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Abstract

Linear implication can represent state transitions, bat transition systems operate under temporal, stochastic
or probabilistic constraints that are not directly repreable in ordinary linear logic. We propose a general modal
extension of intuitionistic linear logic where logical thuis indexed by constraints and hybrid connectives combine
constraint reasoning with logical reasoning. The logic Adscused cut-free sequent calculus that can be used to
internalize the rules of particular constrained traneiggstems; we illustrate this with an adequate encodingeof th
synchronous stochastic pi-calculus.

1 Introduction

To reason about state transition systems, we need a logiatef. sLinear logic [21] is such a logic and has been
successfully used to model such diverse systems as: ptafdih Petri nets, CCS, the-calculus [9, 28], concurrent
ML [9], security protocols [5], multi-set rewriting, grafgfaversal algorithms [41], and games. Linear logic actdeve
this versatility by representing propositions rasourceshat are composed into elements of state usngvhich

can then be transformed using the linear implicaties).( However, linear implication is timeless: there is no way
to correlate two concurrent transitions. If resources Hé@gmes and state changes have temporal, probabilistic o
stochasticonstraintsthen the logic will allow inferences that may not be redliedn the system. The need for formal
reasoning in constrained systems has led to the creatigreofaized logistic systems such as Continuous Stochastic
Logic (CSL) [2] or Probabilistic CTL [23], that pay a considble encoding overhead for the state component of
transitions in exchange for the constraint reasoning rmtided by linear logic.

A prominent alternative to the logical approach is to useitably enriched process algebra; a short list of exam-
ples includes reversible CCS [15], bioambients [38], breaieuli [8], stochastic and probabilistiecalculi, the PEPA
algebra [24], and the-calculus [16]. Each process algebra comes equipped witmdarlying algebraic semantics
which is used to justify mechanistic abstractions of obsémeality as processes. These abstractions are then adimat
by means of simulation and then compared with the obsenstrocess calculi do not however fill the need for for-
mal logical reasoning for constrained transition systefes.example, there is no uniform language to encoffemint
stochastic process algebras. Encoding the stochastéculus in CSL, for example, would be inordinately complex
because CSL does not provide any direct means of encadaadculus dynamics such as the linear production and
consumption of messages in a synchronous interaction.

Fortunately, there is a simple yet general method to addi@nsreasoning to linear logic that reunites linguistic
need with ability. It is an old ideatabelled deductioj42] with hybrid connectives [7]—applied to a new domain.
Precisely, we parameterize ordinary logical truth oroastraint domain Ae@w stands for the truth of under con-
straintw. We then use the hybrid connectivessatisfactionandlocalisationto perform generic symbolic reasoning
on the constraints at the propositional level. We call theailtdaybrid linear logic(HyLL). No properties—except a
basic monoidal structure—are assumed about the constfaimh a proof-theoretic standpoint. Indeed, HyLL has a
generic cut-free (but cut admitting) sequent calculus thatbe strengthened with a focusing restriction [1] to obtai



a normal form for proofs. Any instance of HyLL that gives a saic interpretation to the constraints continues to
enjoy these proof-theoretic properties.

Focusing allows us to treat HyLL ada@gical frameworkfor constrained transition systems. Logical frameworks
with hybrid connectives have been considered before; by (HLF), for example, is a generic mechanism to add
many diferent kinds of resource-awareness, including lineaotgytlinary LF [37]. However, HLF follows the usual
LF methodology by keeping the logic of the framework minimlis proof objects are canonicg-Gormalzn-long)
natural deduction terms, where canonicity is known to belerfbecause of permutative equivalences [43]. With fo-
cusing we have more direct access to canonical proofs ineipgest calculus, so we can enrich the framework with
any connectives that obey the focusing discipline [13].sTeduces the overhead of encodings; indegglesenta-
tional adequacyf an encoding in terms of (partial) focused derivation®igine. We illustrate this style of obtaining
adequate encodings by encoding of the synchronous stachasticulus &x) in HyLL with the constraint domain of
rates.

In addition to the novel stochastic component, our encodfrir is a conceptual improvement over other encod-
ings of  calculi in linear logic [9, 28]: Our encoding performs a fpHopositional reflection of processes as in [28],
but is first-order and adequate as in [9]. Being a logical &aork, HyLL does not itself prescribe an operational se-
mantics for the encoding of processes; thus, bisimilanityantinuous time Markov chains (CTMCSs) is not the same
as logical equivalence in stochastic HyLL, unlike in CSL][1This is not a deficiency; theombinationof focused
HyLL proofs and a proof search strategy tailored to a paicencoding is necessary to produce faithful symbolic
executions. This is exactly analogousSmwhere it is the simulation rather than the transitions inglecess calculus
that is shown to be faithful to the CTMC semantics [33].

The sections of this paper are organized as follows: in segedresent the inference system (natural deduction
and sequent calculus) for HyLL and describe the two main séimastances: temporal and stochastic constraints.
In sec. 3 we sketch the general focusing restriction on Hyeduent proofs. In sec. 4 we give the encodin@sfin
stochastic HyLL, and show that the encoding is represemtally adequate for focused proofs (theorems 23 and 25).
In sec. 5 we present some preliminary experiments of direxb@ing of biological systems in HyLL. We end with an
overview of related (sec. 6) and future work (sec. 7).

2 Hybrid linear logic

In this section we define HyLL, a conservative extension afitionistic first-order linear logic (ILL) [21] where the
truth judgements are labelled by worlds representing caims. Like in ILL, propositions are interpretedrasources
which may be composed intostateusing the usual linear connectives, and the linear imptina¢~) denotes a
transition between states. The world label of a judgementesents a constraint on states and state transitions;
particular choices for the worlds produce particular insts of HyLL. The common componentin all the instances of
HyLL is the proof theory, which we fix once and for all. We impdse following minimal requirement on the kinds
of constraints that HyLL can deal with.

Definition 1. A constraint domairl’ is a monoid structuréW, -, ). The elements of W are calledbrlds and the
partial order=< : W x W—defined as g w if there exists & W such that uv = w—is thereachability relatiorin W'

The identity world: is <-initial and is intended to represent the lack of any comstsa Thus, the ordinary ILL is
embeddable into any instance of HyLL by setting all worlddistto the identity. When needed to disambiguate, the
instance of HyLL for the constraint domai’ will be written HyLL("W).

Atomic propositions are written using minuscule lettexd)(. ..) applied to a sequence tdrms(s,t,...), which
are drawn from an untyped term language containing ternabbes §, v, . ..) and function symbolsf( g, ...) applied
to a list of terms.. Non-atomic propositions are constrdiftem the connectives of first-order intuitionistic lindagic
and the two hybrid connectivesitisfaction(at), which states that a proposition is true at a given wonldx(v, .. ),
andlocalization(|), which binds a name for the world the proposition is trueTéie following grammar summarizes
the syntax of HyLL propositions.

AB,...:=af|A®@B|1|A—=B|A&B|T|AeB|0|!A| W A|Ix A
| (Aatw)|lu. AW A|Ju. A



Note that in the propositiongu. A, Yu. A and3u. A, the scope of the world variabieis all the worlds occurring ir.
World variables cannot be used in terms, and neither canyariables occur in worlds; this restriction is important
for the modular design of HyLL because it keeps purely logicgh separate from constraint truth. We tetange
over variables of either kind.

The unrestricted connectives Vv, D, etc. of intuitionistic (non-linear) logic can also be defined @rrhs of the
linear connectives and the exponential ! using any of thdahla embeddings of intuitionistic logic into linear lagi
such as Girard’s embedding [21].

2.1 Natural deduction for HyLL

We start with the judgements from linear logic [22] and elmtltem with a modal situated truth. We present the syntax
of hybrid linear logic in a natural deduction style, usingiftaL6f’s principle of separating judgements and logical
connectives. Instead of the ordinary mathematical judgeri®eis true”, judgements of HyLL are of the fornA‘is

true at worldw”, abbreviated a®\@w. We use dyadic hypothetical derivations of the fdrmA |- Cew wherel” and

A are sets of judgements of the for@w, with A being moreover anultiset T is called theunrestricted contexiits
hypotheses can be consumed any number of timeis. alinear context every hypothesis in it must be consumed
singly in the proof.

The rules for the linear connectives are borrowed from [1i¢xe they are discussed at length, so we omit a more
thorough discussion here. The rules for the first-order tifiens are completely standard. The unrestricted coritext
enjoys weakening and contraction; as usual, this is a thethmat is attested by the inference rules of the logic, and
we omit its straightforward inductive proof. The notatiavy 1] A stands for the replacement of all free occurrences of
the world variablas in A with the worldw, avoiding capture.

