Domain decomposition methods for electromagnetic wave propagation problems involving heterogeneous media and complex domains 19th International Conference on Domain Decomposition Methods

Stéphane Lanteri NACHOS project-team INRIA Sophia Antipolis - Méditerranée research center, France

August 17-22, 2009 - Zhangjiajie of China

Opening: scientific context

- Challenges with the simulation of ElectroMagnetic (EM) wave propagation
 - Geometrical characteristics of the propagation domain:
 - dimensions relatively to the wavelength,
 - irregularly shaped objects and singularities.
 - Physical characteristics of the propagation medium:
 - heterogeneity and anisotropy,
 - physical dispersion and dissipation.
 - Characteristics of the radiating sources and incident fields
- PDE model: the system of Maxwell equations

James Clerk Maxwell (1831-1879)

Opening: scientific context

- Modeling context
 - Time-harmonic regime
 - High frequency (F>100 MHz)
- Target applications
 - Interaction of EM fields with living tissues
 - Exposure of humans to EM fields from wireless communication systems
 - Medical applications (microwave imaging, microwave hyperthemia, etc.)
 - Microwave imaging for the detection of buried objects
- Numerical ingredients
 - Unstructured meshes (triangles in 2D, tetrahedra in 3D)
 - High order discontinuous finite element discretization method
 - Discontinuous Galerkin method with polynomial interpolation (DGTH- \mathbb{P}_p)
 - Hybrid iterative-direct domain decomposition based solution strategies

Opening: scientific context

- Modeling context
 - Time-harmonic regime
 - High frequency (F>100 MHz)
- Target applications
 - Interaction of EM fields with living tissues
 - Exposure of humans to EM fields from wireless communication systems
 - Medical applications (microwave imaging, microwave hyperthemia, etc.)
 - Microwave imaging for the detection of buried objects
- Numerical ingredients
 - Unstructured meshes (triangles in 2D, tetrahedra in 3D)
 - High order discontinuous finite element discretization method
 - Discontinuous Galerkin method with polynomial interpolation $(DGTH-\mathbb{P}_p)$
 - Hybrid iterative-direct domain decomposition based solution strategies

Opening: target applications

• Human exposure to electromagnetic fields

 Multi-parametric studies, uncertainty quantification (source position, morphology, electromagnetic parameters)

- Plane wave exposure (F=2.14 GHz)
- Tetrahedral mesh: 899,872 vertices and 5,335,521 elements
- Discretization by a DG-P₂ method: 320,131,260 d.o.f

- Goals of this study
 - Formulation and analysis of optimized Schwarz algorithms for the time-harmonic Maxwell equations
 - Design of hybrid iterative-direct domain decomposition based solvers for algebraic systems resulting from DG discretizations
- Collaborators
 - Victorita Dolean (Assistant Professor)
 Dieudonné Mathematics Laboratory (UMR 6621)
 University of Nice/Sophia Antipolis, France
 - Mohamed El Bouajaji (PhD student) NACHOS project-team INRIA Sophia Antipolis - Méditerranée research center, France
 - Martin Gander (Professor) Mathematics Section, University of Geneva, Switzerland
 - Ronan Perrussel (CNRS researcher) Ampère Laboratory (UMR 5005), Ecole Centrale de Lyon, France

• Jin-Fa Lee et al.

The Ohio State University, ElectroScience Laboratory, ECE Department

- Non-overlapping DD method for modeling large finite antenna arrays S.-C. Lee, M.-N. Vouvakis and J.-F. Lee, J. Comput. Phys., Vol. 203 (2005)
- DP-FETI like DD method for the solution of large electromagnetic problems M.-N. Vouvakis and J.-F. Lee, Copper Montain Conference on Iterative Methods (2004)
 - Second order vector wave equation for the electric field
 - Non-overlapping Schwarz algorithm
 - Study of zero-order (Robin) and second-order (with vector and scalar tangential rotational operators¹) transmission conditions
 - Fourier analysis of formulations for TEz and TMz modes
 - Non-matching interface grids through the introduction of cement variables (surfacic electric current densities)
- DD approach for non-conformal couplings between FEM and BEM M.-N. Vouvakis, K. Zhao, S.-M. Seo and J.-F. Lee J. Comput. Phys., Vol. 225 (2007)

 $^1\mathsf{F}.$ Collino, G. Delbue and P. Joly, CMAME, Vol. 148 (1997).

