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1 Problem statement and notations

1.1 Boundary value problem

The system of 3D time-harmonic Maxwell’s equations is considered
iwe, E —curlH = —J, in ,
(1)

iwu,H+ curl E =0, in 2,

where i is the imaginary unit, w is the angular frequency, ¢, and u, are the relative permittivity and
permeability, E and H are the electric and magnetic fields, J is a known current source. The boundary of
the computational domain Q is 9Q =T, UT, (T';, N Ty = @) on which we impose the following boundary
conditions

nx E=0, onT,,

. . . 2
{anJrnx(an)anlnCJrnx(anmC)ng, on [y, @)

where n is the outward unit normal vector and (E™¢, H™) is a given incident electromagnetic wave. The
boundary condition on I';, indicates a metallic boundary condition (also called perfect electric conductor
condition), while the second relation on I', states a Silver-Miiller condition (first order absorbing bound-
ary condition). For sake of simplicity, we omit the volume source term J in what follows but it can be
straightforwardly added.

1.2 Notations

We consider a simplicial mesh 7}, (consisting of tetrahedral element K') of the computational domain Q. We
denote by ]-",{ the union of all interior interfaces of Ty, by f,’f the union of all boundary interfaces of 7T, and
by Fr, = FLUF, ,l;. Note that 07}, is the set of all triangular faces forming the boundary 0K, for all elements
K of T;,. Consequently, an interior face shared by two neighboring elements appears twice in this set 97,
while it appears once in the set F,. For an interface F = K N K € Fl | let v* be the trace of v on F
from K*. We define on this face mean values {-} and jumps [-]

V=5 +v0),

[Vlrp =nt x vt +n~ xv™,

where n* is the outward unit normal vector to K*. For a boundary face F € 0K+ N 9 these expressions

are modified as
{ {V}F = V+a

[vl]Fr = nt x v*.

Now we introduce the discontinuous finite element spaces and some basic operations on these spaces for later
use. Let P,(D) denotes the space of polynomial functions of degree at most p in a domain D. Let V}, the
global approximation space defined by

V= {v e 2] | vie € P (K, VK. € n} (3)

Note that this approximation space is common to DG and HDG methods. It represents the space where
we seek an approximation of the electromagnetic field. We also introduce a traced finite element space My,
defined by

My = {T’ < [LQ(]:h)]g | Mg, = [pr(Ff)]Sv(n'n) ‘Ff =0, VFy G.Fh}. (4)

This space is specific to the HDG method, it represents the approximation space for traces ( particularly for

the hybrid variable that we will define in the following). For two vectorial functions u et v in [L?(D)]3, we



denote (u,v)p = fD u - vdx where D is a domain of R?, and we denote < u,v >p= fF u-vds where F'is
a two-dimensional face. Accordingly, for the mesh 7; we write

("')Th = Z ('7')1{’ <'a'>a7'h, = Z <'7'>E)K7

KeTh KeTh
<'ﬂ'>]~‘h = Z <'7'>F7 <'7'>1"a = Z <'v'>F'
FeFy FeFrnT,
Finally we set
@) = -nx @xXV), (V) =n(m-v),

where 7;(v) and ~,(v) denote the tangential and normal components of v on a face of unit normal n, and
v ="7(V) + (V).

2 Principles and general formulation of the HDG method

As in a classical DG method we seek an approximation of the electromagnetic field solution of , denoted
by (Ex,Hy), in the space Vj, x V), such that for all K in 7y,

{ (iwe, Ep, v) ¢ — (curl Hy,v) . = 0, Vv € Vy, (5)

(iwprHp, V) i + (curl Ep, v) . = 0, Vv € V.
Numerical traces Eh and ﬁh are introduced by applying appropriate Green’s formulas

(iwe, By, v) g — (Hp, curlv) - + <I/-\Ih7 n x v>aK =0, Vv € Vy,

~ (6)
(iwp,Hy,, V) i + (Bp, curlv) . — <E;L7 n x V>6K =0, VveV,

The key to define a DG method lies in the definition of the numerical traces. It enables to weakly enforce
the continuity conditions between neighboring elements and thus ensures the consistency of the method.
In a classical DG method we couple the local traces of the electromagnetic field E; and Hj between the
neighboring elements R R

