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Abstract. This paper proposes an approach for retrieving videos based
on object trajectories and subtrajectories. First, trajectories are seg-
mented into subtrajectories according to the characteristics of the move-
ment. Efficient trajectory segmentation relies on a symbolic representa-
tion and uses selected control points along the trajectory. The selected
control points with high curvature capture the trajectory various geo-
metrical and syntactic features. This symbolic representation, beyond
the initial numeric representation, does not suffer from scaling, transla-
tion or rotation. Then, in order to compare trajectories based on their
subtrajectories, several matching strategies are possible, according to the
retrieval goal from the user. Moreover, trajectories can be represented
at the numeric, symbolic or the semantic level, with the possibility to
go easily from one representation to another. This approach for indexing
and retrieval has been tested with a database containing 2500 trajecto-
ries, with promising results.

1 Introduction

Advances in computer technologies and the advent of the World Wide Web have
made an explosion of multimedia data being generated, stored, and transmitted.
For managing this amount of information, one needs developing efficient content-
based retrieval approaches that enable users to search information directly via
its content. Currently, the most common approach is to exploit low-level features
(such as colors, textures, shapes and so on). When working with videos, motion
is also an important feature. When browsing a video, people are more interested
in the actions of a car or an actor than in the background. Moving objects attract
most of users’ attention. Among the extracted features from object movement,
trajectory is more and more used. In order to use the trajectory information in
content-based video indexing and retrieval, one must have an efficient represen-
tation method allowing not only to index trajectories, but also to respond to the
various kinds of queries and retrieval needs. For retrieval aspects, the matching
strategies is also of importance.



Matching to compare between trajectories can be done globally or partially.
For global matching, the whole trajectories are compared to each other. How-
ever, objects in videos can undergo complex movements, and global matching
can prevent from retrieving a partial but important section of the trajectory. In
some cases, the user can be interested in only one part of the object trajectory.
Therefore, it is useful to segment a trajectory into several subtrajectories and
then match the subtrajectories. How to match subtrajectories and how to com-
bine all partial results into a final retrieval result is not as trivial as it seems. In
[1], the authors have segmented the object trajectory into subtrajectories with
constant acceleration. But this approach do not consider the case where the ob-
ject changes direction. In [2], after segmenting a trajectory into subtrajectories,
the authors computed the PCA coefficients for each subtrajectory. However, with
only one matching strategy, it cannot satisfy all user needs.

In the retrieval phase, queries from the user can be done at the numeric, sym-
bolic or semantic level. Many interaction levels allow the user to be more flexible
regarding his/her needs. Similarly, distances between a query and the database
can be measured according to one level or another. Another important aspect
in interactive retrieval is the relevance feedback, which allows an user to refine
the query. A good representation scheme and efficient matching strategies must
take into account all these aspects, taking care of both indexing and retrieval.

After introducing all these aspects, the main contributions of this paper are
the following: Integrate into a representation scheme numeric, symbolic and se-
mantic levels for trajectory-based video indexing and retrieval; Propose a trajec-
tory segmentation algorithm working at the symbolic level, to avoid the problem
of sensibility to noise at the numeric level, and invariant to rotation, translation
or scaling; Present different trajectory and subtrajectory matching strategies;
Go toward semantic trajectory-based video indexing and retrieval.

The rest of the paper is organized as follow. In Section 2, we are proposing
a structure for a SubTrajectory-based Video Indexing and Retrieval (STBVIR),
which includes control point selection, trajectory representation at the numeric
and the symbolic level, trajectory segmentation into subtrajectories and match-
ing strategies. In section 3 we are presenting some aspects linked to semantic.
Some experimental results are shown in section 4. Section 5 is concluding this
paper with some directions for future work.

2 SubTrajectory-Based Video Indexing and Retrieval

2.1 General description

We are proposing an architecture of STBVIR (figure 1). In this architecture,
object tracking is done by a preprocessing module (not shown here), and ob-
ject trajectories are taken as input. In the real physical world, a trajectory is
represented following 3 dimensions. Without a priori contextual information,
trajectories can be represented in 2D. Knowing the application and its context,
it can be useful to represent a trajectory in 3D or to map the 2D trajectory into



the monitored environment [3]. In this paper, we will consider only the general
case in 2D, without a priori knowledge on the application.

Fig. 1. Architecture for subtrajectory-based video indexing and retrieval

For indexing, all object trajectories are processed through four modules. The
output is a symbolic representation of the global trajectory or its subtrajectories
or only some selected control points along the trajectory. For retrieval, given a
trajectory query by the user, comparison is made with the trajectories in the
database, at the numeric or the symbolic level. Trajectories that are most similar
(given a matching strategy) with the trajectory query will be returned to users.

