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Abstract

Linear implication can represent state transitions, but real transition systems operate
under temporal, stochastic or probabilistic constraints that are not directly representable
in ordinary linear logic. We propose a general modal extension of intuitionistic linear
logic where logical truth is indexed by constraints and hybrid connectives combine
constraint reasoning with logical reasoning. The logic has a focused cut-free sequent
calculus that can be used to internalize the rules of particular constrained transition
systems; we illustrate this with an adequate encoding of the synchronous stochastic
pi-calculus.

1. Introduction

To reason about state transition systems, we need a logic of state. Linear logic [21]
is such a logic and has been successfully used to model such diverse systems as: plan-
ning [39], Petri nets, CCS, the π-calculus [9, 27], concurrent ML [9], security proto-
cols [5], multi-set rewriting, graph traversal algorithms [40], and games. Linear logic
achieves this versatility by representing propositions as resources that are composed
into elements of state using ⊗, which can then be transformed using the linear implica-
tion ((). However, linear implication is timeless: there is no way to correlate the result
of two concurrent transitions. If resources have lifetimes and state changes have tempo-
ral, probabilistic or stochastic constraints, then the logic will allow inferences that may
not be realizable in the system. The need for formal reasoning in constrained systems
has led to the creation of specialized logistic systems such as Continuous Stochastic
Logic (CSL) [2] or Probabilistic CTL [22], that pay a considerable encoding overhead
for the state component of transitions in exchange for the constraint reasoning not pro-
vided by linear logic.

A prominent alternative to the logical approach is to use a suitably enriched pro-
cess algebra; a short list of examples includes reversible CCS [15], bioambients [37],
brane calculi [8], stochastic and probabilistic π-calculi, the PEPA algebra [23], and
the κ-calculus [16]. Each process algebra comes equipped with an underlying alge-
braic semantics which is used to justify mechanistic abstractions of observed reality
as processes. These abstractions are then animated by means of simulation and then
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compared with the observations. Process calculi do not however fill the need for formal
logical reasoning for constrained transition systems. For example, there is no uniform
language to encode different stochastic process algebras. Encoding the stochastic π
calculus in CSL, for example, would be inordinately complex because CSL does not
provide any direct means of encoding π-calculus dynamics such as the linear produc-
tion and consumption of messages in a synchronous interaction.

Fortunately, there is a simple yet general method to add constraint reasoning to
linear logic that reunites linguistic need with ability. It is an old idea—labelled de-
duction [41] with hybrid connectives [7]—applied to a new domain. Precisely, we
parameterize ordinary logical truth on a constraint domain: A@w stands for the truth
of A under constraint w. We then use the hybrid connectives of satisfaction and local-
isation to perform generic symbolic reasoning on the constraints at the propositional
level. We call the result hybrid linear logic (HyLL). No properties—except a basic
monoidal structure—are assumed about the constraints from a proof-theoretic stand-
point. Indeed, HyLL has a generic cut-free (but cut admitting) sequent calculus that
can be strengthened with a focusing restriction [1] to obtain a normal form for proofs.
Any instance of HyLL that gives a semantic interpretation to the constraints continues
to enjoy these proof-theoretic properties.

Focusing allows us to treat HyLL as a logical framework for constrained transition
systems. Logical frameworks with hybrid connectives have been considered before;
hybrid LF (HLF), for example, is a generic mechanism to add many different kinds of
resource-awareness, including linearity, to ordinary LF [36]. However, HLF follows
the usual LF methodology by keeping the logic of the framework minimal. Its proof
objects are canonical (β-normal η-long) natural deduction terms, where canonicity is
known to be brittle because of permutative equivalences [42]. With focusing we have
more direct access to canonical proofs in the sequent calculus, so we can enrich the
framework with any connectives that obey the focusing discipline [13]. This reduces
the overhead of encodings; indeed, representational adequacy of an encoding in terms
of (partial) focused derivations is routine. We illustrate this style of obtaining adequate
encodings by encoding of the synchronous stochastic π-calculus (S π) in HyLL with
the constraint domain of rates.

In addition to the novel stochastic component, our encoding of S π is a conceptual
improvement over other encodings of π calculi in linear logic [9, 27]: Our encoding
performs a full propositional reflection of processes as in [27], but is first-order and
adequate as in [9]. Being a logical framework, HyLL does not itself prescribe an op-
erational semantics for the encoding of processes; thus, bisimilarity in continuous time
Markov chains (CTMCs) is not the same as logical equivalence in stochastic HyLL,
unlike in CSL [17]. This is not a deficiency; the combination of focused HyLL proofs
and a proof search strategy tailored to a particular encoding is necessary to produce
faithful symbolic executions. This is exactly analogous to S π where it is the simulation
rather than the transitions in the process calculus that is shown to be faithful to the
CTMC semantics [32].

The sections of this paper are organized as follows: in sec. 2, we present the in-
ference system for HyLL as a sequent calculus, and describe the two main semantic
instances: temporal and stochastic constraints. In sec. 3 we sketch the general focusing
restriction on HyLL sequent proofs. In sec. 4 we give the encoding of S π in stochastic
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HyLL, and show that the encoding is representationally adequate for focused proofs
(theorems 15 and 17). We end with an overview of related (sec. 5) and future work
(sec. 6).

2. Hybrid linear logic

In this section we define HyLL, a conservative extension of intuitionistic first-order
linear logic (ILL) [21] where the truth judgements are labelled by worlds represent-
ing constraints. Like in ILL, propositions are interpreted as resources which may be
composed into a state using the usual linear connectives, and the linear implication
(() denotes a transition between states. The world label of a judgement represents
a constraint on states and state transitions; particular choices for the worlds produce
particular instances of HyLL. The common component in all the instances of HyLL
is the proof theory, which we fix once and for all. We impose the following minimal
requirement on the kinds of constraints that HyLL can deal with.

Definition 1. A constraint domainW is a monoid structure 〈W, ·, ι〉. The elements of
W are called worlds, and the partial order � : W ×W—defined as u � w if there exists
v ∈ W such that u · v = w—is the reachability relation inW.

The identity world ι is �-initial and is intended to represent the lack of any constraints.
Thus, the ordinary ILL is embeddable into any instance of HyLL by setting all world
labels to the identity. When needed to disambiguate, the instance of HyLL for the
constraint domainW will be written HyLL(W).

Atomic propositions are written using minuscule letters (a, b, . . .) applied to a se-
quence of terms (s, t, . . .), which are drawn from an untyped term language contain-
ing term variables (x, y, . . .) and function symbols ( f , g, . . .) applied to a list of terms..
Non-atomic propositions are constructed from the connectives of first-order intuition-
istic linear logic and the two hybrid connectives satisfaction (at), which states that a
proposition is true at a given world (w, u, v, . . .), and localization (↓), which binds a
name for the world the proposition is true at. The following grammar summarizes the
syntax of HyLL propositions.