E; = {En} + ap[Hp] and Hy, = {Hp} + ap[Es],

where ay and ag are positive penalty parameters. To approximate the electromagnetic field (E;, Hy,) for
an element K of the mesh 7, we need the value of the field of each neighboring element of K, i.e. that we
need all degrees of freedom of the neighboring elements. Consequently a classical DG method leads to a
global linear system to solve and the globally coupled degrees of freedom is

|Th|
6N%,
e=1
where N7 is the dimension of the space P, (K.), i.e. N§, = (pe + 1)(pe + 2)(pe + 3)/6.

The aim of the HDG method is to reduce substantially the number of the globally coupled degrees of
freedom. The key to define the HDG method lies in the definition of an hybrid variable which represents an
additional unknown on on each face of Fj. A so-called conservativity condition is imposed on the numerical
trace, whose definition involved the hybrid variable, at the interface between neighboring elements. As
result, the HDG method leads to a linear system in terms of the degrees of freedom of the hybrid variable
only. In this way, the number of globally coupled degrees of freedom is reduced. The local values of the
electromagnetic fields can be obtained by solving local problems element-by-element. For the proposed HDG
method (formulated in next section) the number of globally coupled degrees of freedom is

[Fnl

> 2N,

F=1



where NIJ; is the dimension of the space P, (Fy), i.e. NI{: = (pr+1)(pr +2)/2.

Remark 1 Assuming the interpolation degrees are p. = py = p, VK. € Ty, YEf € Fy, the number of globally
coupled degrees of freedom is then

DGM :  (p+1)(p+2)(p+3)|Tl,
HDGM :  (p+1)(p+ 2)|Fxnl.

For a simplicial mesh |Fp| = 2|Ty|, the ratio of the globally coupled degrees of freedom is roughly 2/(p + 3)
for HDG method over DG method.

Now we are interested in the formulation of the HDG method. First note that n x v = n x (v), thus
the system @ is equivalent to

~

(iwe, Ep, V) — (Hp, curl v) - + <fyt(Hh), n x V>8K =0, Vv eV,
(7)

~

(iwprHy, V) i + (Bp, curlv) - — <’yt(Eh), n x V>8K =0, Vv E V.

We introduce the hybrid variable A defined by
Ay =y(Hy), VF € Fy. (8)

In the HDG method we want to formulate the local fields in K through assuming that Aj is known on
all faces of an element K. In order to achieve this, we consider a numerical trace v;(Ep) of the form

’Yt(Eh) =%(BEx) + 750 x (A, — 32 (Hp)) on 0K, 9)

K

where 7" is a local stabilization parameter.

Remark 2 Once the hybrid variable Ay, is obtained on all the faces of an element K the electromagnetic field
inside this element can be solved through the associated local linear system using the numerical traces

defined by and @
Adding all contributions of over all elements and enforcing the continuity of the tangential component
of Ej,, we can formulate the following problem: find (Ej, Hp, Ay) € V}j, x V;, x M), such that

(iwe,Ep, v), — (Hp,curlv) . + (Ap,nx V), =0, Vv E Vp,

(iw,u"f’Hhav)Th + (Eh,curl V)'Th B <7t(Eh)7 n X V>3Th = 07 Vv e th (10)
(e ®E)lm) = (Anm)r, = (8" m)y, . vm € M,
h

where the last equation is called the conservativity condition, with which we ask the tangential component
of Ej, to be weakly continuous across any interfaces between neighboring elements. With the definition of
v:(Ep) we employ again a Green formula in the second equation of to obtain the following problem:
find (Eh,Hh,Ah) €V x Vj, x My, such that
(iwerEp,v)r — (Hp,curlv) 2 + (Ap,n X v)yr =0, Vv € Vy,
(wprHp, v) 7 + (curl Ep, v) 2 + (o x (Hp — Ap) ,n x v) =0, Vv € Vy, (11)
(0 X En,m) o, + (T (e (Hp) = An) s m)pq;, — (An,m)p, = (8" m)p. , Vi € M.

