Primitive Recursion for Higher-Order
Abstract Syntax

Carsten Schiirmann ®! Joélle Despeyroux ? Frank Pfenning ®!

2 Yale University, New Haven, CT 06520-8285, USA, carsten@cs.yale.edu
PINRIA, 06902 Sophia-Antipolis Cedex, France, joelle.despeyrouz@sophia.inria.fr
¢Carnegie Mellon University, Pittsburgh, PA 15213, USA, fp@cs.cmu.edu

Abstract

Higher-order abstract syntax is a central representation technique in logical frame-
works which maps variables of the object language into variables of the meta-
language. It leads to concise encodings, but is incompatible with functions defined
by primitive recursion or proofs by induction.

In this paper we propose an extension of the simply-typed lambda-calculus with
iteration and case constructs which preserves the adequacy of higher-order abstract
syntax encodings. The well-known paradoxes are avoided through the use of a modal
operator which obeys the laws of S4. In the resulting calculus many functions over
higher-order representations can be expressed elegantly. Our central technical result,
namely that our calculus is conservative over the simply-typed lambda-calculus, is
proved by a rather complex argument using logical relations.

We view our system as an important first step towards allowing the methodology
of LF to be employed effectively in systems based on induction principles such as
ALF, Coq, or Nuprl, leading to a synthesis of currently incompatible paradigms.

Key words: typed lambda calculus, higher order abstract syntax, primitive
recursion, modal logic

1 Introduction

Higher-order abstract syntax is a central representation technique in many log-
ical frameworks, that is, meta-languages designed for the formalization of de-
ductive systems. The basic idea is to represent variables of the object language

! This work was sponsored NSF Grant CCR-9303383.

Preprint submitted to Elsevier Preprint 25 August 2000

by variables of the meta-language. Consequently, object language constructs
which bind variables must be represented by meta-language constructs which
bind the corresponding variables.

This deceptively simple idea, which goes back to Church [Chu40] and Martin-
Lot’s system of arities [NPS90], has far-reaching consequences for the method-
ology of logical frameworks. On the one hand, encodings of logical systems us-
ing this idea are often extremely concise and elegant, since common concepts
and operations such as variable binding, variable renaming, capture-avoiding
substitution, or parametric and hypothetical judgments are directly supported
by the framework and do not need to be encoded separately in each applica-
tion. On the other hand, higher-order representations are no longer inductive
in the usual sense, which means that standard techniques for reasoning by
induction do not apply.

Various attempts have been made to preserve the advantages of higher-order
abstract syntax in a setting with strong induction principles [DH94,DFH95],
but none of these is entirely satisfactory from a practical or theoretical point
of view.

In this paper we take a first step towards reconciling higher-order abstract
syntax with induction by proposing a system of primitive recursive functionals
that permits iteration over subjects of functional type. In order to avoid the
well-known paradoxes which arise in this setting (see Section 3), we decompose
the primitive recursive function space A = B into a modal operator and a
parametric function space (0A) — B. The inspiration comes from linear logic
which arises from a similar decomposition of the intuitionistic function space
A D B into a modal operator and a linear function space (14) — B.

The resulting system allows, for example, iteration over the structure of ex-
pressions from the untyped A-calculus when represented using higher-order
abstract syntax. It is general enough to permit iteration over objects of any
simple type, constructed over any simply typed signature and thereby en-
compasses Godel’s system T [G6d90]. Moreover, it is conservative over the
simply-typed A-calculus which means that the compositional adequacy of en-
codings in higher-order abstract syntax is preserved. We view our calculus as
an important first step towards a system which allows the methodology of
logical frameworks such as LF [HHP93]| to be incorporated into systems such
as Coq [PM93] or ALF [Mag95].

The remainder of this paper is organized as follows: Section 2 reviews the idea
of higher order abstract syntax and introduces the simply typed A-calculus
(A7) which we extend to a modal A-calculus in Section 3. Section 4 then
presents the iteration and Section 5 definition by cases. In Section 6 we start
with the technical discussion and introduce some auxiliary concepts and derive

some basic results. Section 7 shows the proof of the canonical form theorem
which is essential for the proof of type preservation (Section 8) and our central
result, namely that our system is conservative over A~ (Section 9). Finally,
Section 10 assesses the results, compares some related work, and outlines fu-
ture work.

2 Higher-Order Abstract Syntax

Higher-order abstract syntax exploits the full expressive power of a typed A-
calculus for the representation of an object language, where A-abstraction pro-
vides the mechanism to represent binding. In this paper, we restrict ourselves
to a simply-typed meta-language, although we recognize that an extension
allowing dependent types and polymorphism is important future work (see
Section 10). Our formulation of the simply-typed meta-language is standard.

Pure types: B :=a | B; — B

Objects: M ==z |c|Ax:B.M | My M,
\\
b))

Contexts: w=-|¥,z:B

Signatures: m=-|X,a:type| X,c: B

We use a for type constants, ¢ for object constants and z for variables. We
assume that constants and variables are declared at most once in a signature
and context, respectively. As usual, we apply tacit renaming of bound variables
to maintain this assumption, and to guarantee capture-avoiding substitution.
The typing judgments for objects and signatures are standard. Constants must
be declared before they are used. In this paper we can assume the signature
> to be always well-formed and fixed, and hence omit it from the various
judgments.

Definition 2.1 (Typing judgment) ¥ F M : B is defined by the following
rules.

U(z) =B Y(c)=B
—— StpVar ———— StpConst
UFkx:B Uhkc:B
\I',l‘:Bl'—M:BQ \I/FMllBQ—)Bl \Ifl—MQZBQ
StpLam StpApp
\IJl_)\.’L‘IBl.M:Bl—)BQ \I'l_MlMQZBl

As running examples throughout the paper we use the representation of nat-
ural numbers and untyped A-expressions.

Example 2.2 (Natural numbers)

nat : type
"'=1z Z :nat
™M +17"=s™7 s :nat — nat

Untyped M-expressions illustrate the idea of higher-order abstract syntax: ob-
ject language variables are represented by meta-language variables.

Example 2.3 (Untyped AM-expressions) e ::=z | lam z.e | e;Qe,

exp : type
Mlam z.e’ = lam (Az:exp."e”) lam : (exp — exp) — exp
Fe1@Qey ' = app Tep ' ey ! app : exp — (exp — exp)

zl=1x

Not every well-typed object of the meta-language directly represents an ex-
pression of the object language. For example, we can see that "e ' will never
contain a (-redex. Moreover, the argument to lam which has type exp — exp
will always be a A-abstraction. Thus the image of the translation in this
representation methodology is always a (-normal and 7-long form. Follow-
ing [HHP93|, we call these objects canonical as defined by the following two
judgments, and denote them with V.

Definition 2.4 (Atomic and canonical forms)

(1) V=V | B (V is atomic of type B in V)
(2) VEV A+ B (V is canonical of type B in V)

U(z) =B S(c) =B UEVilBy =B VYEVa By
— AtVar —— AtCon AtApp
Utz|B Ukcl B UV Vol By

UV ia U.z:B1FV By

—— CanAt CanLam

UEVa UkAz:B,.V{ By — By

Canonical forms play the role of “observable values” in a functional language:
they are in one-to-one correspondence with the expressions we are trying to
represent. For Example 2.3 (untyped A-expressions) this is expressed by the

following property, which is proved by simple inductions.

Example 2.5 (Compositional adequacy for untyped A-expressions)

(1) Let e be an expression with free variables among z1, ..., z,.
Then x; : exp,...,z, :exp - "e '} exp.
(2) Let x; : exp, ..., 2T, : exp = M 1 exp.
Then M = "e for an expression e with free variables among x4, ..., z,.

(3) ™7 is a bijection between expressions and canonical forms where
Cle'/x]le? = [T /x] e

Since every object in A~ has a unique (fn-equivalent canonical form, the mean-
ing of every well-typed object is unambiguously given by its canonical form.
Our operational semantics (see Definitions 3.3, 4.30, and 5.15) computes this
canonical form and therefore the meaning of every well-typed object. That
this property is preserved under an extension of the language by primitive re-
cursion for higher-order abstract syntax may be considered the main technical
result of this paper.

3 Modal M-Calculus

The constructors for objects of type exp from Example 2.3 are “lam” of type
(exp — exp) — exp and “app” of type exp — (exp — exp). These cannot be
the constructors of an inductive type exp, since we have a negative occurrence
of exp in the argument type of lam. This is not just a formal observation,
but has practical consequences: we cannot formulate a consistent induction
principle for expressions in this representation. Furthermore, if we increase
the computational power of the meta-language by adding definition by cases
or an iterator, then not every well-typed object of type exp has a canonical
form. For example,

lam (AE:exp.case E of app F1 Ey = app F» E; |lam E' = lam E')

has type exp, but the given object does not represent any untyped A-expression,
nor could it be converted to one. The difficulty with a case or iteration con-
struct is that there are many new functions of type exp — exp which cannot
be converted to a function in A™. This becomes a problem when such func-
tions are arguments to constructors, since then the extension is no longer
conservative even over expressions of base type (as illustrated in the example
above).

Thus we must cleanly separate the parametric function space exp — exp whose
elements are convertible to the form Ax : exp. E where E is built only from

the constructors app, lam, and the variable z, from the primitive recursive
function space exp = exp which is intended to encompass functions defined
through case distinction and iteration. This separation can be achieved by us-
ing a modal operator: exp — exp will continue to contain only the parametric
functions, while exp = exp = (Oexp) — exp contains the primitive recursive
functions.

The representation technique of higher-order abstract syntax works exactly as
before. That is, the representation types for objects only contain parametric
function spaces, and the notion of definitional equality on such objects con-
tinues to be just Bn-conversion. Therefore, we treat functions of pure type in-
tenstonally, while functions with types containing O are treated extensionally.
We are not considering their form to be observable, only their input/output
behavior. Similarly for products which are not used for object representation.
As a result, there is no need to define a notion of definitional equality on
impure types. In fact, the natural notion of equality on impure types is exten-
sional and defined by induction over the structure of the types. For example,
we would consider two functions f and g of type exp = exp to be (exten-
sionally) equal if fM and gM have the same canonical form for all canonical
forms M of type exp. We have not studied this notion of equality, since it does
not play a role in our applications. At this point in our development it is not
obvious that this view of our A-calculus is tenable; eventually it is justified by
the conservative extension theorem (Theorem 9.2).

Intuitively we interpret OB as the type of closed objects of type B. We can
iterate or distinguish cases over closed objects, since all constructors are stat-
ically known and can be provided for. This is not the case if an object may
contain some unknown free variables. The system is non-trivial since we may
also abstract over objects of type OA, but fortunately it is well understood
and corresponds (via an extension of the Curry-Howard isomorphism) to the
intuitionistic variant of Sy [DP96].

In Section 4 we introduce schemas for defining functions by iteration and
case distinction which require the subject to be of type OB. We can easily
recover the ordinary scheme of primitive recursion for type nat if we also add
pairs to the language. Pairs (with type A; x Aj) are also convenient for the
simultaneous definition of mutually recursive functions. Just as the modal type
OA, pairs are lazy and values of these types are not observable — ultimately
we are only interested in canonical forms of pure type.

The formulation of the modal A-calculus below is copied from [DP96] and
goes back to [PW95]. The language of types includes the pure types from the

I'z)=A A(z)=A 3(c)=1B
—— TpVarR —— TpVarM ——— TpCon
A;THz: A A;THz: A A;T'Fe: B

ATz AyFEM: A
TpLam
A;Pl—)\.’I}:Al.MZAl —)AQ
A;Fl_MliAg—)Al A;Fl‘Mg:Ag
TpApp
A;F"Ml M2:A1
A;Pl‘MliAl A;Pl_MQ:AQ i
TpPair
A,Fl— <M1,M2> :A1 X AQ
A;Fl—M:AleQ A;PI_M:AleQ
TpFst TpSnd
AT FAfst M- Ay A;T'Fsnd M : Ag
A-FM:A AT M, : 04 Ayx: A T'E My Ay
TpBox
A;T Fbox M : OA A;T F let box x = M7 in My : Ay

TpLet

Fig. 1. Typing judgment A;T'F M : A

simply-typed A-calculus in Section 2.

Types: A i=a|A; = Ay |OA| Ay x A
Objects: M :=c |z | z:A. M | My M,

| box M | let box x = M in M,

‘ <M1,M2> ‘ fst M ‘ snd M
Contexts: I' == |,z : A

For the sake of brevity we usually suppress the fixed signature Y. However,
it is important that signatures Y and contexts denoted by W will continue
to contain only pure types, while contexts I' and A may contain arbitrary
types. We also continue to use B to range over pure types, while A ranges
over arbitrary types. The typing judgment A;I" = M : A uses two contexts:
A, whose variables range over closed objects, and I', whose variables range
over arbitrary objects. A and I should be viewed as lists, the variable names

they declare must be disjoint.

Definition 3.1 (Typing judgment) A;T'+ M : A is defined in Figure 1.

As examples, we show some basic laws of the (intuitionistic) modal logic Sy.

Example 3.2 (Laws of S,)

subst : O(A; — Ay) — 0OA; — OA,
= Af:0(A; — Ap). Az:0OA;.
let box f' = f in let box 2’ = z in box (f' z')
unbox : 0OA — A
= Az:0A.let box 2’ = x in 2’
boxbox : OA — OOA

= Az:0A.let box 2/ = x in box (box z')

The rules for evaluation must be constructed in such a way that full canonical
forms are computed for objects of pure type, that is, we must evaluate under
certain A-abstractions. Objects of type OA or A; X Ay on the other hand are
not observable and may be computed lazily. We therefore use two mutually
recursive judgments for evaluation and conversion to canonical form, written
VkEM—V:Aand V- M {4 V : B, respectively. The former carries
the type of the evaluated object which does not need to be pure, whereas
the latter is restricted to pure types, since only objects of pure type possess
canonical forms. That these type annotations are well-defined follows from
the type preservation property we derive later in this paper. Since we evaluate
under some A-abstractions, free variables of pure type declared in ¥ may occur
in M and V during evaluation.

Definition 3.3 (Evaluation judgments) ¥ - M — V : A and ¥ + M 1
V : B are defined in Figure 2.

Note that the rules EvApp and EvAt are mutually exclusive, since the eval-
uation of M; in an application M; M, either yields an atomic term (with a
constant or parameter at the head) or a A-abstraction.

4 TIteration

The modal operator O introduced in Section 3 allows us to restrict iteration
and case distinction to subjects of type OB, where B is a pure type. The
technical realization of this idea in its full generality is rather complex. We
therefore begin by describing the behavior of functions defined by iteration
informally, incrementally developing their formal definition within our system.