2.2 Control point selection

A symbolic representation can take all the individual trajectory points as input.
But doing so, computation time can be high, as well for the symbolic representa-
tion as for the trajectory matching. Selecting control points with high curvatures
along the trajectory before computing its representing can help greatly. Selected
control points can capture the trajectory’s various geometrical and syntactic fea-
tures. As one can see in section 4, the results from the two cases, using all points
or only some selected control points, are very similar, but the second case takes
much less time to compute. Moreover, selected control points and their symbolic
representation allow us to propose a segmentation method as described in the
next section.

First, we are describing the control point selection method of [4]. Given a
sequence, T = [(x1, y1), ..., (xn, yn)], n being the length of T , T can be repre-
sented by T = [p1, .., pn]. Let α(p) be the angle of a point p in T , determined by
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Fig. 2. Selecting control points along a trajectory T . (a) Control points (like p) are
shown along the trajectory T . p− and p+ are linked to the point p by satisfying the
angle constraint given by the Equation 1. (b) p1 and p2 are two selected control points
too close to each other. The one with the smaller angle α will be chosen as the best
control point [4].

two specified points p+ and p− which are selected from both sides of p along T
(figure 2.a) and satisfy

dmin ≤ |p− p+| ≤ dmax and dmin ≤ |p− p−| ≤ dmax (1)

where dmin and dmax are two thresholds. dmin is a smoothing factor used to
reduce the effect of noise from T . With p+ and p−, the angle can be computed
using

α(p) = cos−1 ||p− p+||2 + ||p− p−||2 − ||p+ − p−||2

2||p− p+||||p− p−||
(2)

If α(p) is larger than a threshold Tα, set to 150 here, the point p is selected as
a control point. In addition to equation 2, it is expected that the two control
points are far from each other, to enforce that the distance between any two
control points is larger than the threshold defined in (1). If the two candidates
are too close to each other, i.e. ||p1− p2|| ≤ dmin, the one with the smaller angle
α is chosen as the best control point (figure 2.b).

2.3 Numeric trajectory representation module

Working with raw data from the object trajectory is not always suitable because
these data are sensible to noise and are affected by rotation, translation and
scaling. In order to cope this problem, we have chosen among the existing repre-
sentation methods the one from [5], which also uses both direction and distance
information of the movement.

With a given sequence, TA = [(xa,1, ya,1), ..., (xa,n, ya,n)], n being the length
of TA, a sequence of (movement direction, movement distance ratio) pairs MA

is defined as a sequence of pairs: MA = [(θa,1, δa,1), ..., (θa,n−1, δa,n−1)]. The



movement direction is defined as:

θa,i =


arctan ya,(i+1)−ya,(i)

xa,(i+1)−xa,(i)
− π if xa,(i+1) − xa,(i) ≺ 0 and ya,(i+1) − ya,(i) ≤ 0

arctan ya,(i+1)−ya,(i)

xa,(i+1)−xa,(i)
if xa,(i+1) − xa,(i) ≥ 0

arctan ya,(i+1)−ya,(i)

xa,(i+1)−xa,(i)
+ π if xa,(i+1) − xa,(i) ≺ 0 and ya,(i+1) − ya,(i) � 0

(3)

and the movement distance ratio is defined as follows:

δa,i =

{ √
(ya,(i+1)−ya,(i))2+(xa,(i+1)−xa,(i))2

TD(TA) if TD(TA) 6= 0
0 if TD(TA) = 0

(4)

TD(TA) =
∑

1≤j≤n−1

√
(ya,(j+1) − ya,j)2 + (xa,(j+1) − xa,j)2 (5)

Raw trajectory data given to this module become a sequence of pairs of move-
ment direction and movement distance ratio. We can use directly this sequence
to compare trajectories or we can use it as an intermediate information for the
symbolic representation module.

2.4 Symbolic trajectory representation module

Using the previous numeric representation for trajectories, a proposed symbolic
representation from [5] is computed as follows:

Given εdir and εdis, the two dimensional (movement direction, distance ratio)
space is divided into 2π

εdir
∗ 1

εdis
subregions. Each subregion SBi is represented

by two (movement direction, distance ratio) pairs: (θbl,i, δbl,i) and (θur,i, δur,i),
which are the bottom left and upper right coordinates of SBi. A distinct symbol
Ai is assigned for subregion SBi of size εdir ∗ εdis. A pair of movement direction
and movement distance ratio (θa,i, δa,i) will be represented by a symbol Ai if
θbl,i ≤ θa,i ≺ θur,i and δbl,i ≤ δa,i ≺ δur,i.

2.5 Segmentation

From an original trajectory composed of n points T = [(x1, y1), ..., (xn, yn)], a
new trajectory, shorter than the original one, is obtain after control point selec-
tion: T ′ = [(x1, y1), ..., (xm, ym)] where m ≤ n. This trajectory is transformed
into a symbolic representation S = [(A1, ..., Am)] using the quantization map
shown in figure 3.a.