Theorem 2(structural properties)

1. IfI"; A+ Cew, thenl',I” ; A + Cew. (weakening)
2. IfT, Aeu, Aeu; A + Cew, thenl', Aau ; A + Cew. (contraction)

The full collection of inference rules are in fig. 1. A briesdussion of the hybrid rules follows. To introduce the
satisfactionproposition A at w) (at any worldw’), the propositiorA must be true in the worlev. The proposition
(Aatw) itself is then true at any world, not just in the world In other words, A at w) carries with it the world
at which it is true. Therefore, suppose we know that¢ w) is true (at any worldv’); then, we also know that
Aew. These two introduction and elimination rules match up isedg to (de)construct the information in theaw
judgement. The other hybrid connectivelefalisation |, is intended to be able to name the current world. That is, if
lu. Ais true at worldw, then the variabla stands fow in the bodyA. This interpretation is reflected in its introduction
rule |I. For elimination, suppose we have a proofaf Aew for some worldw. Then, we also knowy/u] Aaw.

For the linear and unrestricted hypotheses, substitusioi idiferent from that of the usual linear logic.

Theorem 3(substitution)
1. fT'; A+ Aeuandl ; A’, Aeu+ Cew, thenl" ; A, A’ + Caw.
2. IfT"; -+ Aeuandl’, Aeu; A + Caw, thenl ; A + Cew.

Proof sketch.By structural induction on the second given derivation ioteease. m|

Note that the| connective commutes with every propositional connecfiveluding itself. That is,Ju. (A« B)
is equivalent to [u. A) = (Lu. B) for all binary connectives, and [u. = A is equivalent to«(Ju. A) for every unary
connective:, assuming the commutation will not cause an unsound capturdt is purely a matter of taste where to
place thel, and repetitions are harmless.

Theorem 4(conservativity) Call a proposition or multiset of propositioqmreif it contains no instance of the hybrid
connectives, and 18t, A and A be pure. Ther;; A + Aew in HyLL iff T ; A + A in intuitionistic linear logic.

Proof. By structural induction on the given HyLL derivation. O



Judgemental rules

hyp hyp!

I'; Aewt+ Aew I',Aew; -+ Aew
Multiplicative rules

I' Ar A Bew

[;ArAew TI;A'+Bew I'; A, Aew, Bew - Cew £
T ANFASBaw  ° T AN FCoW ®
1l I'Arlew T ;A'+CeW 1E
I';-+lew I';A,A"+CewW
I'; A, Aew+ Baw I' ArA—oBew I ;A +Aew £
I' A+ A— Bew - I'; AN+ Bew -
Additive rules
I'; A+ Aaw F;A}—B@W&I F;A»—Al&Az@W&E_
I':A+A& Bew T:A+Aew !
I'; AN,Aewt+ CewW
[ AFA@W I'ArAeBew I ;A’,Bewr CewW
T A AL ® AW T AN FCoW oE
I';ArOaw
| —@OE

F;A}—T@WT I'A,A"+CewW

First-order rules

I'; A+ Aaw | I';ArVa. Aew VE
I';ArVa. Aew '; Ar[r/X]Aew
I'; Ar[r/X]Aew | I'Arda. Aew T ; A,Aewr CewW JEe
I'; A+ da. Aew I';A,A +CoewW

ForV1® anddE®, « is assumed to be fresh with respect to the conclug
For 3l andVE, 7 stands for a term or world, as appropriate.

Exponential rules

F;~I—A@W|| I';Ar!Aew F,A@W;A’I—C@W’|E
[ r!Aew ' AN +CoewW '
Hybrid rules
I';ArAew | I'Ar(Aatw)ew E
T Ar (Aatwyaw °F T Ar Aew 2t
I'; A+ [w/ulAew u I'; A+ Ju Aew IE
I';Ar Ju Aew I'; A+ [w/ulAew

Figure 1: Natural deduction for HyLL

ion.



2.2 Sequent calculus for HyLL

In this section, we give a sequent calculus presentatiorybl Fand prove a cut-admissibility theorem. The sequent
formulation in turn will lead to an analysis of the polargief the connectives in order to get a focused sequent calculu
that can be used to compile a logical theory into a system ifelbinference rules with nice properties (sec. 3). For
instance, if a given theory defines a transition system, tiederived rules of the focused calculus will exactly eihib
the same transitions. This is key to obtain the necessargseptational adequacy theorems, as we shall see for the
Sn-calculus example chosen in this paper (sec. 4.1).

In the sequent calculus, we depart from the linear hypatakfidgement which has only an “active” right-
hand side to a sequent arrese that has active zones on both sides. A rule that infers a gitpo on the right
of the sequent arrow is called a “right” rule, and correspoexiactly to the introduction rules of natural deduction.
Dually, introductions on the left of the sequent arrow cep@nd to elimination rules of natural deduction; however,
as all rules in the sequent calculus are introduction rulesjnformation flow in a sequent derivation is always in
the same direction: from the conclusion to the premiseegémtally making the sequent calculus ideally suited for
proof-search.

The full collection of rules of the HyLL sequent calculusiisfig. 2. There are only two structural rules: the init
rule infers an atomic initial sequent, and the copy ruleddtrices a contracted copy of an unrestricted assumption into
the linear context (reading from conclusion to premise)akéming and contraction are admissible rules:

Theorem 5(structural properties)

1. fT'; A= Caw, thenl, " ; A = Ce@w. (weakening)
2. IfT, Aeu, Aau ; A = Caw, thenl’, Aeu ; A = Ca@w. (contraction)

Proof. By straightforward structural induction on the given datigns. m|

The most important structural properties are the admigtgiloif the identity and the cut principles. The identity
theorem is the general case of the init rule and serves adbalgipntactic completeness theorem for the logic. Dually,
the cut theorem below establishes the syntactic soundféss calculus; moreover there is no cut-free derivation of
- ;- = 0@w, so the logic is also globally consistent.

Theorem 6(identity). T' ; Aew = Aaw.
Proof. By induction on the structure & (see sec. A.1). O

Theorem 7 (cut).
1. fT'; A = Aeu andl' ; A’, Aeu — Caw, thenl' ; A, A’ — Cew.
2. IfT"; - = Aeu andl’, Aeu ; A = Caew, thenl" ; A = Caeaw.

Proof. By lexicographic structural induction on the given deriwat, with cuts of kind 2 additionally allowed to
justify cuts of kind 1. The style of proof sometimes goes lg/tlame oftructural cut-eliminatiorjl1]. See sec. A.2
for the details. m|

We can use the admissible cut rules to show that the followites are invertiblegL, 1L, &L, OL, L, - R, &R,
TR, andYR. In addition, the four hybrid rulestR, atL, |Rand|L are invertible. In fact] andat commute freely
with all non-hybrid connectives:

Theorem 8(Invertibility). The following rules are invertible:

1. Ontheright:&R, TR, —-R,VR, |R andatR,;
2. Onthe left:®L, 1L, &L, OL, 3L, 'L, |L andatL.

Proof. See 8A.3. O

Theorem 9(Correctness of the sequent calculus)

1. IfT'; A= Caw, thenl" ; A + Cew. (soundness)
2. IfT'; A+ Caw, thenl' ; A = Ceaw. (completeness)



Judgemental rules

I',A@u; A, Aeu = Caw
I;ateu= atau [,A@u; A = Caw

copy

Multiplicatives

I' A= Aew T ;A — Bew R I'; A, A@u, Beau — Cew L
I' AN — A® Baw ® I' A,A® Bau = Caw ®

1R I' A= Caw 1L I'; A,Aew — Bew R
;. — lew ;A leu— Caw [;A— A —-Baew

I' A= Aa@u T ;A,Beu— Cew

;A AN,A—- Bau— Caw —L

Additives

R I' A= Aew T ;A — Bew &R
l“;A:rr@wT I' A= A& Baw

I';A,Aeu— Caew

T AN,A & Ay@u— Caw &L

I' A= Aew R oL
I' A= Al A@w I';A,O@u = Caw

I';A,Aeu— Ce@w I ;A,Beu— Cew

I';A,A® Bau = Caw ol

Quantifiers

I'; A= Aew VR I'; A [r/a]Ae@u = Cew VL
I'; A= VYa. Aew I'; A,Ya. Aeu = Caw

I'; A= [r/a]Aew I'; A,Aeu = Cew
I'; A = Jda. A@w I'; A do. A@u = Caw

L

ForYR®* anddL?, a is assumed to be fresh with respect to the conclusiondR@ndVL, T stands for a term or worlg
as appropriate.
Exponentials

;- — Aaw I',Aeu; A = Cew

| |
F;-:>!A@w'R F;A,!A@u:>C@W'L

Hybrid connectives

I' A= A@u R I'; A,Aeu = Cew L
I'; A= (Aatu)@v at I';A (Aatu)@v=— Cew at

I'; A = [w/uAew IR I'; A [v/uAev = Cew
I'; A= lu Aew I'; A, luAev=— Caw

L

Figure 2: The sequent calculus for HyLL



Proof. See 8A.4. |
Corollary 10 (consistency) There is no proof of; - - O@w.
Proof. See 8A.4. o

HyLL is conservative with respect to ordinary intuitionéskogic: as long as no hybrid connectives are used, the
proofs in HyLL are identical to those in ILL [11]. The proofrtatted) is by simple structural induction.