Note that we have used
nxy(v)=nxvandnx (nxy(v))=—-y((v),

to obtain .

In summary we can decomposed the HDG method in two steps:



1. A conservativity condition (third equation of ) is imposed on the numerical trace, whose definition
involved the hybrid variable at the interface between neighboring elements. As result we obtain a
global linear system in terms of the degrees of freedom of the hybrid variable.

2. Once the degrees of freedom of the hybrid variable are known, the local values of the electromagnetic
fields can be obtained by solving local linear systems element-by-element from the first and the second

equation of .

3 Application of the HDG method

In this section we discretize the HDG method leading:

1. Matrix formulations of local solvers to approximate the local values (i.e. the degree of freedom) of the
electromagnetic fields element-by-element.

2. Matrix formulation of the global solver to approximate the values of the numerical trace, i.e. the degree
of freedom of the hybrid variable, on each face of F},.

First we introduce some notations and definitions for later use. We denote the restriction of the electro-
magnetic field on an element K, in 7; by (Eh\xeth\Ke) = (E¢,H°) : K. x K, — C3 x C3, where
E° (x) = [ES (x), Eg (x), EX (x)}T and H* (x) = [HS (x), Hf (x), H¢ (x)]T. As in a classical DG method
for each element K. we seek an approximation of the components of the electromagnetic fields by a linear
combination of basis functions ¢ (x) of the space P, (Ke), i.e.

NK NK
BE() =Y Eeliles (0. HE() =) Hillef(x) (€€ {om2)), (12

where E% [j] , H{ [j] represent the degrees of freedom of the electromagnetic field in K¢ and N is the
dimension of the space P,, (K.). Similarly for a face Fy in F}, we denote Ay, e, = AT Fy — C3 and we

set
A (x) = A (x)uf + AL (x)w, (13)

where u/ and w/ are coordinate axis (not necessarily orthogonal). We seek an approximation of Af and AL,
by a linear combination of basis functions dzf (x) of the space P, (FYy), i.e.

N N
ALE) =D ALY (), AL =D ALY (), (14)

where Af [j], AL [j] are the degrees of freedom of the components of A/ associated to the face F/, and N IJ;
is the dimension of the space P, (Fy).

Remark 3 For computation we set w/ = @/ /|a/|2 and w/ = W/ /|w/ ||y with @/ = ng - n{ and W =

n:’; —nd, where nd,nd and ng are the three nodes of the face Fy. Since the outward normal n can be

computed through u! x wf we can easily show that (n - Aﬁ)‘F = 0 in accordance with the definition of the
f
space My, given by ,

We denote by v, the set of indices of the elements which are neighbors of K, (having an interface in common).
Thus for each element of the mesh K, € Ty, (i € {1, -+, |T5|) we associate |ve,| faces, denoted K! € 9Ty,
defined by

8Kéi:Kei ﬂKeja le{L"'v'”ﬁ

Y, E Ve,



As it will be useful later, let us define an index mapping function (local to global), denoted by o, graphically
depicted in Fig. [3|and defined as follow

VFy € Ffl such that Fy = KL NOK}, o(e,l)=o0(g,k) =/,
VF; € FP such that Fy = 0K. N (T, UT,,), o(el) = f.

. 0'(6 1) » =
) oI
8K aKl 6K2
8K 1
OK

OK*A 8[
OK? Ok ‘ DK?

Figure 1: Diagram (2D) demonstrating the use of the index mapping function (local to global) o described
in the text (conforming case on left / non-conforming case on right).

3.1 Discretization of local problems

To get the discretization of the first and second equation of we do some preliminary computations. For
all v € V;, we have

<Ah7 n x V>6Ké _ / [(neua(e ) Z g(e,l)) Az(e,l) + (niwg(e,l) _ nzwg(e,l)) Agv(e,l):| T

+ {(nzug(e,l) _ nzua (e,l) ) Acr e,l) + ( J(e,l) _ nzw;(e,l)) A;rv(e,l):| T
o(e,l o(e,l o(e,l > ol(e,l > o(e,l o(el) | =
+ {(nguI(e ) — nguy (e, )) CACOE (ngwm(" ) — n;wy(" )) Agle )} U.ds,
=(-nx(nxAyp) ,v>6Ké
= <Ahav>aKé
_ (ug(e,l)Aa(e,l) + wo’(e,l)Ao’(e,l)) Ty + (u(;(e,l)Aa(e,l) + w;’(eJ)Aa(e,l)) T
oK T u x w 1 u w

+ (ug«e,l) AT(ed 4 qyoled Aiv‘e’”) .ds.