A, B, . . .F a ~t
∣∣∣ A ⊗ B

∣∣∣ 1
∣∣∣ A( B

∣∣∣ A & B
∣∣∣ > ∣∣∣ A ⊕ B

∣∣∣ 0
∣∣∣ ! A

∣∣∣ ∀x. A ∣∣∣ ∃x. A
| (A at w)

∣∣∣ ↓u. A ∣∣∣ ∀u. A ∣∣∣ ∃u. A
Note that in the propositions ↓u. A, ∀u. A and ∃u. A, the scope of the world variable u
is all the worlds occurring in A. World variables cannot be used in terms, and neither
can term variables occur in worlds; this restriction is important for the modular design
of HyLL because it keeps purely logical truth separate from constraint truth. We let α
range over variables of either kind.

The unrestricted connectives ∧, ∨, ⊃, etc. of intuitionistic (non-linear) logic can
also be defined in terms of the linear connectives and the exponential ! using any of the
available embeddings of intuitionistic logic into linear logic, such as Girard’s embed-
ding [21].
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2.1. Sequent calculus for HyLL

In this section, we give a sequent calculus presentation of HyLL and prove a cut-
admissibility theorem. The sequent formulation in turn will lead to an analysis of the
polarities of the connectives in order to get a focused sequent calculus that can be used
to compile a logical theory into a system of derived inference rules with nice properties
(sec. 3). For instance, if a given theory defines a transition system, then the derived
rules of the focused calculus will exactly exhibit the same transitions. This is key to
obtain the necessary representational adequacy theorems, as we shall see for the S π-
calculus example chosen in this paper (sec. 4.1).

Instead of the ordinary mathematical judgement “A is true”, judgements of HyLL
are of the form “A is true at world w”, abbreviated as A@w. We use dyadic derivations
of the form Γ ; ∆ =⇒ C@w where Γ and ∆ are sets of judgements of the form A@w,
with ∆ being moreover a multiset, i.e., weakening and contraction are disallowed for
∆. Γ is called the unrestricted context and ∆ the linear context.

The full collection of rules of the HyLL sequent calculus is in fig. 1. There are
only two structural rules: the init rule infers an atomic initial sequent, and the copy
rule introduces a contracted copy of an unrestricted assumption into the linear context
(reading from conclusion to premise). Weakening and contraction are admissible rules:

Theorem 2 (structural properties).
1. If Γ ; ∆ =⇒ C@w, then Γ,Γ′ ; ∆ =⇒ C@w. (weakening)
2. If Γ, A@u, A@u ; ∆ =⇒ C@w, then Γ, A@u ; ∆ =⇒ C@w. (contraction)

Proof. By straightforward structural induction on the given derivations.

The most important structural properties are the admissibility of the identity and
the cut principles. The identity theorem is the general case of the init rule and serves
as a global syntactic completeness theorem for the logic. Dually, the cut theorem be-
low establishes the syntactic soundness of the calculus; moreover there is no cut-free
derivation of · ; · =⇒ 0@w, so the logic is also globally consistent.

Theorem 3 (identity). Γ ; A@w =⇒ A@w.

Proof. By induction on the structure of A.

Theorem 4 (cut).
1. If Γ ; ∆ =⇒ A@u and Γ ; ∆′, A@u =⇒ C@w, then Γ ; ∆,∆′ =⇒ C@w.
2. If Γ ; · =⇒ A@u and Γ, A@u ; ∆ =⇒ C@w, then Γ ; ∆ =⇒ C@w.

Proof. By lexicographic structural induction on the given derivations, with cuts of kind
2 additionally allowed to justify cuts of kind 1. The style of proof sometimes goes by
the name of structural cut-elimination [11].

We can use the admissible cut rules to show that the following rules are invertible:
⊗L, 1L, ⊕L, 0L, ∃L, ( R, &R, >R, and ∀R. In addition, the four hybrid rules, atR,
atL, ↓R and ↓L are invertible. In fact, ↓ and at commute freely with all non-hybrid
connectives:

In the rest of this paper we use the following derived connectives.
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Judgemental rules.

Γ ; a ~t @u =⇒ a ~t @u
init Γ, A@u ; ∆, A@u =⇒ C@w

Γ, A@u ; ∆ =⇒ C@w
copy

Multiplicatives.

Γ ; ∆ =⇒ A@w Γ ; ∆′ =⇒ B@w
Γ ; ∆,∆′ =⇒ A ⊗ B@w ⊗R

Γ ; ∆, A@u, B@u =⇒ C@w
Γ ; ∆, A ⊗ B@u =⇒ C@w ⊗L

Γ ; · =⇒ 1@w 1R
Γ ; ∆ =⇒ C@w

Γ ; ∆, 1@u =⇒ C@w 1L
Γ ; ∆, A@w =⇒ B@w
Γ ; ∆ =⇒ A ( B@w (R

Γ ; ∆ =⇒ A@u Γ ; ∆′, B@u =⇒ C@w
Γ ; ∆,∆′, A ( B@u =⇒ C@w (L

Additives.

Γ ; ∆ =⇒ >@w >R
Γ ; ∆ =⇒ A@w Γ ; ∆ =⇒ B@w

Γ ; ∆ =⇒ A & B@w &R

Γ ; ∆, Ai @u =⇒ C@w
Γ ; ∆,∆′, A1 & A2 @u =⇒ C@w

&Li

Γ ; ∆ =⇒ Ai @w
Γ ; ∆ =⇒ A1 ⊕ A2 @w

⊕Ri
Γ ; ∆, 0@u =⇒ C@w 0L

Γ ; ∆, A@u =⇒ C@w Γ ; ∆, B@u =⇒ C@w
Γ ; ∆, A ⊕ B@u =⇒ C@w ⊕L

Quantifiers.

Γ ; ∆ =⇒ A@w
Γ ; ∆ =⇒ ∀α. A@w ∀Rα

Γ ; ∆, [τ/α]A@u =⇒ C@w
Γ ; ∆,∀α. A@u =⇒ C@w ∀L

Γ ; ∆ =⇒ [τ/α]A@w
Γ ; ∆ =⇒ ∃α. A@w ∃R

Γ ; ∆, A@u =⇒ C@w
Γ ; ∆,∃α. A@u =⇒ C@w ∃Lα

For ∀Rα and ∃Lα, α is assumed to be fresh with respect to the conclusion. For ∃R and
∀L, τ stands for a term or world, as appropriate.
Exponentials.

Γ ; · =⇒ A@w
Γ ; · =⇒ ! A@w !R

Γ, A@u ; ∆ =⇒ C@w
Γ ; ∆, ! A@u =⇒ C@w !L

Hybrid connectives.

