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ABSTRACT

We are interested in designing a reusable and robust ac-
tivity monitoring platform. In this paper we propose three
good properties that an activity monitoring platform should
have to enable its reusability for different applications and
to insure performance quality: 1) modularity and flexibility
of the architecture, 2) separation between the algorithms
and the a priori knowledge they use, and 3) automatic eval-
uation of algorithm results. We then propose a develop-
ment methodology to fulfill the last two properties. The
methodology consists in the interaction between end-users
and developers during the whole development of a specific
monitoring system for a new application. To validate our
approach, first we present a platform that we use to gen-
erate activity monitoring systems dedicated to specific ap-
plications. Then we explain how we have managed to give
concrete expression to these properties in the platform. Fi-
nally we describe in details the technical validation and the
end-user assessment of an automatic metro monitoring sys-
tem built with the platform. We give the corresponding
validation results for two other systems built with the same
platform: a bank agency monitoring system and a building
lock chamber access control system.
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1 INTRODUCTION

The task of developing algorithms able to recognize hu-
man activities in video sequences has been an active field
of research for the last ten years. Nevertheless, the lack of
genericity and robustness of the proposed solutions is still
an open problem. To break down this challenging prob-
lem into smaller and easier ones, a possible approach is to
limit the field of application to specific activities in well-
delimited environments. So the scientific community has led
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researches on automatic traffic surveillance on highways, on
pedestrian and vehicle interaction analysis in parking lots
or roundabouts [1], or on human activity monitoring in out-
door (like streets and public places) or indoor (like metro
stations, bank agencies, houses) environments [2, 3, 4].

We believe that to obtain a reusable and performant
activity monitoring platform, a unique global and sophis-
ticated algorithm is not adapted because it cannot handle
the large diversity of real world applications. However such
a platform can be achieved if many algorithms can be easily
combined and integrated to handle such diversity. There-
fore we propose to use software engineering and knowledge
engineering techniques to meet these major requirements.

To illustrate what we mean when we speak of “an ac-
tivity monitoring platform”, we first describe the platform
we have developed during the last ten years, called VSIP —
Video Surveillance Intelligent Platform. VSIP is a toolbox
helping a developer to build Activity Monitoring Systems
(AMS) dedicated to specific applications.

Then we address three general properties of an activ-
ity monitoring platform to insure performance quality and
platform reusability. Our goals are (1) to have a platform
which allows the building of new activity monitoring sys-
tems dedicated to different applications and (2) to insure
the quality of the results given by any system built with
the platform. While defining and describing each property,
we show how they are fulfilled in VSIP.

The first property is modularity and flexibility of
the architecture. This is a classical software engineer-
ing property. To use a platform for deriving new systems
for specific applications, it is often necessary to add new
algorithms, to remove existing ones or to replace some of
them with others which have the same functionality but
are able to cope with more challenging situations. For ex-
ample, when addressing for the first time an application
where the light can be switched on and off, it is necessary
to develop an algorithm able to handle instantaneous illu-
mination changes. This algorithm has then to be integrated
to the platform in order to be used, without requiring ad-
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Fig. 1.  This figure shows siz Activity Monitoring Systems (AMS) derived from VSIP to handle different applications.
Image 1(a) illustrates a metro monitoring application system running on black and white cameras of the YZER station in
Brussels. Image 1(b) illustrates the same system but analyzing images from a color surveillance camera of the SAGRADA
FAMILIA station in Barcelona. Image 1(c) illustrates a system for unruly behaviors detection inside trains. Images 1(d)
and 1(e), taken with 2 synchronized cameras with overlapping field of view working in a cooperative way, illustrate a bank
agency monitoring system detecting an abnormal “bank attack” scenario. Image 1(f) illustrates a single-camera system for
a lock chamber access control application for building entrances. Images 1(g) and 1(h) illustrate an application for aprons
monitoring on airports; this application combines a total of 8 surveillance cameras with overlapped fields of view. Finally,
image 1(i) illustrates an highway traffic monitoring application.



ditional development, by any AMS derived from the plat-
form. To allow this kind of “plugging-unplugging” feature,
the platform has to be developed keeping in mind a well-
defined modular architecture, based for example upon clear
interfaces between modules (in order to insure information
sharing and exchanging between all the system modules).
At the same time, modules have to be flexible in order to be
reused in different situations. A natural way to obtain flex-
ibility is to outsource parameters (to allow automatic pa-
rameter tuning from the highest level). In our platform we
have decided to use the same interface type between mod-
ules and the same data organization from the lowest level
to the higher one, as detailed in section 4. Moreover, the
data manager we have developed provides the system with
feedback channels going from high-level modules towards
low-level modules to allow closed-loop configurations, even
if these channels are not used by all systems.

A second property is the separation between the al-
gorithms and the a priori knowledge they use. Using
a priori knowledge is not new but keeping it separate from
algorithms enables reusability. Complex systems perform-
ing activity monitoring use a huge amount of knowledge
of different types. Knowledge is often application depen-
dent and, for the same application, camera dependent, so
it should never be embedded into the algorithms. In our
case, we have decided to use 3D descriptions of the ob-
served empty scenes as well as predefined scenarios as a
priori knowledge available to the system. The 3D descrip-
tions change when the observed scenes change and their
separation from the algorithms enables to adapt the sys-
tem to different video cameras. The predefined scenarios
change when the application changes, but thanks to this
separation we can reuse the same algorithm for a different
system without modifying it.

A third property is automatic evaluation, whose goal
is to enable to evaluate the results of the different AMS
built with the platform. This property is important after
the integration of a new algorithm or the modification of
an existing one. When addressing a new application, it is
normal to face with new problems which require to handle
new situations and to use more a priori knowledge (or to re-
fine the already existing knowledge). The development and
the integration into the platform of such new algorithms
is made possible by the modularity and the flexibility of
the architecture (first property). Thus, the difficulty is to
insure that the new algorithm keeps the quality of results
previously obtained by the AMS dedicated to other appli-
cations. A solution can be the development of an automatic
evaluation framework based on ground truth data, which is
able to evaluate the performances of a set of AMS on a wide
set of predefined sequences. Thanks to that, it is possible
to evaluate the impact of a new algorithm on the platform,
insuring that it globally increases the quality of the results.
Moreover, a framework of this type enables to apply statis-
tical learning methods for parameters tuning, useful to find
the best parameter set for a given application.

Finally, a development methodology to fulfill the last
two properties consists in the interaction between end-
users and developers (the end users are for example
metro security or bank agency operators). This interaction
is useful because end-users provide the a priori knowledge
(the predefined scenario models) used by the system (sec-
ond property) and the scenario-level ground-truth used to
perform the automatic evaluation (third property). There
are also three other important reasons for developers to in-
teract with end-users. The first reason is that end-users,
helped by system developers, can find out which are the
interesting activities to monitor and how to describe them
precisely. The importance of this approach is to avoid to
have a system which does not meet user needs. The second
reason is the necessity to often ask professional actors to
act a set of scenes showing either normal activities and the
activities to monitor. These video sequences are necessary
during the development of the system to tune and to test
algorithms. Actors are needed because there are often too
few recorded sequences showing abnormal activities. Only
end users can explain to actors: 1) how to act in a realistic
way, 2) which are the activities to monitor and 3) how to
describe them precisely. The third reason is that end-users
can perform, at the end of the development, an assessment
of the system, measuring its efficiency and evaluating its
utility.

