Under consideration for publication in Math. Struct. in Comp. Science

Recursion over Objects of Functional Type

Joélle Despeyroux and Pierre Leleu

INRIA-Sophia-Antipolis

Received May 2000

This paper presents an extension of the simply-typed A-calculus allowing iteration and
case reasoning over terms of functional types that arise when using higher order abstract
syntax. This calculus aims at being the kernel for a type theory in which the user will be
able to formalize logics or formal systems using the LF methodology, while taking
advantage of new induction and recursion principles, extending the principles available
in a calculus such as the Calculus of Inductive Constructions. The key idea of our system
is the use of modal logic S4. We present here the system, its typing rules and reduction
rules. The system enjoys the decidability of typability, soundness of typed reduction with
respect to the typing rules, the Church-Rosser and Strong Normalization properties and
it is a conservative extension over the simply-typed A-calculus. These properties entail

the preservation of the adequacy of encodings.

Contents

Introduction

Higher-Order Abstract Syntax

Examples

The System

4.1 Syntax

4.2 Typing and Reduction Rules on a Simple Example

W N =

4.3 Typing Rules

4.4 Basic Properties

4.5 Reduction Rules
5 Metatheoretical Results

5.1 First Results

5.2 Strong Normalization

5.3 Confluence and Conservative Extension
6 Related Works
7 Conclusion and Future Work

© N O O Ut W N

10
11
12
12
13
16
16
17

f This work was partly supported by the European ESPRIT project “Types for Proofs and Programs”

Joélle Despeyroux and Pierre Leleu 2

1. Introduction

Higher order abstract syntax (Harper et al., 1993) is a representation technique which
proves to be useful when modelizing in a logical framework a language which involves
bindings of variables. Thanks to this technique, the formalization of an (object-level)
language does not need definitions for free or bound variables in a term. Nor does it need
definitions of notions of substitutions, which are implemented using the meta-level ap-
plication, i.e. the application available in the logical framework. Hypothetical judgments
are also directly supported by the framework.

On the other hand, inductive definitions are frequent in mathematics and semantics
of programming languages, and induction is an essential tool when developing proofs.
Unfortunately it is well-known that a type defined by means of higher order abstract
syntax cannot be defined as an inductive type in usual inductive type theories (like CCI
(Paulin-Mohring, 1992; Werner, 1994), or Martin-Lof’s Logical Framework for instance).

In a first step towards the resolution of this dilemma, Frank Pfenning, Carsten Schiirmann
and the first author have presented (Despeyroux et al., 1997) an extension of the simply-
typed A-calculus with recursive constructs (operators for iteration and case reasoning),
which enables the use of higher order abstract syntax in an inductive type. To achieve
that, they use the operator O of modal logic IS4 to distinguish the types A — B of the
functional terms well-typed in the simply-typed A-calculus from the types O0A — B of
the functional terms possibly containing recursive constructs.

In this paper, we present an alternative presentation of their system that we claim to
be better in several aspects. We use the same mechanism as them to mix higher order
abstract syntax and induction but our typing and reduction rules are quite different.
Indeed there are several presentations of modal A-calculus IS4 (Pfenning and Wong,
1995; Bierman and de Paiva, 1996; Davies and Pfenning, 1996). We have chosen the
first variant (Pfenning and Wong, 1995), which has context stacks instead of simple
contexts. This peculiarity creates some difficulties in the metatheoretical study but the
terms generated by the syntax are simpler than those of (Despeyroux et al., 1997) (no ’let
box’ construction), and so this system is more comfortable to use. This choice probably
makes our system more suitable for future extension with dependent types.

Moreover, instead of introducing an operational semantics which computes the canon-
ical form (n-long normal form) using a given strategy, our system has reduction rules,
which allow a certain nondeterminism in the mechanism of reduction. We have been
able to adapt classic proof techniques to show the important metatheoretic results: de-
cidability of typability, soundness of typing with respect to typing rules, Church-Rosser
property (CR), Strong Normalization property (SN) and conservativity of our system
with respect to the simply-typed A-calculus. The main problems we encountered in the
proofs are on one hand due to the use of functional types in the types of the recursive
constructors, and on the other hand due to the use of n-expansion. To solve the problems
due to n-expansion, we benefit from previous works done for the simply-typed A-calculus
(Jay and Ghani, 1995) and for system F (Ghani, 1996).

The remainder of this paper is organized as follows: Section 2 reviews the idea of
higher-order abstract syntax and the use of modal operators to reconcile this method

Recursion over Objects of Functional Type 3

with induction. We give simple examples of iteration and case analysis in Section 3. We
introduce our system in section 4: its syntax, its typing and reduction rules. Then, in
section 5, we prove its essential properties (soundness of typing, CR, SN) from which
we deduce that it is a conservative extension of the simply-typed A-calculus. Finally, we
discuss related works and outline future work.

This paper is an extended and polished version of (Despeyroux and Leleu, 1998). A
full version with complete technical developments is available in (Leleu, 1997).

2. Higher-Order Abstract Syntax

Higher-Order Abstract Syntaz (HOAS)

The principle of HOAS is to represent object variables by meta variables, i.e. vari-
ables in the Logical Framework used to encode the logic, or language (called the object
logic/language) under consideration. For instance, an untyped A-term such as Ay.(z y)
is represented at the meta level by Az : term.(lamAy : term.(app x y)), where a meta
variable x represents the object variable x and A is the meta-level abstraction.

Let us introduce here a simple example of representation using HOAS, that will be
useful later when we illustrate the mechanism of the reduction rules.

Suppose we want to represent the untyped A-terms in the simplest Logical Framework
we can think of: the simply-typed A-calculus. We introduce the type L of untyped A-terms
together with two constructors lam: (L — L) — L and app:L — L — L.

It is well-known (Harper et al., 1993) that the canonical forms (3-normal 7-long) of
type L are in one-to-one correspondence with the closed untyped A-terms and that this
correspondence is compositional. For instance the term (lam Ax:L.(app x x)) of type
L represents the untyped A-term Az.(z x).