Theorem 11(conservativity) If T ; A =y Cew is derivable, contains no occurrence of the hybrid coninest,
at, Yu or du, and each element bfandA is of the form Aaw, thenl’ ; A = C.

In the rest of this paper we use the following derived corimest

Definition 12 (modal connectives)
OAZ luW. (Aatu-w) OGAZ ludw. (Aatu-w)
pvAZ U (Aatu-v) TA=YL (Aatu)

The connective represents a form of delay. Note its derived right rule:

I'ArAaw-Vv
I'; Ar pyAew

The propositiorpy A thus stands for amtermediate statén a transition toA. Informally it can be thought to bev*
beforeA”; thus, W. p, A representsll intermediate states in the pathApandiv. p, A representsomesuch state.
The modally unrestricted propositignA represents a resource that is consumable in any world; iaislynused to
make transition rules applicable at all worlds.

It is worth remarking that HyLL proof theory can be seen aseast as powerful as (the linear restriction of)
intuitionistic S5 [42]:

Theorem 13(HyLL is S5). The following sequent is derivable; ¢ Aew = 0 Aa@w.
Proof. See 8A.5. m]

Obviously HyLL is more expressive as it allows direct magpion of the worlds using the hybrid connectives:
for example, the connective is not definable in S5.

2.3 Temporal constraints

As a pedagogical example, consider the constraint dofiaiXR™, +, 0) representing instants of time. This domain
can be used to define the lifetime of resources, such as keysipgs, or delegations of authority. Delay (defn. 12)
in HyLL(7") represents intervals of timpg A means A will become available after delay’, similar to metric tense
logic [36]. This domain is very permissive because addittoeommutative, resulting in the equivalencepgfp, A
andpy py A. The “forward-looking” connective& andF of ordinary tense logic are precisatyand< of defn. 12.

In addition to the future connectives, this domain also aslip@st connectives if we add saturating subtractien (
a—b=0if b > a) to the language of worlds. We can then define the ddadsidP of G andF as:

HAZ [uWv. (Aatu—-w)
PAZ |udw. (Aatu-w)

While this domain does not have any branching structuredike, it is expressive enough for many common idioms
because of the branching structure of derivations invglgin CTL reachability (“in some path in some future”), for
instance, is the same as apyy similarly, CTL stability (“in all paths in all futures”) ithe same as. There is some
loss of expressive power, however; for instance, in CTLditesss (“in some path for all futures”) is distinct from
stability, whereas the best approximation in HyLOw. o(Aat u- w).



On the other hand, the availability of linear reasoning nsadeztain kinds of reasoning in HyLL much more natural
than in ordinary temporal logics. One important examplefigsillation between states in systems with kinetic
feedback. In a temporal specification language such as BKMCIHLO], only finite oscillations are representable
using a nested syntax, while in HyLL we use a simple bi-ingilmn; for example, the oscillation betweénand
B with delayd is represented by the rulgA — pg B) & (B — pgq A) (or 1(A — ¢ B) & (B — ¢ A) if the oscillation
is aperiodic). If HyLL({) were extended with constrained implication and conjunmctn the style of CILL [40] or
n [18], then we can define localized versionsoéand ¢, such as A is true everywheygomewhere in an interval”.
They would also allow us to define the “until” and “since” ogtnrs of linear temporal logic [25].

2.4 Stochastic constraints

Transitions in practice rarely have precise delays. Phematogical and experimental evidence is used to construct
a probabilistic model of the transition system where thegelare specified as probability distributions of contin-
uous variables. To simplify matters, we shall only considsi-valued random variables with a fairly traditional
presentation in this paper; the generalisation to arlyitmaasure spaces is well known.

Fact 14 (seee.g.[6]). If F and G are the probability distributiodsof the real-valued random variables X and Y
respectively, i.ePr[X < t] = F(t) andPr[Y < t] = G(t), then the distribution of X Y is theconvolutionof F and G,
written F « G:

PriX+Y<t] = (F«G)t) 2 f F(t - X) dG(X).
R

Convolution is associative and commutative, and has fadéstity the Heavyside step functiexx) = (1+sign(x))/2.

Because we are modelling a state transition system thatnooles forward in time, our random variables (repre-
senting the delays of a transition) are always positiveitiely supported probability distributiong €., distributions
that are non-zero only on positive values) of random vaesbtogether with convolution as the operator and the
Heavyside step function as identity, form a commutative aibthat we shall call thetochastic constraint domain
(We avoid simple generalizations to the full real line, obeegue measures in general, though they would present no
problems.)

Definition 15. Thestochastic domais is the monoidD, , ®) whereD is the space of positively supported probability
distributions of one dimensional real-valued random vhlés.

The standard model of stochastic transition systems isragois time Markov chains (CTMCs) where the delays
of transitions between states are distributed accordingedviarkov assumption of memorylessnéss, the distri-
butions are exponential distributions. The convolutiorived exponential distributions produces a hypoexponential
distribution, a variety of phase type distribution [30], which convolution is closed. Hypoexponentials descritee th
time to absorption of a CTMC assuming that it is entered omlg single initial state and every non-absorbing state
has a unique next state. This idfstient for the purposes of the encoding in sec. 4 becauseanedrare linear. We
consider the Heavyside step function as describing the timabsorption of a degenerate CTMC that starts in the
absorbing state.

Definition 16. Arateis either a hypoexponential distribution or the Heavysitgdunction. LeR be the submonoid
of S where the distributions are rates. The instance H§R)Lwill sometimes be called “stochastic hybrid linear
logic”.

3 Focusing

As HyLL is intended to represent transition systems adeyadt is crucial that HyLL derivations in the image of
an encoding have corresponding transitions. Howeversitian systems are generally specified as rewrite algebras

1we use the convention of calling the cumulative distributionction the (probability) distribution.



over an underlying congruence relation. These congrudrmesto be encoded propositionally in HyLL, so a HyLL
derivation will generally require several inference ruiesmplement a single transition; moreover, several thiyia
different reorderings of these “micro” inferences would cqroesl to the same transition. It is therefore futile to
attempt to define an operational semantics directly on Hylferences.

We restrict the syntax to focused derivations [1], whichoiggs many irrelevant rule permutations in a sequent
proof and divides the proof into clephaseghat define the grain of atomicity. The logical connectives divided
into two classespegativeandpositive and rule permutations for connectives of like polarity evefined tophases
A focused derivatioms one in which the positive and negative rules are applieglternate maximal phases in the
following way: in theactive phase, all negative rules are applied (in irrelevant ordeti no further negative rule
can apply; the phase then switches and one positive progposit selected fofocus this focused proposition is
decomposed under focuse(, the focus persists unto its sub-propositions) until itdyees negative, and the phase
switches again.

As noted before, the logical rules of the hybrid connectiveand| are invertible, so they can be considered to
have both polarities. It would be valid to decide a polariy €ach occurrence of each hybrid connective indepen-
dently; however, as they are mainly intended for book-kegduring logical reasoning, we define the polarity of these
connectives in the followingarasiticform: if its immediate subformula is positive (resp. negaticonnective, then
it is itself positive (resp. negative). These connectivesafore become invisible to focusing. This choice of pgtar
can be seen as a particular instance of a general scheméitlasdhe| andat connectives into two polarized forms
each. To complete the picture, we also assign a polarithfatomic propositions; this restricts the shape of fogusin
phases further [14], and is crucial to our intended use. THeyntax of positive P, Q,...) and negativeNI, N,...)
propositions is as follows:

PQ...:= pf|P®Q|1|P®Q|0|!N|Ja. P|lu.P|(Patw)|{N
N,M,...:= nf[N&N|T|P - N|Ve.N|luN|(Natw)| P

The two syntactic classes refer to each other via the newemtives) and|l. Sequents in the focusing calculus are of
the following forms.