Γ ; ∆ =⇒ A@u
Γ ; ∆ =⇒ (A at u)@v atR

Γ ; ∆, A@u =⇒ C@w
Γ ; ∆, (A at u)@v =⇒ C@w atL

Γ ; ∆ =⇒ [w/u]A@w
Γ ; ∆ =⇒ ↓u. A@w

↓R
Γ ; ∆, [v/u]A@v =⇒ C@w
Γ ; ∆, ↓u. A@v =⇒ C@w

↓L

Figure 1: The sequent calculus for HyLL
.
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Definition 5 (modal connectives).

� A , ↓u.∀w. (A at u · w) ♦ A , ↓u.∃w. (A at u · w)

ρv A , ↓u. (A at u · v) † A , ∀u. (A at u)

The connective ρ represents a form of delay. Note its derived right rule:

Γ ; ∆ ` A@w · v
Γ ; ∆ ` ρv A@w

ρR

The proposition ρv A thus stands for an intermediate state in a transition to A. Infor-
mally it can be thought to be “v before A”; thus, ∀v. ρv A represents all intermediate
states in the path to A, and ∃v. ρv A represents some such state. The modally unre-
stricted proposition † A represents a resource that is consumable in any world; it is
mainly used to make transition rules applicable at all worlds.

It is worth remarking that HyLL proof theory can be seen as at least as powerful
as (the linear restriction of) intuitionistic S5 [41], i.e., the proposition ♦ A(�♦ A is
provable at any world for any A. (We leave the easy proof as an exercise.) Obviously
HyLL is more expressive as it allows direct manipulation of the worlds using the hybrid
connectives: for example, the ρ connective is not definable in S5.

2.2. Temporal constraints
As a pedagogical example, consider the constraint domain T = 〈R+,+, 0〉 repre-

senting instants of time. This domain can be used to define the lifetime of resources,
such as keys, sessions, or delegations of authority. Delay (defn. 5) in HyLL(T ) rep-
resents intervals of time; ρd A means “A will become available after delay d”, similar
to metric tense logic [35]. This domain is very permissive because addition is com-
mutative, resulting in the equivalence of ρu ρv A and ρv ρu A. The “forward-looking”
connectives G and F of ordinary tense logic are precisely � and ♦ of defn. 5. In ad-
dition to the future connectives, this domain also admits past connectives if we add
saturating subtraction (i.e., a − b = 0 if b ≥ a) to the language of worlds. We can then
define the duals H and P of G and F as:

H A , ↓u.∀w. (A at u − w)

P A , ↓u.∃w. (A at u − w)

While this domain does not have any branching structure like CTL, it is expressive
enough for many common idioms because of the branching structure of derivations
involving ⊕. CTL reachability (“in some path in some future”), for instance, is the
same as our ♦; similarly, CTL stability (“in all paths in all futures”) is the same as �.
There is some loss of expressive power, however; for instance, in CTL steadiness (“in
some path for all futures”) is distinct from stability, whereas the best approximation in
HyLL is ∃w. �(A at u · w).

On the other hand, the availability of linear reasoning makes certain kinds of rea-
soning in HyLL much more natural than in ordinary temporal logics. One impor-
tant example is of oscillation between states in systems with kinetic feedback. In a
temporal specification language such as BIOCHAM [10], only finite oscillations are
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representable using a nested syntax, while in HyLL we use a simple bi-implication;
for example, the oscillation between A and B with delay d is represented by the rule
†(A( ρd B) & (B( ρd A) (or †(A( ♦ B) & (B( ♦ A) if the oscillation is aperi-
odic). If HyLL(T ) were extended with constrained implication and conjunction in the
style of CILL [39] or η [18], then we can define localized versions of � and ♦, such as
“A is true everywhere/somewhere in an interval”. They would also allow us to define
the “until” and “since” operators of linear temporal logic [24].

2.3. Stochastic constraints
Transitions in practice rarely have precise delays. Phenomenological and exper-

imental evidence is used to construct a probabilistic model of the transition system
where the delays are specified as probability distributions of continuous variables. To
simplify matters, we shall only consider real-valued random variables with a fairly tra-
ditional presentation in this paper; the generalisation to arbitrary measure spaces is well
known.

Fact 6 (see e.g. [6]). If F and G are the probability distributions1 of the real-valued
random variables X and Y respectively, i.e., Pr [X < t] = F(t) and Pr [Y < t] = G(t),
then the distribution of X + Y is the convolution of F and G, written F ∗G:

Pr [X + Y < t] = (F ∗G)(t) ,
∫

R
F(t − x) dG(x).

Convolution is associative and commutative, and has for its identity the Heavyside step
function Θ(x) , (1 + sign(x))/2.

Because we are modelling a state transition system that only moves forward in
time, our random variables (representing the delays of a transition) are always positive.
Positively supported probability distributions (i.e., distributions that are non-zero only
on positive values) of random variables, together with convolution as the operator and
the Heavyside step function as identity, form a commutative monoid that we shall call
the stochastic constraint domain. (We avoid simple generalizations to the full real line,
or Lebesgue measures in general, though they would present no problems.)

Definition 7. The stochastic domain S is the monoid 〈D, ∗,Θ〉 where D is the space of
positively supported probability distributions of one dimensional real-valued random
variables.

The standard model of stochastic transition systems is continuous time Markov
chains (CTMCs) where the delays of transitions between states are distributed accord-
ing to the Markov assumption of memorylessness, i.e., the distributions are exponential
distributions. The convolution of two exponential distributions produces a hypoexpo-
nential distribution, a variety of phase type distribution [29], on which convolution is
closed. Hypoexponentials describe the time to absorption of a CTMC assuming that it
is entered only in a single initial state and every non-absorbing state has a unique next

1We use the convention of calling the cumulative distribution function the (probability) distribution.
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state. This is sufficient for the purposes of the encoding in sec. 4 because our traces are
linear. We consider the Heavyside step function as describing the time to absorption of
a degenerate CTMC that starts in the absorbing state.

Definition 8. A rate is either a hypoexponential distribution or the Heavyside step
function. Let R be the submonoid of S where the distributions are rates. The instance
HyLL(R) will sometimes be called “stochastic hybrid linear logic”.

3. Focusing

As HyLL is intended to represent transition systems adequately, it is crucial that
HyLL derivations in the image of an encoding have corresponding transitions. How-
ever, transition systems are generally specified as rewrite algebras over an underlying
congruence relation. These congruences have to be encoded propositionally in HyLL,
so a HyLL derivation will generally require several inference rules to implement a
single transition; moreover, several trivially different reorderings of these “micro” in-
ferences would correspond to the same transition. It is therefore futile to attempt to
define an operational semantics directly on HyLL inferences.

We restrict the syntax to focused derivations [1], which ignores many irrelevant rule
permutations in a sequent proof and divides the proof into clear phases that define the
grain of atomicity. The logical connectives are divided into two classes, negative and
positive, and rule permutations for connectives of like polarity are confined to phases.
A focused derivation is one in which the positive and negative rules are applied in
alternate maximal phases in the following way: in the active phase, all negative rules
are applied (in irrelevant order) until no further negative rule can apply; the phase then
switches and one positive proposition is selected for focus; this focused proposition
is decomposed under focus (i.e., the focus persists unto its sub-propositions) until it
becomes negative, and the phase switches again.