\I'I—M<—>V:aEAt Vo :Bi-MzfV: B,
c
UFEFMAHV:a UVEFEMANA:B1.V:By — By

EcArr

EvVar — EvConst
: B

WU, z: A FM: A
UhEANg: Al M — Mx:A1. M : A1 — Ay

EvLam

\Ijl—Ml‘—>A.’L‘:A2.M{:A2—>A1
\IJI—MQ‘—)V'Q:AQ

U+ [Vo/z](M]) — V : A

EvApp
\Ifl_Ml M2 ‘—)V:Al

‘Ill_Ml‘—)VlBQ—)Bl \I/FVELBQ—)Bl \Ill_MQﬂI/QB2
\Ill_MlMQ‘—)Vl‘/Q:BI

EvAt

,lIll—MlAl ,\I/}_MQAQ
U+ <M1,M2> — <M1,M2) : A1 XA2

EvPair

qjl‘M‘—)(Ml,M2>:A1XA2 \IJI—Ml‘—)V:Al
UHfst M -V : A

EvFst

\I’|—M‘—><M1,M2>:A1XA2 \IJFMQ(—)V:AQ
Uhksnd M —V: A

EvSnd

s-FM:A
U Fbox M — box M : OA

EvBox

Uk M > box M :0A4 U [M!/z](Ms) = V : Ay
\Ill—letboxa::MlinM2<—>V:A2

EvlLet

Fig. 2. Evaluation judgments YV F M -V :Aand VMV : B

4.1 Ezramples

In the informal presentation we elide the box constructor, but we should con-
vince ourselves that the subject of the iteration or case is indeed assumed to
be closed.

Example 4.1 (Addition) The usual type of addition is nat — nat — nat.
This is no longer a valid type for addition, since it must iterate over either its
first or second argument and would therefore not be parametric in that argu-
ment. Among the possible types for addition, we will be interested particularly
in Onat — nat — nat and Onat — Onat — Onat.

plus z n =n

plus (s m) n = s (plus m n)

Note that this definition cannot be assigned type nat — nat — nat or Onat —
nat — Onat.

In our system we view iteration as replacing constructors of a canonical term
by functions of appropriate type, which is also the idea behind catamor-
phisms [FS96]. In the case of natural numbers, we replace z : nat by a term
M, : A and s : nat — nat by a function M, : A — A. Thus iteration over
natural numbers replaces type nat by A. We use the notation a — A for a type
replacement and ¢ — M for a term replacement. Iteration in its simplest form
is written as “it (a — A) M (Q2)” where M is the subject of the iteration, and
Q) is a list containing term replacements for all constructors of type a. The
formal typing rules for replacements are given later in this section; first some
examples.

Example 4.2 (Addition via iteration) Addition from Example 4.1 can be
formulated in a number of ways with an explicit iteration operator. The sim-
plest one:

plus’ : Onat — nat — nat

= Am:Onat. An:nat. it (nat — nat) m (z — n| s — s)

Later examples require addition with a result guaranteed to be closed. Its
definition is only slightly more complicated.

plus : Onat — Onat — Onat
= Am:Onat. An:Onat. it (nat — Onat) m
(z+—n

| s = (Ar:Onat. let box ' =7 in box (s r')))

If the data type is higher-order, iteration over closed objects must traverse
terms with free variables. We model this in the informal presentation by intro-

10

ducing new parameters (written as vz.M) and extending the function defini-
tion dynamically to encompass the new parameters (written as “where f(z) =
M?”). A similar idea has led Odersky to define Av, an extension of the A-
calculus by local names [Ode94].

Example 4.3 (Counting variable occurrences) Below is a function which
counts the number of occurrences of bound variables in an untyped A-expression
in the representation of Example 2.3. It can be assigned type Oexp — Onat.

cntvar (app e; ez) = plus (cntvar e;) (cntvar ey)

cntvar (lame) = vaxcntvar (e) where entvar z = (s z)

It may look like the recursive call in the example above is not well-typed since
(e z) is not closed as required, but contains a free parameter z. Making sense of
this apparent contradiction is the principal difficulty in designing an iteration
construct for higher-order abstract syntax. As before, we model iteration via
replacements. Here, exp +— Onat and so lam + M; and app — M, where
M : (Onat — Onat) — Onat and M, : Onat — (Onat — Onat). The types
of replacement terms M; and M, arise from the types of the constructors
lam : (exp — exp) — exp and app : exp — (exp — exp) by applying the type
replacement exp +— Onat. We write
cntvar : Oexp — Onat
= Az:0Oexp. it (exp — Onat) x
(app — plus

| lam — Af:Onat — Onat. f (box (s z)))

For example, after S-reduction and replacement the term

cntvar (box (lam (Az:exp.app z z)))

reduces to

(Af:Onat — Onat. f (box (s z))) (An:Onat. plus n n)
which can in turn be [-reduced to plus (box (s z)) (box (s z)) and finally to
the expected answer box (s (s z))-

Note that our operational semantics (see Definition 4.30) goes through differ-
ent intermediate steps than the sequence above, but leads to the same result.
Note also how replacement changes the types and possibly the names of bound

11

variables (from z : exp to n : Onat) in the canonical form to guarantee type
preservation.

Example 4.4 (Counting abstractions) The function below counts the num-
ber of occurrences of A-abstractions in an expression. It also has type Oexp —
Onat.

cntlam (app e; e2) = plus (cntlam e;) (cntlam ey)

cntlam (lame) =s (vx cntlam (e) where cntlam z = 7)

Its representation as an iteration follows the same ideas as above.

cntlam : Oexp — Onat
= Az:0Oexp. it (exp — Onat) x
(app — Anq:Onat. Angy: Onat. plus ny ng
| lam +— A\ f:Onat — Onat.

let box m = f (box z) in box (s m))

Example 4.5 (First order logic) First order formulas F' ::= Vz. F | F} D
F, | t; =ty and terms ¢ are represented as canonical objects of type o and type
1, respectively, over the signature which includes the following declarations.

"Vz. F7 = forall (Az:i."F7) forall: (i—o0) —o
"Fi D F,'=impl"F 'TE,! impl :0—+0—o0

M=t '=eq"t; 'ty eq :i—i—o

To count the number of equality tests, we can specify cnteq with type i —
Oo — Onat as follows. We require an argument term ¢ in order to instantiate
the universal quantifier (since we did not assume any constants of type i).

cnteq t (forall F') = cnteq t (F' t)
cnteq ¢ (impl Fy Fy) = plus (cnteq t F) (cnteq ¢ F)
cnteq t (eqt; ts) = box (s z)

12

A representation of cnteq in the modal A-calculus has the form:

cnteq : 1 — Oo — Onat
= At:i. AF:Oo. it (0 — Onat) F
(forall — Af:1 — Onat. (f t)
| impl — plus

| eq — Atp:i. My:i.box (s z))

Example 4.6 (Booleans) Boolean values b ::= T | L can be represented as

objects of type bool over the signature which includes the following declara-
tion:

TT7 = true true : bool

1 7= false false : bool

Informally we can represent the Boolean operation “and” as follows. We must

require all argument and all result types are boxed, because the result of and
will be used as subject for another case distinction.

and true B, = By

and false By = false

A formal representation of “and” is then as follows:

and : Obool — Obool — Obool
= ABj:0Obool. AB;:Obool.
it (bool — Obool) B,

(true — By| false — box false)

Example 4.7 (Constant test) Below we define a function which returns
true if a given functional object of type exp — exp (see Example 2.3) is

13

constant with respect to the first argument.

const (Az:exp.lam (A\y:exp. E z y))

= vy const (Az:exp. F z y) where const (Az:exp.y) = true
const (Az:exp.app (B z) (E2 7))

= and (const (Az:exp. E; z)) (const (Az:exp. Es z))

const Ax:exp.z = false

The representation of const has type O(exp — exp) — Obool.

const : O(exp — exp) — Obool
= AF:0O(exp — exp). it {exp — Obool) F’
(lam — AE':Obool — Obool. (E (box true))

| app — and) (box false)

Note how the last case in the informal definition is represented by applying
the result of iteration (which will be of type O0bool — Obool) to box false.

Example 4.8 (Translation to de Bruijn representation) Untyped A-
expressions in de Bruijn form d ::= n | lam d | d,Qd, are represented as
canonical objects of type db over the signature which includes the natural
numbers and the following declarations.

1 =var "n’ var : nat — db
Mlam d’' = 1lm "d* Im :db —db

"diQdy'=ap"d;'"dy' ap :db—db—db

A translation from the higher-order representation to de Bruijn form has type
Oexp — db and is represented formally in terms of an auxiliary function trans
of type Oexp — Onat — db:

trans (lame) n = lm (vz trans (e x) (s n)
where (trans m) = var (minus m n))
trans (app e; ep) n = ap (trans e; n) (trans ey n)

dbtrans e = trans e z

14

At the top level (when translating a closed A-expression) we can instantiate
trans’s second argument with (box z) to obtain a function of type Oexp — db.
Assuming functions minus (whose definition we discuss in the next section)
and unbox (see Example 3.2), this is implemented by the following iteration.

trans : Oexp — Onat — db
= Az:0exp. it (exp — Onat — db)

(lam — Af:(Onat — db) — (Onat — db).

An:Onat. lm (f (Am:Onat. var (unbox (minus m n)))
(let box n' = n in box (s n')))

| app — Afi:Onat — db. Afo:Onat — db.

An:Onat. ap (f1 n) (fe n))
dbtrans : Oexp — db

= Az :Oexp. trans = (box z)

We omit here similar definitions of functions for bracket abstraction and trans-
lation from higher-order terms to SK combinators. We believe pairs are neces-
sary for defining parallel S-reduction (which is convenient in the proof of the
Church-Rosser theorem).

Example 4.9 (Parallel reduction) Parallel reduction is here defined over
expressions (from Example 2.3). We state the function first informally:

par (app e; e2) = par’ e; (par es)
par (lam e;) = lam (Az:exp. vz’ par (e; z')
where par 2/ = x and par’ 2’ e3 = app = e3)
par’ (app e; e3) €, = app (par’ e; (par ey)) €,
par’ (lame;) e, = v par (e; z)

where par + = €}, and par’ x e3 = app ¢} e3

15

The type of par is Oexp — exp; the auxiliary function par’ has type Oexp —
exp X (exp — exp).

par : Uexp — exp
= Ae:Oexp.
fst(it {(exp — exp X (exp — exp)) e
(app — Aej:exp X (exp — exp). Aeg:exp X (exp — exp).
((snd e;) (fst eq),
el iexp.app ((snd ep) (fst ey)) €h)
| lam — Aejp:(exp X (exp — exp)) — (exp X (exp — exp)).
(lam (Az:exp. fst (e; (x, Aeg:exp.app z e3))),
Aey:exp. fst (e; (e}, Aeg:exp.app €, e3))))

The following example illustrates two concepts: mutually dependent types and

iteration over the form of a (parametric!) function (which we already saw in
Example 4.7).

Example 4.10 (Substitution in normal forms) Substitution is already di-
rectly definable by application, but one may also ask if there is a structural
definition in the style of [Mil91]. Normal forms of the untyped A-calculus
N ::= P |lam z.N are represented by the type nf with an auxiliary definition
for atomic forms P ::= z | PQN of type at. In this example the representation
function "." acts on normal forms, atomic forms are represented by ™. .

nf : type
at : type
FP'=atnf™P™ atnf : at — nf
Mlam 2. N7 =1m (Az:at."N7) Im : (at — nf) — nf
TPQN "=ap™P " N ap :at — nf — at

T =g

Substitution of atomic objects for variables is defined by two mutually re-
cursive functions, one with type subnf : O(at — nf) — at — nf and subat :

16

O(at — at) — at — at.

subnf (Az:at.lm (Ay:at. N z y)) @ = lm (Ay:at. vy’ subnf (Az:at. (N z ¢)) Q
where subat (Az:at.y') Q = y)
subnf (Az:at.atnf (P z)) Q = atnf (subat (A\z:at. P z) Q)
subat (Az:at.ap (P z) (N z)) Q@ = ap (subat (Az:at. P z) Q)
(subnf (Az:at. N z) Q)
subat (Az:at.z) Q =Q

The last case arises since the parameter x must be considered as a new con-
structor in the body of the abstraction. The functions above are realized in our
calculus by a simultaneous replacement of objects of type nf and at. In other
words, the type replacement must account for all mutually recursive types,
and the term replacement for all constructors of those types.

subnf : O(at — nf) — at — nf
= AN:0O(at — nf). AQ:at. it (nf — nf | at — at) N
(lm — AF:at — nf.lm (A\y:at. (F y))
| atnf — AP:at. atnf P
| ap — AP:at. AN :nf.ap P N)

Q

Via n-contraction we can see that substitution amounts to a structural identity
function.

Example 4.11 (Further mathematical operations) Below we define the

multiplication and the exponentiation function which we can informally define
as follows:

mult z N =7z
mult (s M) N = plus (mult M N) N

ex M z =5S7Z

ex M (s N) = mult (ex M N) M

17

The representation of mult and ex has type Onat — Onat — Onat.

mult : Onat — Onat — Onat
= AM :Onat. AN :Onat. it (nat — Onat) M
(z — box z

| s — AM':Onat. (plus M' N))

ex : Unat — Unat — Unat
= AM :Onat. AN : Onat. it (nat — Onat) N
(z — box (s z)
| s = AN’:Onat. (mult M N'))

Example 4.12 (Ackermann’s function) Below we define the function which
we can informally define as follows:

Az = Az:nat.(sx)
A (sn) = Az:nat. (An)® z

where (f* y) stands for (f...(f y)). The representation of A has type Onat —
——

z—times
Unat — [nat.
A : Onat — Onat — Onat
= Am:0Onat. it (nat — Onat — Onat) m
(7 + Az:Onat. let box 2’ = z in box (s z)

| s — Af:Onat — Onat. Az:Onat.

it (nat — Onat) z (z — z|s — [))

The following example shows a scheme how to represent primitive recursion
over natural numbers using pairs.

Example 4.13 (Primitive recursion over natural numbers) Below we

define a general primitive recursive scheme over natural numbers. Let A be
the result type of the primitive recursion. For every N, : A and N, : Onat —

18

A — A we define informally the primitive recursion scheme:

prz = N,
pr (sm') N = Ny m' (pr m')

For the representation of pr we use the standard technique of iteration re-
turning a pair. They allow us to recover the structure of the argument in the
following way:

pr : Onat — A
= Am:Onat. snd
(it (nat — Onat x A) m
(z — (box z, N,)
| s — Ap:Onat x A.
(let box m' = fst p in box (s m'), N (fst p) (snd p))))

4.2 Formal Discussion

We begin now with the formal discussion and description of the full language.
Due to the possibility of mutual recursion among types, the type replacements
must be lists (see Example 4.10).

Type replacements: w = - | (w | a — A)

The types being replaced form a type domain, i.e., a set of pairwise different
type constants. Since there are no dependencies, the constants do not have to
occur in any particular order. As a general convention, we use the order in
which they are declared in the signature.