I';A; [Neu = -; Pew
} active I';A; [Neu = Maw; - ;focused
I'; A= [Pew|

I' A Q= -;Paw
I'A; Q= Ne@ew,; -

In each casd; andA contain only negative propositionisg, of the formN @u) andQ only positive propositions.¢.,

of the formPe@u). The full collection of inference rules are in fig. 3. Thegentforml'; A ;- = - ; Pewis called a
neutral sequentfrom such a sequent, a left or right focused sequent is mediwith the rules If, cplf or rf. Focused
logical rules are applied (non-deterministically) anduispersists unto the subformulas of the focused proposson
long as they are of the same polarity; when the polarity sweitcthe result is an active sequent, where the propositions
in the innermost zones are decomposed in an irrelevant ardiéonce again a neutral sequent results.

Soundness of the focusing calculus with respect to the ardsequent calculus is immediate by simple structural
induction. In each case, if we forget the additional strietim the focused derivations, then we obtain simply an
unfocused proof. We omit the obvious theorem. Completemmesthe other hand, is a hard result. We omit the proof
because focusing is by now well known for linear logic, withuanber of distinct proofs via focused cut-elimination
(seee.g.the detailed proofin [14]). The hybrid connectives pose rabfems because they allow all cut-permutations.

Theorem 17 (focusing completeness)etI'™ and C @w be negative polarizations éfand Cew (that is, adding)
and || to make C and each proposition ihnegative) and\* be a positive polarization of. If I' ; A = Cew, then
< I, A" = C aw; -

4 Encoding the synchronous stochastig-calculus

In this section, we shall illustrate the use of HylR)(as a logical framework for constrained transition systémyms
encoding the syntax and the operational semantics of thehsynous stochastie-calculus &x), which extends the
ordinaryr-calculus by assigning to every channel and internal acimimherentrate of synchronization. HyLI¥)
can therefore be seen as a formal language for expreSsiegecutions (traces).



Focused logical rules

i [;A;Peu= -; Qaew [';A;[Neu] = Qew
; [nfew] = |ntew I';A; [ffPeu] = Qew I';A;[N:& N;@u] = Qew

&L,

' A= [Peu] T;E;[Neul = Qew ;A5 [[r/e]Neu] = Qaw
I';AE;[P—-o Neu = Qew - I';A; [Ya. Neu] = Qaw

VL

I';A;[[v/uNev] = Qew L I';A;[Neu = Qew LF
I';A;[luNev] = Qaw l I';A;[(Natue@v] = Qew at

ri ;A;-= New; - IR ' A= [Pew] T;E= [Qaew] oR
T'; pfew = [piew] I'; A= [INew]| I'AZ = [P®Qaw]

I'; A= [Piaw] r; ;- = New;-
1R eR 'R
r; = [lew] I'; A= [PL®Pew] ;- = [IN]J@w

;A= [[r/a]PeW] I'; A= [[w/uPaw] I'; A= [Pau]
I'; A= [Ja. Paw] ;A= [lu Paew] I'; A= [(Patu)@w]

atRF

Active logical rules (R of the form- ; Q@w or New ; -, andL of the formI"; A ; Q)

L, Peu, Qeu = R L=—R 1L LLPeu=R L, Q@au=R L oL
LP®0a@u— R [leu—R LP®Qau— R L Loeu—=R

L, [v/ulP@ev= R L,Peu=R L,Peu=R

LiuPov=R ‘" CPatyav=Rr *"» [Ge Pou—=Rr -

ILNeu;A; Q=R n ;A New: Q=R L;AMpf Q=R
I':A;Q'Neu=R '~ T:A;Q |New=R I;A;Q pfew =R

L= Maw,; - L=>N@w;-&R R L,Pew = N@w; - R
L—= M& Naw,; - L:>T@w;-T L—=P-Naw,;- -

L = [w/u]lNew; - IRA L= N@au L—= Nau; -
L= |uNaew,;- L= (N at u)ew L = VYa.N@u; -

L= .:Paw L=>-;Unt*@wr
L= fP@w; - L= nfaw; -

Focusing decisions (L of the formI"; A)

I';A;[Neul= Qew Nnotfpf I Neu; A ; [Neu] = Qew
I';AN@eu; = -; Qew I'Neu;A; = -; Qew

cplf

;A= [Pew] Pnot|nf
I';A;-=-; Paw

rf

Figure 3: Focusing rules for HyLL.
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Interactions
rate) SYN 7rINT
X(Y).P+M|?2X Q+ M —— P|Qy w.P—P
r
PLp V(P x— QX) P5LQ P=P Q=Q
riPAR riRES P CONG
PIQ—FP|Q vs P—vsQ P—qQ
Congruence
Xn2PeE
PI0=P P|Q=QIP PIQIR=(PIQIR »0=0 ErXiXi- X% =PX - X
V. (Px=QX
Ve (AX. vs(Ay. P)) = vs(Ay. v (A% P)) wP=vQ Vvi(AX. P Q(X) =P|v Q
P=P P=P vn. (Pn=Qn) P=P
PIQ=P |Q I!x(m). P=!x(m). P X P=7X.Q .P=1.F
M=M M=N
M+N=N+M M+(N+K)=(M+N)+K M+N=M+N M+N=M

Figure 4: Interactions and congruencesim. The environmenk is elided in most rules.

For the rest of this section we shall uss, t,. .. instead of, v, w, . . . to highlight the fact that the worlds represent
rates, with the understanding thas convolution (defn. 14) andis @. We don’t directly use rates because the syntax
and transitions 0§ are given generically for a-calculus with labelled actions, and it is only the intetpti®n of the
labels that involves probabilities.

We first summarize the syntax 8fr, which is a minor variant of a number of similar presentatisach as [35].
For hygienic reasons we divide entities into the syntactitegories ofprocessegP, Q,...) andsums(M, N,...),
defined as follows. We also include environments of recerdifinitions E) for constants.

(Processes)  P,Q,... ==y P|P[Q|0| XX+ X, | M
(Sums) M,N,...z=1x(y). P| X P|7.P|M+N
(Environments) E =E X, 2P|

P| Qs the parallel composition df andQ, with unit0. The restriction/, P abstracts over a free channeh the
process® x. We write the process using higher-order abstract syntak {&., P in v, P is (syntactically) a function
from channels to processes. This style lets us avoid cumiverdinding rules in the interactions because we reuse
the well-understood binding structure of thecalculus. A similar approach was taken in the earliest dimgpof
(ordinary)r-calculus in (unfocused) linear logic [28], and is also présn the encoding in CLF [9].

A sum is a non-empty choice-J over terms withaction prefixesthe output actionxX(y) sendsy along channel
X, the input action 2 reads a value fromx (which is applied to its continuation process), and therirdkactionr,
has no observabl¢® behaviour. Replication of processes happens via guaetedsive definitions [29]; in [39] it is
argued that they are more practical for programming thangpkcation operator!. In a definitios, = P, X, denotes
a (higher-order) defined constant of aritygiven channelsq, ..., X,, the process{, x; - - - X, IS synonymous with
P x - - - X,. The constank,, may occur on the right hand side of any definitiorEnincluding in its bodyP, as long as
it is prefixed by an action; this prevents infinite recursidthaut progress.

Interactions are of the forr& r P — Q denoting a transition from the proceBgo the process), in a global
environmente, by performing an action at rate Each channek is associated with an inherent rate specific to the
channel, and internal actiomshave rate. The restriction, P defines the rate of the abstracted channel as

The full set of interactions and congruences are in fig. 4. Weegally omit the global environmeatin the rules
as it never changes. It is possible to use the congruencesrtpute a normal form for processes that are a parallel
composition of sums and each reaction selects two suitalbie o synchronise on a channel until there are no further
reactions possible; this refinement of the operational s¢ingis used irSz simulators such as SPiM [34].

Definition 18 (syntax encoding)
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1. The encoding of the proceBsas a positive proposition, writtefiP],, is as follows §el is a positive atom andt
a negative atom).

[[P | Q]]p = [[P]]p ® [[Q]]p [[vr P]]p = X !(rt X at r) ® [[P X]]p
[0 =1 [[anl"'xn]]pZXnX1~-~Xn
[MIp = U(sel — [M]s)

2. The encoding of the suivi as a negative proposition, writtefiM ], is as follows ¢ut, in and tau are positive
atoms).

[M + Nls = [M]ls & [N1s ['x(m). Pls = fi(out x me [P1,)
[?x. Pls = . fi(inx n® [P ) [ Pls = f(taur ® [Pl)
3. The encoding of the definitiofsas a context, writteiE ], is as follows.
[E. Xy = Plle = [Ele, TVXt,..., Xn. Xa X« Xn 0= [P X1 Xq1lp
[le = -
where Po— Q is defined agP — 1Q) & (Q — 1P).