As noted before, the logical rules of the hybrid connectives at and ↓ are invertible,
so they can be considered to have both polarities. It would be valid to decide a po-
larity for each occurrence of each hybrid connective independently; however, as they
are mainly intended for book-keeping during logical reasoning, we define the polarity
of these connectives in the following parasitic form: if its immediate subformula is
positive (resp. negative) connective, then it is itself positive (resp. negative). These
connectives therefore become invisible to focusing. This choice of polarity can be seen
as a particular instance of a general scheme that divides the ↓ and at connectives into
two polarized forms each. To complete the picture, we also assign a polarity for the
atomic propositions; this restricts the shape of focusing phases further [14], and is cru-
cial to our intended use. The full syntax of positive (P,Q, . . .) and negative (M,N, . . .)
propositions is as follows:

P,Q, . . . F p ~t
∣∣∣ P ⊗ Q

∣∣∣ 1
∣∣∣ P ⊕ Q

∣∣∣ 0
∣∣∣ ! N

∣∣∣ ∃α. P
∣∣∣ ↓u. P ∣∣∣ (P at w)

∣∣∣ ⇓N
N,M, . . .F n ~t

∣∣∣ N & N
∣∣∣ > ∣∣∣ P( N

∣∣∣ ∀α. N
∣∣∣ ↓u.N ∣∣∣ (N at w)

∣∣∣ ⇑P

The two syntactic classes refer to each other via the new connectives ⇑ and ⇓. Sequents
in the focusing calculus are of the following forms.
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Focused logical rules.

Γ ;
[
n ~t@w

]
=⇒ ⇓n ~t@w

li
Γ ; ∆ ; P@u =⇒ · ; Q@w
Γ ; ∆ ;

[
⇑P@u

]
=⇒ Q@w

⇑L
Γ ; ∆ ;

[
Ni @u

]
=⇒ Q@w

Γ ; ∆ ;
[
N1 & N2 @u

]
=⇒ Q@w

&Li

Γ ; ∆ =⇒
[
P@u

]
Γ ; Ξ ;

[
N @u

]
=⇒ Q@w

Γ ; ∆,Ξ ;
[
P ( N @u

]
=⇒ Q@w

(L
Γ ; ∆ ;

[
[τ/α]N @u

]
=⇒ Q@w

Γ ; ∆ ;
[
∀α. N @u

]
=⇒ Q@w

∀L

Γ ; ∆ ;
[
[v/u]N @v

]
=⇒ Q@w

Γ ; ∆ ;
[
↓u.N @v

]
=⇒ Q@w

↓LF
Γ ; ∆ ;

[
N @u

]
=⇒ Q@w

Γ ; ∆ ;
[
(N at u)@v

]
=⇒ Q@w

atLF

Γ ; ⇑p ~t@w =⇒
[
p ~t@w

] ri
Γ ; ∆ ; · =⇒ N @w ; ·
Γ ; ∆ =⇒

[
⇓N @w

] ⇓R
Γ ; ∆ =⇒

[
P@w

]
Γ ; Ξ =⇒

[
Q@w

]
Γ ; ∆,Ξ =⇒

[
P ⊗ Q@w

] ⊗R

Γ ; · =⇒
[
1@w

] 1R
Γ ; ∆ =⇒

[
Pi @w

]
Γ ; ∆ =⇒

[
P1 ⊕ P2 @w

] ⊕Ri
Γ ; · ; · =⇒ N @w ; ·

Γ ; · =⇒
[
!N

]
@w

!R

Γ ; ∆ =⇒
[
[τ/α]P@w

]
Γ ; ∆ =⇒

[
∃α. P@w

] ∃R
Γ ; ∆ =⇒

[
[w/u]P@w

]
Γ ; ∆ =⇒

[
↓u. P@w

] ↓RF
Γ ; ∆ =⇒

[
P@u

]
Γ ; ∆ =⇒

[
(P at u)@w

] atRF

Active logical rules. (R of the form · ; Q@w or N @w ; ·, and L of the form Γ ; ∆ ; Ω)

L, P@u,Q@u =⇒ R
L, P ⊗ Q@u =⇒ R

⊗L L =⇒ R
L, 1@u =⇒ R 1L

L, P@u =⇒ R L,Q@u =⇒ R
L, P ⊕ Q@u =⇒ R

⊕L
L, 0@u =⇒ R 0L

L, [v/u]P@v =⇒ R
L, ↓u. P@v =⇒ R

↓LA
L, P@u =⇒ R

L, (P at u)@v =⇒ R atLA
L, P@u =⇒ R

L,∃α. P@u =⇒ R ∃Lα

Γ,N @u ; ∆ ; Ω =⇒ R
Γ ; ∆ ; Ω, !N @u =⇒ R !L

Γ ; ∆,N @w ; Ω =⇒ R
Γ ; ∆ ; Ω, ⇓N @w =⇒ R

⇓L
Γ ; ∆, ⇑p ~t ; Ω =⇒ R

Γ ; ∆ ; Ω, p ~t@w =⇒ R
lp

L =⇒ M@w ; · L =⇒ N @w ; ·
L =⇒ M & N @w ; · &R L =⇒ >@w ; · >R

L, P@w =⇒ N @w ; ·
L =⇒ P ( N @w ; · (R

L =⇒ [w/u]N @w ; ·
L =⇒ ↓u.N @w ; ·

↓RA L =⇒ N @u
L =⇒ (N at u)@w atRA

L =⇒ N @u ; ·
L =⇒ ∀α. N @u ; · ∀Rα

L =⇒ · ; P@w
L =⇒ ⇑P@w ; ·

⇑R
L =⇒ · ; ⇓n ~t@w

L =⇒ n ~t@w ; ·
rp

Focusing decisions. (L of the form Γ ; ∆)

Γ ; ∆ ;
[
N @u

]
=⇒ Q@w N not ⇑p ~t

Γ ; ∆,N @u ; · =⇒ · ; Q@w lf
Γ,N @u ; ∆ ;

[
N @u

]
=⇒ Q@w

Γ,N @u ; ∆ ; · =⇒ · ; Q@w
cplf

Γ ; ∆ =⇒
[
P@w

]
P not ⇓n ~t

Γ ; ∆ ; · =⇒ · ; P@w rf

Figure 2: Focusing rules for HyLL.
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Γ ; ∆ ; Ω =⇒ · ; P@w
Γ ; ∆ ; Ω =⇒ N @w ; ·

}
active

Γ ; ∆ ;
[
N @u

]
=⇒ · ; P@w

Γ ; ∆ ;
[
N @u

]
=⇒ M@w ; ·

Γ ; ∆ =⇒
[
P@w

]
 focused

In each case, Γ and ∆ contain only negative propositions (i.e., of the form N @u) and
Ω only positive propositions (i.e., of the form P@u). The full collection of inference
rules are in fig. 2. The sequent form Γ ; ∆ ; · =⇒ · ; P@w is called a neutral sequent;
from such a sequent, a left or right focused sequent is produced with the rules lf, cplf
or rf. Focused logical rules are applied (non-deterministically) and focus persists unto
the subformulas of the focused proposition as long as they are of the same polarity;
when the polarity switches, the result is an active sequent, where the propositions in
the innermost zones are decomposed in an irrelevant order until once again a neutral
sequent results.