Type domains: « ::= - | o, a

Which types must be replaced by an iteration depends on which types are
mutually recursive according to the constructors in the signature ¥ and pos-
sibly the type of the iteration subject itself. If we iterate over a function, the
parameter of a function must be treated like a constructor, since it can ap-
pear in that role in the body of a function. This leads to the introduction of
well-formed type replacements - w : a.

19

Definition 4.14 (Well formed type replacements)

— WrBase fw:ia Wrlind
F-- Fwla—A):(a,a)

We address now the question of mutual dependency between atomic types by
defining the notion of type subordination which summarizes all dependencies
between atomic types by separately considering its static part <l which de-
rives from the dependencies induced by the constructor types from ¥ and its
dynamic part <\g which accounts for dependencies induced from the argument
types of B. We say that type a; subordinates type a, if objects of the later
type can be constructed from objects of the former type.

Objects of pure type B can contain constructors — from the signature — or
parameters — introduced locally by A-abstractions — with the same target
type as B. The target type refers to the type a fully applied constructor or
parameter belongs to. We denote the target type of a pure type B by 7(B).

Definition 4.15 (Target types)
7(a) = a
T(B1 — BQ) = T(BQ)
Let B be the type of a constructor or parameter and M be an object of type
B. The set of other objects from which M can be constructed can be directly
extracted from B, namely all objects of the argument types of B — regardless
of whether they occur positively or negatively. For a given pure type B we

define the type domain Source(B) as

Definition 4.16 (Source types)
Source(a) = -

Source(B; — Bsy) := Source(By) U {7(Bi)} U Source(Bs)

The source of B is the set of all atomic type appearing in B, except its target
type. For example 4.10 it is easily verified that the constructor type of ap
yields:

Source(at — nf — at) = {at, nf}

20

To view a set as a type domain, we transform it into a list following their order
of declaration. To obtain the set of all types on which an atomic type a may
depend, we must select a subset of the signature 3 containing all constant

declarations with target type a. This set is called a sub-signature for a and
denoted by S(Z; a):

Definition 4.17 (Sub-signature)
S(;a) = -

S(X;a),c: Bift(B) =a
S(X;a) otherwise
S(X,d : type;a) = S(X;a)

S(E,c¢: B;a) =

In the setting of mutually dependent types, the notion of sub-signature must
be extended to capture additional dependencies. Type domains have been
introduced to represent the set of all participating atomic types mutually
depending on each other. The definition of a sub-signature over type domains
S*(%;) follows easily:

Definition 4.18 (Sub-signature over type domains)
S*(3;) = -

S*(3;a,a) = §* (25 0),85(%; a)

The subordination relation reflects dependencies between atomic types. The
target type and the source types of a declaration contain subordination infor-
mation: each source type is subordinate to the target type.

Definition 4.19 (Immediate subordination relation) Let B be a pure
type.

a <p d iff a € Source(B) and o' = 7(B)
The union of all immediate subordination relations induced by a sub-signature

Y. yields the static subordination relation. It is called static because it is de-
rived from the fixed signature.

Definition 4.20 (Static subordination relation) Let ¥ be a signature.

a; <y, ay iff X =Y c: B and either a; <p as or a; sy as

21

The static subordination relation for Example 4.10 is

at <y at, nf <x, at, at <y nf, nf <y, nf.

Sub-signatures are not the only source on which the subordination relation is
based. As briefly mentioned above, another source is iteration over functions.
Functional subject types can introduce new dependencies into the subordina-
tion graph as the following example shows.

Example 4.21 (Higher-order logic) First order logic can be extended to
higher order logic by introducing a reification function from formulas to terms.
To count the number of equality tests, we extend the subject of iteration
defined in Example 4.5 by a new abstraction over the reification function r
which has type o — i. The introduction of a reification function makes terms
and formulas depend mutually on each other. We therefore must distinguish
between cnteqi of type O((o — i) — i) — Onat which counts occurrences of
equality tests in terms and cnteqo of type O((o — i) — 0) — Onat which
counts them in formulas.

cnteqo (Ar:o — i.forall (Az:i. F' r z))
= vx (cnteqo (Ar:o —i. F'rz)) where cnteqi (A\r:0 - i.z) =2z
cnteqo (Ar:o — i.impl (Fy r) (Fy 1))
= plus (cnteqo (Ar:0 — i. F} r)) (cnteqo (A\r:o = i. Fy 1))
cnteqo (Ar:o —i.eq (t1 1) (t2 7))
= s (plus (cnteqi (A\r:0 —i.t; 7)) (cnteqi (Ar:o — i.5 1)))
cnteqi (A\r:0 — i.7 (F r)) = cnteqo (Ar:o0 —i. F' r)

The representation of cnteqo in the modal A-calculus has the form:

cnteqo : O((o — i) — o) — Onat
= AF:0((o — i) — 0).it (0 ~ Onat,i— Onat) F
(forall = Af:0Onat — Onat. (f (box z))
| impl — plus
| eq — Am:Onat. An:Onat.

let box r = plus m n in box (s r))

Clearly the type of the iteration subject must be taken into consideration when
defining the general subordination relation. We proceed now by characterizing

22

all those dependencies which arise from the type B of the iteration subject
which will lead to the notion of dynamic subordination. From the example
above we can see that variables occurring in the closed subject of iteration can
be interpreted as constructors if we look at the object from a purely syntactical
point of view. We call those variables parameters and correspondingly their
types parameter types.

In the next step we define the dynamic subordination relation which can be
directly determined from the set of parameter types. We follow the same idea
as in the static case: every parameter type in P(B) induces a new set of
dependencies. Closing all these relations we finally arrive at the dynamic sub-
ordination relation:

Definition 4.22 (Dynamic subordination relation) Let B be a pure type.

a1 <p ay = B = By — By and either ay <p, az or a; <p, Gy

Consider the type B = (0 — i) — o from the previous example. The dynamic
subordination relation is then characterized by o <1 i. 0 <1 i expresses that
objects of type o can be coerced into objects of type i. The mere presence of
such an coercion function turns the first order logic from example 4.5 into a
higher order logic. Static and dynamic subordination represent local depen-
dencies between atomic types. To obtain the global subordination relation,
the union of both must be closed under transitivity.

Definition 4.23 (Global subordination relation) Let B be a pure type.

<E;B Z@(QE U <]B)+

Note, that the global subordination relation is not necessarily reflexive. The
simplest example for a non-reflexive subordination relation is type bool from
Example 4.6. bool is not recursive, hence it doesn’t hold that bool s,z bool.
A closer look reveals, that the subordination relation for bool is empty. But
it is definitely not the case that bool is. To account for this observation we
extend the notion of subordination relation. If a 455 bool holds then objects
of type a can occur as objects or subobjects of objects of type bool. We call
this the weak subordination relation which is obtained by closing the global
subordination relation under reflexivity.

Definition 4.24 (Weak subordination relation)

!E;B :@(42 U <p)*

Mutually dependent types and the notion of subordination are very closely
related. In fact, the subordination relation is defined with the purpose to define

23

an equivalence class of mutually dependent types. Static type subordination
is built into calculi where inductive types are defined explicitly (such as the
Calculus of Inductive Constructions [PM93]); here it must be recovered from
the signature since we impose no ordering constraints except that a type must
be declared before it is used which is enforced in the typing rules for valid
signatures (which have omitted). Our choice to recover the type subordination
relation from the signature allows us to perform iteration over any functional
type, without fixing the possibilities in advance.

As we have seen in example 4.21, the dynamic subordination relation implies
that terms and formulas depend on each other. Hence, static subordination
constitutes only part of the subordination relation. If we follow the paradigm
used in Coq we would calculate internally a syntactical definition of the new
inductive type, where parameters are defined as real constructors. This has to
be done on the fly because as we will see later in the typing rules, the type of
the subject of iteration B must be inferred first. It is indeed possible to show
the equivalence of both formulations (which we are not going to do here).
All type constants which are mutually dependent with 7(B), written Z(3; B),
form an equivalence class.

Definition 4.25 (Equivalence class of mutually dependent types) Let
B be a type and X a signature:

Z(3;B) :={a|7(B) 4x,5 a and a 45,5 7(B)}

Revisiting Example 4.21 extending first order logic to higher order logic we can
calculate the equivalence class Z(X; (o0 — i) — o) = {o,i}. The sub-signature
has then the following form:

S*(X;0,i) =forall: (i - 0) - o,impl:0 >0 —0,eq:i—i—0

Let us now address the question of how the type of an iteration is formed:
If the subject of iteration has type B, the iterator object has type (w)(B),
where (w)(B) is defined inductively by replacing each type constant according
to w, leaving types outside the domain fixed. The replacement application
might traverse type constants not defined in w. This becomes immediately
evident when we consider Example 4.8: nat is traversed, but not defined in w.
Also in Example 4.5: i is not defined in w. But since objects of such strictly
subordinated types do not participate in the process of iteration, their types
remain unchanged.

24

Definition 4.26 (Type replacement application) Letw be a type replace-
ment:

Aifw(a)=A
a otherwise

(W)(Br = Ba) = (w)(B1) = (w)(B2)

A similar replacement is applied at the level of terms: the result of an iteration
is an object which resembles the (canonical) subject of the iteration in struc-
ture, but object constants are replaced by other objects carrying the intended
computational meaning of the different cases.

Term replacement: Q ::= - | (Q | c— M)

The domain of a term replacement is a signature S*(X; Z(X; B)) containing all
constructors whose target type is in Z(X; B). We extend the notion of objects
by

M == ...]it {(w) M (Q)

and extend the typing rules for iteration. To do so we must introduce a new
typing judgment for term replacements Q: A;T'F Q : (w)(X). Q is well-typed if
it replaces every constant of some signature 3. with some object of the correct
type. Note that (w) is part of the typing judgment and not an operation on
signatures.

Definition 4.27 (Typing judgment) eztending Definition 3.1:

A;T-M:0OB Fw:a ATEFQ: () ()
AT E it (w) M (Q) : (w)(B)

Tplt

where a = Z(X; B) and ¥’ = §*(%; a)

ATEQ: (W) () ATEM: (w(B)
TrBase Trind
A;TE-:(w)() ATHQ e M) : (w)(Z,c: B

25

Example 4.28 (Counting variable occurrences) In Example 4.3 we de-
fined cntvar =Az:Oexp.it (w) z (2) where

w = exp — Lnat

Q2 = app ~ plus | lam — Af:0Onat — Onat. f (box (s z))

Y = 8*(%; Z(XZ; exp))

= app : exp — (exp — exp),lam : (exp — exp) — exp

Under the assumption that plus : Onat — (Onat — Onat) it is easy to see
that

(1) -« :0Oexpt A\f:Onat — Onat. f (box (s z)) : (Onat — Onat) — Onat

by TpLam, etc.

(2) - x:Oexpt Q: (w)(X) by TrBase, Ass., (1)
(3) +;z:Oexpt x: Oexp by TpVarR
(4) -z :Oexp kit (w) z (Q) : Onat by Tplt from (3) (2)
(5) -+ cntvar : Oexp — Onat by TpLam from (4)

The formalization of the transformation function of A-expressions into de
Bruijn representation in Example 4.8 is done in the following way. First, the
type of the function must be inferred to make explicit which arguments must
be boxed and which not. This is mainly determined by the subject of the
iteration, here Oexp. Second, the type replacement w needs to be specified:
w = exp — Onat — db. The equivalence class of mutually dependent types
Z(%;exp) = {exp} already determines the sub-signature:

S*(3;exp) = lam : (exp — exp) — exp, app : exp — (exp — exp)

and together with the type replacement w the types occurring in the term
replacement. The replacement for lam must be of type

((Onat — db) — (Onat — db)) — (Onat — db)

and similarly the replacement for app

(Onat — db) — (Onat — db) — (Onat — db).

The iteration itself has hence the type (Onat — db).

26

Applying a term replacement must be restricted to canonical forms in order
to preserve types. Fortunately, our type system guarantees that the subject
of an iteration can be converted to canonical form. Even though the subject
of iteration is closed at the beginning of the replacement process, we need to
deal with embedded A-abstractions due to higher-order abstract syntax. But
since such functions are parametric we can simply rename variables x of type
B by new variables 2’ of type (w)(B). The definition of a term replacement is
extended accordingly.

Term replacement: 2 := ... | (2] z — ')

Applying a replacement then transforms a canonical form V' of type B into a
well-typed object (w; Q) (V) of type (w)(B) as we will show later in this paper.
We call this operation elimination. It is defined along the structure of V.

Definition 4.29 (Elimination)

e = | M O (ElConst)
¢ otherwise
(w; Q) (z) = Q) (ElVar)
(@ QO B.V) = A () (B). (w3 Q2 | & = 2/)(V) (ElLam)
(w; (V1 V2) = (w; Q)(V1) (w; 2)(V2) (ElApp)

Note that the additional cases in a term replacement do not require additional
typing rules since they occur only temporarily during elimination.

Constructors and variables must be mapped to some objects defined in the
term replacement (2. As mentioned above, not all types occurring in the subject
type of the iteration object are mutually dependent. This property implies that
elimination might encounter constructors which are not defined in the term
replacement. In this case we do not replace the constants, as already indicated
by the type replacement which leaves those atomic types unchanged. When
eliminating a A-abstraction Ax: B.V, ElLam applies: z, introduced by the A-
abstraction is a parameter which will be renamed to z’. The term replacement
must hence be extended by z +— z’. The elimination result must then be
abstracted over the newly introduced variable z’ of type (w)(B).

The term resulting from elimination might, of course, contain redices and
must itself be evaluated to obtain a final value. Thus we obtain the following

27

evaluation rule for iteration.

Definition 4.30 (Evaluation judgment) eztending Definition 3.3:

UM< bozM :0B -FMAV':B UH{(wQV')—>V:(w(B)
Ukt (w) M (Q) = V:(w)(B)

Evit

Example 4.31 (Counting variable occurrences) In Example 4.3, the eval-
uation of cntvar (box (lam (Az:exp.z))) yields box (s z) because

- - cntvar < cntvar : Oexp — Onat by EvLam
- F box (lam (Az:exp.z)) < box (lam (Az:exp.zx)) : Oexp by EvBox
-Flam (Az:exp.z) f} lam (Az:exp.z) : exp by EcAt, etc.
(w; Q)(lam (Az:exp.x))

= (Af:Onat — Onat. f (box (s z))) (Az’:Onat.z’) by elimination
(5) - F (w;2)(lam (Az:exp.z)) < box (s z) : Onat by EvApp, etc.
(6) -Fit{w) (box (lam (Az:exp.z))) () < box (s z) : Onat

by Evlt from (2) (3) (5)

(7) - F cntvar (box (lam (Az:exp.x))) < box (s z) : Onat
by EvApp from (1) (2) (6)

The reader is invited to convince himself that this operational semantics yields
the expected results on the other examples of this section.

Our calculus also contains a case construct whose subject may be of type OB
for arbitrary pure B. It allows us to distinguish cases based on the intensional
structure of the subject. For example, we can test if a given (parametric!)
function is the identity or not. We discuss the case construct in the next
section.