• Jianming Jin et al.

University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering

- Dual-field time-domain finite element DD method (DFDD-TDFEM) Z. Lou and J-M Jin, J. Comput. Phys., Vol. 222 (2007)
 - Non-overlapping sudomains
 - Second order vector wave equations for the electric and magnetic fields in each subdomain
 - Staggered Newmark (leap-frog like) time integration
 - Implicit time integration within each subdomain and explicit time integration on subdomain interfaces
- Dual-primal FETI algorithm for general 3D EM simulations (FETI-DPEM) Y-J Lin and J-M Jin, EEE Trans. Ant. Propag., Vol. 54, No. 10 (2006) Y-J Lin and J-M Jin, J. Comput. Phys., Vol. 228 (2009)
 - Extension of the FETI-DP method to the vector curl-curl wave equation
 - Dirichlet condition on tangential components of the electric field
 - Lagrange multipliers: Neumann-type condition (curl of the electric field)

Opening: related work

• Wei Hong et al.

Southeast University, Nanjing State Key Laboratory of Millimeter Waves

- Partial basic solution vector DD method (PBSV-DDM) for large-scale EM problems involving periodic structures Z.-Q. Lü, X. An and W. Hong IEEE Trans. Ant. Propag., Vol. 56, No. 8 (2008)
- DD formulation inspired by the approach of Jin-Fa Lee *et al.* (Robin type interface condition and introduction of cement variables)
- Formulation of a reduced (interface) system by means of the PBSV ² method

• Jun Zou et al.

The Chinese University of Hong Kong, Department of Mathematics

- Nonoverlapping DD method for Maxwell's equations in 3D Q. Hu and J. Zou, SINUM, Vol. 41, No. 5 (2003)
- Edge-element discretization
- Study of a preconditioner for the Schur complement system involving coarse subspaces/solvers for curl-free and div-free functions

²X. An and Z.-Q. Lü, J. Comput. Phys., Vol. 219 (2006)

• A. Schädle, F. Schmidt et al.

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) Numerical Analysis and Modelling department

 DD strategy for the computation of the EM field within periodic structures
 A. Schädle, L. Zschiedrich, S. Burger, R. Klosea, and F. Schmidt

A. Schaule, L. Zschleurich, S. Burger, R. Riosea, and F. S

- J. Comput. Phys., Vol. 226 (2007)
- Schwarz algorithm with transparent boundary conditions at subdomain interfaces approximated by PML

Opening: related work

- Domain decomposition algorithms for time-harmonic Maxwell equations with damping
 - A. Alonso Rodriguez and A. Valli, ESAIM: M2AN, Vol. 35, No. 4 (2001)
 - Non-overlapping DD method
 - Study of several preconditioning methods for the Steklov-Poincaré operator
- New non-overlapping domain decomposition methods for the time-harmonic Maxwell system
 A. Alonso Rodriguez and L. Gerardo-Giorda, SISC, Vol. 28, No. 1 (2006)
- Overlapping Schwarz preconditioners for indefinite time-harmonic Maxwell equations
 - J. Gopalakrishnan and J.E. Pasciak, Math. Comp, Vol. 72, No. 241 (2001)
 - Study of Schwarz preconditioners for edge-element discretization
- Developments in overlapping Schwarz preconditioning of high order nodal discontinuous Galerkin discretizations
 - J. S. Hesthaven, L. N. Olson, and L. C. Wilcox, LNCSE, Vol. 55 (2007)
 - Helmholtz equation, two-level Schwarz preconditioning for a Krylov method
 - Overlap improves convergence when using high order interpolation
 - Necessity of a sufficiently resolved coarse grid at higher frequencies

Opening: related work

- DD19 MS6 August 17, 14:00pm-15:40pm, Room No. 1 Domain decomposition methods for electromagnetic wave propagation problems
 - J. Jin and Z. Lou