Soundness of the focusing calculus with respect to the ordinary sequent calculus
is immediate by simple structural induction. In each case, if we forget the additional
structure in the focused derivations, then we obtain simply an unfocused proof. We
omit the obvious theorem. Completeness, on the other hand, is a hard result. We omit
the proof because focusing is by now well known for linear logic, with a number of
distinct proofs via focused cut-elimination (see e.g. the detailed proof in [14]). The
hybrid connectives pose no problems because they allow all cut-permutations.

Theorem 9 (focusing completeness). Let Γ− and C−@w be negative polarizations of Γ

and C@w (that is, adding ⇑ and ⇓ to make C and each proposition in Γ negative) and ∆+

be a positive polarization of ∆. If Γ ; ∆ =⇒ C@w, then · ; · ; ! Γ−,∆+ =⇒ C−@w ; ·.

4. Encoding the synchronous stochastic π-calculus

In this section, we shall illustrate the use of HyLL(R) as a logical framework for
constrained transition systems by encoding the syntax and the operational semantics
of the synchronous stochastic π-calculus (S π), which extends the ordinary π-calculus
by assigning to every channel and internal action with an inherent rate of synchroniza-
tion. HyLL(R) can therefore be seen as a formal language for expressing S π executions
(traces). For the rest of this section we shall use r, s, t, . . . instead of u, v,w, . . . to high-
light the fact that the worlds represent rates, with the understanding that · is convolution
(defn. 6) and ι is Θ. We don’t directly use rates because the syntax and transitions of
S π are given generically for a π-calculus with labelled actions, and it is only the inter-
pretation of the labels that involves probabilities.

We first summarize the syntax of S π, which is a minor variant of a number of
similar presentations such as [34]. For hygienic reasons we divide entities into the
syntactic categories of processes (P,Q, . . .) and sums (M,N, . . .), defined as follows.
We also include environments of recursive definitions (E) for constants.

(Processes) P,Q, . . . F νr P
∣∣∣ P | Q

∣∣∣ 0
∣∣∣ Xn x1 · · · xn

∣∣∣ M
(Sums) M,N, . . .F !x(y). P

∣∣∣ ?x. P
∣∣∣ τr. P

∣∣∣ M + N
(Environments) E F E, Xn , P

∣∣∣ ·
P | Q is the parallel composition of P and Q, with unit 0. The restriction νr P

abstracts over a free channel x in the process P x. We write the process using higher-
order abstract syntax [31], i.e., P in νr P is (syntactically) a function from channels
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Interactions

!x(y). P + M | ?x. Q + M′
rate(x)
−−−−−→ P | Q y



τr. P
r
−→ P



P
r
−→ P′

P | Q
r
−→ P′ | Q


∀xs.

(
P x

r
−→ Q x

)
νs P

r
−→ νs Q


P

r
−→ Q P ≡ P′ Q ≡ Q′

P′
r
−→ Q′



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Congruence

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R νr 0 ≡ 0
Xn , P ∈ E

E ` Xn x1 · · · xn ≡ P x1 · · · xn

νr(λx. νs(λy. P)) ≡ νs(λy. νr(λx. P))
∀xr. (P x ≡ Q x)
νr P ≡ νr Q νr(λx. P | Q(x)) ≡ P | νr Q

P ≡ P′

P | Q ≡ P′ | Q
P ≡ P′

!x(m). P ≡ !x(m). P′
∀n. (P n ≡ Q n)
?x. P ≡ ?x. Q

P ≡ P′

τr. P ≡ τr. P′

M + N ≡ N + M M + (N + K) ≡ (M + N) + K
M ≡ M′

M + N ≡ M′ + N
M ≡ N

M + N ≡ M

Figure 3: Interactions and congruence in S π. The environment E is elided in most rules.

to processes. This style lets us avoid cumbersome binding rules in the interactions
because we reuse the well-understood binding structure of the λ-calculus. A similar
approach was taken in the earliest encoding of (ordinary) π-calculus in (unfocused)
linear logic [27], and is also present in the encoding in CLF [9].

A sum is a non-empty choice (+) over terms with action prefixes: the output action
!x(y) sends y along channel x, the input action ?x reads a value from x (which is applied
to its continuation process), and the internal action τr has no observable I/O behaviour.
Replication of processes happens via guarded recursive definitions [28]; in [38] it is ar-
gued that they are more practical for programming than the replication operator !. In a
definition Xn , P, Xn denotes a (higher-order) defined constant of arity n; given chan-
nels x1, . . . , xn, the process Xn x1 · · · xn is synonymous with P x1 · · · xn. The constant
Xn may occur on the right hand side of any definition in E, including in its body P, as
long as it is prefixed by an action; this prevents infinite recursion without progress.

Interactions are of the form E ` P
r
−→ Q denoting a transition from the process P

to the process Q, in a global environment E, by performing an action at rate r. Each
channel x is associated with an inherent rate specific to the channel, and internal actions
τr have rate r. The restriction νr P defines the rate of the abstracted channel as r.

The full set of interactions and congruences are in fig. 3. We generally omit the
global environment E in the rules as it never changes. It is possible to use the congru-
ences to compute a normal form for processes that are a parallel composition of sums
and each reaction selects two suitable sums to synchronise on a channel until there are
no further reactions possible; this refinement of the operational semantics is used in S π
simulators such as SPiM [33].

Definition 10 (syntax encoding).
1. The encoding of the process P as a positive proposition, written ~P�p, is as follows
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(sel is a positive atom and rt a negative atom).

~P | Q�p = ~P�p ⊗ ~Q�p ~νr P�p = ∃x. !(rt x at r) ⊗ ~P x�p

~0�p = 1 ~Xn x1 · · · xn�p = Xn x1 · · · xn

~M�p = ⇓(sel( ~M�s)

2. The encoding of the sum M as a negative proposition, written ~M�s, is as follows
(out, in and tau are positive atoms).