Let AI be the set of symbols with θ being smaller than 0 and AII be the
set of symbols with θ greater than 0. An object going down gets a symbol
belonging to AI (down to the left or to the right), and an object going up gets a
symbol belonging to AII (up to the left or to the right). Therefore, by scanning
a symbolic representation until a change in direction is detected (i.e. symbol at
time t belongs to AI and symbol at time t+1 belongs to AII , or the opposite),
we can create a new subtrajectory including all the points from the last change
in direction to this new change, and so on until the end of the trajectory.



(a) (b)

Fig. 3. (a) Quantization map used for symbolic representation with their correspond-
ing semantic expressions. (b) An example of parsing from a symbolic to a semantic
representation using this map.

2.6 Subtrajectory-based video indexing and retrieval

Let TQ = [(x1, y1), ..., (xn, yn)] be a query trajectory. Following the segmenta-
tion algorithm that we have described in section 2.5, we can segment it in N
subtrajectories TQ = {T1Q, ..., TNQ}. Let TD be a trajectory from the indexed
databases divided into M subtrajectories TD = {T1D, .., TMD}. With all these
subtrajectories, we compute their numeric and their symbolic representations.
Doing so, we can compare them using either the Edit Distance on Real Sequence
(EDR) on the numeric representation or the Edit Distance on Movement Pattern
String (EDM) on the symbolic representation [5].

For subtrajectory-based video indexing and retrieval, choosing a good and
efficient matching strategy is important to take into account the various user
needs. If the user is interested in the whole trajectory, a global matching strategy
is a valuable choice, and if he/she just makes more attention in few parts of the
trajectory, partial matching is then the privileged choice. Inspiring ourselves from
[1], we are giving here some different matching strategies: two global matching
strategies (dominant segment (GD) and full trajectory (GF) matching) and three
partial trajectory matching strategies (strict partial (SP), relative partial (RP)
and loose partial (LP) matching). In the following, dDist(TiQ, TjD) is the distance
between a subtrajectory TiQ and a subtrajectory TjD. Dist can be EDR or
EDM . Note that LiQ and LjD are the length of TiQ and TjD respectively.

– Global trajectory matching
• Dominant segment matching(GD) Only the dominant subtrajectory

is used to match with those in the database. Dominant subtrajectories
can be identified as segments with the smallest EDR or EDM distances.

dDist(TQ, TD) = min(dDist(TiQ, TjD)) (6)



• Full trajectory matching(GF): All subtrajectories in the original tra-
jectory must match those in the database as described above.

dDist(TQ, TD) =
N∑

i=1

M∑
j=1

wTiQ
wTjD

dDist(TiQ, TjD) (7)

where wTiQ
=

LiQ∑N
k=1 LkQ

and wTjD
=

LjD∑M
k=1 LkD

(8)

– Partial trajectory matching: A subset of subtrajectories is selected to
match those in the database, and matching is specified in terms of order.
Matching between two subtrajectories is computed using:

matchDist(TiQ, TjD) = true if dDist(TiQ, TjD) ≤ ThresholdDist (9)
matchDist(TiQ, TjD) = false otherwise (10)

• Strict partial matching(SP): The matched subtrajectories between
the query and the database must be strictly in the same order.

• Relative partial matching(RP): The relative order of the matched
subtrajectories between the query and the database must be the same.

• Loose partial matching(LP): No constraint is given on the order of the
matched subtrajectories. Just match a subset of subtrajectories between
the query and the database.

3 Toward a semantic trajectory-based video indexing and
retrieval

The word semantic is more and more used in the information retrieval domain
(in many different ways). The given symbolic representation and segmentation
method allow us to go toward a more semantic subtrajectory-based video in-
dexing and retrieval. Using the quantization map of figure 3.a, a sequence of
symbols representing a trajectory can be translated into a sequence of semantic
words, as shown in figure 3.b.

In order to transform a symbolic representation of a trajectory into a seman-
tic representation, some abstraction heuristics must be used. For example, if
more than 80% of the symbols of a trajectory belong to the set {’M’,’N’,’E’,’F’}
(figure 3.a) it can be said that this trajectory has the 3 characteristics {Go up,
Slow, right}. In the example of 3.b, the original trajectory is segmented into
two subtrajectories. After the symbolic representation phase for the selected
control points, the trajectory is represented by 8 symbols ’EFEEELLK’. The
first subtrajectory has 5 symbols (EFEEE) while the second one has 3 symbols
(LLK). This trajectory can be abstracted saying that first the objet Go(es) up
Slow ly on the right and then it Go(es) down Slow ly still on the right.