The encoding of processes is positive, so they will be deasegin the active phase when they occur on the left
of the sequent arrow, leaving a collection of sums. The eingodf restrictions will introduce a fresh unrestricted
assumption about the rate of the restricted channel. Eathesitoded as a processes undergoes a polarity switch
because— is negative; the antecedent of this implication igward sel. This pattern of guarded switching of
polarities prevents unsound congruences suc¢h(as. 'y(n). P = ly(n). !x(m). P that do not hold for the synchronous
7 calculus? This guard alsdocksthe sums in the context: th@nr interaction rulesnt andsyn discard the non-
interacting terms of the sum, so the environment will canthe requisite number afels only when an interaction is
in progress. The action prefixes themselves are also symotspwhich causes another polarity switch. Each action
releases a token of its respective kindat, in or tau—into the context. These tokens must be consumed by the
interaction before thact token becomes available again. For each action, the (emgofithe) continuation process
is also released into the context.

The proof of the following congruence lemma is omitted. Bessathe encoding is (essentially®pa& structure,
there are no distributive laws in linear logic that woulddi¢he procegsum structure.

Theorem 19(congruence)
E+ P=Qiffboth[Elcar; - ; [Plpec = -; [Qlyetand[Elea:; - ; [Ql,et = - ; [Plpe.

Now we encode the interactions. Because processes wee ilifio propositions, we can be parsimonious with
our encoding of interactions by limiting ourselves to thenaic interactionsyn andint (below); therar, res and
cong interactions will be ambiently implemented by the logic cBese there are no concurrent interactions—only one
interaction can trigger at a time in a trace—the interactides must obey a locking discipline. We represent this lock
as the propositioact that is consumed at the start of an interaction and produgeih &t the end. This lock also
carries the net rate of the prefix of the trace so far: thatisngeractionP N Q will update the lock fromact@sto
act@s- r. The encoding of individual atomic interactions must alsmove thein, out andtau tokens introduced in
context by the interacting processes.

Definition 20 (interaction) Letinter = f(act — flint & {Isyn) whereact is a positive atom andnt andsyn are
as follows:

int £ (sel at¢) @ V. ((taur att) — pr ﬂact)
syn £ (sel ® sel at ) ® ¥ r.m ((out x M@ inx mat ) — [(rt xat r) — p, fact).
The number of interactions that are allowed depend on thebeuwf instances ofnter in the linear context: each

focus oninter implements a single interaction. If we are interested irfialte traces, we will addnter to the
unrestricted context so it may be reused as many times agteed

’Note: (x — a® (X — b®c)) — (X — b® (x — a®¢)) is not provable in linear logic.
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Supposé. = rtx@r, inter@: andR = ([S], at 1) ® act@t. (All judgements@: omitted.)
L; 1QS5,lR&,tact@s r;-= ;R

5
L; 1Q§,ffoutxa finxa (R4,
¥ r,m. ((out X m®@ inx mat¢) — |(rtxatr) - pract)@s ;-=-;R
4
L; foutxalQl,sel o W.N(inxy® [RY],).
fisel, ¥, r,m. ((out xm®inx mat¢) — J(rtxatr) - pract)@s ;-=-;R
3
L; sel — fi(out x a® [Ql), sel — W.(inxy® [RV],).
fsel, rsel, ¥x,r,m.((out X m® inx mat¢) — |(rtxatr) — pact)@s ;- -=-;R
L; fact@s sel —o fi(out x a® [Qlp), sel - W.(inxy® [RY],) ; [inter]| = R 2
L; fact@s sel — fi(out X a® [Qlp), sel = W.f(inxy® [RY],) ;- = ;R !
L;fact@six@). Q|?x. Ry ;-=-;R
Steps
1: focus oninter € L 3: sel for output+ full phases 5: cleanup

2: selectsyn from inter, active rules 4sel for input+ full phases

Figure 5: Example interaction in tt&r-encoding.

4.1 Representational adequacy.

Adequacy consists of two components: completeness andisess. Completeness is the property that eGry
execution is obtainable as a HyLL derivation using this elirg, and is the comparatively simpler direction (see
thm. 23). Soundness is the reverse property, and is falsenflmcused HyLL as such. However,dbeshold for
focused proofs (see thm. 25). In both cases, we reason dimofdllowing canonical sequents of HyLL.

Definition 21. Thecanonical context oP, written{PS, is given by:

O X+ XS = MXn X1 -« Xn (P QS =1PS5,1QS 0§ =- Ur PS=1P&
{(M§ = sel — [M]s

For {v, P§, the right hand side usesfeeshchannel a that is not free the rest of the sequent it occurs in.

As an illustration, také® = 1x(a). Q| ?x. R. We have:

(P§= sel — fi(outx a® [Qlp),sel - W.N(inxy®[R y]]p)

Obviously, the canonical context is what would be emittethilinear zone at the end of the active phasg/il,
were to be present in the left active zone.

Definition 22. A neutral sequent isanonicalff it has the shape
[Ele.rates,intera:; fact@s {Pi| | Par;- = -; ([Ql, at 1) ® act@t

whererates contains elements of the formt xer defining the rate of the channel x as r, and all free channels i
[Ele,{P1]---|Px| QS have a single such entry irates.

Figure 5 contains an example of a derivation for a canoneglient involving®. Focusing on any (encoding of
a) sum inlPSa: will fail because there is neel in the context, so onlgnter can be given focus; this will consume
theact and release two copies afdl at ¢) and the continuation into the context. Focusing on thelatill fail now
(becausewut x mandin x m (for somem) are not yet available), so the only applicable foci are the sums that
can now be “unlocked” using theels. The output and input can be unlocked in an irrelevant ppteducing two
tokensin x aandout x a Note in particular that the withessvas chosen for the universal quantifier in the encoding
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of ?x. Q because the subsequent consumption of these two tokerseethe messages to be identical. (Any other
choice will not lead to a successful proof.) After both tokeme consumed, we get the final foamt@s- r, where

r is the inherent rate of (found from therates component of the unrestricted zone). This sequent is caabaind
containg Q | R &.

Our encoding therefore represents evBryaction in terms of “micro” actions in the following rigid oed: one
micro action to determine what kind of action (internal onslyronization), one micro action per sum to select the
term(s) that will interact, and finally one micro action tdasish the contract of the action. Thus we see that focusing
is crucial to maintain the semantic interpretation of (n@jisequents. In an unfocused calculus, several of theps st
could have partial overlaps, making such a semantic iné&gipon inordinately complicated. We do not know of any
encoding of ther calculus that can provide such interpretations in unfodssguents without changing the underlying
logic. In CLF [9] the logic is extended with explicit monaditaging, and this enables a form of adequacy [9]; however,
the encoding is considerably more complex because pracassesums cannot be fully lifted and must instead be
specified in terms of a lifting computation. Adequacy is tieétained via a permutative equivalence over the lifting
operation. Other encodings sfcalculi in linear logic, such as [20] and [3], concentratetloa easier asynchronous
fragment and lack adequacy proofs anyhow.

Theorem 23(completeness)If E + P N Q, then the following canonical sequent is derivable.

[Ele,rates, intera; factes {PSet; - = -; ([Ql, at ) ® act@s- .

Proof. By structural induction of the derivation & + P N Q. Every interaction rule o8 is implementable as an
admissible inference rule for canonical sequents.cbss, we appeal to thm. 19. O

Completeness is a testament to the expressivity of the legitexecutions o5r are also expressible in HyLL.
However, we also require the opposite (soundness) diredtiat every canonical sequent encodes a posSibteace.
The proof hinges on the following canonicity lemma.

Lemma 24 (canonical derivations)in a derivation for a canonical sequent, the derived infeerules forinter are
of one of the two following forms (conclusions and premisemaical).

[Ele.rates,intera ; fact@s (Pfa: ;- = -; ([Pl at ) ® act@s

[Ele,rates,inter@: ; fact@s-r,{Qfet ;- = -; ([[R]]p aty) ®actet
[Ele,rates,intera: ; fact@s {Pja; - = -, ([Rlp at:) ® act@t

where: eitherE + P — Q,orE+ P=Qwithr=u.

Proof. This is a formal statement of the phenomenon observed earliee example (fig. 5)[R], ® act cannot be
focused on the right unlesd= R, in which case the derivation ends with no more fociimter. If not, the only
elements available for focus atater and one of the congruence rulgs]c in the unrestricted context. In the former
case, the derived rule consumes flaet@s, and by the timect is produced again, its world has advanced to.