In our case, we have been working closely with end-users
of different application domains. For example, we have built
with VSIP three AMS which have been validated by end-
users: an activity monitoring system in metro stations, a
bank agency monitoring system and a lock chamber access
control system for buildings security. These applications
present some characteristics which make them interesting
for research purposes: the observed scenes vary from large
open spaces (like metro halls) to small and closed spaces
(corridors and lock chambers); cameras can have both non
overlapping (like in metro stations and lock chambers sys-
tems) and overlapping fields of view (metro stations and
bank agencies); humans can interact with the equipment
(like ticket vending machines or access control barriers,
bank safes and lock chambers doors) either in simple ways
(open/close) or in more complex ones (as the interaction
occurring during vandalism against equipment or jumping
over the barrier scenarios). All these AMS have been val-
idated and an end-user assessment has been done or it is
scheduled for the beginning of 2005.

We are currently building with VSIP three other appli-
cations. All these applications are illustrated on figure 1. A
first application is apron monitoring on an airport ! where
vehicles of various types are evolving in a cluttered scene.
The dedicated system has been able to successfully detect
at the same time vehicles and people getting in and out
on several videos lasting twenty minutes. A second applica-
tion consists in detecting abnormal behaviors inside moving

n the framework of AVITRACK European Project, see [5]
and [6]



trains. The dedicated system is able to handle situations in
which people are partially occluded by the train equipment
like seats. A third application is traffic monitoring on high-
way; the dedicated system has been built in few weeks to
show the adaptability of the platform. These systems are
currently under development and validation and end-user
assessment will be done in the near future.

The next section presents a state of the art of activ-
ity monitoring research done during the last ten years. We
then give an overview of the global architecture of VSIP
in section 3. Section 4 presents how we addressed the first
property, the modularity and the flexibility of the architec-
ture. Section 5 describes how we have managed to obtain a
separation between the algorithms and the a priori knowl-
edge. In section 6 we address the third property, the au-
tomatic evaluation of the results. Section 7 addresses the
platform development methodology based on the interac-
tion with end-users. Then we present in section 8 the vali-
dation and the end-user assessment of a system built with
the VSIP platform and applied to metro stations. In sec-
tion 9 we give the validation results for two other systems,
applied to bank agencies and building entrances. Finally in
section 10 we give some concluding remarks and we present
ongoing works.

2 STATE OF THE ART

Video Understanding is now a mature scientific domain
which has started in the eighties. Early research on video
understanding concentrated on vehicle tracking, because ve-
hicle shapes are relatively easy to model and to detect in
videos. These works included the monitoring of vehicles in
roundabouts for traffic control (ESPRIT VIEWS — [7]).
3D vehicle modeling [8] was later extended to include mod-
els that can be distorted and which are parameterizable and
to include appearance modeling to improve robustness.

The last decade has witnessed a more practical and user-
centered development of Vision and Cognitive Vision re-
search. The main achievement has been the development of
Activity Monitoring, usually focusing on the low level video
processing aspect and on people tracking. People tracking
is more difficult than vehicle tracking because the human
body is non-rigid and people motions have more degrees of
freedom and are less predictable than vehicle motions. At
present real time tracking of people is mainly achieved using
appearance-based models. For example, Haritaogou et al.
[9] use shape analysis and tracking to locate people and their
parts (head, hands, feet, torso) in image sequences. Oliver
et al. [10] use Bayesian analysis to identify human interac-
tions using trajectories obtained from a monocular camera.
Other examples include the Leeds People Tracker [11]. The
Leeds People Tracker was combined with the Reading Ve-
hicle Tracker to produce a single 3D integrated tracker for
pedestrians and vehicles in the same scene. The VSAM
(Visual Surveillance and Monitoring) project (1997-2000)
[12, 13] involved twelve research laboratories in the imple-

mentation of systems to segment and track people and ve-
hicles in image sequences, locate them in a 3D model of the
scene environment using prior camera calibration and visu-
alize them in a plan view dynamic scene. More recently, the
VACE Program (Video Analysis and Contents Exploitation
[14]) and the Homeland Security ARPA program [15] orga-
nize research in USA on video understanding. For VACE
the goal is to recognize events of interest from any type of
video sources.

In general, video understanding systems rely on care-
ful camera positioning and a dense camera network. The
multi-camera tracking of Mubarak Shah et al. [16] uses
multiple views to rebuild the trajectory of people between
non overlapping cameras, linking the different fields of view
being observed. Routes followed by pedestrians through
the scene are learnt by observing a large number of motion
trajectories and allow to construct a geometric and proba-
bilistic trajectory model for long-term prediction.

Scene modeling is used to increase the reliability of
tracking and behavior interpretation. For example, peo-
ple in the field of view are likely to be on the ground plane,
and moving vehicles are likely to be on a road rather than
on the pavement.

A new trend in video understanding systems is to use
evaluation and program supervision techniques to improve
robustness. The creation of PETS [17] enforces the idea
that we need evaluation techniques to assess the reliabil-
ity of existing tracking algorithms. But these workshops
are mostly intended to test various algorithms on the same
video inputs. Algorithms comparison is mostly qualitative
and quantitative comparison based on precise criteria is
missing. Nevertheless, we can mention an interesting theo-
retical work on performance evaluation which can be found
in [18]. It first discusses the importance of testing algo-
rithms on real video sequences, for instance to test out-
door sequences with various weather conditions. Second, it
presents pros and cons of ground-truth techniques and their
alternatives. However the repair and tuning stage of these
video understanding systems is manually realized. Only few
works [19] try to optimize the performance of these systems.

Moreover, few of these systems are able to perform
complex reasoning (i.e. spatio-temporal reasoning) and
to understand all the interactions between people in real
world applications. In the Video Understanding domain,
two main approaches are used to recognize temporal events
from video either based on a probabilistic/neural network
or based on a symbolic network. For the computer vision
community, a natural approach consists in using a proba-
bilistic/neural network. The nodes of this network corre-
spond usually to events that are recognized at a given in-
stant with a computed probability. For example, Hongeng
et al. [20] proposed an event recognition method that uses
concurrent Bayesian threads to estimate the likelihood of
potential events. For the artificial intelligence community,
a natural way to recognize an event is to use a symbolic
network whose nodes correspond usually to the symbolic



recognition of events. For example, some artificial intelli-
gence researchers used a declarative representation of events
defined as a set of spatio-temporal and logical constraints.
Some of them used a traditional constraints resolution or
temporal constraints propagation [21] techniques to recog-
nize events.

In spite of all these achievements, no Activity Monitor-
ing Systems can be said to be robust or generic enough to
be used in a real world application. An adapted design,
development and evaluation methodology is still needed to
achieve a generic intelligent video understanding platform.