5 Case

Godel’s system T is based on primitive recursion at higher types. For inductive
types, primitive recursion can be emulated directly in our system by iteration
and pairs. However, it is significantly more difficult to define functions by cases
in terms of iterators. Intrinsically, iteration traverses the syntactical structure
of a term, whereas case analysis considers only the top-level structure of a
term. In simple instances of first-order and higher-order datatypes, we have

28

succeed in emulating case constructs by iteration, which resulted in two basic
observations for the general cases. First, it is very expensive to recurse through
the structure of a term with the only goal to decide a case expression, and
second, the use of iterators requires a significant effort to maintain informa-
tion about which arguments of a case subject are closed. Therefore, instead of
defining it in terms of iteration, we add a new construct for case analysis to
the calculus, which avoids unnecessary recursion, and maintains closure infor-
mation about its arguments. This simplifies the presentation of the examples
in this section tremendously.

5.1 FEzamples

We start with some simple examples, motivating the case operator which is
then formally introduced at the end of this section.

Example 5.1 (Comparison) To check if a natural number is greater than
0 we would like to write informally

gt0 m = case m of z = false

| (s m') = true

Case distinction is generally triggered by the head constant of the case subject.
As for iteration, the subject of case must be always closed. This property
derives from the fact that a definition by cases is only complete iff all possible
constructors of its subject are covered. The case of m = z : nat should trigger
false : bool; otherwise m = s n holds, which should trigger some object Mj.
The type of M, is determined by the type of s : nat — nat: since m is atomic
and closed, all parameters to the head constructor in m are also closed. The
target type of M, is bool, justifying M, : Onat — bool. Hence M; = An:
Onat. true formalizes the informal notation.

The case construct can be easily generalized for objects of arbitrary closed
atomic types. The challenge in designing a case operator for our system is
to extend this generalization to functional types. This is a difficult endeavor
because subterms of the case subject are in general not closed since they
may contain free parameters, and the system including case should still be
conservative over the simply typed A-calculus.

The case construct in its simplest form is written as “case (A) M (Z)” where
M (of type OB) is the subject of case, and Z is a list containing matches for
all constructors of type 7(B). If B is a simple type, A is the result type of
the case, and if B is higher-order, then the result type of the case depends on

29

both, A and B.

Example 5.2 (Comparison with case) The greater-than function from ex-
ample 5.1 can be formulated as follows:

gt0 : Onat — bool

= Am:Onat. case (bool) m (z = false| s = An:Onat. true)

Boolean connectives (see Example 4.6) as “not” and “or” can be expressed
using iteration (which we have not done) but they can also be expressed using
case (as can “and”). We require all argument and result types to be boxed,
because the combination of Boolean connectives allows the result of one con-
nective to appear as the argument of another.

Example 5.3 (Boolean operators)

not B = case B of or By By = case B; of
(true = false (true = true
| false = true) | false = Bs)

The formal representation of the Boolean operations is as follows:

not : Obool — Obool or : Obool — Obool — Obool
= A\B:0Obool. = AB;:0bool. AB;:Obool.
case (Obool) B case (Obool) B;
(true = box false (true = box true
| false = box true) | false = Bs)

We continue our presentation with subtraction (which we already assumed to
be representable in Example 4.8) where we will use a combination of iteration
and case distinction.

Example 5.4 (Subtraction) Among others, the type of subtraction could
be Onat — Onat — Onat. It is informally defined as follows.

minus m z =m
. N
minus m (s n') = case mof z = z

| (s m') = (minus m' n')

30

Both arguments of minus must be closed, because we use case distinction over
the first argument and iteration over the second.

minus : Onat — Onat — Onat
= Az:0Onat. Ay : Onat. it (nat — (Onat — Onat)) y
(z +— Am:Onat.m
| s —= An:(Onat — Onat).
Am:Onat. case (Onat) m
(z = box z

| s = Am/:Onat. (n m))) =

The case construct can also be used to distinguish cases over functions. For
example, we can test if a given (parametric!) function is the identity or not.

Example 5.5 (Identity test) Below is a function which decides if a para-
metric function mapping exp to exp is the identity function or not. The func-
tion has type O(exp — exp) — bool.

id-test £ = case F of Az:exp. (app (E) z) (E; z)) = false
| Ax:exp. (lam Ay:exp. FE z y) = false

| Ax:exp.z = true

Following the same idea as above we match in the first case F' with app : exp —
(exp — exp) and return some object M, (representing false). The arguments
of app might mention the free parameter z, introduced by the case subject.
Hence, before boxing each argument, it must be closed by abstracting over
z: box (Az:exp. F; x) and box (Az:exp. Es), both of type O(exp — exp).
The type of M, is therefore O(exp — exp) — O(exp — exp) — Obool, and
M, = AE;:0O(exp — exp). AEy:O(exp — exp). box false.

A very similar argument can be applied to determine the type of M;, which
is the match for lam : (exp — exp) — exp. = can occur free in the body F of
the A-expression, hence M; will be passed the boxed object Az :exp. E which
gives M; the type O(exp — (exp — exp)) — Obool.

The parameter x might occur in the body of the case subject. Here again, as
for the iterator, the matching object M, is not expressed as a part of the case
construct, the case object is rather a function expecting M, as an argument.
M, must be of type Obool.

31

The identity test function is hence represented as follows.

id-test : O(exp — exp) — Obool
= AE:0O(exp — exp). case (Obool) E
(app = AE;:0O(exp — exp). AEy:O(exp — exp). box false

| lam = AF:0O(exp — exp — exp). box false) (box true)

To show how more than one case construct can be nested we develop briefly
two functions to test if an expression from Example 2.3 is a -redex or if it is
an 7-redex. To remind the reader - and n-reduction are defined as follows.

f-reduction: (A\z. Ey) Ey ~ [Ey/z|(E})

n-reduction: A\z.(E z) ~» E where x does not occur free in E

(Az. Ey) E, is called a f redex, A\z. (E z) is called an n-redex if = does not
occur free in E. These examples can be easily extended to the actual reduction
functions.

Example 5.6 (3-redex test) The [-redex test function has type Oexp —
Obool and can informally be defined as follows.
beta-test F' = case F' of (lam E) = false
| (app F1 E3) = (case Ej of (lam E') = true
| (app E] EY) = false)

Its representation in our calculus is:

beta-test : Oexp — Obool
= AF':Oexp. case (Obool) F
(lam = AE:O(exp — exp). box false
| app = AE;:Oexp. AE,: Oexp.
case (Obool) E;
(lam = AE':0O(exp — exp). box true
| app = AE] :Oexp. AE}: Oexp. box false))

Example 5.7 (n-redex test) The function to decide if a given expression
is a n-redex is more difficult to define. Clearly, it will have type Oexp —

32

Obool. The main difficulties arise because the decision cannot simply be made
by considering the structure of the expression, but we must ensure the side
condition for n-redices. This can be accomplished using the functions const
(from Example 4.7) and id-test defined above.

eta-test F' = case F' of
(lam E) = case F of Az:exp. (lam \y:exp. E' z y) = false
| Az:exp. (app (E] z) (Ej 7)) =
(and (const E}) (id-test EY))
| Ax:exp.z = false

| (app Fy E5) = false

Its representation in our calculus is:

eta-test : Oexp — Obool
= A\F:Oexp.

case (Obool) F

(lam = AE:0O(exp — exp).
case ((Obool) E
(lam = AE’:0O(exp — exp — exp). box false
| app = AE]:0(exp — exp). AE):O(exp — exp).

(and (const E}) (id-test EY))) (box false)
| app = AE} :Oexp. AE,: Oexp. (box false))

5.2 Formal Discussion

We begin now with the formal discussion of the case construct: Differently from
iteration which traverses the entire structure of the subject, case only recurses
down to the head constructor of the subject leaving possible arguments aside.
The subject for selection is always of the form Az, : B;... Az, : B,,.c M1..M,,
with a head constructor ¢ of type B’. Operationally speaking, during the
process of selection, the head constructor is replaced by an object M repre-
senting the selected case. At a first glance one might suspect that M’s type is
B — .. —» B/, — A where the B]’s are the argument types of ¢ and A is the
result type of the case. This is not powerful enough. Since case distinction re-
quires its subject to be closed, no further case distinction could be performed

33

over any of the objects Mj..M,,. To solve this dilemma we close each argument
M; by abstracting over each variable which might possibly occur free in it. It
should be clear that all those variables can be determined because each M; is
a subobject of the case subject. This allows us to finally close the newly con-
structed object with a box. To make this more formal we define a generalized
A-abstraction which we call abstraction closure: A{¥}. M stands for a closed
object where M is wrapped in A-abstractions defined by ¥

M3 M:=M MU,z:B}. M = A{U}. (\z:B. M)

and similarly its type is defined as ITI{¥}. A even though no dependencies are
involved, and the variable names are not used:

[{-}. A=A T{¥,z: B}. A:=1{V}.(B— A)

Returning to our discussion we can now write box (A{U}. M;) for the ab-
stracted and closed versions of M; where U is a context accounting for all
free variables possibly occurring in M;. It follows that this argument closing
operation determines the type of M which we discuss next.

Example 5.5 raised the problem of assigning types to the arguments of the
objects M, and M,; which represent the computational meaning of the cases
app and lam, respectively. Generalizing the idea proposed in this example
leads to the notion of case types. As pointed out above, the general form of the
canonical case subject is A{U}. h M;..M,, with a head constructor h of type B’.
The type of the case subject is hence II{¥}. a for some atomic type a. Hence h
can either be a constructor (defined in) or a parameter (defined in ¥) with
target type a. Selecting a case for h means to select an object Mj. M; must
be a function, which expects as arguments box (A{¥}. M;)... box (M{¥}. M,,).
Its type can hence be derived from the type of the case subject B = II{V}. a,
the result type A, and the type of the constructor A : B’. We call the type of
My, inner case type and abbreviate it by C (II{V}. a, A, B'):

Definition 5.8 (Inner case types)

Aifa=4d
C (II{¥}.a),A,d) =

a' otherwise

C (IL{T}.a), A, (B; — B,)) := O(II{T}. B)) — C (IL{T}.a), A, By)

Note, that for all examples so far 7(B) = 7(B’). Hence the otherwise case in
the definition above does not apply for any of these examples. This changes

34

for the next example.

Example 5.9 (Equality formulas in higher order logic) Consider a func-
tion which returns true if a higher-order formula is of the form ¢; = t5, other-
wise false. We call this function eg-test. The type of this function should be
O((o — i) — o) — Obool. Informally we would write:

eq-test F' = case F' of
Ar:o — i.forall (Az:o. F' r z) = false
Ar:o — i.impl (F] r) (Fy r) = false

Ar:o —i.eq (t) r) (th r) = true

The straightforward representation of this function in our system is

eq-test : O((o - 1) = o) = (O((o = i) = 0) — i) — Obool
— AF:0((0 — i) — o).
case (Obool) F
(forall = AF':0((o — i) — i — 0). box false
| impl = AF{:0((0o — i) = 0). AF5:0((o — i) — o).
box false

|eq = At :0((o — i) — i). Ath:O((o — i) — i). box true)

The type of eg-test seems unnecessarily cluttered. This stems from the obser-
vation that the parameter r from the informal presentation can never occur
in the head position of F. It is an immediate consequence of 7(0 — i) # o.

Hence one would expect eq-test’s type to be O((o — i) — o) — Obool, omit-
ting the second argument type O((o — i) — o) — i. Currently, our system
does not treat this special case for the sake of simplicity of the meta theoret-
ical discussion in Section 7. Thus a dummy argument must be supplied when
executing eq-test.

The type of case (A) M (Z) is called an outer case type C* (B, A, B) where B
is the type of M. C* (B, A, B') is defined for some pure type B’ as follows.

35

Definition 5.10 (Outer case type)

C* (B,A,a) :=C (B, A,a)

C* (B, A, (B, — By)) := C (B, A, B,) — C* (B, A, By)

The result of the selection process — i.e. the execution of the case construct
— is an object which resembles the (canonical) subject of the case in struc-
ture, but the head constant is replaced by some matched object carrying the
intended operational meaning of the selected branch. Even though the subject
of case is closed before the selection process, we need to deal with embedded
A-abstractions introducing parameters. We can simply replace variables = of
type B’ by new variables z’ of type C (B, A, B'), where B is the type of the
case subject.

Definition 5.11 (Match)

Matches: = == - | (2| ¢ = M)

The domain of a match is a sub-signature S§(3;7(B)) containing all construc-
tors whose target type equals 7(B). The form of case follows naturally: We
extend the notion of objects by

M == ... | case (A) M (Z)
and extend the typing rules for case. To do so we must introduce a new typing

judgment for matches =: A;T'F = : (B = A)(X). E is well-typed if it provides
an object of inner case type for every constant in some signature .

Definition 5.12 (Typing judgment for case) exztending definition 3.1

A;THM:OB A;THE: (B = A)(S(S;7(B)))

TpCase
A;T F case (Ay M (E) : C* (B, A, B)
TmBase
A;T - (B = A)(Y)
ATHE: (B= A) () ATHM:C(B,AB)
Tmlind

ATH(E|e= M): (B= A)(X,c: B')
To summarize definition by cases we return to Example 5.5 (id-test). As in the

iteration case, it is necessary to first derive the type of the function, because
the subject of case must be closed. id-test has type O(exp — exp) — Obool.

36

The second step is to examine the argument type B = (exp — exp) and
the signature Y for possible constructors and parameters of this type. For
id-test we find only three candidates: lam, app, and z (the newly introduced
parameter). After determining their types the match objects M;, M,, and M,
must be defined.

Having done this, a match must be constructed, representing only the con-
structors from the signature ¥ and the according case objects (£ = lam =
M;,app = M,). The case construct then results in a function which must be
applied to the object M,.

The operational semantics of case is defined by one rule using the concept
of selection. Because the subject of case is closed we follow the example of
elimination and define selection along its canonical form V' (of type B). Even
though the subject of case is closed before the selection process, we need to deal
with embedded A-abstractions introducing parameters. We can simply replace
variables z of type B’ by new variables 2’ of type C (B, A, B'), where B is the
type of the case subject. The definition of a match is extended accordingly.

Definition 5.13 (Match)

Match: = == ... | (E |z = 2)

The selection process then transforms V' of type B into {B = A;Z;-}(V) of
type C* (B, A, B). That this transformation is well-defined is a result we show
later in this paper. The selection process is formally defined by the following
rules.

Definition 5.14 (Selection)

{B = A;57}(c) = Z(c) (SeConst)
{B = A% 0}(z) ~ Z(a) (SeVar)
{B= A5 0} \a:B.V) =

Au:C (B, A, B).{B = A;Z|z = u; (,z : B)}(V) (SeLam)
(B= A;S0 (Wi Va) = {B= A;Z; 0} (V) (bow M{T}.V5) (SeApp)

An arbitrary canonical form of a case subject of type B has always the form
MU} ¢ My..M,. Performing selection means to first traverse all A-abstractions,
and introducing new variables for each parameter. This is done by rule SeLam.
While traversing the body of the canonical form, each argument M; must

37

be closed under ¥ and boxed which is expressed by rule SeApp. Eventu-
ally the head constructor c is reached. If ¢ is a constructor/parameter then
SeVar/SeConst replaces it by the corresponding object from match Z.