Higher-Order Abstract Syntax and Induction, Modal Operators

The constructors 1am and app above do not define an inductive type in usual inductive
type theories like the Calculus of Inductive Constructions (Paulin-Mohring, 1992; Werner,
1994) or the Extended Calculus of Constructions because of the leftmost occurrence of L
in the type of constructor lam. If we allowed this kind of inductive definition, we would be
confronted with two serious problems. First, we would lose the one-to-one correspondence
between the objects we represent and the canonical forms of type L — --- — L. For
instance, if we have a Case construct (definition of a function by case over inductive
terms), the term (lam Ax : L.Case x of ...) does not represent any untyped A-term.
Moreover we would lose the strong normalization property; more precisely we could write
terms which would reduce to themselves. Our goal is to introduce a system which repairs
these deficiencies.

Following (Despeyroux et al., 1997), we shall use the modal operator O of modal logic
1S4 to distinguish the types A — B only containing parametric functions (functions built
only from variables and the constructors of the types representing the object-level terms
- (1am) and (app) for terms in L) from the types OA — B denoting the full function
space containing recursive functions. For instance, in our system, a term such as the one
above will be written Ax : [JL.Case x of ..., of type L — L whereas constructor lam

Joélle Despeyroux and Pierre Leleu 4

will have type (L — L) — L. Thus, our typing judgment will rule out undesirable terms
such as (lam Ax:L.Case x of ...).

Intuitively, the type JA denotes the type of closed terms. We can iterate or perform
case analysis on closed terms because all constructors are statically known. This is not
the case if an object may contain some unknown free variables. A useful idea here is to
represent open terms depending on n variables as closed terms (in the usual sense), that
we called higher-order terms in previous work.

Higher-Order Abstract Syntax Revisited
In (Despeyroux and Hirschowitz, 1994; Despeyroux et al., 1995), we introduced what
we called the higher-order terms, which are functions from an arbitrary (or a fixed)
number of variables to terms. To recall the definition of those higher-order terms, let us
consider as an example the untyped A-terms built on a predefined set of variables:

var, : var — Ly}
appy : Livy = Livy = Lywy
lam, : (var — Lygyy) = Ly
The higher-order terms corresponding to terms in Ly,}, belong to the type:

Liyny =var — - —var — L.

Our later meta-theoretical studies of various systems (Despeyroux and Leleu, 1998;
Despeyroux and Leleu, 1999) make extensive use of the following variant of Ly,):

Lyy=L—---—L— L

Higher-order constructors for Ly, are defined similarly to higher-order constructors for
Liv,ny:

Ref = An:nat.\i € [0.n — 1].AZp—1,...,20 : L. x;
App = An :nat.Xe,e’' : Liny ATpn_1,...,%0 : L. (app (e Tpn_1 ... o) (' Tn_1 ... T0))
Lam = An :nat.\e: L1} ATn_1,...,% : L. (lam Ay : L. (e y Tpn—1 ... Xp))-

Thus, in our view of HOAS, an untyped A-term with n free variables in L is rgpresented
at the meta level by a term of type L,;. We use vectorial notations 7 : L for x; :
L,...,z, : L. Untyped A-terms will be represented by terms of one of the following

forms:
N

Appn(M, N) = A7 : L.(app (M T) (N 7))
Lam,(M)=)\7 : L.(lam (M 7))
Refn(i) = A7 : f.xi

These terms involve the higher-order constructors introduced above:

Refn : [0.‘.')1— 1] —>L{n}
Appn : Liny = Liny = Liny
L'amn : L{n+1} — L{n}

Recursion over Objects of Functional Type 5

3. Examples

As we shall discuss in the conclusion, it seems that providing a primitive recursion con-
struct here would provide us with an (internalized) induction principle for terms defined
by means of HOAS; which, to our knowledge, nobody has been able to provide (and
prove correct) up to now.

Thus in our previous works, we defined operators for iteration and case distinctions.
Together with pairs, this gives tools as close as possible to primitive recursion.

In this section, we illustrate the behaviour of our operators for iteration and case
reasoning by means of simple examples.

Ezxample 1. Addition
Informally, addition can be described by the following rules:

plusOn=n plus (s m) n = s (plus m n)

In our system, we may view iteration as replacing constructors of inductive types by
functions of appropriate type, as done in (Despeyroux et al., 1997). In the case of natural
numbers, we replace 0 : nat by a term My : A and s : nat — nat by a function
M : A — A, when performing iteration with results in A. Thus iteration in this case
replaces type nat by A.

Addition of type Onat — Onat — Onat can be described in our system as follows:

plus = dm : Onat.An : Onat.(It m of My Ms)
where My =n Mg = Az.Onat. T (s |)

and T and | are respectively the constructors and the destructors for 0.

Ezample 2. Function Count
We can informally define the function which counts the number of occurences of bound
variables in an untyped A-term by:

Count(app M N) = Count(M) + Count(N)
Count(lam Az : L.(M z)) = Count(M z), where Count(z) =1

This informal definition shows that the function can formally be defined by iteration:

Count := AM : OL. (It M of Mapp M,y) : OL — Onat
with Mapp = Am,n : Onat. (plus m n) Migm = Ap : Onat — Onat.(p T (S 0)))

Ezample 3. Function Form
A function giving the form of an untyped A-term can be informally defined as follows:

Form(Az.x) =0 Form(Az.(M z) (N z)) =1 Form(Az.(M z)) =2

Note that, as in previous work (Despeyroux et al., 1997), we had to close the argument
to be able to perform case analysis on it. In the formal setting, this means that we have
to define a function “Form” of type O(L — L) — mat, which will consist of a function

Joélle Despeyroux and Pierre Leleu 6

(the case analysis) applied to 0 - the value for variables:

Form = AM : O(L — L). ((Case M of Mapp Myay,) 0): O(L — L) — nat
with Mapp = Az : O(L — L).\y : O(L — L).2 Magm=Af:0L—L—1L)1

4. The System

In this section, we present the syntax, the typing rules and the semantics of our system.