Using - and the basis functions of the space V}, as test functions in the first and the second



equation of the system , we obtain

[Vel

[vel

[ve|

where 7(&1) née’l)

vector of the face 0K, respectively ; E¢, H¢ and A

(e)0)
+ ;7’ Kl

(e)l) _
+ lz:; T Kl

rled) —(n
+z:Z1 {(1 (

‘Vel
: e e e rre e rre e o(e e o(e e o(e,l
iwe, MCE® _Dzﬂy +]D)yﬁz + E (ng ,l)uy( A nz(/ ,l)uz( ,l)> F¢ ,l)Au( )
1=l

+ (nge,l)wg(e,l) _ née,l)wg(e,l)) ]F(e,l)sz(e,l)}

[ve |

IOJETMCEE ]D)eHe De He + Z (n(e l)ua(e ) n(e 1) o(e 1) ) F(e l)AtT e,l)

+ (TL (e,l) 0‘ nge,l)w;'(e,l)> F(E,Z)Agv(e,l)}

el

iwe, M¢ Ee ]D)eHe ]D)e He + Z |:( (e,l) 0’(6 1) 3(Ee,l),ul(yf(e,l)) F(e,l)Aﬁ(eJ)

n (n?ge,nwg(e,z) _ n;e,nwgw,w) F(G’Z)A&(e’l)} _

|Vc‘

iwp, MCHS — (Di)TEZ + (DZ)TEE _ Z e (ug(&l)[@(e,l)éz(eyl) + wg(eJ)F(evl)sz(e’l))

=1

[vel

g, MO H + (D97 ES — (D5)TB: — 3 760 (g DR AGED 4+ (et pgleD)

(né@z))z) E(e’l)ﬂz _ n:(be,l)n:(ye,l)E(e,l)ﬂ; _ née,l)nge,l)E(e,l)ﬂi}

[ve|

iWMrMeﬂi o (]D);)TE; + (Di)TEZ o ZT(e,l) (ug(e,l)F(e,l)Az‘fl(e,l) + wg(e,l)F(e,l)A&(e,l))

=1

_ (nge,l))Q) ED g — pleDpEDEEd ge nl(}e,z)ngeJ)E(e,z)ﬂz}

o(e,l)

(B¢, ESING]]T, €€ {n,y, =),
HE,-  HENG]D, €€ {a,y,2),
[AZDp) - AZEONE ] e (i

:07

:0’

ge,z))2) EED[e — nge,l)n;e,l)E(e,l)ﬂz _ n(ze,l)nge,l)E(e,l)ﬁg} -0

:07

=0,

(15)

are the local stabilization parameters and the components of the outward unit normal

are the column vectors of degrees of freedom, i.e.



Finally the entries of the local matrices are given by

M%m:/"ﬁ@
K,

dx,

e

e

1<1i,j < Ng,

EW%ﬂz/ SpSds, 1<i,j< Ng,
oK!

Now we can write the local linear system associated to the element K. as

where

E;

e [ve|

+y cleh

-y =1

o A° matrix of size 6N x 6N}, defined by

AE

with

[ iwe, Me
0
0
0
g]”

— [mg]”

0 0 0
iwe, Me 0 D¢
0 iwe, M¢ -Dg
e1T e1T : e e
— [D¢] [Dy] iwp,Me + EE
T
0 — [Dg] -ES,
Dt 0 —ES,
‘Vel ( l)
B = 3 re0((1 - (nf0))EED,
=1
< (ed), (ed)
e e,l e, e, e,l
Eee = ZT( )n5 ne ED,
=1

e C(®) matrix of size 6N§ x QNI‘;(B’Z), defined by

C(E)Z) —

_(ngevl)uo'(eﬂl) o n(e,l)ug(e,l))]F(e’l)
(nSug
(née,l)ug(e,l) o ngce,l)u‘g(e,l))F(eJ)