The selection process is triggered by an additional evaluation rule, which de-
fines the operational semantics of case.

Definition 5.15 (Evaluation judgment) exztending Definition 3.3:

UM< bozM':0B
M AV B

U+ {B= A;Z;-}(V') > V:C* (B, A,B)

EvCase

U I case (A) M (E) -V :C* (B, A, B)

The reader can now convince himself that the operational semantics yields
the expected results on the examples of this section. This concludes the pre-
sentation of the modal A-calculus. In the next sections, we discuss its meta-
theoretical properties.

6 Preliminary results

In the remainder of the paper we seek to prove that the modal A-calculus is
a conservative extension over the simply-typed A-calculus from Section 2. A
milestone on the way towards this result is the canonical form theorem which
we present in the next section. It guarantees that every object of pure type
possesses a canonical form. As a corollary of the canonical form theorem we
obtain a type preservation result which guarantees that types are preserved
under evaluation.

In the remainder of this paper we will need some more basic technical notions
and properties which we are presenting in this section. Due to the basic char-
acter, a lot of the forthcoming lemmas are clear and their proofs do not require
more than easy inductive arguments. If appropriate we omit the proofs. All
other lemmas in this and in the following sections require lengthy proofs. For
the sake of brevity, we give only a brief summary of each proof. Full details of
the proofs may be found in [DPS97].

6.1 Context

In Section 3 we described the distinction between the parametric function
space A; — Ay and the primitive recursive function space A; = A, which

38

made a refinement of context ¥ from Section 2 necessary: We introduced the
modal context A, whose variables range over closed objects and the arbitrary
context I' whose variables range over potentially open objects.

In the following discussion it will be necessary to reason about contexts. The
arguments will involve extensions of contexts which we write as [' > I' and
which are defined in the usual way. In the case of a modal/non-modal context
pair A; ', as it is used in the typing judgment, we implicitly stipulate that we
only consider extensions A’ of A which yield a valid context A’;T". A similar
remark holds for extensions of I'.

Closely related to contexts are substitutions which we introduce after dis-
cussing the typing relation of our system.

6.2 Typing

One basic property which is needed in the proof of Lemma 7.14 in the next
section is the admissibility of weakening for the typing relation. The following
lemma has two parts, the first part discusses weakening in the modal con-
text, the second weakening in the regular context. We omit the easy proof by
induction.

Lemma 6.1 (Weakening)

(1) If A;TEM A and A" > A then A, THM @ A
(2) FA;TFM:Aand T > T then A;T'F M : A

Besides weakening we require two substitution lemmas. One which allows sub-
stituting a closed well-typed object for a modal variable, and another which
allows substituting an arbitrary well-typed object for a non-modal variable.
We again omit the easy inductive proofs.

Lemma 6.2 (Modal substitution lemma)
IfAJy: AT EM: Ay and A;- = M' 2 Ay then AT F [M/y|(M) = Ay
Lemma 6.3 (Regular substitution lemma)

IfFA;Ty: Ay M: Ay and A;TH M2 Ay then AT F [M'/yl(M) @ A

39

6.3 Substitution

Contexts and substitutions are closely related. A substitution is defined as
0:="-| 0, M/x. Due to the presence of two contexts we carefully distinguish
between a modal substitution # which substitutes closed objects for variables
defined in a context A and p which substitutes arbitrary objects for variables
defined in a context I". We write 6; o for such a pair of (necessarily disjoint)
substitutions. Being disjoint means, that # and ¢ do not have any variable
names in common in their domains. This is guaranteed, because the contexts
A; T cannot declare the same variable name twice.

In our system substitutions are only applied to well-typed objects. Moreover a
substitution must substitute something for every free variable in the object. We
make this intuition about well-typed substitutions more precise by introducing
a typing judgment A"; IV = (6; 0) : (A;T) for substitutions. #; ¢ can be applied
to objects which are well-typed in context A;I'. The range of the substitution
f; o are objects which might depend on free variables from A’;T".

Definition 6.4 (Typing substitutions)

— TSBase
ALTTE(54) = ()

A FM:A AT E (850 @ (A1)
AT E (0, M/z;0) @ (A, x: A;T)

TSMod

AT'"EM: A AT R (850 @ (A1)
AT (0;50,M/x) © (AT, 22 A)

TSReg

Throughout this paper we apply a substitution (6; p) satisfying A’; T" F (6; o) :
(A;T) only to well-typed objects M, well-typed term replacements €2, and well-
typed matches =. The application of a substitution @; p is defined as follows:

Definition 6.5 (Substitution application) Let 0; ¢ a substitution.

M ifb(z) =M
[0; 0)(z) = , (SBVar)
M if o(x) = M
[6; 0] (c) = ¢ (SBConst)
[0; 0](Ax:A. M) = Ax: A.[0; 0,2/ x| (M) (SBLam)
[0; o] (M1 Ma) = [0; 0] (M) [0; 0] (M2) (SBApp)

40

(05 o] (M1, Ma)) = ([0; o] (M), [6; 0] (M>)) (SBPair)
[0 o] (fst M) = fst [0 o](M) (SBFst)
10; 0|(snd M) = snd [0; o](M) (SBSnd)
[0; o] (boz M) = boz [0;](M) (SBBox)
[6; o](let box x = My in My) =

let box x = [0; 0|(M,) in [0, z/x; o](Ms) (SBLet)
[0; o0](case (A) M (Z)) = case (A) [6; o](M) ([8; 0](Z)) (SBCase)
[6; o] (it (w) M (2)) = it {w) [6; o] (M) ([6; 2] (2)) (SBIt)

Substitution on replacements €1 is defined as:

[6; 0] (+) = - (SBOmegaEmpty)
[0; 0](2]c = M) = [0 0](2) | (¢ — [6; 0] (M)) (SBOmega)

Substitution on matches = is defined as:

[0; 0](-) = - (SBXiEmpty)
[0;0l(ZE | c= M) = [6; 0|(B) | (c = [0; 0](M)) (SBXi)

The rule SBVar is well-defined because every variable subject to substitution
is uniquely defined either in # or in p. SBBox is non-standard. Since a boxed
term is closed it can only contain variables representing closed objects and
no variables representing arbitrary objects. This is easily verified by inversion
of the TpBox rule because we assume the subject of substitution always to
be well-typed. This means, that p will not be used during the substitution
process and can hence be discarded.

We write idr for the identity substitution. The identity substitution mapping
the context A;I to itself has hence the form: A;I' F (ida;idr) @ (A;T).

Two different notions of substitution have been used in the presentation of our
system so far: One is the substitution (6; p), the other is the substitution as
used for example in the evaluation rules EvApp and Evlet: [M;/z](M,). They

interact in the following way:

Lemma 6.6 (Property of substitutions)

(1) [M'/2](10; ¢, z/x](M)) = [0; ¢, M" /] (M)

41

(2) [M'/2](10, z/z; o] (M) = [0, M’ /x; o] (M)
Weakening is also admissible for the typing judgment of substitutions.

Lemma 6.7 (Weakening for substitutions)

(1) If AT E (05 0) - (A
A

[') and A" > A’ then A";T'+ (6;0) : (A;T)
(2) FACT'E (00) + (AT)

) and T > T then AT = (6;0) : (4,

?

By induction we can prove that restricting a well-typed substitution 6; g to 8; -
is also well-typed. If the domain of 6; p is A;T', the domain of the restricted
substitution is clearly A;-.

Lemma 6.8 (Modal substitution restriction)
If AT (050) @ (A;T) then A'5-+ (0;-) = (A;-)

Proof: by induction on the derivation of A’; TV = (6;0) : (A;T) (see [DPS97,
Lemma 6.19]) O

These preparatory results lead to a general substitution lemma for the typing
judgment. If an object M is well-typed in a context for which a substitution is
well-defined then its application to M yields an object of the same type as M
in the context of the substitution. Since objects are also defined in terms of
term replacements and matches we must extend the result to both constructs.

Lemma 6.9 (Substitution lemma for typing relation)

Let A';T'F (05 0) @ (A1), then the following holds:

(1) If A;TE M 2 A then AT F[6;0](M) - A

(2) If A;sT FZ=: (B = A)(X') then A';T' = [0; 0](2) : (B = A)(X')

(8) If A;T FQ: (w)(X') then ATV = [6; 0](Q) = (w)(X)

Proof: by mutual induction on the derivations of A; ' M : A, A;T'F =
(B = A)(Y) and A;T F Q : (w)(¥'), using Lemmas 6.1, 6.7, and 6.8 (see
[DPS97, Lemma 6.21]) O

As corollary we can apply the substitution lemma to the identity substitution
and obtain (by a short inductive argument) the trivial result that if A;T"
M : A then [ida;idr](M) = M.

42

6.4 Atomic, canonical forms, and evaluation

For atomic and canonical form judgments there is also a weakening result.
The proof is a straightforward mutual induction on the derivations of atomic
and canonical forms, and we omit it here.

Lemma 6.10 (Weakening for atomic and canonical forms)

(1) If Y=V | Band V' >V then ¥'+-V | B
(2) If U=V B and V' > W then ¥'-V {} B

A slightly more complicated property of atomic and canonical forms is that
the type of an object can be directly inferred from the judgment.

Lemma 6.11 (Typing of atomic and canonical forms)

(1) If UV | B then ;U +V : B
(2) If UV 4 B then ;U +V : B

Proof: by mutual induction on the derivationsof V-V | Band Y+ V {} B
(see [DPS97, Lemma 6.25]) O

Evaluation derivations can also be weakened. The omitted proof proceeds by
induction on the evaluation derivation.

Lemma 6.12 (Weakening for evaluation)

IfYEM—V:AandV >V then VEFM<—V:A

6.5 Subordination of types

The subordination relation accounts for all dependencies which are introduced
by the signature or by the subject type of iteration or case. In the remainder
of this section we characterize and discuss a few major properties of type
subordination which will prove very useful when we tackle the proof of the
canonical form theorem.

There is a close relationship between source types of a sub-signature and the
subordination relation. This relationship can be characterized by the following
observation: Every source type of the sub-signature is trivially subordinate
to the target type of the constructor. Furthermore, the weak subordination
relation is transitive: If a type a; is subordinate to a type a; and ay is weakly
subordinate to a type as, then a; is automatically subordinate to as. In this

43

case the result follows trivially from the Definition 4.23 of subordination.

Lemma 6.13 (Properties of subordination) Let ¢ : C € X, B a pure
type.

(1) If a € Source(C) then a 4s,p 7(C)
(2) If a; 4s.p ay and a; 4s.p a3 then a; ds;p a3

Proof: direct (see [DPS97, Lemma 6.30]) O

Since parameters are variable names which are represented in a context, we
must extend the notion of subordination to contexts: For all parameter types
B’ if the target type 7(B') is subordinate to a, all source types of B" are also
subordinate to a.

Definition 6.14 (Subordination on contexts) Let a be an atomic type.

- 4. G

\If,.T : B’ dx.B G
Zﬁ‘l’ dx.B G and ZfT(BI) !E;B a

then for all y € Source(B') : y 4s.p a

It will become clear during the proof of the canonical form theorem, how
context subordination is used. If a variable z of type B’ is defined in a con-
text U and U «x.p 7(B) then all source types of type B’ are automatically
subordinate to the goal type of B.

Lemma 6.15 (Properties of context subordination) Let B a pure type.

If U =¥y,2: B, Uy and ¥V A,z 7(B) then 7(B') 45 7(B) implies that for
all y € Source(B'): y 4s,5 7(B)

Proof: direct (see [DPS97, Lemma 6.32]) O

As we have motivated earlier, only the top-level parameters, defined by the
type of the iteration or case subject B, are relevant for the subordination
relation. We inductively define the set of parameter types introduced by B as
follows.

44

Definition 6.16 (Set of parameter types)

Pla) = {}

P(Bl — B2) = {Bl} U P(BQ)

It can be shown, that if B’ is such a parameter type then all source types
of B must be also source types of B. This is clear, because every parameter
type corresponds to a source type of B and B must be a function type. Every
source type of B’ is hence a source type of B. We omit the proof.

Lemma 6.17 (Subset property of P)
For all B' € P(B) : Source(B') C Source(B)

If a parameter type B’ of a type B is given, and a is a type which is immediately
subordinate to the target type of B’, then we have a <ip 7(B'), because every
source type of B’ is also a source type of B.

Lemma 6.18 (Property of dynamic typing)
If B' € P(B) then a <p 7(B') implies a < 7(B')
Proof: by induction on B (see [DPS97, Lemma 6.34]) O

While iteration traverses a subject of type B it may encounter constants of
type C whose target type does not occur in the equivalence class Z(3; B). We
have seen this in Example 4.8 where nat ¢ Z(X; db) and in Example 4.5 where
i ¢ Z(3;0). For such a constant ¢, 7(C) is always subordinate to 7(B) as we
will see in Lemma 7.32 (Auxiliary lemma for iteration), but never vice versa.
Since the elimination process (w; Q)(M) must return a well-typed object, we
must require that w maps ¢’s constructor type C' to C. Thus, more formally,
we must show that if 7(C) ¢ Z(X2; B) and 7(C) €g 7(B) then (w)(C) = C.
We split this proof into three lemmas.

Lemma 6.19 (Properties of subordination)
If 7(C) ¢ Z(X; B) and 7(C) 4s;p 7(B) then 7(B) As;p 7(C)
Proof: by contradiction (see [DPS97, Lemma 6.37)) O

If the target type of B is not subordinate to the target type of C, then none
of C’s source types can be a member of the equivalence class. If it were then it

45

would also be subordinate to the target type of B, violating our assumption.
Lemma 6.20 (Independence)

If 7(B) As,p 7(C) then Source(C)NZI(Z;B) =0
Proof: by contradiction (see [DPS97, Lemma 6.35)) O

The third lemma ensures that the type replacement acts as identity on all
types C' whose source types are not in its domain.

Lemma 6.21 (Properties of type replacement) Let ¢ : C € ¥, a arbi-
trary and F w : «

If Source(C)Na =0 and 7(C) ¢ a then (w)(C) =C
Proof: by induction on C (see [DPS97, Lemma 6.36)) O

This concludes the section of the basic preliminary results. In the next section
we address the problem of the existence of canonical forms for well-typed
objects in our calculus.