4.1. Syntaz

The system we present here is roughly the simply-typed A-calculus extended by pairs,
modality IS4 and recursion. We discuss the addition of polymorphism and dependent
types in the conclusion.

Types To describe the types of the system, we consider a countable collection of constant
types L; (j € IN), called the ground types. In our approach, they play the role of
inductive types. The types are inductively defined by:

TypeS:TI:Lj|T1—>T2|T1XT2||:|T

A type is said to be pure if it contains no [0 operator and no product.

Context stacks Following the presentation of (Pfenning and Wong, 1995), we have
context stacks instead of simple contexts. As usual a context I' is defined as a list of
unordered declarations z : A where all the variables are distinct. A context stack A is
an ordered list of contexts, separated by semi colons I'y;...;T,. “.” denotes the empty
context as well as the empty stack. Each stack can be viewed as a Kripke world.
Notations. A context stack is said to be walid if all the variables of the stack are dis-
tinct. We call local context of a stack A = I'y;...;T, the last context of the stack:
T',.. The notation A,T", where A is a stack I'y;...;I,, and I is a context, is the stack
T'i;...;T,,T. Similarly, the notation A, A’, where A is the stack I'y;...;T', and A’ is the
stack T');...; T | is the stack I'y;...; T, ;... T . If A is a valid stack of m contexts
T'1;...;T,, and n is an integer, A™ denotes the stack A where the last n contexts have
been removed: I'y;...;T,,_, if n < m, and the empty stack “.” if n > m.

Terms We have seen in section 2 that we view open terms of type L, depending on n
variables of type L, as functional terms of type L,y = L — --- — L — L. For example,
terms in the untyped A-calculus given in section 2 will have three possible forms:

Appn(M,N) = AT : T.(app (M T) (N 7))
Lam,(M)=)\7 : L.(lam (M 7))
Refn(i) = A7 : f.mi

In general the type of a constructor of a pure type L contains other types than L.
Before describing the set of the terms, we consider a finite collection of constant terms

Recursion over Objects of Functional Type 7

(the constructors) Cjy, given with their pure type: (Bjx1 — -+ — Bjkm,.) — Lj ,
where each B is a pure type and L; is a ground type. If n;, = 0, the type of C} 1 is
simply L;.
The terms are inductively defined by:
Terms: M = z|Cjx |(M N)|Xx:AM | T M| | M| (M, M)
| fst M | snd M | (o)Case M of (M) | {o)It M of (M;)

where ¢ is a function mapping the ground types L;(j € IN) to types, and (M,) are
collections of terms indexed by the indexes of the constructors. The modal operator T

introduces an object of type [JA while the operator | marks the elimination of a term of
type OA. As usual, terms equivalent under a-conversion are identified.

4.2. Typing and Reduction Rules on a Simple Example

We give first the rules for case and iteration for the untyped A-calculus example.

4.2.1. Reduction Rules on untyped \-terms

We give first the reduction rules, which might help to understand the typing rules. For
the sake of simplicity we introduce some notations.
Notations. We define two macros ’case’ and ’it’ by:

case M := (o)Case M of Mapp Miam
it M = (o)t M of Mapp Mgy

In our example, the reduction rules for case and iteration are the following ones:

(case AT : it L.(app P Q)) — A\u: X‘(Mapp TAT : P AT : EQ)

(case TAT : L.lam P)) — A% :A.(Mpm 1 AT : L.P)
(case 1 AT : L.ay) — AT : A
(it 1AT:L.(app P Q) — AT : X‘(Mapp (it 1AT:L.P) %)
(it 12T : L.Q) @)
(it TAZ: L.(lam P)) — AT :A.(Muy, (it 1A7: L.P) @)

(it TAT: L.zi) — AU : A

The first argument of the Case and It constructs, M, is the inductive term to analyze
(representing an untyped A-term in our example). Remember that M has type L.
The second one, Mapp, of type 0L,y — DL,y — A, is the function which processes
the case of constructor “app”. The third argument, My, of type DL, 11} — A, is the
function which processes the case of constructor “lam”. Roughly speaking the “Case”
construct computes its result by applying Mapp or M, to the sons of its main argument.
For iteration, the mechanism of reduction is a bit different: the terms Mapp of type
A — A — Aand M, of type (A — A) — A are applied to the result of iteration on the
sons of the main argument. Operationally, the effect of iteration on a term M amounts

Joélle Despeyroux and Pierre Leleu 8

to replacing the constructors lam and app by the terms M,y and Mapp in M (as in
(Despeyroux et al., 1997)).

Now since we want to benefit from higher order declarations, the main argument of
Case/It may have a functional type. In particular we also want to be able to compute
Case/It of a projection A7 : fxz without a leftmost constructor. That is the reason
for the functional type of Case/It constructs : they take as input the values of the
computation for the projections (as in (Despeyroux et al., 1997)).

4.2.2. Typing Rules on untyped A-terms

Except for the use of the O operator, and the use of Ly, instead of L, they are pretty
standard for the app case. Note how the use of L, enables us to extend the usual case
(app) to the functional case (lam) in an intuitive manner:

A;F M : DL{n} A,I‘ = Mapp : DL{H} — DL{n} — A A,P = Mlam : DL{n+1} — A
A;T F (o)Case M of Mapp Miam @ Afn}

A;TEM :OLgy,y ATEMaypp:A—-A— A AT Mpgm:(A—A)— A
AT (o)t M of Mapp Myam, : Afny
where A = ¢(L) is the resulting type of the case or iteration process on M.
The case and iteration functions take as arguments the resulting values for the n
variables of the term M being analysed; hence the resulting type A, for both operators
in the above rules.