This paper proposes four good properties that an activ-
ity monitoring platform should have to enable its reusability
for different applications. As a concrete expression of these
properties, we present a complete platform including hu-
man and vehicle detection and tracking, scene modeling,
spatio-temporal reasoning capabilities. To underline the
reusability of the platform allowed by these four proper-
ties, we present validation and end-users assessment results
for three systems built with the platform.

3 PLATFORM OVERVIEW

To demonstrate the feasibility of our approach and to
illustrate with concrete examples the application of the pro-
posed properties, we present an activity monitoring plat-
form, named VSIP, whose global structure is shown in fig-
ure 2. We use this platform to build activity monitoring
systems for specific applications.

The input images are color or black and white, digi-
tized with a variable frame rate (typically between 4 and
25 frames/sec).

The segmentation algorithm detects the moving regions
by subtracting the current image from the reference image
(a background image built with images taken under differ-
ent lighting conditions). These moving regions, associated
with a set of 2D features like density or position, are called
BLOBS. A noise tracking algorithm allows to discriminate
blobs between real moving regions and regions of persistent
change in the image (like a new poster on the wall or a news-
paper on the table). Following the type of the application, a
door detection algorithm, which allows to handle the open-
ing/closing of doors which have been specified in the 3D
description of the scene, can be activated. This algorithm
removes the moving pixels corresponding to a door being
opened or closed. A set of 3D features like 3D position,
width and height, are computed for each blob. Then the
blobs are classified into several predefined classes (like for
example PERSON, GROUP, NOISE, CAR, TRUCK, AIR-
CRAFT, UNKNOWN...) by the classification algorithm.

The blobs with their associated class and a set of 3D fea-
tures are called MOBILE OBJECTS. A split and merge
algorithm corrects some detection errors like a person sepa-
rated into two different mobile objects. A 3D repositioning
algorithm corrects the 3D position of the mobile objects
classified as PERSON that have been located at a wrong

place (such as outside the boundary of the observed scene
or behind a wall). This happens when the bottom part of
the person is not correctly detected (for example, the legs
can be occluded by an object or badly segmented). If use-
ful for the application, a chair management algorithm can
be activated, which helps differentiating a mobile object
corresponding to a chair from a mobile object correspond-
ing to a person. A background updating algorithm uses the
discrimination between real mobile objects and regions of
persistent change in the image (discrimination done by the
noise tracking algorithm) to update the reference image by
integrating the environment changes [22].

The set of the previously described algorithms is gener-
ally called “motion detection module”. The output of this
module is, for each frame, the list of the mobile objects
(with their 3D features and their class).

The motion detection module is followed by the frame
to frame tracking module. The goal of this module is to
link from frame to frame all mobile objects computed by
the motion detection module. The output of the frame to
frame tracking module is a graph containing the detected
mobile objects updated over time and a set of links between
blobs detected at time ¢ and blobs at time ¢ — 1. A mobile
object with temporal links towards mobile objects of the
previous frame is called a TRACKED MOBILE OB-
JECT. This graph provides all the possible trajectories of a
mobile object and it constitutes the input for the following
long term tracking module.

The lists of mobile objects coming from different cam-
eras with overlapped fields of view are then fused together
by a fusion algorithm to give a unique representation of the
mobile objects. The algorithm uses combination matrices
(combining several compatibility criteria) to establish the
good association between the different views of a same mo-
bile object observed by different cameras. A mobile object
detected by a camera may be fused with one or more mobile
objects seen by other cameras, or can be simply kept alone
or destroyed if classified as noise. After fusion, the resulting
FUSED TRACKED MOBILE OBJECTS combine all
the temporal links of mobile objects which have been fused
together. The 3D features of the resulting fused objects are
the weighted mean of the 3D features of the original mobile
objects. Weights are computed in function of the distances
of the original mobile objects from the corresponding cam-
era. In this way the resulting 3D features are more accurate
than the original.

Depending on the scenarios to recognize, one or more
long term trackers can be used. All of them rely on the
same idea: they first compute a set of paths representing
the possible trajectories of the PHYSICAL OBJECTS
to track (isolated individuals, groups of people, crowd, cars,
trucks, airplanes...). Then they track the physical objects
with a predefined delay T to compare the evolution of the
different paths. The trackers choose, at each frame, the best
path to update the physical object characteristics [23].

The fused physical objects are then processed by the
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Fig. 2. This figure shows the global structure of the activity monitoring platform. First, a motion detection step followed by
a frame to frame tracking is made for each camera. Then the tracked mobile objects (objects from camera i) coming from
different cameras with overlapping fields of view are fused into a unique representation for the whole scene. Depending on the
chosen application, a combination of one or more of the available trackers (individuals, groups and crowd tracker) is used. The
results are passed to the behavior recognition algorithms, which combine one or more of the following algorithms, depending
on the scenarios to recognize: automaton based, Bayesian-network based, AND/OR tree based and temporal constraints based
recognition algorithm. Finally the system gemerates the alerts corresponding to the predefined recognized scenarios.

behavior recognition algorithms to recognize the predefined
scenarios. Depending on the type of scenarios to recognize,
different behavior recognition algorithms (based on automa-
tons, Bayesian networks, AND/OR trees and temporal con-
straints) can be used. These algorithms use the concepts of
“state”, “event” and “scenario”. A state is a spatio-temporal
property valid at a given instant or stable on a time interval.
An event is a change of state. A scenario is any combina-
tion of states and events. The scenarios corresponding to
a sequence of events are represented as automaton where
events correspond to a transition (a change of state) within
the automaton. When the correct chain of events occurs,
the scenario is said to be recognized. For scenarios dealing
with uncertainty, Bayesian networks can be used. For sce-
narios with a large variety of visual invariants (for example
fighting), AND/OR trees can be used [24]. Visual invari-
ants are visual features which characterize a given scenario
independently of the scene and of a used algorithms. For
example, for a fighting scenario, some visual invariants are
an erratic trajectory of the group of fighters, or one person
lying down on the ground or important relative dynamics
inside the group as shown in figure 3.

For scenarios with multiple physical objects involved in
complex temporal relationships, we use a recognition al-
gorithm based on a constraint network whose nodes cor-
respond to sub-scenarios and whose edges correspond to
temporal constraints. Temporal constraints are propagated
inside the network to avoid an exponential combination of
the recognized sub-scenarios. The scenarios are modeled
in terms of “physical objects” (people or static scene ob-
jects or zones of interest etc.), “components” (which can
be primitive-states, composite-states, primitive-events or
composite-events) and “constraints” between the physical

objects and/or the components (constraints can be tempo-
ral, spatial or logical). For each frame, scenarios are recog-
nized incrementally, starting from the simplest ones (for ex-
ample, “an individual is close_to”) up to the more complex.
The temporal constraints are checked at each frame. This
algorithm uses a declarative language to specify scenarios
(see the figure 4 for an example and [21]). An ontology for
video events ([25]) has been developed in the framework of
ARDA workshop on video event.