7 Canonical form theorem

The aim of this section is to prove the canonical form property of the modal
A-calculus. The main result is that every object of pure type in a pure context
possesses a canonical form. In our notation this property is expressed as: if
Wk M : Bthen W - M {t V : B. This result implies the conservative
extension property of our system which we will show in Section 9. We prove this
by Tait’s method, often called an argument by logical relations or reducibility
candidates. In such an argument we construct an interpretation of types as
a relation between objects, in our case a unary relation P. The proof using
logical relation proceeds then in two steps. First, we show that each member
of the logical relation evaluates to a canonical form. Second, we prove that
each well-typed object must satisfy P and hence be a member of the logical
relation.

Before we go into details of the logical relation in Section 7.2, we derive in
Section 7.1 some lemmas which are essential for the argument, and prove
the first step. The second step of the argument is presented in the following
four sections: Section 7.3 establishes some basic results, Section 7.4 introduces
some more logical relations — defined on substitutions — and eventually we
motivate and prove an auxiliary lemma for iteration (Section 7.5) and an
auxiliary lemma for case (Section 7.6). Finally, Section 7.7 discusses how to

46

assemble all these results to a proof of the canonical form theorem.

7.1 Basic properties

Some of the following proofs rely on the fact, that canonical and atomic forms
evaluate to themselves. This fact, even though it might seem trivial, requires a
mutual inductive argument: To prove that atomic and canonical forms evaluate
to themselves we must generalize the property in the following way:

Lemma 7.1 (Self evaluation)

(1) fUY-M <V :Band V-V BthenU M4V :B
(2) f V-V BthenU+V < V:B
(3) If UV | BthenU -V < V:B

Proof: by mutual induction on the derivation of ¥ -V f B, ¥ - V {} B,
and ¥ -V | B, using Lemmas 6.11 and 6.12 (see [DPS97, Lemma 7.1]) O

Another result which seems intuitively clear but must be proven is the fol-
lowing: by definition objects evaluate to other objects under the judgment
VU = M 1t V : B. Since this is the judgment for canonical evaluation, we expect
V' to be canonical. Contrary to the intuition, the proof is not straightforward
since the notion of conversion to canonical forms depends on the evaluation
judgment. It is also not very sensible to try to prove that for every object M,
U - M < V : A implies that V is a canonical form. For example, consider
the signature from example 2.3: It is easy to see that

- Az:exp. (A\y:exp.y) z — Az:exp. (\y:exp.y) z : exp — exp
but it is also clear that Az : exp. (Ay:exp.y) z is not canonical, because the

body of the A-expression can be -reduced. However, it holds when restricted
to atomic types.

Lemma 7.2 (Property of evaluation results)

(1) [VFMAV:BithenUFV ¢ B
(2) fVEM—V:athenUEV |a

Proof: by mutual induction on the derivations of ¥ - M f+ V : B and
UM< V:B (see [DPS97, Lemma 7.2]) O

The constant app from Example 2.3 is not a canonical form either. Canonical

forms are objects in n-long (-normal form. app can be easily n-expanded
to Az : exp. A\y:exp.app = y. According to Lemma 7.2 (2) the result of an

47

evaluation is canonical only if it is an object of atomic type. Nothing is said
about functions. In general it can be shown that all objects M evaluating to
an atomic form, possess a canonical form V.

Lemma 7.3 (Canonical evaluation)
If9+-M—V:BandV+-V | BthenWEMAV':B foraV’

Proof: by induction on B, using Lemmas 6.12 and 7.2 (see [DPS97, Lemma 7.3))
]

7.2 Logical relation

Due to the lazy character of the modal A-calculus, the interpretation of a type
A is twofold: On the one hand we would like it to contain all canonical forms
of type A, on the other all objects evaluating to a canonical form. This is
why we introduce two mutual dependent logical relations: In a context W, [A]
represents the set of objects evaluating to a value which must be an element
of |A|. For the first we write ¥ = M € [A], for the second ¥ -V € |A|.

Definition 7.4 (Logical relation)

UVFMe[A]l ¥ FM:Aand VM —V:Aand VEV € A
UVEVelAl &
Case: A=aand VFV {a
Case: A=A, — Ay and
either: V = \x: A1. M and for all ' > U: V' - V' € |A] = V' F
[V'/z](M) € [As]
or: VEV | Al — Ay and for all W' > U: U EV VA =W EVV €
| A
Case: A= A; X Ay andV = (M, M) and ¥+ M; € [A1] and ¥+ M, €
[4:]
Case: A=0A":V =box M and -+ M € [A']

The first logical relation requires its elements to be well-typed, a property
which will be used in Lemma 7.36. ¥ - M € [A] must imply that M has type
Ain -; V. In Lemma 7.16 we show that this property propagates to the logical
relation of values.

Objects were defined in terms of term replacements and matches (see Sec-
tion 4, Section 5). Later in this section we need to show that every object
defined in a term replacement or match is a member of a logical relation.
To make our presentation of this circumstance cleaner and easier to under-
stand we introduce the notion of logical relations for term replacements. A

48

term replacement is an element of the logical relation defined by a signature
> and a context representing parameters 0, if every object associated with
each parameter or constructor satisfies the appropriate logical relation. This
relation is determined by the resulting type of applying the type replacement
w (defined by the iterator object) to the parameter or constructor type.

Definition 7.5 (Logical relation for term replacements) ¥ + THQe
[(W)(Z; ¥)] =&

Case: If U =- and & = - then Q = -

Case: If U = - and S =Y c: Bthen Q= | ¢c— M and U - M €
[(w)(B)] and ¥ + ¥+ Q' € [(w)(Z;-)]

Case: If U =V z:BthenQ=Q |z u and ¥ - u € [(w)(B)] and
T+ T FQ e [(w ()]

The context defined for the logical relation of term replacements is split into
two parts U+. U represents the context of variables which might occur free in
the objects associated with constructors (note: not parameters), and U stands
for the context of newly defined variables which rename the original param-
eters. We must keep both contexts separated, because to prove Lemma 7.35
and Lemma 7.32 we require a substitution, which acts as the identity on all
variables defined in W, but not necessarily on 0.

Every object in the logical relation [A] is well-typed by definition. This prop-
erty propagates to term replacements.

Lemma 7.6 (Type preservation for term replacements) IfU¥+ Q€
[{(w)(Z;)] then ;U FQ: (w)(X)

Proof: by induction on ¥ (see [DPS97, Lemma 7.6]) O

Similarly we define the logical relation for matches. A match is an element of
the logical relation defined by a signature ¥ and a context representing param-
eters \il, if every object associated with each parameter/constructor satisfies
the appropriate logical relation. This relation is determined by the inner case
type of the parameter/constructor type. For the same reasons as for the term
replacement we define the logical relation using two contexts: ¥ and .

Definition 7.7 (Logical relation for matches)
UV+UFEZEe[(B= A5V«

Case:]f\ifz-andEz-thenE:-

Case: If UV = - and L =Y ,c: B thenZ2 =2 |¢c=> M and U + M €
[C (B,A,B)] and ¥+ ¥+ = € [(B = A)(X;)]

Case: If U=V z:B thenE=Z' |z =u and U - u € [C (B, A, B')] and
U+ FEe[(B= A 0]

49

Every object in the logical relation [A] is well-typed and so is every term re-
placement. As one might expect, this property can also be shown for matches.

Lemma 7.8 (Type preservation for matches)

U+ FZ€[(B= A)(S;)] then U - = : (B = A)()
Proof: by induction on ¥ (see [DPS97, Lemma 7.8)) O

The next few lemmas show some useful properties implied by the logical rela-
tions, all necessary to eventually prove the canonical form theorem. The first
lemma is a standard weakening lemma for logical relations:

Lemma 7.9 (Weakening for logical relations)

(1) If U = M € [A] and ¥' > T then V' M € [A]
(2) If UV € |A| and ' > U then ¥' FV € |A]

Proof: by mutual induction on A, using Lemmas 6.1, 6.10, and 6.12 (see
[DPS97, Lemma 7.9]) O

We also need a weakening result for the logical relation of term replacements.
For our purposes it is enough to prove it with respect to W.

Lemma 7.10 (Weakening for logical relations for replacement)
IFU+TFQe[(w(E0)] and ¥ > then ¥+ +Q e [(w)(Z;9)]
Proof: by induction on X, ¥, using Lemma 7.9 (see [DPS97, Lemma 7.10])0

The logical relation for matches was defined analogously to the logical relation
of term replacements. As expected the formulation of the weakening property
is also analogous.

Lemma 7.11 (Weakening for logical relations for matches)

IfU+VHEe[(B= A 0)] a
then ¥+ U' = € [(B = A)(Z; V)

Proof: by induction on X, ¥, using Lemma 7.9 (see [DPS97, Lemma 7.11])0

The logical relations for term replacements and matches play an important
role when we discuss the elimination and selection process, respectively. Recall
from Definition 4.29 that the elimination process traverses the structure of the
iteration subject. Eventually constants or parameters will be encountered, and
replaced by a term replacement (2. In the proof of Lemma 7.32 we need to

50

prove that the resulting object satisfies the appropriate logical relation. {2 is
an element of the logical relation of term replacements. The attentive reader
has probably already recognized that three cases might occur.

(1) A constructor has been encountered which is defined by €.
(2) A constructor has been encountered which has not been defined by .
(3) A parameter has been encountered which must be defined in Q.

The parameters in the third case are all local parameters of the iteration
subject because initially, it is assumed to be closed. During the traversal, €2 is
appropriately extended by new entries to map them to new parameters. Each
of those three cases leads to a different lemma.

If we encounter the constructor ¢ : B defined in 3, which is the domain of
the logical relation for replacement, then (w;2)(c) is in the logical relation
[{w)(B)]. In the case that ¢ : B is not defined in this signature, then (c) is
undefined. In the case that the traversal of the iteration encounters a param-
eter 7 : B defined in ¥, z is being renamed by the term replacement to a new
variable name u, which is an element of [(w)(B)] in context W.

Lemma 7.12 (Access to logical relations for replacements)

(1) IfS=%1,¢:B, % and U+V + Q € [(w)(Z; ¥)] then ¥+ M € [(w)(B)]
where M = (w; Q)(c)

(2) If X(c) is undefined and ¥ + U Qe [(w(; \Ai/)]] then §)(c) is undefined

(8) If U = \111,1" B, ¥, and \Il+\l’ F Qe [(w)(E;9)] then ¥ u e [{w)(B)]
and ¥ =0y, u: (V(B), Uy where u = (w; Q)(z)

Proof: by induction on the structure of \il, Y5 in the first case, by induction
on the structure of ¥, ¥ in the second, and by induction on the structure of
U, in the last (see [DPS97, Lemma 7.12-7.14]) O

The situation for matches is very similar. The argument follows the same
pattern as for elimination. Recall from Definition 5.14 that the selection pro-
cess traverses the case subject to find its head constructor. In the proof of
Lemma 7.35 we need to show that the result of applying the match = to the
case subject satisfies the appropriate logical relation. = is an element of the
logical relation of matches. Contrary to the term replacement only two cases
can occur, because the case object is well-typed and closed.

(1) A constructor is the head constructor which is defined in =
(2) A parameter is the head constructor which is defined in Z.

First, if ¢ : B' is the head constructor, it is accounted for in = and {B =
A; E; W} (e) is of correct type and an element in the logical relation [C (B, A, B')].

51

Second, if z : B’ is the head constructor, there must be a match in Z, s.t.
{B = A;E;¥}(z) is of correct type and an element in the logical relation
IC (B, A, B)].

Lemma 7.13 (Access to logical relations for matches)

(1) IfS=%1,¢:B,% and U+ U + E € [(B= A)(Z;)] then U - M €
IC (B, A, B')] where M = {B = A;Z;V'}(c) for an appropriate V'

(2) If U = WUy,2:B Uy and U+ ¥ + Z € [(B= A)(Z;W)] then ¥ +
u € [C(B,AB)] and ¥V = ¥y, u:C (B,A,B), ¥, where u = {B =
A; 2,0’} (z) for an appropriate V'

Proof: by induction on the structure of ¥, 3, in the first case, by induction
on the structure of ¥y in the second (see [DPS97, Lemma 7.15 and 7.16]) O

Two principal properties must be shown for the proof of the canonical form
theorem via logical relations: First, every element of a logical relation has a
canonical form, and second, every well-typed object is an element of the logical
relation defined by its type, More formally:

If U+ Me[B] then U M4 V:B (1)
If ;U FM: Athen ¥ M € [A] (2)

All necessary lemmas are provided to show Property (1), the easier of those two
properties. Before proving it, we must first generalize its formulation because
the proof depends on the fact that atomic objects of pure type B are always
in the logical relation of values |B|.

Lemma 7.14 (Logical relations and canonical forms)

(1) If V=M € [B] then Y = M 'V : B for some V
(2) FUFV B then UV € |B|

Proof: by mutual induction on B, using Lemmas 6.1, 6.10, 6.12, 7.2, and 7.3
(see [DPS97, Lemma 7.17]) O

In the remainder of this section we show Property (2), which requires a long
and complicated proof. To structure this proof, the remainder of this section is
divided into several subsections, each describing new results which eventually
form the proof of Theorem 7.36.

52

7.8 Properties of the logical relations

Each atomic object has necessarily pure type (as opposed to arbitrary types
introduced in Section 3).

Lemma 7.15 (Types of atomic objects are pure)
If V=V | A then A is pure.

Proof: by induction on the derivation of ¥ -V | A (see [DPS97, Lemma 7.18])
O

This result is needed to show that all objects in the relation of values |A| are
well-typed. The argument refers also to the definition of [A] just containing
well-typed objects of type A.

Lemma 7.16 (Well-typedness of logical relations)
IFUFV €Al then UV : A

Proof: by induction on A, using Lemmas 6.11, 7.14, and 7.15 (see [DPS97,
Lemma 7.19]) a

But this is not the only property objects satisfying relation |A| enjoy. Based
on the self evaluation Lemma 7.1, it is now easy to show that every object in
|A| evaluates to itself.

Lemma 7.17 (Logical relations: Self evaluation of values)
FUFVE|AlthnUFV > V:A

Proof: by induction on A, using Lemmas 7.1, 7.15, and 7.16 (see [DPS97,
Lemma 7.20]) O

A direct consequence of the two previous lemmas is that every object in |A|
is also an object in [A]. This is a result which we use quite frequently in the
proofs of the subsequent lemmas.

Lemma 7.18 (Logical relation subsumption)

IfUFV e |A| then U EV € [A]
Proof: direct, using Lemmas 7.16 and 7.17 (see [DPS97, Lemma 7.21]) O
It is necessary to show that every typable object of type A satisfies the relation

[A]. Consider a typing derivation ending with the typing rule TpApp. The

53

result object of the rule is an application M; M,. M, is a function, M, is
the argument of suitable type. The next lemma shows that it is legitimate to
reason in a similar way with logical relations. If M; satisfies the logical relation

[As — A;] and M, satisfies [As], then (M, Ms) satisfies [A;].
Lemma 7.19 (Logical relation is closed under application)
If U F M €Ay = Al] and ¥ = M, € [As] then U = My M,y € [A]

Proof: direct, using Lemmas 7.2, 7.14, and 7.15 (see [DPS97, Lemma 7.22])
]

The goal of this section is to show Property (2): If ;U M : A then V- M €
[A]. This property cannot be proven without generalization. The problem is
that the context W is not constant throughout a typing derivation (TpLam).
The same observation holds for the modal context (TpLet).