4.2.3. Eramples
Let us recall here the Count example from section 3:

Count := AM : OL. (It M of Mapp Miam) : OL — Onat
with Mapp = Am,n : Onat. (plus m n) and My, = Ap : Onat — Onat.(p 1 (S 0)))

The number of occurences of bound variables in (lam Az : L.x) is T (S 0) because:

(Count 1 Az :L.x) — Au:DOnat.u by the reduction rules for variables (1)

(Count 1 (lam Az : L.x))

— (Mjam (Count 71 Az:L.z)) by the reduction rules for lam
— (Mjam Au:Onatu) by (1)

=g (Au:Onatu 1(S0))

—5 1(50)

To illustrate the mechanism of case analysis let us recall the example of the “Form”
function given in section 3:

Form M := ({(c)Case M of Au:0O(L — L) :0(L — L).2
Af:0(L—-L—L)1 0)

The function “Form” is of type O(L — L) — nat. Let us call Mj,,, the term \f :

Recursion over Objects of Functional Type 9

O(L — L — L).1. The following reductions, for example, hold:

(Form 1 Az : L.x)
— (An :nat.n 0) by the reduction rules for variables

(Form 1 Az: L.(lam \y : L.x))

— (An:nat. (Mg 1Az : LAy : L.x) 0) by the reduction rules for lam
—g3 (An :nat.10)

—g 1

4.3. Typing Rules

The typing rules are a combination of the rules for simply-typed A-calculus, for pairs and
projections, for modal A-calculus IS4 (Pfenning and Wong, 1995) and the new rules for
the recursive constructs “Case” and “It”. Due to lack of place we do not give the rules
for pairs and projections here. The rules are written in Figure 1 and 2 with the following
notations:

Notations Bj 1, ..., Bjkn;, are pure types. L; is an inductive type. (T3)i=1,...,p is a
collection, possibly empty, of pure types. Each T; can be decomposed as T;! — -+ —
T, — L;, where L; is a ground type and each T} is a pure type. Given the types C,

i=p
Dy, ..., Dy, wedenote Dy — --- — D, — C by ,]'_IlDi'C' The map ¢ from ground types

to types is extended over pure types by the equation: (4 — B) = d(A) — o(B).

In the rule for case reasoning, each M; ; is a function which, in the reduction process,
is applied to each son of the term M, abstracted over all the variables on which M
depends. Similarly, a function defined by case analysis will eventually be applied to its
results on each variable on which M depends. For each such variable of type T; in M,
this result must itself be closed, i.e. abstracted over all variables in the context. Each of
these variables has type Tt — --- = T}, — Tij for j =1---r;, as shown in the reduction
rules in section 4.5. Thus the type of each result is 7”; defined by:

T, =0T — - —=T,—=TH— - 0T — =T, > T") — a(L;).

In the above example of the untyped A-terms (section 4.2.2), T; is L and T”; is simply
o(L), for all 4.

z: A € local context of A .
(Var) N A valid
) A,x: AFM: B (A)AI—M:A—>B AFN:A
AFixz:AM : A—B PP AF(MN):B
A FM: A AFM:0OA A+ M:0OA .
W A 04 O N=RRY, (Pop) XTF a7 a &1 velid

Fig. 1. Typing rules; Simple types and modality

Joélle Despeyroux and Pierre Leleu 10

(Cj,k) AF Cj,k : Bj,k,l — = Dikng g Lj A Valid, njr € IN
i=p a="nj.k i=p

AFM:O (ngi.Ln) Ak M IO (lngi.Bj,k,q).a(Lj)

(Case) = = =

Al (o)Case M of (M) : ZEI]:T'Z.O'(LR)

9=n;

AFM:O (fflfTi.Ln) Ak Mj: I o(Bjrg)-o(L;)
(It) = =

AF (o)t M of (Mjy): zljlja(Ti).U(Ln)

Fig. 2. Typing rules for case and iteration

These typing rules may seem complex at first sight. They are a natural extension of
the case of the untyped A-terms given in section 4.2.2, keeping in mind that recursion is
only allowed on closed terms.

Although expressed differently (with compact notations instead of algorithms), our
typing rules are similar to those in (Despeyroux et al., 1997) (in which one can find
many examples). Terms are the same (modulo some syntactic translation) and have the
same types in both calculi. The two notable differences between the two systems are:

— As noticed before, the modal core is different. We have context stacks instead of two
contexts and our modal rules (1), (|) and (Pop) are expressed in a very simple way
(like in (Pfenning and Wong, 1995)).

— In our last two typing rules the terms M ; are a priori indexed by all the indexes
of the constructors. This means that we should define one term Mj ; per constructor
Cjk- Actually, when computing over inductive terms of type L,, we only need to
define the terms M such that L, and L; are “mutually” inductive. This notion
is essential for a future implementation of an extension of this system as a logical
framework but is quite orthogonal to the properties we state and we prove in the rest
of this work. The interested reader will find the definition of mutual inductive types

we could adopt here completely formalized in the full version of (Despeyroux et al.,
1997).

4.4. Basic Properties

The system allows the same basic stack manipulations as the modal A-calculus IS4 with-
out operators for case and iteration (Pfenning and Wong, 1995). In particular, as usual,
the typing judgments are preserved by thinning and strengthening. Later, these proper-
ties will still be true for typed reduction and the interpretations of types.

The substitution rule is still admissible:

Proposition 4.1 (Admissibility of (Subst) Rule).
The following rule is admissible:
AFN:A Ax:A+-M:B

(Subst) AF M[N/z]: B

Recursion over Objects of Functional Type 11

The inversion lemmas are not totally trivial because our typing rules are not syntax-
driven. If we try to type a term of type A, we can always apply rule Pop as well as
the structural rule for M. Nevertheless, they remain fairly simple (see (Leleu, 1997)). A
typically non standard inversion rule is the one for the App case. Rule App, seen from
bottom to top, may break a modal type OB into two types A — OB and A which are
no more modal. Thus, when faced with an application, we try to apply the rule Pop as
much as we can (i.e. remove the local context till we have free variables of the term in
the local context).

Proposition 4.2 (Inversion lemma for App).