(e;0) _ ngevl)ug(eal))lﬁ‘(e,l)
_T(e7l)ug(ﬁvl)F(e7l)
7T(e,z)uz(e,l)]F(e,z)
_T(e,l)ug(eal)]};(e,l)

A(T(e,l)
Ao(e,l) = O’

D%Jh1/<&ﬁwﬁu,1sajSN;afeww¢L

FD i, j) = / peu“Pds, 1<i < NFet1<j< NgD
KL

—-D¢ ]D)Z
0 —-D¢
D¢ 0
_Eiy _Eiz ’
iwp,- M€ + EZ —E;Z
-E;, iwp, M + E |
57 C E {x’ y? Z}?

3.2 Global discretization for the hybrid variable

(nge,l)wg(e,l) . n;e,l)wg(e,l))F(e,l)_
n(ze,l)wg(e,l) o nge,l)wg(e,l) F(e’l)
(n?(!e,l)w;(e,l) o ngce,l)w;(e,l))F(eJ)
_T(e7l)wg(e7l)]F(e7l)
7T(e,l)wz(€7l)]F(e,l)
_T(e,l)wg(eal)F(e,l)

In this section we discretize the third equation of , i.e. the conservativity condition, to obtain a global
linear system in terms of the degrees of freedom of the hybrid variable Aj,.



Let Iy € }'}{ an internal face shared by the elements K. and K, with local indices [ and k, respectively,
ie. f=o0(el) =0(g,k). The conservativity condition for Fy and for all n € M}, can be written as

(n x EhvmaKg — rled (n x (nx Hh)777>31(é A <Ahan>8Ké (17)
+ (0% En, g — 79 (0 x (nox Hp) m) e — 70N (A, m)oer = 0.

For a boundary face Fy € I', such that Fy € 0K, !'NT,, the conservativity condition for all n € M, is given
by
<n X Eh7’r’>8Ké - T(e’l) <l'l X (n X Hh)an>aKé - (1 + T(e’l)) <Aha T]>8Ké = <g,bnc7’r’>6f<(l3 (18)

As it will be useful for the discretization of these latter equations, let us do some preliminary computations.
For all n € My, we write

(n x Eth)aKg = /8Kg Kniug(e’l) — nzug(e’l)) ES + (niu‘;(e’l) — ngug(e’l)) E,
+ (mguge = ngugeD) B 70 + [ (ngwg@h — nguz (D) B
+ <n§w2(e’l) — niwg(e’l)) E; + (nng(e’l) — niwg(e’l)) EZ} ﬁf,v(e’l)ds,
(- x (n x Hy),m) 1 = /8 » (ug(ev“H; +uf @D HE + ug“»l)Hg) nole (19)
+ (gD HS + wf @D H; + wole,1), H) 75D ds,
(A1) o :/ |:Ag(e,l) 4 (ua(e,z) .W(r(e,l)) Ai,(e’l)} ﬁﬁ(e’l)
© OK!
+ {Ag}ev” n (uaw) .Wa<e,z>) Age,z)} 7o(eDds.
Note that we have used the following equality for the second equation of
(—nx (nxHy),n)p=mxHynxn),=(H,—nxnxn)=(Hy,n"),, VFeF,,
Furthermore i € My, then we have (n-n)|_ =0 and

(nx(nxH),np=Hyngp, YFeF, VnecM,.