University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering

- J.-F. Lee, V. Rawat and Z. Peng Ohio State University ElectroScience Laboratory, ECE Department
- J. Zou and Q. Hu The Chinese University of Hong Kong Department of Mathematics
- W. Hong, H.X. Zhou, W.D. Li and L.Y. Sun Southeast University, Nanjing State Key Laboratory of Millimeter Waves
- M. Gander, V. Dolean, M. El Bouajaji and S. Lanteri University of Geneva, Mathematics Section and INRIA Sophia Antipolis-Méditerranée

Outline

The time-harmonic Maxwell equations

2 Discontinuous Galerkin discretization method

- Basic properties
- Formulation
- Numerical results in the 2D TMz case

3 Domain decomposition solver

- Formulation in the continuous case
- Classical Schwarz method
- Optimized Schwarz method
- Numerical results in the 3D case

Closure

Outline

The time-harmonic Maxwell equations

2 Discontinuous Galerkin discretization method

- Basic properties
- Formulation
- Numerical results in the 2D TMz case

3 Domain decomposition solver

- Formulation in the continuous case
- Classical Schwarz method
- Optimized Schwarz method
- Numerical results in the 3D case

Closure

The time-harmonic Maxwell equations

$$\varepsilon \mathbf{i}\omega \mathbf{E} - \operatorname{rot}(\mathbf{H}) = -z_0 \mathbf{J}$$
, $\mu \mathbf{i}\omega \mathbf{H} + \operatorname{rot}(\mathbf{E}) = 0$

• $\mathbf{E} = \mathbf{E}(\mathbf{x})$ is the electric field and $\mathbf{H} = \mathbf{H}(\mathbf{x})$ is the magnetic field

•
$$\mathbf{J} = \mathbf{J}(\mathbf{x})$$
 is the conductive current : $\mathbf{J} = \sigma \mathbf{E}$ $(z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}})$

- $\varepsilon = \varepsilon(\mathbf{x})$: (relative) electric permittivity
- $\mu = \mu(\mathbf{x})$: (relative) magnetic permeability
- $\sigma = \sigma(\mathbf{x})$: electric conductivity
- Boundary conditions
 - PEC boundary : $\mathbf{n} \times \mathbf{E} = \mathbf{0}$
 - Absorbing boundary : $\mathbf{n} \times \mathbf{E} + z\mathbf{n} \times (\mathbf{n} \times \mathbf{H}) = \mathbf{n} \times \mathbf{E}^{\infty} + z\mathbf{n} \times (\mathbf{n} \times \mathbf{H}^{\infty})$

Pseudo-conservative system form

 $i\omega QW + \nabla \cdot F(W) = S$ with $W = {}^{t}(E, H)$ and $S = {}^{t}(-z_0 J, 0_{3 \times 1})$

The time-harmonic Maxwell equations

$$\varepsilon \mathbf{i}\omega \mathbf{E} - \operatorname{rot}(\mathbf{H}) = -z_0 \mathbf{J}$$
, $\mu \mathbf{i}\omega \mathbf{H} + \operatorname{rot}(\mathbf{E}) = 0$

• $\mathbf{E} = \mathbf{E}(\mathbf{x})$ is the electric field and $\mathbf{H} = \mathbf{H}(\mathbf{x})$ is the magnetic field

•
$$\mathbf{J} = \mathbf{J}(\mathbf{x})$$
 is the conductive current : $\mathbf{J} = \sigma \mathbf{E}$ $(z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}})$

- $\varepsilon = \varepsilon(\mathbf{x})$: (relative) electric permittivity
- $\mu = \mu(\mathbf{x})$: (relative) magnetic permeability
- $\sigma = \sigma(\mathbf{x})$: electric conductivity
- Boundary conditions
 - PEC boundary : $\mathbf{n} \times \mathbf{E} = \mathbf{0}$
 - Absorbing boundary : $\mathbf{n} \times \mathbf{E} + z\mathbf{n} \times (\mathbf{n} \times \mathbf{H}) = \mathbf{n} \times \mathbf{E}^{\infty} + z\mathbf{n} \times (\mathbf{n} \times \mathbf{H}^{\infty})$