In the latter case, the definition of a top levglin { P§ is (un)folded (without advancing the world). For formal aiét

of this proof by induction on the structure Bf see [12]. m|

Lemma 24 is a strong statement about HyLL derivations usiigygncoding: every partial derivation using the
derived inference rules represents a prefix oBartrace. This is sometimes referred tofabadequacyto distinguish
it from adequacy proofs that require complete derivati@ig.[The structure of focused derivations is crucial beeaus
it allows us to close branches early (using init). It is imgibke to perform a similar analysis on unfocused proofs
for this encoding; both the encoding and the framework vékd further features to implement a form of staging [9,
Chapter 3].

Corollary 25 (soundness)
If [E]e,rates, intera: ; facta, (PSe: ;- = -; ([[Q]]p at() ® acter is derivable, therE + P L>*Q.

Proof. Directly from lem. 24. m|
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4.2 Stochastic correctness

So far the HyLLR) encoding ofSx represents angx trace symbolically. However, not every symbolic trace of an
Sr process can be produced according to the operational sesyahEx. This is the main dference between HyLL
(andSxr) and the approach of CSL [2], where the truth of a proposisogvaluated against a CTMC, which is why
equivalence in CSL is identical to CTMC bisimulation [17} this section we sketch how the execution could be
used directly on the canonical sequents to produce onlecbtiraces (proofs). The proposal in this section should
be seen by analogy to the execution modebafsimulators such as SPiM [33], although we do not use the <pilée
algorithm.

The main problem of simulation is determining which of sedepmpeting enabled actions in a canonical sequent
to select as the “next” action from thiace conditionof the actions enabled in the sequent. Because of the fagusin
restriction, these enabled actions are easy to computé.étament of P§ is of the formsel — [M]g, so the enabled
actions in that element are given precisely by the topmastimences of} in [M]s. Because none of the sums can
have any restricted channels (they have all been removée iadtive decomposition of the process earlier), the rates
of all the channels will be found in theates component of the canonical sequent.

The dfective rate of a channelis related to its inherent rate by scaling by a factor prapodl to theactivity
on the channel, as defined in [33]. Note that this definitioorigherate constant®f exponential distributions, not
the rates themselves. The distribution of the minimum oftdf random variables with exponential distribution is
itself an exponential distribution whose rate constanthéssum of those of the individual variables. Each individual
transition on a channel is then weighted by the contributifdts rate to this sum. The choice of the transition to select
is just the ordinary logical non-determinism. Note that thends of the algorithm do not have an associateldy
element as in [33]; instead, we compute (symbolically) &ithistion over the delays of a sequence of actions.

Because stochastic correctness is not necessary for timeash@fjuacy result in the previous subsection, we leave
the details of simulation to future work.

5 Direct encoding of molecular biology

Models of molecular biology have a wealth of examples ofgitian systems with temporal and stochastic constraints.
In a biochemical reaction, molecules can interact to forneomolecules or undergo internal changes such as phos-
phorylation, and these changes usually occur as parts wonet of interacting processes with continuous kinetic
feedback Sz has been used in a number of such models; since we have aragéglequoding o6r, we can use these
models via the encoding.

However, biological systems can also be encoded directiyirl. As an example, consider a simplifiegpressi-
lator gene network consisting of two genes, each causing the ptiodwof a protein that represses the other gene by
negative feedback. This is a simplification of the threeegestwork constructed in [19]. We note that each gene can
be in an “on” (activated) or an ‘6’ (deactivated) state, represented by the unary predicatemidoff. Molecules
of the transcribed proteins are represented with the unagigateprot. Transitions in the network are encoded as
axioms.

Example: the repressilator, using temporal constraints The system consists of the following components:
e RepressionEach protein molecule deactivates the next gene in the @&ftér (average) deactivation deldy

repressab def prota®onb —o pg(offb® prota).
e ReactivationWhen a gene is in the fij’ state, it eventually becomes “on” after an average delay of
react def Va.offa — p; ona.

It is precisely this reactivation that causes the systenstdlate instead of being bistable.
e Transcription When a gene is “on”, it transcribes RNA for its protein takiaverage delay, after which it
continues to be “on” and a molecule of the protein is formed.

def
trans = Va.ona—o pfona® prota).
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e Dissipation If a protein does not react with a gene, then it dissipates afferage delag.

diss def Va.prota — psl.
The system consists of a repression cycle for garsesdb, and the other processes:

def .
system = repressab,repressba,react, trans,diss.

Examples of valid sequents are (0 is the initial instantro&f):

1 system@O ; prytona@0,0ffb@0 = priirgoffa® T@0

initial state final state
Fromoffb we getonb ® protb after intervalr + t; thenprotb together withona formsprotb ® off a after a
further delayd.

Example: stochastic repressilator We now revisit our example but this time using rates. Not¢ i@ encodings
can be very similar in the temporal and stochastic fragmafntsir logic; the only diferences being the interpretation
of the constraints: Herel, t,r andsare interpreted as rates.

def
repressab = prot a®onb — pg(off b prot a)
def
trans = Va.on a—o pi(on a® prot a).
react def Va.off a —o pyon a.

. def
diss € va. prota—o psl

Suppose we want to show that in the two-gene repressilamstateon(a) ® of£(b) can oscillate twf£(a) ® on(b).
The proof looks as below, with one sub-proofs narRednd most of the worlds and a second sub-proof elided:

on a, prptprot b = p; prpgoff a P
onb=onb ona,p;pilonb®protb) = k. px(offa®onhb)
offb= offb on a,pronb = k. px(off a®onb)
ona,off b = Ik py(offa®onb)

trans

react

ona=>ppona prpprotb = p;piprotb
on a, pr ptprot b = p; pi(on a ® prot b) ® prpipdoffa= prpipqoffa
on a, pr ptprot b = prptpgoffa

P = repressba

In this proof we are using the transition rules at man§edent worlds. This is allowed because the rules are
prefixed witht and therefore available at all worlds. Importantly, in thestfpremise ofP we need to show that
on a = pr pron a. This is only possible if the rate of a self-transitionana isr - t. Of course, this is not derivable
from the rest of the theory (and may not actually be true)t sauist be added as a new rule; it is the contract that must
be satisfied by the repressilator in order for it to oscillatthe desired fashion.

All existing methods for modelling biology have algebrastihdations and none treats logic as the primary infer-
ential device. In this section, we have sketched a mode obludgLL that lets one represent the biological elements
directly in the logic. Note, however, that unlike formalissuch as the brane gicalculi, we do not propose HyLL
as a new idealisation of biology. Instead, as far as systaéaisgdy is concerned, our proposal should be seen as a
uniform language to encode biological systems; providieguine means to reason about them is left for future work.
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6 Related work

Logically, the HyLL sequent calculus is a variant of labéléeduction, a very broad topic not elaborated on here. The
combination of linear logic with labelled deduction isn&gw to this work. In the;-logic [18] the constraint domain
is intervals of time, and the rules of the logic generate traird inequalities as a siddfect; however its sole aim is
the representation of proof-carrying authentication, idddes not deal with genericity or focusing. The main featur
of p not in HyLL is a separate constraint context that gives nemstrained propositions. HyLL is also related to
the Hybrid Logical Framework (HLF) [37] which captures lardogic itself as a labelled form of intuitionistic logic.
Encoding constrained calculi directly in HLF would be an interesting exercise: weuld combine the encoding of
linear logic with the constraints of the process calculuscdise HLF is a very weak logic with a proof theory based
on natural deduction, it is not clear whether (and in whatf®ran adequacy result in HyLL can be transferred to
HLF.

Constrained temporal logics such as CSL and PCTL [23] arelpofor logical reasoning in constrained domains.
In such logics, truth is defined in terms of correctness wepect to a constrained forcing relation on the constraint
algebra. While such logics have been very successful irtipeawith dficient tools, the proof theory of these logics
is very complex. Indeed, such modal logics generally cabadormulated in the sequent calculus, and therefore lack
cut-elimination and focusing. In contrast, HyLL has a veaditional proof theoretic pedigree, but lacks such a close
correspondence between logical and algebraic equivalePozbably the most well known and relevant stochastic
formalism not already discussed is that of stochastic fets [27], which have a number of sophisticated model
checking tools, including the PRISM framework [26]. Recadvances in proof theory suggest that the benefits of
model checking can be obtained without sacrificing proots@oof search [4].

7 Conclusion and future work

We have presented HyLL, a hybrid extension of intuitiogisthear logic with a simple notion of situated truth, a
traditional sequent calculus with cut-elimination andusing, and a modular and instantiable constraint systein tha
can be directly manipulated using hybrid connectives. Weelshown how to obtain representationally adequate
encodings of constrained transition systems, such as tiEheynous stochastie-calculus in a suitable instance of
HyLL. We have also given some simple examples of direct eimgpdf biological systems, viewed as transition
systems, in HyLL, using either temporal or stochastic awirsts.