We must hence generalize the formulation, using substitutions. Given a typing
derivation A;I' = M : A and a substitution for A; ', mapping variables from
A; T to objects defined in a context ¥, we can show that the substituted object
[0; 0](M) is indeed an object in [A]. Property (2) is then a consequence of this
result under the identity substitution.

7.4 Logical relations on substitutions

Let us continue with the description of the logical relation for contexts. The
design of the logical relation is twofold, because the domain of a substitution
f; 0 is a pair of contexts: one is the modal context A and the other is the
arbitrary context I'. This distinction is reflected in the design of the logical
relation by the distinguishing two cases.

First, the logical relation for modal context contains all substitutions mapping
variables of type A to closed objects in the logical relation [A].

Definition 7.20 (Logical relation for modal contexts) + 6 € [A] :&

Case: If A = - then 0 = -
Case: If A=A z: Athen =0 M/x and -+ M € [A] and -6 € [A']

Second, the logical relation for arbitrary contexts contains all substitutions
mapping variables of type A to objects in |A|. These objects need not to be
closed. They may depend on new free variables from a context W.

o4

Definition 7.21 (Logical relation for regular contexts) ¥+ p € ['| :&

Case: IfT' = - then p = -
Case: If ' =T"z: Athen o=¢,V/x and V-V € |A| and ¥ | ¢ € ||

As described earlier in this paper, we prefer to see the context A and the
context I' as one combined context. In this sense, it is useful to define a
combined logical relation, which contains both, the logical relation for A and
the one for I'.

Definition 7.22 (Logical relation for combined contexts)

Uk00e[AT] iff FOe[A] and T F g€ [T

The logical relations allow weakening on W. We omit the easy proof by induc-
tion.

Lemma 7.23 (Weakening on logical relation on contexts)

(1) If U o€ || and ¥ > U then V' F g € |T|
(2) If U F6;0 € [A;T] and ¥ > U then V' F 6; 0 € [A;T

Typing rule TpBox suggests that we need to restrict substitutions in [A;T]
to substitutions in [A;-], because boxed objects can only refer to variables in
the modal context. Such a restriction is always possible: every substitution in
[A;T] has the form 6; g, it can be restricted to 6; -.

Lemma 7.24 (Modal substitution restriction)
If U F0;0€ [A;T] then -+ 0;- € [A;]
Proof: direct (see [DPS97, Lemma 7.27)) O

Every substitution 6; o which satisfies a logical relation [A;T] is well-formed
with respect to Definition 6.4 (Typing of substitutions). In the proof we con-
sider the modal part ;- and the regular part -; o one by one. We show this
property in four parts. First we show that 6; - matches A;-, then we show that
- 0o matches -; " in context ¥, and third, that their combination 6; p matches
A;T. Tt follows directly, that every substitution in a logical relation [A;T]
matches the context pair (A;T).

Lemma 7.25 (Well-typedness of substitutions)

(1) If -0 € [A] then ;- F(0;-) : (4;-)
(2) If U g € |T| then ¥ F (+0) : (4T)

(3) If - = (6;) = (A7) and ¥ (50) @ (5T) then ¥+ (6;0) + (AT)
(4) If U+ 6;0 € [A;T] then ;U F (0;0) : (A;T)

Proof: by induction on A in the first case, by induction on I' in the second
case using Lemma 7.18, by induction on the derivation of -;- F (6;-) : (A;-)
in the third case, and the fourth case follows from the previous three. (see
[DPS97, Lemma 7.28-7.31]) O

After this excursion into the basics of well-typed substitutions and their mem-
bership in logical relations, we focus now again on the proof of the canonical
form theorem. With logical relations for contexts we can generalize Prop-

erty (2).
IfA;TEM:Aand ¥ 0;0¢e [A;T] then W [6; 0] (M) € [A]

To derive Property (2) from this generalized formulation it is necessary to
show that ¥ F -;idy € [-; ¥]. Because of the definition of the logical relation
for contexts [-; U] two lemmas are necessary to prove it. First we show that for
every W, U I idy € |¥| holds. This is not trivial, because the proof relies on
Lemma 7.14. Then, we bring this lemma into the desired form: ¥ F -;idy €
[9.

Lemma 7.26 (Identity substitution for context) For all VU the follow-
1ng holds:

(1) Ut idg € |T]
(2) Uk idg € [V]

Proof: by induction on W, using Lemmas 7.14 and 7.23 in the first case, from
which the second case follows directly. (see [DPS97, Lemma 7.36-7.37]) O

Slowly we are approaching the canonical form theorem. Recall, that we are
still trying to show that -; ¥ F A : A implies that ¥ - M € [A]. The logical
relation for contexts has been the first step towards this lemma. Two more
challenging problems must be tackled before we can finish its proof: the role of
elimination and selection. They stem from the definition of the logical relation:
an iterator or a case object, as any other object, can only be in the logical
relation [A] if they evaluate to a value. For iteration (case) this implies that
the result of elimination (selection) must evaluate to a value.

7.5 Auziliary lemma for iteration

The elimination process is invoked during the evaluation of an iterator by the
rule Evit. Elimination traverses the structure of the canonical form of the iter-

56

ation subject and replaces each parameter or constructor by its image under
the term replacement 2. Under the assumption that €2 is an element of the
logical relation (¥ 4+ ¥ F Q € [(w)(X; ¥)]) we can give the first preliminary
formulation of the auxiliary lemma for iteration. 1\ represents the set of pa-
rameters possibly occurring in the canonical object, T contains their images
under the term replacement €2, and W is the context in which the iterator
object is well-typed.

If U+ FQe [(w)(2;P)] and & = S*(3;Z(5; B)) then
¥V 4 B' implies \If U (w; (V) € [{(w)(B)]

Canonical forms depend mutually on atomic forms, hence as second approxi-
mation we generalize this statement to:

If U+ 0 FQ e [(w) ()] and 3 = 8*(3;Z(; B)) then
(1) ¥+ V | B implies ¥, ¥ - (w; Q)(V) € [(w)(B)], and
(2) U+ V o B implies ¥, ¥ - (w; Q)(V) € [(w)(B"].

But even this generalization does not go far enough. The rule CanLam in-
troduces new parameters into the context W. To solve this predicament we
introduce a substitution -;idy, o which is in the logical relation [-; W, \Tl]] It is
the identity on all variables from W. This is a crucial property in the argument
because it allows us to use the following strengthening lemma for the proof of
the auxiliary lemma for iteration.

Lemma 7.27 (Strengthening lemma)

Let A;T,T* T+ (idg;idr, o, idp) : (A;T,T,1)

(1) If A;T,T'F M : A then M = [id,; idr, o,id](M)
(2) If ;T\ ' FE: (B = A)(Y) then E = [id4;idr, 0,1dp](2)
(8) If A;T,TF Q= (W)(X) then Q = [id4;idr, o, idp](Q)

Proof: by mutual induction on the derivations of A;T,THM:A AT,TF
E:(B = A)(Y), and A;T,T'F Q : (w)(¥'), using Lemma 6.8 (see [DPS97,
Lemma 7.38]) O

Consequently, the third generalization of the auxiliary lemma for iteration has
the following form.

0,0 idg, 0 € [0, 0], U+¥ F Q € [(w)(2; ¥)] and &' = §*(%; Z(; B))
then
(1) ¥V | B then ¥, ¥ [idy, o] ({w; 2)(V)) € [(w)(B")]
(2) EU V4 B then U, T F [-;idy, o] ((w; Q) (V)) € [(w)(B)]

57

This formulation is very close to the version we will eventually prove. But
we cannot prove it directly yet. The reason has been already discussed in
Section 6. During the traversal, not every encountered constructor ¢ : C is
an element of ¥': constructors whose target type 7(C) is not in Z(X; B) are
replaced by themselves according to the definition of ElConst. Being not an
element in Z(3; B) can have two possible reasons when 7(C') # 7(B):

(1) 7(C) As;p 7(B)
(2) 7(B) A 7(C)

In the first case we are done, as a consequence of Lemma 6.20 and Lemma 6.21
from Section 6. All what remains to show is that the second case cannot occur.
It is possible to show that if during the elimination process a canonical form
V of type B’ is encountered then 7(B’) ds,5 7(B) holds.

To prove this claim we define three conditions which are formulated as precon-
ditions and postconditions for the elimination process — the auxiliary lemma
for iteration will then be extended by these conditions. We distinguish between
two preconditions: One for the case that the encountered object is canonical
(canonical precondition) and the other for the case that the object is atomic
(atomic precondition). If an atomic form is an application, then by inversion
EIApp was the last applied rule. To show that the canonical precondition is
satisfied for the right premiss, we must enforce a postcondition (atomic post-
condition), which is valid after the the induction hypothesis was applied to
the left premiss.

Definition 7.28 (Atomic precondition for elimination) Let B an arbi-
trary pure type:

Prelp (V,B') :& 7(B') 45,5 7(B) and ¥ 4x,p 7(B)

The first part of this definition guarantees the weak subordination of 7(B’)
to 7(B). The second is necessary because the atomic precondition must imply
the atomic postcondition, which finally might be used to show the canonical
precondition. The canonical precondition is stronger than the atomic one.
It states in addition that all source types of all parameter types of B’ are
subordinate to 7(B), as long as the parameters can be used in the definition
of the object.

Definition 7.29 (Canonical precondition for elimination) Let B arbi-
trary pure type:

Prefs (¥, B') &

Prelg (¥, B") and for all B" € P(B') :

o8

if 7(B") S5 7(B) then for all y € Source(B") : y 4 7(B)

The atomic postcondition ensures that every source type of a type of the
atomic object to be eliminated is actually subordinate to the target type of B
— which might be very different from the target type of B'.

Definition 7.30 (Atomic postcondition for elimination) Let B arbitrary
pure type:

Postlp (B') i< for all y € Source(B') : y 4s.5 7(B)

The proof of the auxiliary lemma for iteration is done by simultaneous in-
duction over the atomic and canonical structure of the elimination subject.
The following lemma shows that preconditions and postconditions imply each
other in a suitable way as necessary to perform the inductive argument. For
this purpose recall the definition of atomic and canonical forms from Defini-
tion 2.4. If we have a derivation ending in an application of AtVar and the
atomic precondition holds then we must show that the postcondition holds.
The same holds for a derivation ending with AtCon. In the case of application
(AtApp) we encounter the following situation. Let D be a derivation ending in

D, D,
V=V, | B — By UEV By

AtApp
UEV, Vsl By

By assumption we know that Pre |p (¥, Bs) holds. The application of the
induction hypothesis to D; requires that Pre |z (¥, By — Bs) holds (to be
proven). Finally for this case, the application of the induction hypothesis to
D, requires that Pre {45 (¥, B;) holds. For this proof we must use Post |p
(B1 — By).

A complete list of all necessary implications is compiled in the following
lemma. The first statement is needed for AtVar, the second for AtCon. The
third and the forth are necessary for AtApp. CanAt does not require any special
considerations, since the canonical precondition is stronger than the atomic
one. The fifth statement makes the case CanLam go through. And finally the
last fact provides the necessary information to ensure that the initial precon-
dition holds (see Lemma 7.36).

Lemma 7.31 (Preservation of Preconditions and Postconditions)

(1) Prelp (¥, B') and ¥(x) = B' implies Postlg (B')

59

(2) Prelp (¥, B') and X(c) = B’ implies Postlp (B')

(8) Prelp (¥, By) implies Prelps (¥, B — Bs)

(4) Pre g (V,Bs) and Post |p (By — By) implies Pre g (¥, B;) and
Postlp (Bz)

(5) Preftg (¥, By — By) implies Preftg (V,x : By, By)

(6) For all pure types B: Prefip (-, B)

Proof: direct, using lemmas 6.13-6.18 (see [DPS97, Lemma 7.42]) O

Now all ingredients for the formulation of the auxiliary lemma for iteration
are prepared. By inserting preconditions and postconditions into the previous
formulation we obtain a provable lemma.

Lemma 7.32 (Auxiliary lemma for iteration)

IfO, 0 F idg, 0 € [0, 0], U+T F Q € [(w)(2;9)] and ¥ = §*(Z; Z(%; B))
then

(1) If U =V | B' and Prelp (¥, B') then ¥, ¥ F [;idg, o]((w; Q) (V)) €
[(w)(B")] and Post|p (B))

(2) If W =V f B and Preftg (¥, B') then U, ¥ F [-;idy, o|({w; Q)(V)) €
[{w)(B')]

Proof: by mutual induction on the derivationsof U -V {t B'and ¥ -V | B/,
using Lemmas 6.6, 6.19 — 6.20, 7.9 — 7.10, 7.12, 7.14, 7.18 - 7.19, 7.23, 7.25,
7.27, and 7.31 (see [DPS97, Lemma 7.43)) O

7.6 Auziliary lemma for case

Similarly to the development of the auxiliary lemma for iteration we can prove
an auxiliary lemma for case, which shows that the selection process always pro-
duces objects in the expected logical relation. The selection process is concep-
tually simpler than the elimination process, because only the head constructor
is replaced by its image under the match. On the other hand a different kind
of complexity is created by closing and boxing each argument.

For this purpose we must show that each canonical and each atomic object
of type B is an element of the logical relation [B]. CanLam may introduce
new parameters in the derivation, hence we must generalize the first naive
formulation and take substitutions -; o into account.

Lemma 7.33 (Canonical elements and logical relations)

(1) If V=V | B and V' & -5 0 € [-; 9] then ¥' F [0](V) € [B]

60

(2) If UV A B and W'+ 0 € [U] then U+ [o(V) € [B]

Proof: by mutual induction on the derivationsof VWV | Band ¥ -V {} B,
using Lemmas 6.6, 7.14, 7.18 — 7.19, and 7.23 (see [DPS97, Lemma 7.44]) O

For the final preparatory lemma for the auxiliary lemma for case consider
the rule SeApp from definition 5.14. The selection judgment applied to an
application of the form V; V; selects some object M; for V; and applies it to
the boxed abstraction closure of V5. V5 can contain local parameters. We show
that this abstraction closure is an object in the appropriate logical relation.

Lemma 7.34 (Abstraction closure)
IfU -V 4 B then - = MU}V € [[I{T}. B]

Proof: by induction on ¥, using Lemmas 6.11 and 7.33 (see [DPS97, Lemma 7.45])
O

The development of the formulation of the auxiliary lemma for case is very
similar to the iterator. Under the assumption that the match = is an element
of the logical relation (¥ + W + = € [(B = A)(X; ¥)]) we need to prove (as a
first approximation) that the resulting object of the selection process is in the
logical relation [C* (B, A, B)]. As in the formulation of the auxiliary lemma
for iteration, U is the set of parameters possibly occurring in the canonical
object, ¥ contains their images under the match =, and ¥ is the context in
which the case object is well-typed.