The whole processing chain can be processed for two
cameras in real time on one of-the-shell PC.

composite—event(vandalism_against_ticket_machine_one_man,
physical—objects((p: Person), (eql: Ticket_Vending_Machine),
(z1: Ticket_Vending_Machine_Zone) )
primitive—event Enters_zone(p, z1))
primitive—event Move _close_to(p, eql))
composite—event Stays at(p, eql))
primitive—event Goes_away_from(p, eql))
(c5: primitive—event Move_close _to(p, eql))
(c6: composite—event Stays at(p, eql))
constraints( (cl; c2; c3; c4; ¢5; ¢6) ) ) // Sequence

components( (cl:
(c2:
(c3:
(c4:

Fig. 4. This is the description of a vandalism scenario us-
ing our declarative language. It describes the degradation of
a piece of equipment by an individual: first the person moves
close to the equipment. He/she stays close to the equipment
then he/she moves away from the equipment to avoid being
seen. He/she then goes back close to the equipment, etc.
The terms corresponding to the video event ontology are in
bold.
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This figure shows 8 examples of visual invariants used to recognize a fighting scenario: (a) an erratic trajectory

(shown in green on the image) of the group of fighters; (b) one of the fighters laying on the ground; (c) and (d) important
relative dynamics inside the group (measured as distance variation over time of the people composing the group.)

4 MODULARITY AND FLEXIBILITY OF THE
ARCHITECTURE

In software engineering a classical property for a plat-
form is its modularity and flexibility. We agree that this
property has to be considered during the whole develop-
ment of an automatic interpretation platform in order to
ensure the reusability of the algorithms.

For a platform, modularity is the property of being
composed by sub-units (modules) each of them achieving
a particular and well-defined task. Modularity enables to
create systems that can be adapted to various applications
(metro surveillance, bank agency surveillance, people count-
ing, ...) in various environments (different metro stations
for example). Indeed systems can be composed combining
carefully the modules corresponding to the particular re-
quirements of the applications. Nevertheless, a problem is
still open: the management of the data exchanges between
modules. Our solution to this issue is based on the notion
of shared data manager. A shared data manager is a data
structure where modules read and write input/output data.
As we have seen, a module represents a platform functional-
ity: in our case, for example, video acquisition functionality,
segmentation functionality or frame to frame tracking. In-
put/Output are all the data exchanged between modules.
For example, the acquisition module does not take any in-
put data and outputs an image. The shared data manager
can be thought as a module which performs “data man-
agement and distribution” task, following the modularity
philosophy. The shared data manager manages the way
data are exchanged between modules. A module is only
connected to the shared data manager. To put some data
in the shared data manager, the module calls the appro-
priate method of the shared data manager. The module
is not aware of how and when data will be used. Sepa-
rating data management from module functionality allows,
for instance, an application to be distributed on different
machines changing only shared data manager implemen-

tation. This organization enables to provide an homoge-
neous vision of the platform. Thus, building an application
is a systematic process that consists in creating a shared
data manager and selecting one or several modules to con-
nect with it. If an additional development is needed (for
example, because addressing for the first time an outdoor
application), it is limited to the new encountered problem
(for instance, “illumination changes due to weather condi-
tions”) without affecting the other modules of the platform.
Thanks to the shared data manager, we have the possibil-
ity to reuse the same algorithms with different architectures
(for example distributed or multi-threaded architectures or
code embedded into cameras). To develop an Activity Mon-
itoring System on a distributed architecture a shared data
manager has to be created on each computer. The role of
the data managers is to automatically maintain and update
the shared data. The distribution has no other effects on
the platform. Moreover, data types which are handled by
the platform have precise and clear definitions; a piece of
information is unique and has the same meaning over the
whole platform. For example, a BLOB is a connected set
of pixels detected by the segmentation (they can be mov-
ing or stationary) with an associated set of 2D descriptors
like size, position and density. A MOBILE OBJECT is de-
fined as a set of blobs “merged together” because it globally
corresponds to the perception of a physical object on the
image. It is characterized by a class (like PERSON or AIR-
PLANE) and by a set of 3D features (position and size). A
TRACKED MOBILE OBJECT is a mobile object with (po-
tentially) one or more temporal links to mobile object(s) of
the previous frame.

We call flexibility the property of having a set of tun-
able parameters. This property implies the possibility to
configure algorithms and to define different scenarios with-
out changing source code. To fulfill this property, we have
decided to make all the internal parameters of every module
tunable. To do that, parameter values are defined in sepa-
rate files outside the code (i.e. outsourcing of parameters)



using a description formalism as proposed in [26]. These
files are handled by the shared data manager as regular in-
put/output data. These parameters can be changed during
processing enabling parameters optimization as explained
in section 6.

Thanks to the shared data manager and the outsourcing
of parameters we achieved to have a platform architecture
which fulfills modularity and flexibility properties.

5 SEPARATION BETWEEN ALGORITHMS
AND A PRIORI KNOWLEDGE

This section focuses on the second property, separation
between algorithm and a priori knowledge. VSIP platform
uses a large number of a priori knowledge for two main rea-
sons. First, it is often useful to design specific routines using
additional a priori knowledge for correcting imprecise and
uncertain data. For instance, we correct 3D wrong posi-
tions due to partial occlusion in a cluttered environment by
adding a correcting step which uses the information com-
ing from the 3D scene description (position and dimensions
of context objects which can occlude people and the type
of occlusion they can cause). Thanks to this approach, we
manage to recognize the jumping over the validation barrier
scenario which needs to compute precisely the 3D position
of people behind the barrier. Second, by providing an algo-
rithm with knowledge it is possible to reduce the processing
time. For example, on a sidewalk where only pedestrian can
be observed, we will not try to classify mobile objects as ve-
hicles.

The a priori knowledge is composed of two different
types of information: image acquisition knowledge and
a priori models. The first one is composed by the follow-
ing information:

e Camera calibration parameters are used to com-
pute the real position in the 3D scene of the 2D ob-
jects detected on the image.

e Hardware information contains the features of
each equipment (frame rate of the camera, network
configuration, data compression rate, ...).

e Reference images are a set of predefined images
representing the appearance (night or day) of the
empty scene (scene without mobile objects).

Models are of 2 types:

e 3D scene model contains the 3D geometry of the
scene observed by the camera and the objects present
in the scene. These physical objects are of two types:
contextual objects found in the empty scene (trash
cans, benches, stamping machines, zone of interest...)
and mobile objects which can evolve in the scene (per-
sons, group of people, airplane, train...). A semantic
information is associated to each object, like “occlud-
ing” for an object which can occlude people and “on

top” or “on bottom” to specify the type of the occlu-
sion, or “in/out” for a zone corresponding to an entry
or an exit.

e Scenario models library. This information is in-
dependent of the camera. It consists in a set of prede-
fined scenarios to recognize. These scenarios are de-
scribed using a special declarative user-oriented lan-
guage (see section 7).

If the use of a priori knowledge enables to better and
more efficiently solve the interpretation problems, only the
separation between knowledge and algorithms enables al-
gorithms to be independent of the application and to be
reusable in other situations. All a priori knowledge in VSIP
is stored in specific configuration files independently of the
code. For example, all cameras observing the same scene are
processed by computers having the same 3D scene model.
Also, applying an AMS to a new scene requires only to
change the 3D scene model. We have also proposed an
adapted formalism to describe each type of knowledge. For
example, the scenario models are described using a special
declarative user-oriented language, as shown in section 7.