~M + N�s = ~M�s & ~N�s ~!x(m). P�s = ⇑(out x m ⊗ ~P�p)
~?x. P�s = ∀n. ⇑(in x n ⊗ ~P n�p) ~τr. P�s = ⇑(tau r ⊗ ~P�p)

3. The encoding of the definitions E as a context, written ~E�e, is as follows.�
E, Xn , P

�
e

= ~E�e , † ∀x1, . . . , xn. Xn x1 · · · xn � ~P x1 · · · xn�p

~·�e = ·

where P � Q is defined as (P( ⇑Q) & (Q( ⇑P).

The encoding of processes is positive, so they will be decomposed in the active
phase when they occur on the left of the sequent arrow, leaving a collection of sums.
The encoding of restrictions will introduce a fresh unrestricted assumption about the
rate of the restricted channel. Each sum encoded as a processes undergoes a polar-
ity switch because ( is negative; the antecedent of this implication is a guard sel.
This pattern of guarded switching of polarities prevents unsound congruences such as
!x(m). !y(n). P ≡ !y(n). !x(m). P that do not hold for the synchronous π calculus.2 This
guard also locks the sums in the context: the S π interaction rules  and  discard the
non-interacting terms of the sum, so the environment will contain the requisite number
of sels only when an interaction is in progress. The action prefixes themselves are also
synchronous, which causes another polarity switch. Each action releases a token of its
respective kind—out, in or tau—into the context. These tokens must be consumed
by the interaction before the act token becomes available again. For each action, the
(encoding of the) continuation process is also released into the context.

The proof of the following congruence lemma is omitted. Because the encoding is
(essentially) a ⊗/& structure, there are no distributive laws in linear logic that would
break the process/sum structure.

Theorem 11 (congruence). E ` P ≡ Q iff both ~E�e @ι ; · ; ~P�p @ι =⇒ · ; ~Q�p @ι
and ~E�e @ι ; · ; ~Q�p @ι =⇒ · ; ~P�p @ι.

Now we encode the interactions. Because processes were lifted into propositions,
we can be parsimonious with our encoding of interactions by limiting ourselves to
the atomic interactions  and  (below); the ,  and  interactions will be
ambiently implemented by the logic. Because there are no concurrent interactions—
only one interaction can trigger at a time in a trace—the interaction rules must obey a

2Note: (x ( a ⊗ (x ( b ⊗ c)) ( (x ( b ⊗ (x ( a ⊗ c)) is not provable in linear logic.
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locking discipline. We represent this lock as the proposition act that is consumed at
the start of an interaction and produced again at the end. This lock also carries the net
rate of the prefix of the trace so far: that is, an interaction P

r
−→ Q will update the lock

from act@s to act@s · r. The encoding of individual atomic interactions must also
remove the in, out and tau tokens introduced in context by the interacting processes.

Definition 12 (interaction). Let inter , †(act( ⇑int& ⇑syn) where act is a pos-
itive atom and int and syn are as follows:

int , (sel at ι) ⊗ ⇓∀r.
(
(tau r at ι) ( ρr ⇑act

)
syn , (sel ⊗ sel at ι) ⊗ ⇓∀x, r,m.

(
(out x m ⊗ in x m at ι) ( ⇓(rt x at r) ( ρr ⇑act

)
.

The number of interactions that are allowed depend on the number of instances of
inter in the linear context: each focus on inter implements a single interaction. If
we are interested in all finite traces, we will add inter to the unrestricted context so it
may be reused as many times as needed.

4.1. Representational adequacy.

Adequacy consists of two components: completeness and soundness. Complete-
ness is the property that every S π execution is obtainable as a HyLL derivation using
this encoding, and is the comparatively simpler direction (see thm. 15). Soundness
is the reverse property, and is false for unfocused HyLL as such. However, it does
hold for focused proofs (see thm. 17). In both cases, we reason about the following
canonical sequents of HyLL.

Definition 13. The canonical context of P, written NPO, is given by:

NXn x1 · · · xnO = ⇑Xn x1 · · · xn NP | QO = NPO, NQO N0O = · Nνr PO = NP aO

NMO = sel( ~M�s

For Nνr PO, the right hand side uses a fresh channel a that is not free the rest of the
sequent it occurs in.

As an illustration, take P , !x(a). Q | ?x. R. We have:

NPO = sel( ⇑(out x a ⊗ ~Q�p), sel( ∀y. ⇑(in x y ⊗
�
R y

�
p)

Obviously, the canonical context is what would be emitted to the linear zone at the end
of the active phase if ~P�p were to be present in the left active zone.

Definition 14. A neutral sequent is canonical iff it has the shape

~E�e , rates, inter@ι ; ⇑act@s, NP1 | · · · | PkO@ι ; · =⇒ · ; (~Q�p at ι) ⊗ act@t

where rates contains elements of the form rt x@r defining the rate of the channel x
as r, and all free channels in ~E�e , NP1 | · · · | Pk | QO have a single such entry in rates.
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Suppose L = rtx@r, inter@ι and R = (~S �p at ι) ⊗ act@t. (All judgements @ι omitted.)

L ; NQO , NR aO , ⇑act@s · r ; · =⇒ · ; R

L ; NQO, ⇑ out x a, ⇑ in x a, NR aO,
∀x, r,m. ((out x m ⊗ in x m at ι) ( ⇓(rtx at r) ( ρr act)@s ; · =⇒ · ; R

5

L ; ⇑ out x a, NQO, sel( ∀y. ⇑(in x y ⊗
�
R y

�
p),

⇑sel,∀x, r,m. ((out x m ⊗ in x m at ι) ( ⇓(rtx at r) ( ρr act)@s ; · =⇒ · ; R

4

L ; sel( ⇑(out x a ⊗ ~Q�p), sel( ∀y. (in x y ⊗
�
R y

�
p),

⇑sel, ⇑sel,∀x, r,m. ((out x m ⊗ in x m at ι) ( ⇓(rtx at r) ( ρr act)@s ; · =⇒ · ; R

3

L ; ⇑act@s, sel( ⇑(out x a ⊗ ~Q�p), sel( ∀y. ⇑(in x y ⊗
�
R y

�
p) ;

[
inter

]
=⇒ R

2

L ; ⇑act@s, sel( ⇑(out x a ⊗ ~Q�p), sel( ∀y. ⇑(in x y ⊗
�
R y

�
p) ; · =⇒ · ; R

1

L ; ⇑act@s, N!x(a). Q | ?x. RO ; · =⇒ · ; R

Steps
1: focus on inter ∈ L 3: sel for output + full phases 5: cleanup
2: select syn from inter, active rules 4: sel for input + full phases

Figure 4: Example interaction in the S π-encoding.

