemple des seuils de tolérane ouleur ou des tailles minimales de région)sont réglés ave des valeurs par défaut fournies par les auteurs de l'algorithme.En pratique, il revient souvent à l'expert en traitement d'images de superviser leréglage de es paramètres libres a�n d'obtenir des résultats ohérents. Comme ilest montré en Figure B.2, il n'est pas évident de hoisir le bon jeu de paramètresau regard des images segmentées : la première est assez bien segmentée maisde nombreuses parties de l'insete sont manquantes; la seonde est aussi assezave une bonne délimitation de l'insete bien que trop de régions insigni�antessoient présentes. Cependant, les interations omplexes entre les paramètres li-bres rendent le omportement de l'algorithme presque impossible à prédire. Deplus, ette tâhe déliate est fastidieuse et longue pour l'utilisateur. De e fait, leréglage des paramètres des algorithmes est un réel dé�. Pour résoudre e prob-lème, des méthodes d'optimisation doivent être examinées dans le but d'extraireautomatiquement les valeurs de paramètres optimales.
Figure B.2: Illustration du problème de réglage des paramètres. Une image est segmentéeave un même algorithme (basé sur un ritère d'homogénéité ouleur) réglé ave deux jeux deparamètres di�érents.Dans les appliations du monde réel, l'apparene des images hange lorsque leontexte hange. Cei est partiulièrement vrai pour les appliations vidéo où lesonditions d'élairage sont ontinuellement en train de varier. Cela peut être dûà des hangements loaux (projetions d'ombres, ré�etions) et/ou des hange-ments globaux de l'illumination due aux onditions météorologiques, omme illus-tré dans la Figure B.3 où les images sont extraites de la même sène à di�érentsmoments de la journée. Les onséquenes au niveau de la segmentation peuventêtre dramatiques. Ce problème de l'adaptation au ontexte souligne le besoind'automatismes pour l'adaptation.B.2 ObjetifsMon objetif est de proposer une approhe de la segmentation d'image dans leadre de la vision ognitive. Plus préisément, nous visons à introduire la apa-
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Figure B.3: Illustration du problème de variations du ontexte pour une appliation de vidéo-surveillaneité d'apprentissage et d'adaptation dans la tâhe de segmentation. Traditionnelle-ment, la onnaissane expliite est utilisée pour on�gurer ette tâhe dans les sys-tèmes de vision. Cette onnaissane est prinipalement omposée de programmesen traitement d'images (par exemple des algorithmes de segmentation spéialiséset des post-traitements) et de programmes sur l'utilisation des algorithmes a�nde ontr�ler la segmentation (séletion et réglage d'algorithmes). Pour e faire,trois problèmes majeurs de la tâhe de segmentation dans les systèmes de visiondoivent être résolus :
• Le premier point est d'extraire les paramètres optimaux des algorithmes desegmentation dans le but d'obtenir une segmentation adaptée à la tâhe desegmentation; 'est-à-dire une segmentation orientée par le but. Le réglagedes paramètres est onnu pour être une tâhe déliate qui requiert souventdes ompétenes en traitement d'images. Ainsi, notre objetif est triple :premièrement nous voulons automatiser ette tâhe dans le but de dimin-uer l'e�ort demandé à l'utilisateur et d'éviter des résultats trop subjetifs.Deuxièmement, la fontion de oût utilisée pour évaluer la qualité de la seg-mentation doit être générique; 'est-à-dire non dépendante de l'appliation.Troisièmement, auune onnaissane a priori sur le omportement des algo-rithmes n'est requise, uniquement des vérités terrain doivent être fourniespar l'utilisateur.
• Une fois que les algorithmes ont été optimisés, un seond point est de séle-tionner le meilleur. La stratégie de séletion doit être basée sur une éval-uation quantitative de la performane de haque algorithme. Cependant,quand les images de l'appliation sont fortement variables, il est pratique-ment impossible d'obtenir de bons résultats de segmentation ave un seulet unique algorithme. Dans e as, une stratégie de séletion dépendantedu ontenu de l'image doit être préférée.