Using this scheme, the user can give a query at the numeric, symbolic or
semantic level. Comparison between (sub)trajectories can be done so far at the
numeric (EDR distance) or at the symbolic (EDM distance) level (figure 4.a).
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Fig. 4. (a)Three levels for trajectory representation. At the numeric level, the user
draws a query, the EDR distance and corresponding matching strategies are used.
At the symbolic level, the user gives a query using a sequence of symbols, the EDM
distance and the proposed matching strategies are used. At the semantic level, the
semantic query is first parsed into a symbolic query. Then, the EDM distance and the
symbolic matching strategies are used. (b) A given semantic query is parsed into a
symbolic representation following two different parsing methods.

To process a semantic query, one must first parse it into a symbolic represen-
tation. But more than one symbol can correspond to a sole semantic word. For
this reason, two methods are possible for parsing the semantic query. The first
one is to choose a representative symbol from a semantic characteristic of the
movement, using an Ap match comparison like in [5]. Ai Ap match Aj if and
only if Ai = Aj or Ai is neighboor of Aj . The second method is to generate
all possible symbolic sequences and then, combine or choose between all the
matching results (following some pre-defined strategies). In figure 4.b, given the
semantic query ”Give me a video containing an object that Go(es) up Slow ly
on the right in 5 time units”, then the two corresponding symbolic sequences,
according to both parsing methods, are shown.

This preliminary discussion about semantic aspect in subtrajectory-based
video indexing and retrieval is still on-going work, but we can foreseen some
promising results in achieving semantic indexing and retrieval.

4 Experiments and results

In order to analyze our system performances, we have used the free trajectory
database 4 containing 2500 trajectories coming from 50 categories.

Recall and precision curves are widely used to evaluate performance of infor-
mation retrieval system. In our tests, we have set n/20 and n/15 for dmin and
dmax respectively where n being the length of T. We have chosen εdir = π/4 and
εdis = 0.125 for the symbolic representation. Figure 5.a shows the results of our
system with all individual of trajectory or some selected control points using the

4 http://mmplab.eed.yzu.edu.tw/trajectory/trajectory.rar



EDR distance for numeric representation and the EDM distance for symbolic
representation. One can realizes that results using selected control points with
the EDR distance are comparable with those using all points from the trajectory.
The EDR distance in both cases gives better results than the EDM distance.

(a) (b)

Fig. 5. (a) Recall/precision curve for the EDR and EDM distance with all points from
the trajectory and only the selected control points. The curve with green stars and
the one with yellow triangles present retrieval results using the EDR distance with all
points from trajectories and only selected control points respectively. The curve with
violet circles and the one with blue rectangles present retrieval results using the EDM
distance with all points from trajectories and only selected control points respectively
(b) Recall/precision curve for the EDR distance with different matching strategies.
The curve with triangles presents retrieval results using the EDR distance with the
Full trajectory (GF) matching strategy while the curve with circles presents retrieval
results using the EDR distance with the Dominant segment (GD) matching strategy

Figure 5.b shows the results of our system with different global matching
strategies, GF and GD with the EDR distance. With this database, the results
with the GF matching strategy are better than with the GD matching strategies.
However, in the case where the user is interested in only one part of trajectory,
the GD matching strategy is an efficient choice. Figure 6.a shows the results for
the three partial matching strategies, SP, RP and LP, using a threshold of 60
and the EDR distance.

Query acquisition and result display is an important but difficult task in
trajectory-based video indexing and retrieval. We have implemented a retrieval
interface, as shown in figure 6.b. The trajectory query drawn on the left and the
first sixteen result images on the right are shown sorted with their EDR distance
with the trajectory query. It is possible to draw the corresponding trajectories
from a numeric or a symbolic representation.

5 Conclusions and future work

In this paper, a subtrajectory-based video indexing and retrieval system has been
proposed. Our system has some notable characteristics. Firstly, it allows the users
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Fig. 6. (a) Results for the SP, RP, LP matching strategies. The curve with green
triangles presents the retrieval results using the EDR distance with the SP strategy,
the curve with violet circles presents retrieval results using the EDR distance with the
RP matching strategy and the curve with blue rectangles presents retrieval results using
the EDR distance with the LP matching strategy (b) System interface for retrieval,
the trajectory query being on the left and the first sixteen result images on the right
shown according to their EDR distance with the trajectory query.

to search desirable trajectory or only part of a trajectory (according to many
matching strategies). It effects both EMD and EDR distance that count similar
subsequences and assign penalties to the gaps in between these subsequences.
Thus, unlike Longest Common SubSequence (LCSS)[5], it does consider gaps
within sequences. Secondly, it offers a fast searching (because the trajectories
or their subtrajectories are compared by matching only their selected control
points), and it allows an efficient segmentation method based on a symbolic
representation that is invariant to rotation, scaling and translation. Finally, all
these advantages allows us to go toward semantic trajectory-based video indexing
and retrieval system, although further work is needed to fully achieve it.
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