Pseudo-conservative system form

 $\mathbf{i}\omega Q\mathbf{W} + \nabla \cdot F(\mathbf{W}) = \mathbf{S}$ with $\mathbf{W} = {}^{t}(\mathbf{E}, \mathbf{H})$ and $\mathbf{S} = {}^{t}(-z_{0}\mathbf{J}, \mathbf{0}_{3\times 1})$

Outline

The time-harmonic Maxwell equations

2 Discontinuous Galerkin discretization method

- Basic properties
- Formulation
- Numerical results in the 2D TMz case

3 Domain decomposition solver

- Formulation in the continuous case
- Classical Schwarz method
- Optimized Schwarz method
- Numerical results in the 3D case

Closure

Basic properties

Continuous P1 interpolation

- Naturally adapted to heterogeneous media and discontinuous solutions
- Can easily deal with unstructured, possibly non-conforming meshes (h-adaptivity)
- High order with compact stencils and non-conforming approximations (p-adaptivity)
- Usually rely on polynomial interpolation but can also accomodate alternative functions (e.g plane waves)
- Amenable to efficient parallelization
- But leads to larger problems compared to continuous finite element methods

Basic properties

DG for electromagnetic wave propagation in heterogeneous media

- Heterogeneity is ideally treated at the element level
 - Discontinuities occur at material (i.e element) interfaces
 - Mesh generation process is simplified
- Wavelength varies with ϵ and μ
 - For a given mesh density, approximation order can be adapted at the element level in order to fit to the local wavelength

Discretization of irregularly shaped domains

- Unstructured simplicial meshes
- The basic support of the DG method is the element (triangle in 2D and tetrahedron in 3D)
- Local refinement is facilitated by allowing non-conformity
- Non-conformity opens the route to the coupling of different discretization methods (e.g structured/unstructured)

Basic properties

DG for electromagnetic wave propagation in heterogeneous media

- Heterogeneity is ideally treated at the element level
 - Discontinuities occur at material (i.e element) interfaces
 - Mesh generation process is simplified
- Wavelength varies with ϵ and μ
 - For a given mesh density, approximation order can be adapted at the element level in order to fit to the local wavelength

Discretization of irregularly shaped domains

- Unstructured simplicial meshes
- The basic support of the DG method is the element (triangle in 2D and tetrahedron in 3D)
- Local refinement is facilitated by allowing non-conformity
- Non-conformity opens the route to the coupling of different discretization methods (e.g structured/unstructured)

Formulation

• Triangulation:
$$T_h = \bigcup_{i=1}^N \tau_i$$

• Assume $\mathbf{J} = \mathbf{0}$ for simplicity of the presentation

•
$$\mathbf{W}_{i}(\mathbf{x}) \in \mathcal{P}_{i} = \mathbb{P}_{m}[\tau_{i}] \text{ and } \mathbf{W}_{i}(\mathbf{x}) = \sum_{j=1}^{d_{i}} \mathbf{W}_{ij}\varphi_{ij}(\mathbf{x}) \text{ with } \mathbf{W}_{ij} \in \mathbb{C}^{6}$$

$$\int_{\tau_{i}} \varphi \left(\mathbf{i}\omega Q \mathbf{W} + \nabla \cdot F(\mathbf{W})\right) d\mathbf{x} = 0$$
$$\Leftrightarrow \quad \int_{\tau_{i}} \mathbf{i}\omega Q \mathbf{W} \varphi d\mathbf{x} - \int_{\tau_{i}} \nabla \varphi \cdot F(\mathbf{W}) d\mathbf{x} + \int_{\partial \tau_{i}} \left(F(\mathbf{W}) \cdot \mathbf{n}\right) \varphi d\sigma = 0$$

• Calculation of the boundary term on $\partial \tau_i$: centered or upwind numerical flux