• Dans de nombreux systèmes de vision, à l'étape de détetion, le but est deséparer les objets d'intérêt du fond de l'image. Quand les objets d'intérêtet/ou le fond de l'image sont omplexes (par exemple omposés de plusieurssous-parties), un algorithme de bas niveau ne peut pas produire une segmen-tation sémantique, même si il est optimisé. Pour ette raison, un troisième



142 Frenh Introdutionpoint est de ra�ner la segmentation (optimisée) pour fournir une segmen-tation sémantiquement signi�ative aux modules de vision de plus hautniveau.Notre objetif �nal est de montrer le potentiel de notre approhe au travers dedeux tâhes de segmentation di�érentes dans des appliations du monde réel.
• La première tâhe de segmentation à laquelle nous nous intéressons est lasegmentation d'images statiques dans une appliation biologique pour ladétetion préoe et le omptage d'insetes nuisibles. Cela implique deséparer de manière robuste les objets d'intérêt (mouhes blanhes adultes)du fond de l'image (feuilles de rose). Notre but est de démontrer que laplate-forme de vision ognitive développée dans l'équipe ouplée ave notreapprohe de segmentation adaptative permet d'obtenir un meilleur taux dedétetion des mouhes blanhes que lorsque la plate-forme est on�guréeave une segmentation ad ho.
• La deuxième tâhe de segmentation à laquelle nous nous intéressons estla segmentation d'objets en mouvement dans une appliation de vidéo-surveillane. Le but est de déteter des objets tels que des personnesmarhant dans la rue dans le hamp de vue d'une améra �xe. La détetionest habituellement e�etuée en utilisant des méthodes de soustration defond. Notre objetif est de montrer qu'une séletion dynamique du modèlede fond permet d'élargir la portée des appliations de vidéo-surveillane auxenvironnements fortement variables.B.3 Contexte de l'étudeCe travail prend plae au sein de l'équipe-projet INRIA ORION à Sophia An-tipolis. Orion est une équipe phare dans le domaine de l'analyse de sènes, à lafrontière entre la vision par ordinateur, les systèmes à base de onnaissane etl'ingénierie des onnaissanes. Orion a une approhe ognitive de la vision. Cetteapprohe vise à onevoir des systèmes de vision robuste et adaptable en lesdotant d'une faulté ognitive. Cela signi�e la apaité d'apprendre, d'adapteret de pondérer des solutions alternatives, et également de développer de nou-velles stratégies pour la détetion, la reonnaissane et l'interprétation. Réem-ment, Hudelot [Hudelot, 2005℄ a proposé une plate-forme de vision ognitive pourl'interprétation sémantique d'images statiques. Cette plate-forme est basée sur laoopération de trois systèmes à base de onnaissane dont un est dédié à la ges-tion intelligente des programmes de traitement d'images. Maillot [Maillot, 2005℄a enrihi ette plate-forme ave des faultés d'apprentissage et une représentationsémantique de la onnaissane basée sur une ontologie. Atuellement, la ouhe dedétetion de la plate-forme repose sur une segmentation ad ho. Cela signi�e quetous les opérateurs de segmentation on été on�gurés dans le ode une fois pourtoute. Dans e ontexte, mon travail vise à enrihir ette plate-forme de vision



B.4 Contributions 143ognitive au niveau de la segmentation d'image pour permettre une segmentationplus adaptative.B.4 ContributionsMa prinipale ontribution est de proposer une approhe ognitive du problèmede la segmentation en résolvant les problèmes ités i-dessous :
• Je propose une proédure d'optimisation générique a�n d'extraire automa-tiquement les paramètres optimaux des algorithmes de segmentation. Cetteproédure est basée sur trois omposantes indépendantes : un algorithme desegmentation ave un ou plusieurs paramètres libres à régler, une métriqued'évaluation de la performane et un algorithme d'optimisation globale.L'évaluation de la qualité de la segmentation est faite selon une segmen-tation de référene (par exemple une segmentation manuelle). La métriqued'évaluation est générique, a un faible oût de alul et peut être utiliséepour de nombreux problèmes de segmentation. De ette façon, la tâhede l'utilisateur est réduite à fournir des données de référene omme dessegmentation manuelles d'images d'apprentissage.