Several instantiations of HyLL besides the one in this paeem interesting. For example, we can already use
disjunction 6) to explain disjunctive states, but it is also possible ttazba more extensional branching by treating
the worlds as points in an arbitrary partially-ordered sstéad of a monoid. Another possibility is to consider lidts
worlds instead of individual worlds — this would allow defigiperiodic availability of a resource, such as one being
produced by an oscillating process. The most interestimgaiio is that of discrete probabilities: here the underlying
semantics is given by discrete time Markov chains instea@T¥1Cs, which are often better suited for symbolic
evaluation [44].

An important open question is whether a general logic sudHydd. can serve as a framework for specialized
logics such as CSL and PCTL. A related question is what bdimeddrity truly provides for such logics — linearity is
obviously crucial for encoding process calculi that aresir@mtly stateful, but CSL requires no such notion of single
consumption of resources.

In the k-calculus, reactions in a biological system are modelectdsations on graphs with certain state anno-
tations. It appears (though this has not been formalizeat)ttiex-calculus can be embedded in HyLL even more
naturally tharSz, because a solution—a multiset of chemical products—iplsim tensor of all the internal states of
the binding sites together with the formed bonds. One ingmihnovation ok is the ability to extract semantically
meaningful “stories” from simulations. We believe that Hyprovides a natural formal language for such stories.
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A Proofs
A.1 Identity principle

Theorem 26(Identity principle) The following rule is derivable.

-
I'; Aew = Aaw Init

Proof. By induction on the structure &. We have the following cases.
Case Ais an atomp f. ThenI"; p few = p few by init.

CaseAisB& C.
: i.h. ; i.h.
I'; Bew = Bew &L I',Cew=— Caw
['B&Caew=— Bew = ! T;B& Cew = Cew &R2
I' B& Caw = B& Ceaw
Case AisT.
I' Tew— Tew TR
CaseAisBaC.
: i.h. ; i.h.
I'; Bew = Baw oR I' Cow = Cew &R
[;Bew=— B®Cew . ' T;Cew— B®Cew L2
I' BoCeaw— BpCaw ®
Case AisO.

I'; 0)ew = Oa@w oL

CaseAisB — C.

I'; Bew = Bew Lh. I' Coaw = Caw Ilhll_
-

I'; B—-o Caw, Baw — Caw
I' BoCew—=— B - Caw

—o0

CaseAisB®C.

I'; Bew — Beaw Lh. I';Cew—=— Caw Lh.

I'; Baw,Cew — B® Caw ®R
I' B Caw — B® Cew

®L

Case Ais 1.

1R

I';.— lew
1L

I';lew = lew

Case Ais ¥ B.

i.h.
VL
VR*

I'; Bew = Baw
I'; YVa. Bew — Bew
I';Va. Bew = VYa. Baw
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Case Ais Ix. B.

h.
IR
HL(Y

I'; Bew = Beaw I
I'; Bew = da. Bew
I'; da. Bew = da. Baw

Case Ais ! B.

: i.h.
I, Bew; Bew — Bew copy

I',Bew ;- — Bew IR
F,B@W;~:>!B@W;
I';!Bew = ! Bew

Case Ais |u. B.

I'; [w/u]Bew = [w/u]Bew 'E
I'; lu Bew = [w/u]Bew t
I'; luBew= |u Bew l

Case Ais (Bat V).
s ——r__ I.h.
I'; Bev—=— Bav
I'; (Batv)ew = Bev a
I'; (Batv)ew = (Bat v)ew a

tL

tR

A.2 Cut admissibility
Theorem 27(Cut admissibility) The following two rules are admissible.

I' A= Aew T ;A Aew = CawW
I': AN = CowW

I',-—= Aew TI,Aew; A = CeawW
I' A= CaowW

cut

cut!

Proof. Name the two premise derivatiofi3and& respectively. The proof proceeds by induction on the stingcof
the derivation®) and&, and more precisely on a lexicographic order that allowsriHaction hypothesis to be used
whenever:

1. The cut formula becomes strictly smaller (in the subfdemelation), or

2. The cut formula remains the same, but an instance of cigeid to justify an instance of cut!.

3. The cut formula remains the same, but the derivatian strictly smaller, or

4. The cut formula remains the same, but the derivatiastrictly smaller, or
In each case, we consider derivations to be identical thigrdn such a way that one can be derived from the other
simply by weakening and contracting the unrestricted odstaf their respective sequents. The lexicographic osler i
well-founded because the given derivatiddand& are finite, and cut! is used at most once per subformuka(@ke
“copy cuts” below). All the cuts break down into the followgifiour major categories.
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Atomic cuts where the formula\ is an atomp (f). We have the following two cases;
Case.Dis:

init
I'; plew = p(Hew

Then the result of the cut has the same conclusion as tl&t of
Case.&is

init
I'; pElew = p(Hew

Then the result of the cut has the same conclusion as tHat of

Principal cuts where a non-atomic cut formulais introduced by a final right rule i and a final left-rule ir&.
We have the following cases.

Case.Ais A1 & Ay, and:

DT A= Aew D, T ;A= Aaw E T ;N ,Aew = CowW

D= T A— A& Agaw &R =A% Avow — Cow &b
Then:
I' AN — CoW cuton®d; and&'.
Case.Ais Ay & A, and:
E1 T N, Ajew = CaWwW
DT A= Aew E TN, Abew = Cew
p== AGW p g2 oL
I' A= AL ® Aew ' AN,A10Aew — CewW
Then:
I';A,ANN = CeaWwW cut on®’ andé&;.
Case.Ais A; — Ay, and:
DT A Aew = Arew E1iT A = Atew & T AL, Avew = Cew
D= - —oR E= —oL
' A= A - Avaw [;ALAY A — Ay = CaeW
Then:
I'; A Alew, A}, = CaewW cuton?d’ and&;.
I';A AL A, = CewW cuton&; and above.

Case.Ais Ay ® Ay, and:

DT A= Aiew Do T Ay = Acew E TN, Ahew, Acew = CewW

D= T;ALA, — AL ®Ayew ®R &= A e Aew— Caw  °-
Then:
I'; A, Ay, Ajew = Caw cuton®d, and&’.
I';AN,A1,Ap = CaW cut ond; and above.

Case.Ais 1, and:

E . T; N = CaW

D :F;A’,l@W=> CaewW

1R

:F;-=>1@W 1L

The result of the cut is the conclusion®f.
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Case. Ais ¥x. B, and:

D'():T ;A= Bew

D= I'; A= VYa. Bew

VR*

Letabe any parameter. Then:
' AN = CeW

Case. Ais dx. B, and:

DT, A= [r/a]Bew
I'; A= Ja. Baw
Leta be any parameter. Then:
' AN = CeW
.Ais!B, and:

z):

R

Case
2)’::F;~:B@W|R
I';-—= !Bew

D=

Then:
I' AN = CewW
Case.Ais |u. B, and:
T ; A= [w/u|Bew

D= I' A= |u Bew

IR

Then:
I' A,ANN = CawW

Case.Ais (Bat V), and:

DT A= Bev

z):1“;A:>(Batv)@w a

tR

Then:
I' AN = CawW

& T N,[r/a]Bew = CoW

&= I'; A, Ya. Baw = Ceaw VL
cuton?d’(r) and&’.
&= E(a)::T;N,Bew = CewW Lo
" T:AN,Jdo. Baw = CewW
cuton?’ and&’(a).
8_8’ 2 I,Bew; A" = Cew I
T T:A,'Bew=— CewW
cut! ond’ and&'.
&= & T ; N,[w/uBew= Cew mn
T T;A,luBew=— Cew
cuton?’ and&'.
& T ;N,Bev Cow
& V= LW il

T A, (Batv)ew = CaewW a

cuton?’ and&'.

Copy cuts where the cut formula i& was transferred using copy, i.e.:

&

I',Aew; A, Aew = CaW

D:T; — Aew E=

Here,

I, Aew ;- = Aew
I,Aew; A’ = CawW
I' NN = CewW

The first cut is applied on a variant @ that difers from® only in terms of a weaker unrestricted context. In the last

co
I,Aew; A’ = CawW Py

weakening orD.
cuton® and&’.
cut! onD and above.

step, a cut was used to justify a cut!, which is allowed by #xéclographic order.

Left-commutative cuts where the cut formulé is a side formula in the derivatiad. The following is a represen-

tative case.

D=

D T ;A Dew’, Eew’ — Aew

E:T;AN,Aew = Ceaw.