IfU+0kZEe[(B= A)(2;¥)] and ¥ = S(T;7(B)) then
If VA4 B then U, ¥+ {B = A;Z;,¥}(V) € [C* (B, A, B)]

As in the lemma for iteration this formulation of the lemma cannot be proven
without further generalization. Canonical forms depend mutually on atomic
forms and with a careful distinction of “inner case types” and “outer case
types” we can refine this statement in the following way.

If U+ 0 FEe[(B= A)(X;¥)] and &' = S(T; 7(B)) then
(1) ¥ U+ V | B then U, ¥+ {B = 45 U}(V) € [C (B, A,B')]
(2) f U+ V4 B then U, ¥ + {B = A; 5, ¥}(V) € [C* (B, A, B)]

The rule CanLam poses the same problems as in the iteration case. The sub-
stitution -;idy, o0 leads to a further generalization of the auxiliary lemma for
case.

If O, 0 F idg,0 € [s0,9], U+ ¥ F E € [(B= A)(X;¥)] and ¥ =
S(%; (B)) then)
(1) ¥V | B'then ¥, ¥ | [idy, o]({B = A;Z;¥}(V)) € [C (B, A, B")]

61

(2) HUFV 4 B then O, ¥ F [-;idy, o] ({B = A;Z; ¥}(V)) € [C* (B, A, B')]

This formulation is very close to the version of the lemma we will prove.
But we cannot prove it directly, yet. During the proof, we must recover the
initial type B. This can only be done by assuming for the atomic case that
II{¥}.7(B) = B and also 7(B) = 7(B'). For the canonical case, we can assume
that W represents the initial set of domain types of type B. The remaining
domain types are still contained as abstractions in the type B': [I{¥'}. B' = B.

Lemma 7.35 (Auxiliary lemma for case)

If U0 F idg,0 € [0,9], U+ 0 + E € [(B= A)(Z;0)] and ¥ =
S(X;7(B)) then

(1) If ¥ +V | B' and 1:[{@’}7'(3) = B and 7(B') = 7(B) then ¥, ¥ F
[5idy, 0)({B = A; 25 W}(V)) € [C (B, A, B)] .

(2) IfU -V 4 B andTI{¥}. B' = B then ¥, ¥ - [-;idy, o] ({B = A;E; $}(V)) €
[¢* (B, A, B)]

Proof: by mutual induction on the derivationsof U+ V | Band U+ V 19 B,
using Lemmas 6.6, 7.9, 7.11, 7.13 — 7.14, 7.18 - 7.19, 7.23, 7.25, 7.27, and 7.34
(see [DPS97, Lemma 7.46]) O

7.7 Canonical form theorem

This concludes the presentation of the preliminary properties. All the ingredi-
ents are prepared and await to be put together to prove Property (2). Recall
that the proof of the canonical form theorem is performed in two steps: The
first step we generalized already once (which led to the introduction of logical
relations for contexts), and the second we already completed (in Lemma 7.14).

(1) TA;THM: Aand UF6;0€ [A;T] then U+ [6; o](M) € [4]
(2) ¥+ M e [B] then U - MV : B

To complete the proof of the first property we must generalize it to term
replacements and matches, leading to the following lemma. It is the centerpiece
of this work because its proof combines all results obtained so far.

Lemma 7.36 (Typing and logical relations)
Let U 6;0 € [A;T]

(1) If A;T' = M : A then U F [6; o](M) € [A]

62

(2) If A;TFQ:(w)(X') then U + -+ [6; 0](R2) € [{w)(X;)]
(8) If ;T HE: (B = A)(X') then ¥ + -+ [6; 0](E) € [(B = A)(T';-)]

Proof: by mutual induction on the derivation of A;I' = M : A, using Lem-
mas 6.6, 6.9, 7.2, 7.6, 7.8 — 7.9, 7.14, 7.18 — 7.19, 7.24, 7.25, 7.32, and 7.35
(see [DPS97, Lemma 7.47]) O

The canonical form theorem is only a simple consequence of Lemma 7.14 and
Lemma 7.36. It says, that every object M of pure type evaluates to a canonical
form. In other words, no matter how complex the form of the object M is,
it may contain A-abstractions, applications, boxes, and lets, it will always
evaluate to a canonical form, only containing A-abstractions and applications.
Section 9 emphasizes this point again and shows the usefulness of this result.

Theorem 7.37 (Canonical form theorem)
If ;O -M:BthenVEMA{V:B
Proof: direct, using Lemmas 7.14, 7.26, and 7.36 (see [DPS97, Lemma 7.48])

|

8 Type preservation theorem

The canonical form theorem is a very powerful theorem. The type preservation
property for the operational semantics of our system follows as a corollary if
evaluations are deterministic. This claim is intuitively immediate because the
form of the object triggers the evaluation rule — which is uniquely defined.
The operational semantics depends mutually on the evaluation to canonical
forms, hence the uniqueness lemma reads as follows.

Lemma 8.1 (Uniqueness of evaluation)

(1) IfU-MAV:AandUFMAV 2 Athen V=V
(2) fVEFM—V:Aand¥+-M—V':AthenV =V

Proof: by mutual induction on the derivations of ¥ = M {4 V : A and
Ex2VUEFM<—V:A (see [DPS97, Lemma 8.1]) O

Together with Lemma 7.36 the type preservation theorem follows directly.

Theorem 8.2 (Type preservation)

If 5 OWFM:Aand VM —V:Athen ;U FV:A

63

Proof: direct, using Lemmas 7.18,7.26, 7.36, and 8.1 (see [DPS97, Lemma 8.2])
O

In the next section we present another corollary from Lemma 7.36: The modal
A-calculus is a conservative extension of the simply-typed A-calculus.

9 Conservative extension theorem

By the definition of the modal A-calculus, it is clear that the language of ob-
jects and types extends the language of the simply-typed A-calculus. It follows
quite naturally that every typing derivation in the simply-typed calculus can
be represented in our system: Using the empty modal context, StpVar must
be replaced by TpVarR, StpConst by TpCon, StpLam by TplLam, and finally
StpApp by TpApp.

Lemma 9.1 (Typing extension)
If U+ M:Bthen sV +HM:B
Proof: by induction over ¥t M : B (see [DPS97, Lemma 9.1]) O

Let M be an object of pure type B with free variables from a pure context V.
M itself need not to be pure but rather some object in the modal A-calculus
using boxes, lets, iterators, and definition by cases. We have seen that M has
a canonical form V, and Lemma 7.2 (1) shows that V' must be an object in
the simply-typed A-calculus.

Theorem 9.2 (Conservative Extension)
If wW = M : B then for someV, VEMAV:BandVE+EV (B

Proof: direct, using Lemma 7.2, and Theorem 7.37 (see [DPS97, Lemma 9.2])
O

This concludes the discussion of the meta-theoretic properties of the modal
A-calculus.

10 Conclusion and Future Work

We have presented a calculus for primitive recursive functionals over higher-
order abstract syntax which guarantees that the adequacy of encodings re-
mains intact. The requisite conservative extension theorem is technically deep

64

and requires a careful system design and analysis of the properties of a modal
operator O and its interaction with function definition by iteration and cases.
To our knowledge, this is the first system in which it is possible to safely pro-
gram functionally with higher-order abstract syntax representations. It thus
complements and refines the logic programming approach to programming
with such representations [Mil92,Pfe91].

Our work was inspired by Miller’s system [Mil90], which was presented in
the context of ML. Due to the presence of unrestricted recursion and the
absence of a modal operator, Miller’s system is computationally adequate,
but has a much weaker meta-theory which would not be sufficient for direct
use in a logical framework. The system of Meijer and Hutton [MH95] and
its refinement by Fegaras and Sheard [FS96] are also related in that they
extend primitive recursion to encompass functional objects. However, they
treat functional objects extensionally, while our primitives are designed so
we can analyze the internal structure of A-abstractions directly. Fegaras and
Sheard also note the problem with adequacy and design more stringent type-
checking rules in Section 3.4 of [FS96] to circumvent this problem. In contrast
to our system, their proposal does not appear to have a logical interpretation.
Furthermore, they neither claim nor prove type preservation or an appropriate
analogue of conservative extension—critical properties which are not obvious
in the presence of their internal type tags and Place constructor.

Our system is satisfactory from the theoretical point of view and could be
the basis for a practical implementation. Such an implementation would al-
low the definition of functions of arbitrary types, while data constructors are
constrained to have pure type. Many natural functions over higher-order rep-
resentations turn out to be directly definable (e.g., one-step parallel reduction
or conversion to de Bruijn indices), others require explicit counters to guar-
antee termination (e.g., multi-step reduction or full evaluation). On the other
hand, it appears that some natural algorithms (e.g., a structural equality check
which traverses two expressions simultaneously) are not implementable, even
though the underlying function is certainly definable (e.g., via a translation
to de Bruijn indices). For larger applications, writing programs by iteration
becomes tedious and error-prone and a pattern-matching calculus such as
employed in ALF [CNSvS94| or proposed by Jouannaud and Okada [JO91]
seems more practical. OQur informal notation in the examples provides some
hints what concrete syntax one might envision for an implementation along
these lines.

The present paper is a first step towards a system with dependent types in
which proofs of meta-logical properties of higher-order encodings can be ex-
pressed directly by dependently typed, total functions. The meta-theory of
such a system appears to be highly complex, since the modal operators neces-
sitate a let box construct which, prima facie, requires commutative conversions.

65

Martin Hofmann 2 has proposed a semantical explanation for our iteration op-
erator which has led him to discover an equational formulation of the laws for
iteration. This may be the critical insight required for a dependently typed
version of our calculus. We also plan to reexamine applications in the realm
of functional programming [Mil90,FS96] and related work on reasoning about
higher-order abstract syntax with explicit induction [DH94,DFH95] or defini-
tional reflection [MMO97].

Acknowledgments. The work reported here took a long time to come to
fruition, largely due to the complex nature of the technical development. Dur-
ing this time we have discussed various aspects of higher-order abstract syntax,
iteration, and induction with too many people to acknowledge them individ-
ually. Special thanks go to Gérard Huet and Chet Murthy, who provided the
original inspiration, and Hao-Chi Wong who helped us understand the nature
of modality in this context.

References

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56—68, 1940.

[CNSvS94] Thierry Coquand, Bengt Nordstrém, Jan M. Smith, and Bjorn von
Sydow. Type theory and programming. Bulletin of the Furopean

Association for Theoretical Computer Science, 52:203-228, February
1994.

[DFH95] Joélle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order
abstract syntax in Coq. In M. Dezani-Ciancaglini and G. Plotkin,
editors, Proceedings of the International Conference on Typed Lambda
Calculi and Applications, pages 124-138, Edinburgh, Scotland, April
1995. Springer-Verlag LNCS 902.

[DH94] Joélle Despeyroux and André Hirschowitz. Higher-order abstract syntax
with induction in Coq. In Frank Pfenning, editor, Proceedings of the
5th International Conference on Logic Programming and Automated
Reasoning, pages 159-173, Kiev, Ukraine, July 1994. Springer-Verlag
LNAT 822.

[DP96] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. In Jr. Guy Steele, editor, Proceedings of the 23rd Annual
Symposium on Principles of Programming Languages, pages 258270,
St. Petersburg Beach, Florida, January 1996. ACM Press.

[DPS97] Joélle Despeyroux, Frank Pfenning, and Carsten Schiirmann. Primitive
recursion for higher-order abstract syntax. In R. Hindley, editor, Third

2 personal communication

66

International Conference on Typed Lambda Calculi and Applications,
Nancy, France. Springer Verlag, April 1997. See also Technical Report
CMU-CS-96-172, Carnegie Mellon University, September 1996.

[FS96] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer space). In
Proceedings of 23rd Annual Symposium on Principles of Programming
Languages, pages 284-294, St. Petersburg Beach, Florida, January 1996.
ACM Press.

[G6d90] Kurt Godel. On an extension of finitary mathematics which has not yet
been used. In Solomon Feferman et al., editors, Kurt Godel, Collected
Works, Volume II, pages 271-280. Oxford University Press, 1990.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143-184, January 1993.

[JO91] Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation model
for executable higher-order algebraic specification languages. In Gilles
Kahn, editor, Proceedings of the 6th Annual Symposium on Logic in
Computer Science, pages 350-361, Amsterdam, The Netherlands, July
1991. IEEE Computer Society Press.

[Mag95] Lena Magnusson. The Implementation of ALF—A Proof Editor Based
on Martin-Lof’s Monomorphic Type Theory with Ezplicit Substitution.
PhD thesis, Chalmers University of Technology and Goteborg University,
January 1995.

[MH95] Erik Meijer and Graham Hutton. Bananas in space: Extending fold
and unfold to exponential types. In Proceedings of the 7th Conference
on Functional Programming Languages and Computer Architecture, La

Jolla, California, June 1995.
[Mil90] Dale Miller. An extension to ML to handle bound variables in data

structures: Preliminary report. In Proceedings of the Logical Frameworks
BRA Workshop, Nice, France, May 1990.

[Mil91] Dale Miller. Unification of simply typed lambda-terms as logic
programming. In Koichi Furukawa, editor, Eighth International Logic
Programming Conference, pages 255-269, Paris, France, June 1991. MIT
Press.

[Mil92] Dale Miller. Abstract syntax and logic programming. In Proceedings of
the First and Second Russian Conferences on Logic Programming, pages
322-337, Irkutsk and St. Petersburg, Russia, 1992. Springer-Verlag LNAI
592.

[MM97] Raymond McDowell and Dale Miller. A logic for reasoning about logic
specifications. In Glynn Winskel, editor, Proceedings of the Twelfth
Annual Symposium on Logic in Computer Science. IEEE Computer
Society Press, June 1997. 1997.

67

[NPS90] Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in
Martin-Laf’s Type Theory: An Introduction, volume 7 of International

Series of Monographs on Computer Science. Oxford University Press,
1990.

[Ode94] Martin Odersky. A functional theory of local names. In Proceedings of
21st Annual Symposium on Principles of Programming Languages, pages
48-59, Portland, Oregon, January 1994. ACM Press.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149-181. Cambridge University Press, 1991.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq:
Rules and properties. In M. Bezem and J.F. Groote, editors,
Proceedings of the International Conference on Typed Lambda Calculi
and Applications, pages 328-345, Utrecht, The Netherlands, March 1993.
Springer-Verlag LNCS 664.

[PW95] Frank Pfenning and Hao-Chi Wong. On a modal A-calculus for S4. In
S. Brookes and M. Main, editors, Proceedings of the Eleventh Conference
on Mathematical Foundations of Programming Semantics, New Orleans,
Louisiana, March 1995. To appear in Electronic Notes in Theoretical
Computer Science, Volume 1, Elsevier.

68