• Je propose deux stratégies pour le problème de séletion de l'algorithmede segmentation. Ces stratégies utilisent les résultats de la phased'optimisation appliquée sur un ensemble d'images d'apprentissagereprésentatif du problème. La première est basée sur le lassementdes valeurs de performane des algorithmes. La deuxième stratégie estd'identi�er les di�érents situations, appelées ontextes, à partir du jeud'apprentissage, et d'assoier un algorithme de segmentation on�guré pourhaque ontexte.
• Je propose également une approhe sémantique pour la segmentationd'images. Dans ette approhe, nous le problème du ra�nement de la seg-mentation omme un problème d'étiquetage de régions. Cette approheest par onséquent élaborée pour les algorithmes de segmentation baséssur les régions uniquement. Le but est d'évaluer l'appartenane de haquerégion à un ensemble prédé�ni de régions partageant la même étiquette.L'évaluation repose sur une étape préliminaire d'apprentissage supervisé du-rant laquelle des lassi�eurs de régions sont entraînés sur des éhantillons. Ler�le de l'utilisateur est d'étiqueter les régions des segmentations manuelles.L'originalité de ette approhe est double. Premièrement, nous utilisonsles segmentations optimisés omme données d'entrée des lassi�eurs de ré-gions. Deuxièmement, les tâhes sous-jaentes du proessus d'apprentissage,à savoir l'extration de aratéristiques des régions, la séletion de es ar-atéristiques et l'apprentissage des lassi�eurs sont automatiquement opti-misées dans un shéma de type wrapper a�n d'obtenir les meilleures perfor-manes de lassi�ation.



144 Frenh IntrodutionDans le portée des deux tâhes de segmentation préédemment dérites, mesontributions sont les suivantes :
• Pour la tâhe de segmentation dans l'appliation biologique, l'approhe pro-posée dépasse la segmentation ad ho en termes de qualité de la segmenta-tion and permet ainsi au système de ompter les insetes ave une meilleurepréision.
• Pour la tâhe de segmentation vidéo, ma prinipale ontribution se situeau niveau de la modélisation du ontexte. En aomplissant une séletiondynamique du modèle de fond basée sur l'analyse du ontexte, mon approhepermet d'élargir de hamp d'appliation des systèmes de vidéo-surveillaneaux environnements fortement variables.Chaque étape de l'approhe proposée a été testée et évaluée sur plusieurs jeude données. Cei nous aide à montre les fores et les limitations de notre approheen terme de performane, de oût de alul et de sensibilité aux paramètres lés.B.5 PlanCe manusrit est struturé omme suit. Le Chapitre 2 présente au leteur la seg-mentation d'images dans le adre des systèmes de vision par ordinateur. Nousproposons une vue d'ensemble autour de quatre thèmes reliés à notre problème: la segmentation d'image dans les systèmes de vision, les di�érentes approhesde segmentation d'images et de vidéos, les tehniques d'évaluation de la perfor-mane de la segmentation et les tehniques d'optimisation. Le hapitre 3 in-troduit l'approhe proposée et donne nos objetifs et nos hypothèses pour lesdi�érents problèmes de la segmentation. Le hapitre 4 détaille haque étape denotre approhe : l'optimisation des paramètres des algorithmes, la séletion del'algorithme et l'étiquetage sémantique des régions. Le hapitre 5 est dédié àla validation de l'approhe pour une appliation du monde réel. En partiulier,nous nous sommes intéressés à l'étape de segmentation d'un système de visionognitive dédié à la reonnaissane d'organismes biologiques. Dans le hapitre 6,nous présentons omment notre approhe peut être utilisée pour la segmentationadaptative dans des appliations de vidéo-surveillane. Une onlusion ainsi quedes disussions sur les travaux futures sont exposés dans le hapitre 7.
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