Figure 4 contains an example of a derivation for a canonical sequent involving P.
Focusing on any (encoding of a) sum in NPO@ι will fail because there is no sel in
the context, so only inter can be given focus; this will consume the act and release
two copies of (sel at ι) and the continuation into the context. Focusing on the latter
will fail now (because out x m and in x m (for some m) are not yet available), so the
only applicable foci are the two sums that can now be “unlocked” using the sels.
The output and input can be unlocked in an irrelevant order, producing two tokens
in x a and out x a. Note in particular that the witness a was chosen for the universal
quantifier in the encoding of ?x. Q because the subsequent consumption of these two
tokens requires the messages to be identical. (Any other choice will not lead to a
successful proof.) After both tokens are consumed, we get the final form act@s · r,
where r is the inherent rate of x (found from the rates component of the unrestricted
zone). This sequent is canonical and contains NQ | R aO.

Our encoding therefore represents every S π action in terms of “micro” actions in
the following rigid order: one micro action to determine what kind of action (internal
or synchronization), one micro action per sum to select the term(s) that will interact,
and finally one micro action to establish the contract of the action. Thus we see that
focusing is crucial to maintain the semantic interpretation of (neutral) sequents. In an
unfocused calculus, several of these steps could have partial overlaps, making such a
semantic interpretation inordinately complicated. We do not know of any encoding
of the π calculus that can provide such interpretations in unfocused sequents without
changing the underlying logic. In CLF [9] the logic is extended with explicit monadic
staging, and this enables a form of adequacy [9]; however, the encoding is considerably
more complex because processes and sums cannot be fully lifted and must instead be
specified in terms of a lifting computation. Adequacy is then obtained via a permutative
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equivalence over the lifting operation. Other encodings of π calculi in linear logic, such
as [20] and [3], concentrate on the easier asynchronous fragment and lack adequacy
proofs anyhow.

Theorem 15 (completeness). If E ` P
r
−→ Q, then the following canonical sequent is

derivable.

~E�e , rates, inter@ι ; ⇑act@s, NPO@ι ; · =⇒ · ; (~Q�p at ι) ⊗ act@s · r.

Proof. By structural induction of the derivation of E ` P
r
−→ Q. Every interaction rule

of S π is implementable as an admissible inference rule for canonical sequents. For
, we appeal to thm. 11.

Completeness is a testament to the expressivity of the logic – all executions of
S π are also expressible in HyLL. However, we also require the opposite (soundness)
direction: that every canonical sequent encodes a possible S π trace. The proof hinges
on the following canonicity lemma.

Lemma 16 (canonical derivations). In a derivation for a canonical sequent, the de-
rived inference rules for inter are of one of the two following forms (conclusions and
premises canonical).

~E�e , rates, inter@ι ; ⇑act@s, NPO@ι ; · =⇒ · ; (~P�p at ι) ⊗ act@s

~E�e , rates, inter@ι ; ⇑act@s · r, NQO@ι ; · =⇒ · ; (~R�p at ι) ⊗ act@t
~E�e , rates, inter@ι ; ⇑act@s, NPO@ι ; · =⇒ · ; (~R�p at ι) ⊗ act@t

where: either E ` P
r
−→ Q, or E ` P ≡ Q with r = ι.

Proof. This is a formal statement of the phenomenon observed earlier in the example
(fig. 4): ~R�p ⊗ act cannot be focused on the right unless P ≡ R, in which case the
derivation ends with no more foci on inter. If not, the only elements available for
focus are inter and one of the congruence rules ~E�e in the unrestricted context.
In the former case, the derived rule consumes the ⇑act@s, and by the time act is
produced again, its world has advanced to s · r. In the latter case, the definition of a top
level Xn in NPO is (un)folded (without advancing the world). For formal details of this
proof by induction on the structure of P, see [12].

Lemma 16 is a strong statement about HyLL derivations using this encoding: every
partial derivation using the derived inference rules represents a prefix of an S π trace.
This is sometimes referred to as full adequacy, to distinguish it from adequacy proofs
that require complete derivations [30]. The structure of focused derivations is crucial
because it allows us to close branches early (using init). It is impossible to perform
a similar analysis on unfocused proofs for this encoding; both the encoding and the
framework will need further features to implement a form of staging [9, Chapter 3].

Corollary 17 (soundness).
If ~E�e , rates, inter@ι ; ⇑act@ι, NPO@ι ; · =⇒ · ; (~Q�p at ι) ⊗ act@r is derivable,

then E ` P
r
−→∗Q.

Proof. Directly from lem. 16.
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4.2. Stochastic correctness
So far the HyLL(R) encoding of S π represents any S π trace symbolically. How-

ever, not every symbolic trace of an S π process can be produced according to the
operational semantics of S π. This is the main difference between HyLL (and S π) and
the approach of CSL [2], where the truth of a proposition is evaluated against a CTMC,
which is why equivalence in CSL is identical to CTMC bisimulation [17]. In this sec-
tion we sketch how the execution could be used directly on the canonical sequents to
produce only correct traces (proofs). The proposal in this section should be seen by
analogy to the execution model of S π simulators such as SPiM [32], although we do
not use the Gillespie algorithm.

The main problem of simulation is determining which of several competing enabled
actions in a canonical sequent to select as the “next” action from the race condition of
the actions enabled in the sequent. Because of the focusing restriction, these enabled
actions are easy to compute. Each element of NPO is of the form sel( ~M�s, so the
enabled actions in that element are given precisely by the topmost occurrences of ⇑ in
~M�s. Because none of the sums can have any restricted channels (they have all been
removed in the active decomposition of the process earlier), the rates of all the channels
will be found in the rates component of the canonical sequent.

The effective rate of a channel x is related to its inherent rate by scaling by a factor
proportional to the activity on the channel, as defined in [32]. Note that this defini-
tion is on the rate constants of exponential distributions, not the rates themselves. The
distribution of the minimum of a list of random variables with exponential distribu-
tion is itself an exponential distribution whose rate constant is the sum of those of the
individual variables. Each individual transition on a channel is then weighted by the
contribution of its rate to this sum. The choice of the transition to select is just the or-
dinary logical non-determinism. Note that the rounds of the algorithm do not have an
associated delay element as in [32]; instead, we compute (symbolically) a distribution
over the delays of a sequence of actions.

Because stochastic correctness is not necessary for the main adequacy result in the
previous subsection, we leave the details of simulation to future work.