To discretize and we use - (13) and the basis functions of the space M, as test functions. Let
Fy € Fi such that Fy = 0Kl N 0K from (17) we write

T T
(nge,z)uz(e,z) _ née,l)ug(e,l)> |:]F(e,l):| E° 4 (nge,l)ug(e,l) _ nge,l)ug(e,l)) |:]F(c,l):| B

T T T
edl), o(e,l e,l), o(e,l e,l e e,l e,l e el), o(e,l e,l e
n (ng ORI CUM )) [m >} ES 4 rled [p >} HE 4 r(eyged [m )} HE

Yy

—_—z

Yy
prledyoted [F(e,l)}THe _ pledglepo(ed e (uo(e,z) .Wa(e,l)> GEDATED | Rle:k) — g,

(nleDugeh — nfeugen) {F(e,z)rﬁ; + (nleDugeh — pEDugen) {F(e’”rﬁf}

T T T
el), o(el el), o(e,l e,l > el), o(e,l e,l > el), o(e,l e,l >
+(ni Y (@) — e g )) {]F< )} E° 4 7oy )[p )} HE 4 (o0 )[F< )} H

pr(eDyo(ed [F(@,l)rﬁz _ e (ua(e,z) .Wa'(e,l)> GEDATED _ pedGleDpTed 4 plak)
(20)



where
G(e,n[i’j]:/ TNy 4g 1< j < NOED),
oKL

and REY RYY collect the counterparts from the k-th face of the element with index g. Similarly for (18).,
i.e. for an absorbing boundary face Fy € I'y such that Fy = OK! NT,, we obtain

(nge,l)u(yr(e,l) 7née,l)ufzr(e,l)) {F(e’l)]Tﬂe 4 (n(e Dyoled) _ nge,l)ug(e,l)) {]F(e’”]TES

n (n(ze,l)ug(e D pledygte ) [ (ed) } E° 4 7l {]F(e l)rﬂ; +7(eDyg(ed [F(e,l)]TﬂZ
+ e l)uo(e ) [ } (1 4 pled ) (e, l)Az(e,l) _ (1 +T(e7l)) (ua(e,z) _Wo(e,l)) (G(”)Ajv(e’”
— G(e,l)gil?c,a(e l)7

T T
(nge,l)w;(e,l) _ n(ye,l)wg(e,l)) [F(e,z)] B+ (n(e,l)wa(e,l) _ nge,l)w;r(e,l)> [F(e,z)] E°

i (nge,z) 7o) peh) 0 )
+ 7_(e,l),wg(e,l) |: (e,l) i| (

— G(e,l)ginc,a(e l)7

|: el:| Ee +7_(e 1) a( 1) [F(e’l)}Tﬂ; +T(e’l)wg(e,l) |:]F(e’l):|TﬂZ

1+ e ) (ua(e,l) . Wtf(e,l)) G(e,l)A‘lfl(e,l) . (1 + T(e,l)) G(e,l)Agv(e,z)

with
. . . ole T
gmc,cr(e,l) — [gmc,a(e,l) [1]7 . ’glnc,a(e,l)[NF( 71)}:| ,veE {U,W}.

=V 14 =V

The efficiency of the HDG implementation arises from obtaining an element-wise matrix system to con-
struct a global system for the trace space degrees of freedom. Let A = [Af;, A{:,]T denote the column vector
of degrees of freedom on the face Fy € Fj,, of size 21V I{: We define the global trace vector of degrees of
freedom, denoted by A, as the concatenation of these vectors for all faces F; in Fj,. We define the trace
spreading operator Agy pe which spreads or scatters the unique trace space values to their local face vectors.
We can represent the operator Ay pg as a matrix of size

[Thl [ Ivel [ Fnl

Z Z PIASON Y Z 2N,

e=

Furthermore we organize this matrix by elements such that
el e 17
Anpc = [AHDG,"' aAHD'G} :

where the action of A% ¢ is to copy global trace space information into local (elemental) storage. Then for
each element K, € 7}, we define a matrix A%, of size
[vel [Fnl

Z aNgED Z 2N,

such that
T
apc A= [A”(e’l), . ’AU(E’IVED:I

10



With these notations in place, adding all equations involving interior face and every boundary face
element-by-element we have