Because of this knowledge organization we have man-
aged to separate a priori knowledge from the algorithms.

6 AUTOMATIC EVALUATION

When facing new applications, it is often necessary to
add to the platform new algorithms able to handle situa-
tions encountered for the first time. For example, for bank
agency monitoring application [27] we have developed a
chair management module, which has been integrated to
VSIP and is currently used by an AMS for indoor applica-
tions dealing with chairs.

Our experience in building AMS has shown that usually
to handle real world diversity a reusable platform should
contain a combination of simple algorithms dedicated to
each type of situations rather than containing a very so-
phisticated algorithm handling all situations. Robustness
in activity monitoring is then achieved when many algo-
rithms can be easily combined in the same platform.

Once validated on a specific application, these new al-
gorithms have to be integrated to the platform. To preserve
the reusability of the platform and its robustness with re-
spect to the whole set of applications, two problems arise:

e it is necessary to insure that the new algorithms do
not lower the quality of the results obtained by other
AMS built with the platform. In other words, it is
important to be able to measure the impact of new al-
gorithms on the quality of the results obtained by all
AMS on a predefined set of sequences representative
of the applications;

e we have to be able to find the good set of parameters
which guarantees, for each new application, the best
quality of results. Sometimes it happens that after
the introduction of a new algorithm, the initial set



of parameters does not give satisfactory results any-
more. Thus we have to be able to recompute them
for each application (one set for each application) in
an automatic way.

To find a solution for both problems we have developed
an evaluation framework. This framework is based upon:

e a set of ground-truth sequences for each given appli-
cation. With the term “ground-truth” we describe a
set of sequences for which a human operator has given
the “best results” (truth) that a system would have
given if it had worked perfectly. Ground-truth can be
specified at each different step of the platform: mo-
tion detection, frame to frame tracking, fusion, long
term tracking and scenario recognition. For exam-
ple, at motion detection level ground-truth means to
draw for each image a bounding box surrounding each
mobile object evolving in the scene, labeling it with
its type. At tracking levels, it means to correctly
track by hand the mobile objects even when the mo-
bile object is partially or totally occluded. Finally, at
scenario level it means to recognize by inspection the
scenarios depicted by the image sequences.

e a clear definition of the high-level data types used by
the platform as an interface between modules (details
in section 4), and an XML format for each of these
data types allowing their manipulation even outside
VSIP. For example, figure 5 shows the XML format
used to represent the annotation data types which is
generated when a scenario is recognized.

<annotation_activity id = "31" priority = "2"
class = "alarm"
sub_class = "jumping_over_barrier">
<list_video_frames best_camera_area = "HALLO1"
best_camera_id = "C11">
<video_frame id = "42535" camera_area = "HALLO1"
camera_id = "C11">

</video_frame>
</list_video_frames>

<time start_time_hour = "2" start_time_min = "21"
start_time_sec = "46" start_time_ms = "799">
</time>
<list_activity_physical_objects>
<physical_object id = "104" role = "source">
</physical_object>
<physical_object id = "16" role = "stat_reference">

</physical_object>
</list_activity_physical_objects>
</annotation_activity>

Fig. 5. XML annotation of a video: the recognized sce-
nario is “yumping over the barrier”. It implies two physical
objects, one person (ID 104) and one validation barrier (1D
16). The scenario is best viewed on camera C11

When a new algorithm is added to the platform, the set
of ground-truth sequences are run automatically by each
AMS. The evaluation results are compared with those ob-
tained before the integration of the new algorithm. In case

of lower quality results, a first possibility is to recompute the
set of parameters separately for each AMS. The framework
allows to apply a statistical learning technique for param-
eter tuning. For all ground-truth sequences, the algorithm
is run with a modified set of parameters. If the results
improve, the parameters are validated, if not they are mod-
ified using an algorithm that explores heuristically the N-
dimensional space of parameters (N being the number of
parameters).

If the improved set of parameters still gives worse results
than the one used before the introduction of the new algo-
rithm, then this algorithm is said to be not generic enough
to be used for all applications. The next step is to un-
derstand precisely why the new algorithm fails and under
which hypotheses it can be used.

For example, the repositioning algorithms (developed
for the bank agency monitoring system) was designed to
correct the position of individuals when they are wrongly
detected behind a wall (in situations where legs are not
detected). The algorithm gives incorrect results in train
surveillance system because it wrongly correct the position
of people who are behind walls containing a window (see fig-
ure 6). Thus two algorithms have to be developed to handle
scenes containing both walls with or without windows.

Fig. 6. This image shows a person (on the right) who is
seen through a window in the wall. In this case the repo-
sitioning algorithm has to take into account the particular
situation and to avoid repositioning the person inside the
train when it is outside.

Today this choice of algorithm is made manually for
VSIP when building an AMS. We are currently working on
extending the evaluation framework to determine automat-
ically in which situations an algorithm can be used.

7 INTERACTION BETWEEN THE END-USERS
AND THE DEVELOPERS

As we have seen in section 1, the interaction between the
end-users and the developers is a development methodology
useful to fulfill the separation between the platform and the



a priori knowledge (as described in section 5) and to perform
automatic evaluation of the results (as described in section
6).

Moreover, system design is often driven by technical
limitations rather than user requirements. The proposed
approach consists in integrating not only user needs but
also user knowledge in the development process in order
to address real life problems. This integration has three
main interests. The first one is to provide a system well
adapted to end-users needs. The second one is to provide a
framework to assess the usefulness of the system on video
sequences representing real life situations. The last interest
is the possibility to improve efficiency and robustness of the
system by using user knowledge. For example, detecting a
pick pocket theft is impossible but with the help of users,
we found some typical precursor events (e.g. blocking a
passenger in an exit zone) which are easier to recognize.
Collaboration with users is an incremental process during
which different types of knowledge are taken into account.
The collaboration is composed of three phases.

In the first phase end-users motivations are collected to
define goals and their priorities. In the case of metro sta-
tions, three goals were specified by the users: traffic free
flow, passenger and employee security and equipment pro-
tection. Based on these goals and on the importance given
to each situation (frequency, gravity in terms of physical
loss and costs), several scenarios are chosen. In Barcelona
(Spain) metro, for example, one of the major issues is fraud.
The Barcelona metro stations are not equipped with effi-
cient devices to control platform access: there are only sim-
ple barriers easy to stride. Thus, metro managers decided
that it would be interesting that the video surveillance sys-
tem automatically detects people jumping over the barriers.
In Brussels (Belgium) metro, fraud is not relevant because
there is no validation barrier. However, access blocking is
a real problem for different reasons pointed out by metro
managers. The first one is the degradation of the traffic
free flow. The second one concerns accidents that may oc-
cur when one or several individuals are blocking the escala-
tors. In this case, people may pack and fall. The last one is
less obvious and concerns pick pocket activities. Actually,
while a few individuals are blocking a passenger in an exit,
an accomplice can take advantage of the situation to rob
the passenger.