If AF (M N): B then there is a type A such that A"+ M : A— Band A"+ N: A
(n € IN), where n = 0 if B is not of the form OC and otherwise n is the least integer
such that A™ contains some free variables of (M N) in the local context.

The inversion lemmas allow us to prove “the uniqueness of type” property (i.e. if
AFM:Aand AFM: A then A= A") and to find an algorithm which determines if
a term M is typable in a stack A and which returns the type of M in A if it is typable
(“decidability of typing”).

4.5. Reduction Rules

Now, we turn to the reduction rules of our system. They are inspired by the reduction
rules for case and iteration that have been suggested to us by Martin Hofmann as a means
to describe the evaluation mechanism of (Despeyroux et al., 1997). These reduction rules
are also the ones underlying the terms and induction principles presented in (Despeyroux
and Hirschowitz, 1994) in the context of the Calculus of Inductive Constructions. Indeed
this research was undertaken with this main idea, and hope, in mind: our approach
to HOAS (i.e. considering terms in Lg,; = L — --- — L instead of terms of type L
(Despeyroux and Hirschowitz, 1994)) should lead to a more natural system than the
usual approach to HOAS (where semantics are given on terms which are not functional
but whose subterms eventually are). We shall come back to this point in the conclusion
of the paper.

Given a term of our calculus, what we want to obtain at the end of the computa-
tion is the term of the object language it represents. As we have seen earlier (section
2), the canonical forms (8-normal 7-long) are in one-to-one correspondence with the ob-
ject terms. Thus we want the computation to return canonical forms. That means our
reduction rules will incorporate n-expansion.

The n-expansion reduction rule has been thoroughly studied (see (Cosmo and Kesner,
1993), (Akama, 1993), (Jay and Ghani, 1995)). Adopting it forces us to restrict the
reduction rules in some way if we still want Strong Normalization. Thus the reduction
we will consider will not be a congruence (more precisely it will not be compatible with
the application) and this will induce slight changes in the usual schemes of the proofs of
the Church-Rosser and Strong Normalization properties.

The purpose of these restrictions is to prevent n-expansions to create new [-redexes
which generate reduction loops. For instance, if we allowed an abstraction to be 7-

Joélle Despeyroux and Pierre Leleu 12

expanded, Az : A.M could reduce to Ay : A.(Az : A.M y) and then to Ay : A.M[y/z],
which is a-convertible to Az : A.M. Thus we forbid n-expansion of an abstraction. Simi-
larly, we cannot allow n-expansion of the left argument of an application because other-
wise we would have AF (M N) — (Az: A.(M z2) N)— (M N): B.

The choice of n-expansion also means we have to keep track of the types of the terms.
Indeed a term can only be n-expanded if it has type A — B. Thus we will define a notion
of typed reduction.

The reduction relation is defined by the inference rules in Figures 3 (simple types and
modality) and 4 (Case and It). We have omitted the product rules and the compatibility
rules other than (App;), which are straightforward.

?) AF(Az: AP Q): B (30) AF|TM: A
AF(Mz: AP Q)<= PlQ/z]: B AFITM—M:A
()AI—M:A—>B M 1is not an abstraction z fresh (D) ARl M:OA
K AFM—)izc:A(Mz):A— B T AR M <= M:0OA
(A)AI-M<—>M':A—>B(;£17-step) AFN:A (Pop) AFM— N:0OA
PP AF(M N)— (M’ N):B P)ATFM S N:OA

Fig. 3. Reduction rules; Simple types and modality

As usual we define the relations <, and = (conversion) respectively as the reflexive,
transitive and the reflexive, symmetric, transitive closures of —.

Although we have not proved this, we believe that the normal forms defined here
are the same (modulo some syntactic translation) than those defined in (Despeyroux
et al., 1997). The difference lies in the expression of the rules. The first system uses term
reduction while the second one uses evaluation rules (involving an external “elimination”

process to replace constructors C; ; by terms Mnj_k in the case of iteration).

5. Metatheoretical Results

The classic properties of subject reduction, confluence and strong normalization have
already been established for a modal A-calculus IS4 without induction (Leleu, 1997;
Despeyroux and Leleu, 2000). Here we extend these results to the recursive operators
Case and It.

5.1. First Results

First, we state soundness of typed reduction with respect to typing rules. It is easily
proved by induction on the derivation of the first hypothesis.

Theorem 5.1 (Soundness of reduction).
FAFM—> M :Athen AFM:Aand AFM': A

Recursion over Objects of Functional Type

2,

— . T 2P
At (o)Case TAT : T.(Cjr M1... My,) of (M;x): OT ..0(Ly,)
(Case Cj 1) — =1

At (o)Case TAT : T.(Cjp Mi... My, ,) of (M) —
[— - . T 1 =P
AU T (M TAZT : T My ... 12T T . Ma,,): I;Isz-O-(Ln)

AF (o)Case 1 AT : ?(:ck Mi... M) of (Mjx): inIjT'z.cr(Ln)

(Case z1,) —
AF (0)Case 1 AT : T.(xx Mi...M,,) of (M)~
— — .7 — .7 =P
A T (up AT : T .My ... 12T :T.M,,): l;[sz.J(Ln)
— T i=p
AR (o)t TAZ : T(Cjp Mi...Mn,) of (Mjx): Ho(T3).0(Ln)
(It Cjx) == =
Al‘(O’)It Ti:f : T.(Cj,k Ml"‘Mnjﬁ)) of (Mj,k)‘—>
AT o (TY (M (o)t TAT - T.M1 of (Mj4) E’)';..
()t AT : T My, of (Mjx))): ,ﬁja(Ti).a(Ln)
— .7 =3
A (o)t 122 : T.(zx Mi...M,,) of (Mjy): vHIO'(Ti).G'(Ln)
(It z1) =

—
A F (o)t TE: T (zx Ml...M,kl)of (M; 1) —
AU :o(T)(up (o)t TAT : T.M1 of (M) W) ...
(oWt TAT : T.M,, of (Mjz) @

Fig. 4. Reduction rules for case and iteration

13

The relationship between substitution and typed reduction is not as easy as in the
simply-typed A-calculus. If P —, P’ and Q —, Q' then we do not have any more
P[Q/x] —. P'[Q'/z] because of the side-conditions of reduction rules (n) and (App;).
Thus we only prove weak forms of the usual results. For instance, if A,z : A+ P : B and
AFQ — Q' : A, we only state that there is a term R such that A F P[Q/z] —. R: B
and A + P[Q'/z] —. R : B. Nevertheless, these results enable us to prove the local

confluence property:

Lemma 5.2 (Local Confluence).