I' A,D® Eew’ — Aew
Here,

I'A,Dew’,Eew’,A’ — CawW
' A,AN,D® Eew’ = Cew

®L

cuton?’ andé&.
®L.
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Right-commutative cuts where the cut formul@ is a side formula in the derivatiagh The following is a represen-
tative case.
E1 TN, Aew = Dew &, : T ;A,Aew— EaW

DT ;A= Aew &= I';A,Aew = D & Eaew &R

Here,

I' AN = Dew cuton® andé&;.

' AN = EeW cutond and&s.

I' AN —=D&Eew &R.
This completes the inventory of all possible cuts. m|

A.3 Invertibility

Theorem 28(Invertibility). The following rules are invertible:

1. Ontheright:&R, TR, —R,VR, |R andaR;
2. Onthe left:®L, 1L, oL, OL, 3L, 'L, |L andatL.

Proof. Each inversion is shown to be admissible using a suitable cut
Case of &R

I'; Aew = Aew 'n't;L_
T:A= A &Aew T A& Aeaw=— Aew
: cut

I' A= Aoew

Case of TR trivial.
Case of oR:

- init* - init*
I'; Aew = Aew I'; Bew = Baw L
I' A= A —- Baw I'; A—- Bew, Aew — Bew -

I'; A, Aew — Bew

cut

Case of YR

init*
YL
cut

I'; Aew = Aew
I' A= VYa. Aew T ;Va. Aew = Aew
I'; A = Aew

Case of |R:

init*
L
cut

[ [w/ulAew = [w/u]Aew
I' A= |luAew T;|uAew= [w/ulAew
I'; A = [w/ulAew

Case ofatR:

P ——.TT YT el
I'; Aev—=— AeVv Init L
I' A= (Aatview I ;(Aatv)ew= AeVv at

I'; A= Aav cut
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Case of®L:

; init* ; init*
I'; Aew = Aew I'; Bew = Bew R
I'; Aew, Bew — A® Baw ® I' A,A® Baw = CawW cut
I'; A, Aew, Baw = CewW
Case of1L:
> 1R .
I',-— lew I'; A lew = CawW ¢
I' A= CewW cu
Case ofel:
init*

I'; Aew = Aew oR
I'; Aew = A1 @ Acaw I';AAL® Aew = CaW

I';A,Aew = CoewW cut
Case ofOL: trivial.
Case ofdL:
iNnit*
I'; Aew = Aew 'ngR
I'; Aew = da. Aew I'; A,Ax. Aew = CaW cut
I'; A, Aew = CewW
Case of!L:
: init*
I, Aew ; Aew — Aaw copy
I,Aew ;- = Aaw IR I';A'Aew = CewW K
T,AeW; - — | AgW ’ [ Aaw: A, TAgw = Caw ="
I,Aew; A = CowW u
Case of | L:
- init*
I'; [w/ulAew = [w/u]Aew IR
I'; [w/ulAew = Ju. Aew I'; A JuAew = CewW cut
;A [w/uAew = CewW u
Case ofatlL:
- INIit*
I'; Aev = AeaVv Init
tR

I'; Aev= (AatVv)ew a I';A (Aatv)ew = CewW c

I'; A,Aev— CaW ut

A.4 Correctness and consistency

Theorem 29(Correctness of the sequent calculus)
1. IfT'; A= Caw, thenl" ; A + Cew. (soundness)
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2. IfT"; A+ Caw, thenl' ; A = Ceaw. (completeness)

Proof. The right rules of the sequent calculus and the introduatides of natural deduction coincide. Therefore,

for (1), we need only to show that the judgemental and le#guf the sequent calculus are admissible in natural
deduction, and for (2), only to show that the judgementalemdination rules of natural deduction are admissible in
the sequent calculus. The following are the main cases.

=/t case (init)

hyp
I';p@ewr p(Hew

=/ case (copy)

_ I
I,Aew; -+ Aew hyp! I',Aew ; A, Aew + Cew
S

I,Aew; A+ CawW ubst

=/t case (&L)

hyp

I'; A& Avawr A1 & Ayew
1 2@ 1 2@ &E,

I'; A1 & Ayew+ Ajew I';A,Aewt+ CeawW
I';AAL & Avaw + CaW

subst

=/ case (elL)

E

T A G AW AeAew P T AAewrCew T:A AewrCaw
T A A& AGWF Cow ®

=/t case (OL)

hyp

I'; Oewr O@w
OE

I'; A,Oewt+ CawW

=/ case (®L)

I' A Baw+ A® Bew hyp I'; A, Aew, Bew+ Cew
I';A,A® Bewt+ Caw

®E
=/ case (1L)

I';lewtr lew hyp I' A+ CowW
I';A lewr CeW

1E

=/t case (—ol)

AoBowrA<Baw P I': At Aew -
I'; A— Baw+ Bew = I';AN,Bewt CewW
I' A,N,A—oBawt+ CawW

subst

=/t case (VL)

T Va. Aawr Ya. Aaw hyg
I';Ya. Aew + [t/a]Aew v I'; A [r/a]Aew + CowW
I'; A Va. Aewr+ CewW S

ubst
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=/ case (L)

=/ case (IL)

=/t case (L)

=/ case (at L)

+/= case (hyp)

+/=— case (hyp!)

+H= case (&E)

+/— case (®E)

+/—> case (OE)

+/— case (®E)

I'; da. Aew + Ja. Aew hyp I';A,Aewt+ Cew 3
I'; A, da. Aewt+ CewW

E(Y

- 1Aewr TAaw P iAew: AL Caw
I';A!'Aewtr Caw

IE

I'; luAewtr Ju Aew th
I'; lu Aew + [w/ulAew
;A luAewr CewW

I';(Aatv)ewr (AatVv)ew h}:pE

I';(Aatv)ewr Aev a I'; A Aev+ CowW

;A (AatVv)ewr Cew
Nnit*
I'; Aew = Aew init
- init*
I, Aew ; Aew = Aew
copy
I,Aew; - — Aew
iNnit*
I'; Aew = Aew 'n't&L'
F:A= A& Aew T A& Aew=— Aew cutl

I' A= Aew

I' ANV,Aew = CaewW I ;A’,Bew—=— CewW

I'; A [w/ulAew + Cew U

subst

I' A= Ao Baw F;A',A@B@WzC@w’C

T A AN — Caw ut

oL

I' A= Oew I ;A,0ew— CewW cut

' A,NN = CoWwW

I'; A, Aew, Baw = CewW L
I'A— AgBew T .A.A®Bew— Cow C®t
[ AA — Cow u
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+/= case (1E)

I' A" = Caw 1L
I' A= 1lew I ;A,lew— CaW cut
;AN — Caw u
+/— case (VE)
init*

[; [t/a]Aew = [1/a]AewW "
I' A= VYa. Aew I ;VYa. Aew = [1/a]AewW cut
T; A= [r/a]Aew u

+/— case (dE)

I'; A,Aew = CawW

I' A= Jda. Aew T ;A,Ja. Aew = CeWw 3";
[ AN — Cow cu
+/=— case ('E)
I,Aew; A" = CaW I
I' A='!'Aew T ;A |Aew— CewW ;:ut
I' AN —= CewW
+/= case (LE)
hyp

I'; A, [w/ulAew = [w/u]Aew
I' A= |uAew T;A,luAew= [w/ulAew
I'; A,N = [w/u]lAew

L
cut

+/—> case (at E)

init*
at L
cut

I'; Aev—=— AeVv
I' A= (Aatview I ;(Aatv)ew = AeVv
I'; A= Aav

Corollary 30 (Consistency of HyLL) There is no proof of; - + O@w.

Proof. Suppose ; - + O@w is derivable. Then, by the completeness and cut-admiggitiileorems on the sequent
calculus, ; - = 0@w must have a cut-free proof. But, we can see by simple ingpettiat there can be no cut-
free proof of- ; - = 0a@w, as this sequent cannot be the conclusion of any rule ofenfar in the sequent calculus.
Therefore; ; - + O@w is not derivable. m]

A.5 Connection to IS5

Theorem 31(HyLL is intuitionistic S5) The following sequent is derivable; ¢ Aew = 0 A@w.
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Proof.

- Aea = Aea init*

-;A@a= (Aata)ath
-; Aea= Iv.(Aat Vv)eb
-;(Aata)ew = (Av.(AatVv) at byew

-; (Aat a)ew = Wu. (Av. (Aat v) at u)@w
-;Au. (Aat u)ew = Yu. (Av. (Aat V) at u)e@w

-+ O Aew = 00 Aew

atR

atL, atR
b

JLa
defn
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