In a second phase, users which have a visual or ground
experience (video surveillance operators, security agents for
example) specify precisely the course of each scenario: how
the individuals present in the scene behave before, during
and after the event. Users may also provide visual invariants
which are characteristic of each behavior wherever it occurs
as shown in figure 3. Based on the detailed description of
the course of each scenario and on visual invariants, a set of
video sequences representing abnormal and closely related
but normal situations are recorded with the help of actors
if necessary. Using an XML language, each video is then
annotated by end-users with the scenarios they represent.

10

A video annotation describes three pieces of informa-
tion as shown in figure 5 (pag. 9): on which camera/frame
we can see the scenario (tagged “video frame”), when the
scenario occurs (tagged “time”) and who is involved in the
scenario (tagged “physical object”). As the formalism is the
same for both information (end-user description of scenarios
models and VSIP output) we are able first to make sure that
recognized scenarios match user descriptions and second to
automatically evaluate system efficiency by comparing user
annotations and system results.

The third phase corresponds to scenario modeling and
recognition. It is a sensitive step because scenario models
must be understood on the same way by the users and the
system. Actually, users may want to easily modify or extend
scenarios. The usual approach is to hard code each scenario
in the system. For example, given that in any application we
are interested in recognizing a limited number of scenarios,
it is often easier for developers to hard code the scenario
recognition routines (automaton, AND/OR trees ...)
stead of developing a more reusable and complex algorithm
able to generate automatically the routines corresponding
to a textual description of a scenario. But this approach
is not satisfactory because it heavily limits the reusability
of the developed routines and prevents non-developers users
from being able to modify or extend by themselves the set of
scenarios that can be recognized by the AMS. Our proposed
approach introduces a new scenario representation language
based on a video event ontology ([25]). An ontology is the
set of all the concepts and the relations between concepts
shared by the community in a given domain. The ontology
first facilitates the communication between the domain ex-
perts (end-users) and the developers. The ontology makes
the video understanding systems user centered and enables
the end-users to fully understand the terms used to describe
scenarios models without being concerned by the low level
processing of the system. Moreover, the ontology is useful
to evaluate the AMS and to understand exactly what type
of events a particular system can recognize. This ontol-
ogy is also useful for developers of AMS to share and reuse
scenario models dedicated to the recognition of a specific
event.

in-

This video event ontology has been built in the frame-
work of ARDA workshops. It insures that the terms are
shared by several laboratories specialized in video anal-
ysis. Events are decomposed in different abstract levels
and in a hierarchical structure with the aim to make the
model generic and applicable to a wide range of applica-
tions. There are two main types of concepts to be repre-
sented: physical objects of the observed scene and video
events occurring in the scene. A physical object can be a
contextual object (e.g. a desk, a door) or a mobile object
detected by a vision routine (e.g. a person, a car). A video
event can be a primitive state, a composite state, a primi-
tive event or a composite event. Primitive states are atoms
to build other concepts of the knowledge base of an AMS.
A composed concept (i.e. a composite state or a composite



event) is represented by a combination of its sub-concepts
(called components) and an optional set of events that can-
not occur during the recognition of this concept.

The language based on this ontology enables to describe
in an intuitive and declarative way all the knowledge nec-
essary to recognize scenarios (see figure 4 on page 6).

Furthermore, to improve the incremental development
process, we develop a visualization tool that generates
3D animations and video sequences from scenario models.
These sequences are useful both for users and for develop-
ers. Users can visually check that the scenario model cor-
responds to the scenarios they want to specify. Developers
have a tool to generate test sequences for debugging their
code. The use of the video event ontology, of an adapted
language for scenario modeling and of the visualization tool
has made this collaboration efficient by keeping the knowl-
edge coherent and accessible to all participants (end-users
and developers).

8 END-USER ASSESSMENT AND VALIDATION
FOR METRO STATIONS MONITORING AP-
PLICATION

Using the VSIP platform we have built several AMS for
different applications, as described in section 1 and illus-
trated in figure 1: a bank agency surveillance application,
a metro activity monitoring system, a lock chambers access
control application and so on. In this section we present the
results of the end-user assessment and the technical valida-
tion of the metro activity monitoring system installed in
Sagrada Familia station of the Barcelona metro at the end
of the European ADVISOR project (march 2003). In sec-
tion 9 we present the corresponding validation results for
two other applications (bank agency monitoring and lock
chambers access control) for which the end-users assessment
is scheduled for the beginning of 2005.

The AMS built for metro monitoring was the Activity
Monitoring kernel of the final demonstrator of the ADVI-
SOR project. Besides the AMS, the demonstrator includes:

e a capture system, which digitizes the images coming
from live cameras and plays back recorded sequences;

e a crowd monitoring system, delivering additional in-
formation about crowd (like direction of crowd mo-
tion flow);

e an archive system, which records the input video se-
quences together with annotations describing the rec-
ognized scenario, if any. A second functionality of the
archive is the possibility to act like a playback sys-
tem allowing the easy search and retrieval of specified
sequences and/or recognized scenarios.

e a Human-Computer Interface allowing the operators
to visualize the results, to control system parameters,
and to access the archive system.

The demonstrator has been presented to security opera-
tors from STIB (Brussels, Belgium) and TMB Barcelona,
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Spain), two metro companies, followed by a tutorial explain-
ing how to use it.

The end-user assessment and the technical validation
were conducted using both live and recorded data. Four
closed circuit cameras at Sagrada Familia were connected
to the AMS system, providing live data from the metro
station. In addition, four prerecorded sequences were also
fed into the system. These sequences are composed by:

e scenes played by actors containing the various hu-
man behaviors to recognize. These sequences were in-
tended to demonstrate the capability of the system to
recognize predefined scenarios, such as fighting, that
were unlikely to occur in live during the evaluation
and the validation.

e normal scenes coming from recording made by secu-
rity operators and showing normal behaviors. These
sequences were intended to demonstrate the robust-
ness of the system with respect to false alerts (i.e.
alerts generated even if no predefined scenario is hap-
pening in the video).

8.1 END-USER ASSESSMENT

The end-user assessment consists for end-users (video
surveillance operators) to establish how useful the system is.
During the end-user assessment, the end-users were asked
to use the system, as part as of their regular surveillance
task, for a few hours a day during a week and evaluate its
performance and usefulness. The results were documented
by the completion of a comprehensive questionnaire, that
pointed out the following remarks.

The operators found that the AMS worked correctly and
recognized with enough precision the predefined scenarios
(fighting, blocking, overcrowding, jumping over the barrier
and vandalism against equipment).

The scenarios corresponded to the following situations:

e blocking occurs when a group of at least 2 people is
stopped in a predefined zone for at least 4 seconds
and can potentially block the path of other people;

e fighting occurs when a group of people (at least 2
persons) are pushing, kicking or grasping each other
for at least 2 seconds;

e overcrowding occurs when the density of the people
in an image is greater than a specified threshold;

e jumping over the barrier occurs when a person jumps
over a specified ticket validation barrier;

e vandalism against equipment occurs when an individ-
ual is damaging a piece of equipment in the image.

False alerts happened rarely and were not a problem
because the operators had the time to acknowledge or to
reject the generated alert. Operators pointed out that some
efforts should be made on the system ergonomics, like easing
the acknowledgment of an alert or automating the replay
on the screen of the videos corresponding to a recognized



scenario. They concluded stating that the AMS system was
a real help to the surveillance task and that should be used
by metro companies to ease the security operator work.