HFAFM— N:AadAF M — P : A then there is a term @ such that

AFN<—,Q:Aand AFP—,Q: A

5.2. Strong Normalization

Now we briefly sketch our proof of the Strong Normalization theorem for our system.
The proof follows the idea of normalization proofs “a la Tait” and is inspired by (Werner,

1994) (for the inductive part) and (Ghani, 1996) (for the n-expansion part).

5.2.1. Reducibility Candidates

First we give a definition of the reducibility candidates (Girard et al., 1989) adapted

to our setting. Let us call A the set of our terms, defined in section 4.1.

Joélle Despeyroux and Pierre Leleu 14

Definition 5.3 (Reducibility Candidates).
Given a type A, the reducibility candidates CRy4 are sets C of pairs (A, M) satisfying
the following properties:

CR1V(A,M) € C, M is strongly normalizing in A (i.e. there is no infinite sequence of
reductions starting from M in A).

CRI’CC{(A,M)|AFM: A}

CR2V(A,M) € C such that AF- M — M’ : A, we have (A, M') € C.

CR3IfM € NT,AF M : A and forall M’ such that A+ M — M’ : A (# n-expansion),
(A, M") € C then we have (A, M) eC.

CR4If A= B — C and (A,M) € C then (A, Az : B.(M z)) € C, where z is a fresh
variable.

where NT = A\ ({\z: AM | M € AYU{T M | M € A}U{(M,N) | M,N € A}).

Note that instead of taking sets of terms, we consider sets of pairs of a stack and
a term. Indeed, since, because of n-expansion, our reduction is typed, it is convenient
for the reducibility candidates to contain well-typed terms. In rule CR3, the restriction
“AF M — M': Ais not an n-expansion” comes from (Jay and Ghani, 1995). It has
been introduced to cope with n-expansions. The rule CR4 is also needed because of the
n-expansions (Ghani, 1996).

As usual, if C and D belong to CR4 then C N D belong to CR4. Thus CR,4 is an
inf-semi lattice. Next, we define the sets C — D, C x D, OOC where C and D are two
reducibility candidates:

Definition 5.4 (C — D, OC, C x D).

—C—=D:={(A,M)| A+ M:A— Band VI',V((A,T),N) € C,((A,T),(M N)) €
D}

— 0OC = {(A,M) | A+ M : OA and VA’ stack s.t. (A, A’) is valid, ((A,A"),| M) €
C}.

— CxD:={(A,M)| A+ M : AxBand VT context s.t. (A,T) is valid, ((A,T),fst M) €
C and ((A,T),snd M) € D}.

In the definition of OOC, we need to extend the stack of contexts A with A’ in order to
get ((A,A"), M) € OC whenever (A, M) € OC (similarly to the case of C — D).

In the definition of C — D, the context I' added to the stack is essential; In the
intermediate lemmas, it allows us to add fresh variables to the context.

Proposition 5.5. If C and D are two C.R., then C — D, C x D and OC are C.R. too.

5.2.2. Interpretation of Types and Contexts
Following the sketch of normalization proofs “a la Tait”, we define the interpretations
of types.

Definition 5.6 (Interpretations of types).
— L] ={(A,M) | AF M :L; and M is SN in A },
— [A— B] :=[4] — [B],

Recursion over Objects of Functional Type 15

— [AxB]:=[4] x [BI,
— If A is not pure, [OA] := O[A]

All the above interpretations are obviously C.Rs., except, maybe, for the first case:

Proposition 5.7 ([L;] is a C.R.).
The set [L;] is a reducibility candidate.

In order to define [0 A] in the case A is pure, we have to take into account the fact that
OA may be the type of the inductive argument of Case/It. The definition of [OA] in this
case involves the smallest fixpoint of a function which we do not give here, because of
space limitation (see (Leleu, 1997)).

At this point, we have defined the interpretation of type [A] for all the types A. The
following theorem stems from the definitions of the interpretations of types.

Theorem 5.8 ([4] is a C.R.).
Given any type A, the set [A] is a C.R.

Then we define the notion of interpretation of context stack. Like in the classic case
of the simply-typed A-calculus, the interpretation [A]w of stack A in stack ¥ is a set
of substitutions from A to ¥ but the definition is a bit more complex here because we
have to deal with context stacks, instead of simple contexts. Thus we use a non standard
notion of substitution.

Definition 5.9 (Pre-substitution).

A pre-substitution p from a stack A to a stack ¥ is a mapping from the set of the
variables declared in A into the set of the terms with all their free variables in W.

A pre-substitution p can be applied to a term M with all its free variables in A. The
result of this operation, denoted by p(M), is equal to term M where all its free variables
2 have been replaced by their images under p, p(x).

Notations. Given two stacks A and ¥, a pre-substitution p from A to ¥, a variable x
not declared in A and M a term with all its free variables in ¥, we denote by px — M]
the pre-substitution from A,z : A to ¥ such that p[z — M](y) = p(y) if y is declared in
A and plx — M](z) = M.

Given a stack A’ such that A; A’ is valid and a substitution p’ from A’ to ¥, p;p’
denotes the pre-substitution from A; A’ to ¥ such that (p; p')(x) = p(z) if z is declared
in A and (p; p')(x) = p'(x) if z is declared in A'.