[ 7n| I 7n]
T T
Y [pal (BWS + G Aypeh) = [Alpel &% (22)
e=1 e=1
where -
e W* the column vector of size 6Ny, defined by W* = [Ei,ﬁ;,ﬁ;ﬂ;,ﬂ;,ﬂ;] ,
|Ve|
e B the matrix of size Z 2N;(e’l) x 6Ny, defined by
=1
Be =
Fiz’,lu) F(zez’,lu) F;Ez’,lg, T(e,l)ug(eal) [F(e,l)]T T(e,l)uz(eal) [F(e,l)}T T(e,l)ug(EJ) I:ﬁr(e,l):lT
ng:lu)j ngez’,lu)) Fg}‘;’lu)] T(e,l)wg(erl) I:F(e,l):lT T(e,l)wz(evl) [F(e,l)]T T(e,l)wg@vl) [F(e,l)}T
]Fiey?u) F(zez’?u) ]Fg(fz?ﬂ), T(e,Q)U;(eaQ) [F(E,Q):I T T(e,Q)UZ(eaQ) [F(e,Q)} T 7(572)1@(6’2) I:IF(e,Q)} T s

F,(ZZ’JE;EU ]F(zez’,lzzel) F’szaj;e‘) T(e,\ue\)w:(eﬁh’en I:]F(e,h/e\):lT T(E,\ue\)wg(@h’e‘) [F(e,\ue\)]T T(e,\ue\)wz’(evwe‘) [F(E,\ue\)}T

with
T
Fee) = (nf 07 =l g CO) [FD] T 1= 1, el €€ € oy ) v e fu ),
|Vﬂ‘ ‘VF|
e G° the matrix of size Z 2N§(e’l) X Z 2N;(e’l), defined by
1=1 1=1
_plengleD) —rleD) (oed) . woleyglen) ... 0
—r(eD (uole) . wole)glel) _gleD)gleD) 0
Ge =
0 0 _H(Ey\ue\)(ua(&\”e\) ,WU(Ey\Ve\))G(e,IUeI)
0 0 _plelveDglelvel)
with )
7Y sila face Fypop) € Fp N\ Ty,
o) | @ €F Ty
1+ 7Y sila face Foeqy € Fy N,
|Ve‘
e g the column vector of size Z 2N;(e’l), defined by
1=1
T T
g = [gcr(e,l),... ’gcr(e,w)} with g7 = {gﬁ(e’”’gi’fe’l) d=1, v,
where
Gle,1)goeh 0 if Fyeqy € Fa~Ty
gl = ( 7u( p and g =1 e oleld) B v e {u,w}.
cle) g gUo7CD i By € FPOT,
Now we can rewrite the equation for the local solver as
ACW® + Co Ay A = 0, (23)
‘Vel
where C¢ is the matrix of size 6 N§ x Z N;(E’Z), defined by C® = [C(&D) ... CleD],
1=1
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Finally we substitute W° by the solution of the local system in to obtain

[Th| [Th
S Mirnel” (—B°[AY ™ Co A5 pah + G Asipah) = S [Asn6l" &"
e=1 e=1

Thus we write the following linear system for the global trace A

KA =g, (24)
where
|Fnl |7
e K the matrix of size Z 2N}; X Z 2N1{:, defined by
f=1 f=1
[Tnl |7
e T e ge e T e erfael—1 e e
K=Y [ipal K Ape = Y Mipal” (6 — B[4 C°) Asipe,
e=1 e=1
| Fnl [T
e g the column vector Z 2N, defined by g= Z [A%DG]Tge.
f=1 e=1

In HORSE we use the direct solver MUMPS or the hybrid (direct/iterative) solver MAPHYS to solve the
global linear system (cf user’s guides of MUMPS and MAPHYS for a complete description of these
packages).

4 The HDG method combined to a Schwarz algorithm

A Schwarz-type domain decomposition method is applied for the solution of the system of 3D time-harmonic
Maxwell’s equations. The discrete system of the HDG method on each subdomain is then solved by sparse
solvers. In HORSE we use the direct solver MUMPS or the hybrid (direct/iterative) solver MAPHYS (cf
user’s guides of MUMPS and MAPHYS for a complete description of these packages). It results a DD-HDG
method for the solution of 3D time-harmonic Maxwell’s equations. For a complete description of the method
refer to [IJ.

5 The HDG method combined to a Schwarz algorithm accelerated
by a Krylov subspace method

We consider the DD-HDG method presented in the previous section 4 The solution of the interface system
in the domain decomposition framework is then accelerated by a Krylov subspace method. For a complete
description of the method refer to [I].
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