8.2 TECHNICAL VALIDATION

The technical validation consists for technical people to
determine whether the system recognizes the specified sce-
narios. A technical validation of the AMS system was per-
formed at Sagrada Familia metro station. For the valida-
tion task, the system was tested using four input channels in
parallel, the four channels being composed of three recorded
sequences and one live input stream. The validation of the
scenario recognition involved playing the sequences through
the system and reporting the resulting alerts generated by
the AMS. The sequences used for validation were annotated
with ground-truth corresponding to the type and the occur-
rence time of the scenarios. The results obtained when the
sequence was played through the system were then com-
pared with the ground-truth. If the system generated the
correct scenario recognition then an estimate of the accu-
racy of the recognition was obtained. This was achieved
by measuring the overlapping length between the observed
scenario (ground-truth) and the occurrence of the scenario
recognized by the AMS. So, for example, if the AMS re-
ported a sequence as showing fighting for 45 seconds, when
the ground-truth shows that 60 seconds of fighting occurred,
then a score of 75 % was awarded. The score also included
true negative periods of the sequence, i.e. if nothing hap-
pens and no alerts are generated, then the sequence is con-
sidered as correctly recognized. A delay of 5 seconds be-
tween the beginning of the scenario and the ground-truth is
permitted in the measurement as this is the necessary delay
for the scenario recognition algorithm to start the recogni-
tion of the scenarios.

The live channel was validated visually by the evaluators
and was used mainly to check the rate of false alarms.

The results of the validation are presented and analyzed
in sections 8.2.1 and 8.2.2.

8.2.1 Ground-truth of the validation data

The sequences used in the validation of the AMS are
composed of 29 different subsequences containing behaviors
played by actors (corresponding to fighting, blocking, over-
crowding, jumping over the barrier and vandalism against
equipment scenarios) and 3 long subsequences showing peo-
ple with no behavior of interest. The 32 subsequences were
duplicated several times at different places into the video
test sequences, giving a total of 81 occurrences of scenarios
supposed to be recognized by the AMS and 22 occurrences
of “normal” activities (supposed to generate no alerts).

We define as “ground-truth” the set of three information:
the type, the starting time and the duration of the scenarios
recognized by a competent authority (technical people dif-
ferent from end-users and system developers). The ground-
truth data is created by visual inspection. That is, the
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competent authority examines the sequences and decides
which behaviors have occured. This process is subjective: a
scenario classified as overcrowding by an operator A could
be considered as “normal” by a different operator B. This
fact has no major consequences, because even in the case
of end-users (that means people who have to use the sys-
tem and judge its utility) the definition could change from
a person to another one.

8.2.2 Scenario recognition validation results

Overall, the system was validated for over four hours
using three recorded videos and one live camera, giving a
total of more than 16 hours of validation. Table 1 details
the results of the validation process.

The results of the validation for the fighting scenario
show a success rate of 95 % and the reports were found to
be 61 % accurate in the timing and duration of the alert
report. Note that the accuracy is subject to the human
interpretation of when fighting begins, which is not always
clear. For example two people might begin fighting by push-
ing each other, so it is unclear if fighting has begun at that
point or when they actually start coming to blows.

The blocking scenario was detected giving detection rate
of 78 % with an average accuracy of 60 %. One false blocking
report was generated during the validation, when there was
only one person standing by the exit barriers. At least
two people are required to be blocking a predefined area to
constitute a blocking event.

The vandalism against equipment scenario contains an
actor repeatedly going to a piece of equipment and attempt-
ing to break it open. As people approach he moves away
from the equipment and returns to it later. The system rec-
ognizes this as one long act of vandalism rather than several
individual acts and, therefore, has been scored as such. The
main problem of this scenario was not to loose the tracks
of the people when they cross other people during the sce-
nario. This scenario gives a success rate of 100 % with an
accuracy of 71 %

The jumping over the barrier scenario gives a success
rate of 88 %. The main difficulty of this scenario was to han-
dle occultation and the ability to correctly compute the po-
sition of people relative to the validation machine (in front
of/behind).

The overcrowding scenario shows a success rate of 100 %,
with an overall accuracy of 80 %. The ground-truthing of
an overcrowding alert is also somewhat subjective since it
is not exactly obvious at which point the scene becomes
overcrowded.

The AMS was provided with a live feed from the Sagra-
da Familia station. The camera was situated in the main
hall and overlooked the escalator from one of the platforms.
Therefore, during busy periods, a large number of people
disembark from the train, go up by the escalator and en-
ter the field of view of the camera. The relatively high
density of people caused the AMS system to trigger an



“EREC | WAMRALRE | mecocwzn | % OREESRENY | accumacy | NPNPRLRE
fighting 21 20 95 % 61 % 0
blocking 9 7 78 % 60 % 1

vandalism 100 % 71 % 0
Jumping o.t.b. 42 37 88 % 100 % 0

overcrowding 7 7 100 % 80 % 0

TOTAL 81 73 90 % 85 % 1

Table 1. This table shows the results of the technical validation of the AMS. For each scenario, we report in particular the
percentage of recognized instances of this scenario (fourth column) and the accuracy in time of the recognition (that means
what percentage of the duration of the shown behavior is “covered” by the generation of the corresponding alert by the system.
This value is an average over all the scenario instances) (fifth column,).

overcrowding alert. This is demonstrated by the fact that
many such alerts were triggered on the busy friday after-
noon, whereas only two were generated on the much quieter
saturday morning. Thus, the high number of overcrowding
alerts suggests that it would be interesting to synchronize
the overcrowding scenario detection with the train arrival,
to avoid the generation of an alert if the crowd is only disem-
barking from the train. Therefore, the overcrowding alerts
have been scored as being correct because they were gen-
erated by a relatively high density of people emerging from
the escalator after getting off a train. No other behaviors —
except the blocking false alert detailed previously — were
observed during the validation on this live channel.

Both validation and assessment scored the monitoring
system as satisfactory. The next step is to test its perfor-
mances and usability on larger camera networks and during
longer periods of time.

9 SOME OTHER VALIDATION RESULTS

9.1 BANK AGENCY MONITORING SYSTEM

As for the previous application, many discussions with
domain experts have been needed in order to define scenar-
ios, corresponding to interesting human behaviors, which
have to be recognized in bank agencies. A bank scenario
can be modeled in two parts: the attack precursor part (i.e.
the robber approach) and the attack part.

Today, classical bank agencies gradually evolve towards
agencies with one or several counters without money, ATM
(Automatic Teller Machine), safe room and offices for com-
mercial employees. The safe room is then the more signif-
icant zone inside the bank agency since all the available
money is stored inside. As a consequence, all irregular
behaviors or bank protocol infringement (involving either
robbers or maintenance and cleaning employees) must be
detected nearby the safe entrance. The protocol can be
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different for each bank. For instance, one of these rules is
that only one person can enter the safe room at a time. In
this case, the system must raise an alert when more than
one person is inside the safe room. For bank experts, this
part of the scenario (people number inside the safe) must
be recognized with a very high confidence.