Definition 5.10 (Interpretation of context stack).
Given two stacks A and ¥, the interpretation of A in ¥, [A]g, is a set of pre-
substitutions from A to W. It is defined by induction on A:

— [.]w is the singleton whose only element is the empty pre-substitution from . to ¥.

— [T,z : A]w is the set of the pre-substitutions p[z — M], where p belongs to [I']y and
(T, M) is in [A4].

— [A;T]w is the set of pre-substitutions p; p’ such that p belongs to [A]g~ (n € IN)
and p’ belongs to [[w.

Joélle Despeyroux and Pierre Leleu 16

where the notation ¥™ has been previously defined in section 4.1.

In the definition of [A;T]y, the requirement that p belongs to [A]wn, which is more
flexible than the requirement that p belongs to [A]y, enables us to cope with the context
stacks in the proofs. For example, we will have that p belongs to [A; Jw,o» whenever p
belongs to [A]w.

5.2.3. Soundness of Typing

This lemma is proved by induction on the derivation of A + M : A. The most difficult
case occurs for rule (7). It is solved by using the typing restrictions imposed by modality
(see (Leleu, 1997)).

Lemma 5.11 (Soundness of Typing).
IfAFM:Aandpe€ [A]g, then (¥, p(M)) € [A].

The strong normalization theorem is then an easy corollary, using the fact that for any
stack A, the pre-substitution identity from A to A belongs to [A]a.

Theorem 5.12 (Strong Normalization).
There is no infinite sequence of reductions.

5.3. Confluence and Conservative Extension

The confluence property is a corollary of the strong normalization (Theorem 5.12) and
the local confluence results (this fact is often called “Newman’s Lemma”).

Theorem 5.13 (Confluence). IfA+M —, N:Aand A+ M —, P: A then there
is a term @ such that AF N —,Q:Aand AFP—, Q: A

As usual, the “uniqueness of normal forms” property is a corollary of the strong nor-
malization and confluence theorems.

Corollary 5.14 (Uniqueness of normal forms).
If A M: A then M reduces to a unique canonical form in A.

The conservative extension property uses the strong normalization result together with
a technical lemma, that defines the possible forms of a canonical term (Leleu, 1997).

Theorem 5.15 (Conservative extension).

Our system is a conservative extension of the simply-typed A-calculus,i.e. if AF M : A
with A pure context stack and A pure type then M has a unique canonical form N which
is pure.

6. Related Works

Our system has been inspired by (Despeyroux et al., 1997). The main difference is that
the underlying modal A-calculus is easier to use and seems to be better adapted to an
extension to dependent types. Splitting the context in two parts (the intuitionistic and

Recursion over Objects of Functional Type 17

the modal parts) would most probably make the treatment of dependent types even more
difficult, when representing a modal type depending on both non-modal and modal types.

We also provide reduction rules, instead of a particular strategy for evaluation. Finally,
due to that latter point and the fact that we have adapted well known proof methods, our
metatheoretic proofs are much more compact and easier to read. On the whole, our system
seems to be a better candidate for further extensions than the previous proposition.

Raymond McDowell and Dale Miller have proposed (McDowell and Miller, 1997) a
meta-logic to reason about object logics coded using higher order abstract syntax. Their
approach is quite different from ours, less ambitious in a sense. They do not provide a type
system supporting the judgments-as-types principle. Instead, they propose two logics: one
for each level (the object and meta levels). Moreover they only have induction on natural
numbers, which can be used to derive other induction principles via the construction of
an appropriate measure.

Frank Pfenning and Carsten Schiirmann have also defined a meta-logic My, which al-
lows inductive reasoning over HOAS encodings in LF (Pfenning and Schiirmann, 1998).
Recent development of this meta-logic are a nice improvement of the system by Raymond
McDowell and Dale Miller. It was designed to support automated theorem proving. This
meta-logic has been implemented in the theorem prover Twelf, which gives a logical pro-
gramming interpretation of My. Twelf has been used to automatically prove properties
such as type preservation for Mini-ML, an impressive result for us.

7. Conclusion and Future Work

We have presented a modal A-calculus IS4 with primitive recursive constructs that we
claim to be better than the previous proposition (Despeyroux et al., 1997). The conser-
vative extension theorem, which guarantees that the adequacy of encodings is preserved,
is proved as well as the Church-Rosser and strong normalization properties.

Dependent types. Our main goal is now to extend this system to dependent types
and to polymorphic types. This kind of extension is not straightforward but we expect
our system to be flexible enough to allow it. We have already proposed an extension
of our system to dependent types, only with a “non-dependent” rule for elimination for
the moment (Despeyroux and Leleu, 1999). Primitive recursion is a bit more than case,
iteration and pairs in the general case, although it is well known that primitive recursion
can be defined over the naturals using iteration and pairs, as we have done in (Despeyroux
et al., 1997). Actually, it seems that providing a primitive recursion construct here would
give an induction principle for terms defined by means of HOAS.

Similarly, it appears that giving a full treatment (i.e. rules for strong eliminations) for
dependent types would mean providing a solution to both the problems of recursion and
induction.

Induction. Thus the next challenge is to add induction principles. There exist several
proposals for this in the literature (McDowell and Miller, 1997; Pfenning and Schiirmann,
1998). However, the systems proposed there are not a single type theory, but a system
in two levels; the induction principles being defined on a meta-level, above the level to
which the terms belong.

Joélle Despeyroux and Pierre Leleu 18

Several induction principles for HOAS have been proposed so far. As induction is not
in the scope of the present paper, we will not present these induction principles here. Let
us just present the current situation concerning them.

First, induction principles for higher-order terms such as the ones of the untyped A-
terms L and Ly, recalled in the beginning of the present paper (in section 2) have been
commonly used in the LF and A-prolog community for a long time.

Then, in (Despeyroux and Hirschowitz, 1994; Despeyroux et al., 1995), we presented
several induction principles on higher-order termsin Ly, ,3. (These principles are derived
by the Coq system from the various definitions of walid terms).