5. Related work

Logically, the HyLL sequent calculus is a variant of labelled deduction, a very
broad topic not elaborated on here. The combination of linear logic with labelled de-
duction isn’t new to this work. In the η-logic [18] the constraint domain is intervals of
time, and the rules of the logic generate constraint inequalities as a side-effect; however
its sole aim is the representation of proof-carrying authentication, and it does not deal
with genericity or focusing. The main feature of η not in HyLL is a separate constraint
context that gives new constrained propositions. HyLL is also related to the Hybrid
Logical Framework (HLF) [36] which captures linear logic itself as a labelled form of
intuitionistic logic. Encoding constrained π calculi directly in HLF would be an inter-
esting exercise: we would combine the encoding of linear logic with the constraints
of the process calculus. Because HLF is a very weak logic with a proof theory based
on natural deduction, it is not clear whether (and in what forms) an adequacy result in
HyLL can be transferred to HLF.
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Constrained temporal logics such as CSL and PCTL [22] are popular for logical
reasoning in constrained domains. In such logics, truth is defined in terms of correct-
ness with respect to a constrained forcing relation on the constraint algebra. While
such logics have been very successful in practice with efficient tools, the proof theory
of these logics is very complex. Indeed, such modal logics generally cannot be for-
mulated in the sequent calculus, and therefore lack cut-elimination and focusing. In
contrast, HyLL has a very traditional proof theoretic pedigree, but lacks such a close
correspondence between logical and algebraic equivalence. Probably the most well
known and relevant stochastic formalism not already discussed is that of stochastic
Petri-nets [26], which have a number of sophisticated model checking tools, including
the PRISM framework [25]. Recent advances in proof theory suggest that the benefits
of model checking can be obtained without sacrificing proofs and proof search [4].

6. Conclusion and future work

We have presented HyLL, a hybrid extension of intuitionistic linear logic with a
simple notion of situated truth, a traditional sequent calculus with cut-elimination and
focusing, and a modular and instantiable constraint system that can be directly manip-
ulated using hybrid connectives. We have shown how to obtain representationally ade-
quate encodings of constrained transition systems, such as the synchronous stochastic
π-calculus in a suitable instance of HyLL.

Several instantiations of HyLL besides the one in this paper seem interesting. For
example, we can already use disjunction (⊕) to explain disjunctive states, but it is also
possible to obtain a more extensional branching by treating the worlds as points in an
arbitrary partially-ordered set instead of a monoid. Another possibility is to consider
lists of worlds instead of individual worlds – this would allow defining periodic avail-
ability of a resource, such as one being produced by an oscillating process. The most
interesting domain is that of discrete probabilities: here the underlying semantics is
given by discrete time Markov chains instead of CTMCs, which are often better suited
for symbolic evaluation [43].

An important open question is whether a general logic such as HyLL can serve
as a framework for specialized logics such as CSL and PCTL. A related question is
what benefit linearity truly provides for such logics – linearity is obviously crucial for
encoding process calculi that are inherently stateful, but CSL requires no such notion
of single consumption of resources.
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Although the body of this paper does not mention systems bi-
ology, it was our initial area of interest. All existing methods
for modelling biology have algebraic foundations and none
treats logic as the primary inferential device. This appendix
sketches a mode of use of HyLL that lets one represent the
biological elements directly in the logic.

A. Direct encoding of molecular biology

Models of molecular biology have a wealth of examples of transition systems with
temporal and stochastic constraints. In a biochemical reaction, molecules can interact
to form other molecules or undergo internal changes such as phosphorylation, and these
changes usually occur as parts of networks of interacting processes with continuous
kinetic feedback. S π has been used in a number of such models; since we have an
adequate encoding of S π, we can use these models via the encoding.

However, biological systems can also be encoded directly in HyLL. As an example,
consider a simplified repressilator gene network consisting of two genes, each causing
the production of a protein that represses the other gene by negative feedback. This is
a simplification of the three-gene network constructed in [19]. We note that each gene
can be in an “on” (activated) or an “off” (deactivated) state, represented by the unary
predicates on and off. Molecules of the transcribed proteins are represented with the
unary predicate prot. Transitions in the network are encoded as axioms.

Example: the repressilator, using temporal constraints. The system consists of the
following components:
• Repression: Each protein molecule deactivates the next gene in the cycle after

(average) deactivation delay d

repress a b def
= prot a ⊗ on b( ρd(off b ⊗ prot a).

• Reactivation: When a gene is in the “off” state, it eventually becomes “on” after
an average delay of r:

react
def
= ∀a. off a( ρr on a.

It is precisely this reactivation that causes the system to oscillate instead of being
bistable.

• Transcription: When a gene is “on”, it transcribes RNA for its protein taking
average delay t, after which it continues to be “on” and a molecule of the protein
is formed.

trans
def
= ∀a. on a( ρt(on a ⊗ prot a).

• Dissipation: If a protein does not react with a gene, then it dissipates after aver-
age delay s:

diss
def
= ∀a. prot a( ρs 1.

The system consists of a repression cycle for genes a and b, and the other processes:
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system
def
= repress a b, repress b a, react, trans, diss.

Examples of valid sequents are (0 is the initial instant of time):

† system@0 ; ρr+t on a@0, off b@0︸                      ︷︷                      ︸
initial state

=⇒ ρr+t+d off a ⊗ >@0︸                   ︷︷                   ︸
final state

From off b we get on b ⊗ prot b after interval r + t; then prot b together with on a
forms prot b ⊗ off a after a further delay d.

Example: stochastic repressilator. We now revisit our example but this time using
rates. Note that the encodings can be very similar in the temporal and stochastic frag-
ments of our logic; the only differences being the interpretation of the constraints:
Here, d, t, r and s are interpreted as rates.

repress a b def
= prot a ⊗ on b( ρd(off b ⊗ prot a)

trans
def
= ∀a. on a( ρt(on a ⊗ prot a).

react
def
= ∀a. off a( ρr on a.

diss
def
= ∀a. prot a( ρs 1.

Suppose we want to show that in the two-gene repressilator, the state on(a) ⊗ off(b)
can oscillate to off(a) ⊗ on(b). The proof looks as below, with one sub-proofs named
P, and most of the worlds and a second sub-proof elided:

off b =⇒ off b

on b =⇒ on b

on a, ρr ρt prot b =⇒ ρr ρt ρd off a
P
· · ·

on a, ρr ρt(on b ⊗ prot b) =⇒ ∃k. ρk(off a ⊗ on b)
on a, ρr on b =⇒ ∃k. ρk(off a ⊗ on b)

trans

on a, off b =⇒ ∃k. ρk(off a ⊗ on b)
react

P =

on a =⇒ ρr ρt on a ρr ρt prot b =⇒ ρr ρt prot b

on a, ρr ρt prot b =⇒ ρr ρt(on a ⊗ prot b)
⊗I

ρr ρt ρd off a =⇒ ρr ρt ρd off a

on a, ρr ρt prot b =⇒ ρr ρt ρd off a
repress b a

In this proof we are using the transition rules at many different worlds. This is
allowed because the rules are prefixed with † and therefore available at all worlds.
Importantly, in the first premise of P we need to show that on a =⇒ ρr ρt on a. This
is only possible if the rate of a self-transition on on a is r · t. Of course, this is not
derivable from the rest of the theory (and may not actually be true), so it must be added
as a new rule; it is the contract that must be satisfied by the repressilator in order for it
to oscillate in the desired fashion.

Note that unlike formalisms such as the brane or κ-calculi, we do not propose HyLL
as a new idealisation of biology. Instead, as far as systems biology is concerned, our
proposal should be seen as a uniform language to encode biological systems. HyLL
proposes no new mechanisms.
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