Moreover, it is interesting to recognize a robber ap-
proaching the safe entrance. Modeling all bank attack pre-
cursors is a difficult task due to their large number and
variety. We list here some examples:

e employee attack: frequent, often stealthy, rapid and
hardly observable even for human beings. The bank
employee is threatened but it is generally difficult to
see the difference with a classical customer request.

e safe attack: they are not frequent. Bank employees
and customers are threatened. People are shocked
and things can take a bad turn.

e aggressive attack: bank employees and customers are
threatened. The robber has lost his/her self control,
money is not the main motivation and the robbery
usually leads to a drama.

This scenario part is optional for bank attack detection
but important in order to anticipate potential actions and
prevent any drama. Therefore, we have modeled a large
set of scenarios to take into account the variety of bank
robberies.

The behavior recognition assessment has been realized
in live condition inside a bank agency during one hour, to-
gether with end-users. The assessment was based on the
following scenarios:

e scenarios with 2 persons: the bank employee is be-
hind the counter. The robber enters the bank agency,
goes to the counter and threatens the employee. Both
people go to the safe and the safe gate is opened.



NUMBER OF

SCENARIO INSTANCES TRUE POSITIVE FALSE NEGATIVE FALSE POSITIVE
with 8 persons 16 93.75 % 6.25 % 0%
with 2 persons 10 100 % 0% 0%

Table 2. Validation results for a live installation of the bank agency monitoring system.

e scenarios with 3 persons: the bank employee is behind
the counter. A customer enters the bank agency, goes
to the counter and stays in front of it. After, the rob-
ber enters the bank, joins the customer and threatens
the employee and the customer. The employee and
the robber go to the safe and the safe gate is opened.
The customer stays behind the counter or leaves the
agency.

A true positive corresponds to an alert raise when a real
bank attack happens (simulated by actors), a false negative
is the miss of an alert raise when a real bank attack hap-
pens and a false positive is an alert raised when no real
bank attack happens. The bank_attack scenario with 3 per-
sons was played 16 times. We obtained 93.75 % of true
positive, 6.25 % of false negative and 0 % of false positive.
The scenario with 2 persons was played more than 10 times
and we obtained 100 % of true positive. These results are
summarized on table 2.

The main reason why we obtained good true positive
percentage is first that scenarios were precisely modeled
thanks to the interaction with domain experts through an
incremental process. The second reason of this success is
the cooperation of two cameras to monitor the agency en-
abling to obtain better results due to the redundancy of
information.

A second end-user assessment and validation phase will
be held on a different bank agency with other scenarios at
the beginning of 2005.

9.2 LOCK CHAMBER ACCESS MONITORING SYSTEM

Buildings with lock chambers at entrances are often
faced to the problem of controlling how many people enter
or exit the building. Sometimes these chambers are acti-
vated with a personal pass which allows the passage of the
owner only. Nothing (but a human operator or a CCTV
camera) can prevent the owner of a pass to let a second
person to enter at the same time. Another motivation of
this application is to be able to know exactly the number
of people inside the building in case of fire alarms.

We built with the VSIP platform a lock chamber access
monitoring system which is able to count the number of
people passing through a general lock chamber defined as
a closed space. The AMS can monitor the trajectories of
people (where they come from and where they go); this
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feature is particularly useful in case of lock chambers with
several access points.

This application uses automaton-based scenario recog-
nition algorithms to monitor the trajectories of people and
to count them. The limited field of view of cameras (for ex-
ample, see figure 1(f)) and the high number of people that
can be present at the same time in the field of view make
this application challenging.

We have validated the lock chamber access AMS in two
different cases: for the first one, a camera monitors a small
lock chamber with two transparent doors at the opposite
sides. For the second one, a camera monitors a larger lock
chamber with 6 entrances on the four different sides, five of
the entrance points are provided with doors.

For each sequence showing one or several persons pass-
ing from one entrance to another, we classify the result in
four different classes:

e good detection: the entrance and the exit points of
each person passing through the lock chamber have
been correctly detected for all persons;

e bad detection: entrance or exit points (or both) when
one or more persons are incorrectly detected, or the
number of persons detected is wrong;

e misdetection: someone is passing through the lock
chamber but the system does not detected the person;

e false alarm: a person is detected as passing from an
entrance to an exit when there is nobody in the field
of view of the camera.

Table 3 summarizes the validation results obtained by
our AMS in both cases. Percentage are computed using the
following formulas:

_ FA
" GD+BD+WD

where FAP stands for “false alarm percentage” and FA, GD,
BD and WD are the total number of false alarms, good
detections, bad detections and misdetections over all the
instances. Analog formula are used for good detection, bad
detection and wrong detection percentages. The sequence
used for the validation are all-day-life sequence, showing
normal passage of people in small and large lock chambers
as it happens during normal work activities (lock chambers
are located in a company).

We are currently extending the validation of this appli-
cation using a larger set of sequences and a live end-user

FAP



assessment of this AMS is scheduled for the beginning of
2005.

10 CONCLUSION

Our goal is to obtain a reusable and performant ac-
tivity monitoring platform (called VSIP). To achieve this
goal, we believe that a unique global and sophisticated al-
gorithm is not adapted because it cannot handle the large
diversity of real world applications. However such a plat-
form can be achieved if it can easily combine and integrate
many algorithms. Therefore we have presented three prop-
erties that an activity monitoring platform should have to
enable its reusability for different applications and to insure
performance quality. We have defined these properties as
follows: modularity and flexibility, separation between al-
gorithm code and a priori knowledge, and automatic eval-
uation. We have then proposed a development methodol-
ogy to fulfill the last two properties and which consists in
the interaction between end-users and developers during the
whole development of a new activity monitoring system for
a specific application.

We have then explained how we managed to develop
VSIP following the given properties. We have shown how a
shared data manager, the outsourcing of parameters and the
use of clear definitions of data structure enable to achieve
modularity and flexibility. We have explained how the
knowledge organization through description files and a lan-
guage dedicated to the description of scenarios permit to
obtain a clear separation between algorithms and a priori
knowledge provided to the platform. We have shown that
automatic evaluation allows developers to insure that new
algorithms fulfill their specifications and keep platform per-
formance over a set of selected applications. The evaluation
framework allows also to apply learning techniques to tune
the parameters of an AMS dedicated to a specific appli-
cation. We have underlined that the interaction between
end-users and developers was possible thanks to the defi-
nition of a video events ontology, an adapted language for
scenario modeling and a tool to visualize the specified sce-
nario models.

To illustrate the feasibility of our approach, we have
presented VSIP, an activity monitoring platform fulfilling
the three properties. This platform has been used to build
activity monitoring systems dedicated to different applica-
tions taking advantage of a deep interaction with end-users.
We have described three systems which have been validated
and three other systems currently under development and
whose validation will be completed in the near future.

The activity monitoring platform still presents some
limitations, the most important being the difficulty, when
adding a new algorithm to the platform, to understand
which are the algorithm weaknesses and how to fix them. So
we are currently developing tools to extend the evaluation
framework. The goal is to help developers to analyze au-
tomatically algorithm shortcomings in order to understand
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precisely under which hypothesis they can be used.
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