The work presented here started from the idea that we should be able to deal with
higher-order terms in L, and get the corresponding recursion and induction principles
on this type, provided we add boxes, as we did in (Despeyroux et al., 1997). In our mind,
the induction principle should have been the same as before, adapted to L, equipped
with boxes in the natural way.

Martin Hofmann (Hofmann, 1999) recently proved the correctness of (closed forms of)
both the induction principle commonly used in the LF community (for Lg,;) and the
last one we mentionned (for Ly, 3 with boxes). The induction principles he proposed
differ from ours in that they do not include the cases for variables or projections. Martin
Hofman achieved this result by giving categorical interpretations of terms in Ly, 3. This
semantical characterisation should enable one to find a type theory for HOAS, with both
primitive recursion and induction, with dependent types.

Another interesting direction of research consists in replacing our recursive operators
by operators for pattern-matching such as those used in the ALF system, implementing
Martin-Lof’s Type Theory. Some hints for a concrete syntax for this extension have been
given in (Despeyroux et al., 1997). Frank Pfenning and Carsten Schiirmann are currently
working on the definition of a meta-logic along these lines.

A related domain is the design of a programming language based on some features
we have provided in our systems, in particular dependant types. Frank Pfenning and
Hongwei Xi have recently proposed such a language, in the ML tradition (Pfenning and
Xi, 1999).

Acknowledgments Thanks are due to Martin Hofmann for his suggestion for the initial
form of the reduction rules which, stengthening us in the intuitions we had in previous
works, make it possible the present results. We also thank André Hirschowitz for many
fruitful discussions.

References

Akama, Y. (1993). On Mints’ reduction for ccc-calculus. In Proceedings TLCA, pages 1-12.
Springer-Verlag LNCS 664.

Bierman, G. and de Paiva, V. (1996). Intuitionistic necessity revisited. In Technical Report
CSRP-96-10, School of Computer Science, University of Birmingham.

Cosmo, R. D. and Kesner, D. (1993). A Confluent Reduction for the Extensional Typed A-
calculus. In Proceedings ICALP’93. Springer-Verlag LNCS 700.

Recursion over Objects of Functional Type 19

Davies, R. and Pfenning, F. (1996). A modal analysis of staged computation. In Guy Steele,
J., editor, Proceedings of the 28rd Annual Symposium on Principles of Programming Lan-
guages, pages 258-270, St. Petersburg Beach, Florida. ACM Press.

Despeyroux, J., Felty, A., and Hirschowitz, A. (1995). Higher-order abstract syntax in Cogq.
In Dezani, M. and Plotkin, G., editors, proceedings of the TLCA 95 Int. Conference on
Typed Lambda Calculi and Applications, volume 902, pages 124-138. Springer-Verlag LNCS.
Preliminary version available as INRIA Research Report RR-2556.

Despeyroux, J. and Hirschowitz, A. (1994). Higher-order syntax and induction in Coq. In Pfen-
ning, F., editor, proceedings of the fifth Int. Conf. on Logic Programming and Automated
Reasoning (LPAR 94), volume 822, pages 159-173. Springer-Verlag LNAIL Preliminary
version available as INRIA Research Report RR-2292 (June 1994).

Despeyroux, J. and Leleu, P. (1998). A modal A-calcul with iteration and case constructs. In
proceedings of the annual Types for Proofs and Programs seminar, Springer-Verlag LNCS
1657.

Despeyroux, J. and Leleu, P. (1999). Primitive recursion for higher-order abstract syntax with
dependant types. In Informal proceedings of the FLoC’99 IMLA Workshop on Intuitionistic
Modal Logics and Applications.

Despeyroux, J. and Leleu, P. (2000). Metatheoretic results for a modal lambda-calculus. Journal
of Functional and Logic Programming (JFLP), 2000(1).

Despeyroux, J., Pfenning, F., and Schrmann, C. (1997). Primitive recursion for higher-order
abstract syntax. In de Groote, P. and Hindley, J. R., editors, proceedings of the TLCA
97 Int. Conference on Typed Lambda Calculi and Applications, Nancy, France, April 2—,
pages 147-163. Springer-Verlag LNCS 1210.

Ghani, N. (1996). Eta Expansions in System F. Technical Report LIENS-96-10, LIENS-DMI.

Girard, J.-Y., Lafont, Y., and Taylor, P. (1989). Proofs and Types. Cambridge University Press.

Harper, R., Honsell, F., and Plotkin, G. (1993). A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143-184.

Hofmann, M. (1999). Semantical analysis of higher-order abstract syntax. In IEEE Computer
Society Press, editor, Proceedings of the International Conference on Logic In Computer
Sciences, LICS, pages 204-213.

Jay, C. and Ghani, N. (1995). The Virtues of Eta-Expansion. Journal of Functional Program-
ming, 5(2):135-154.

Leleu, P. (1997). A modal A-calcul with iteration and case constructs. Research Report RR-3322,
INRIA.

McDowell, R. and Miller, D. (1997). A logic for reasoning with higher-order abstract syntax:
An extended abstract. In Proc. of LICS’97.

Paulin-Mohring, C. (1992). Inductive definitions in the system coq. rules and properties. In
Proc. of the TLCA’93 Int. Conference, Springer-Verlag LNCS 664, pages 328—-345.

Pfenning, F. and Schiirmann, C. (1998). Automated Theorem Proving in a Simple Meta Logic
for LF. In Proceedings of the CADE-15 Conference, Lindau - Germany.

Pfenning, F. and Wong, H.-C. (1995). On a modal A-calculus for S4. In Brookes, S. and Main,
M., editors, Proceedings of the 11th MFPS Conference, New Orleans, Louisiana. Flectronic
Notes in TCS, Volume 1, Elsevier.

Pfenning, F. and Xi, H. (1999). Dependant types in practical programming. In Proceedings of
the POPL’99 International Conference, San Antonio, Texas.

Werner, B. (1994). Une Thorie des Constructions Inductives. PhD thesis, Universit Paris VII.