Formulation

• Triangulation:
$$T_h = \bigcup_{i=1}^N \tau_i$$

• Assume $\mathbf{J} = \mathbf{0}$ for simplicity of the presentation

•
$$\mathbf{W}_{i}(\mathbf{x}) \in \mathcal{P}_{i} = \mathbb{P}_{m}[\tau_{i}] \text{ and } \mathbf{W}_{i}(\mathbf{x}) = \sum_{j=1}^{d_{i}} \mathbf{W}_{ij}\varphi_{ij}(\mathbf{x}) \text{ with } \mathbf{W}_{ij} \in \mathbb{C}^{6}$$

$$\int_{\tau_{i}} \varphi \left(\mathbf{i}\omega Q \mathbf{W} + \nabla \cdot F(\mathbf{W})\right) d\mathbf{x} = 0$$
$$\Leftrightarrow \quad \int_{\tau_{i}} \mathbf{i}\omega Q \mathbf{W} \varphi d\mathbf{x} - \int_{\tau_{i}} \nabla \varphi \cdot F(\mathbf{W}) d\mathbf{x} + \int_{\partial \tau_{i}} \left(F(\mathbf{W}) \cdot \mathbf{n}\right) \varphi d\sigma = 0$$

• Calculation of the boundary term on $\partial \tau_i$: centered or upwind numerical flux

Numerical results in the 2D TMz case

$$\begin{cases} \mu \mathbf{i}\omega H_x + \frac{\partial E_z}{\partial y} = 0\\ \mu \mathbf{i}\omega H_y - \frac{\partial E_z}{\partial x} = 0\\ \varepsilon \mathbf{i}\omega E_z - \frac{\partial H_y}{\partial x} + \frac{\partial H_x}{\partial y} = 0 \end{cases}$$

- DGTH- \mathbb{P}_p method based on Lagrange (nodal) interpolation
 - Triangular mesh
 - Sparse block matrix, $3n_p \times 3n_p$ (with $n_p = ((p+1)(p+2))/2)$
 - MUMPS multifrontal sparse matrix solver (P.R. Amestoy, I.S. Duff and J.-Y. L'Excellent, CMAME, Vol. 184, 2000)

Numerical results in the 2D TMz case

Numerical convergence of the DGTH- \mathbb{P}_p method

- Plane wave in vacuum, F=300 MHz
- Non-uniform triangular meshes

20 / 53

Numerical results for the 2D time-harmonic Maxwell equations

Scattering of a plane wave by a dielectric cylinder, F=300 MHz

- # vertices = 2078 and # elements = 3958
- Comparison between conforming DGTH-P_p and non-conforming DGTH-P_p methods

Numerical results in the 2D TMz case

Scattering of a plane wave by a dielectric cylinder, F=300 MHz

DGTH- \mathbb{P}_4 and non-conforming DGTH- \mathbb{P}_{p_i} methods Contour lines of E_z

Numerical results in the 2D TMz case

- Scattering of a plane wave by a dielectric cylinder, F=300 MHz
- Centered numerical flux

Conforming DGTH- \mathbb{P}_p methods

n _z	Method	L2 error on E_z	CPU	RAM LU
390,274	$DGTH-\mathbb{P}_1$	0.37977	1.3 sec	97 MB
1,186,224	$DGTH_2$	0.05830	4.1 sec	255 MB
3,225,808	DGTH-₽₃	0.05527	7.9 sec	547 MB
7,033,834	$DGTH-\mathbb{P}_4$	0.05522	15.7 sec	954 MB

Non-conforming DGTH- \mathbb{P}_{p_i} method

	Method	L2 error on E_z	CPU	RAM LU
1,267,878	$DGTH-\mathbb{P}_{1,4}$			252 MB

1495	2037	243	183

Local definition of p_i based on the value of a triangle area

Numerical results in the 2D TMz case

- Scattering of a plane wave by a dielectric cylinder, F=300 MHz
- Centered numerical flux

Conforming DGTH- \mathbb{P}_p methods

n _z	Method	L2 error on E_z	CPU	RAM LU
390,274	$DGTH-\mathbb{P}_1$	0.37977	1.3 sec	97 MB
1,186,224	$DGTH_2$	0.05830	4.1 sec	255 MB
3,225,808	DGTH-₽₃	0.05527	7.9 sec	547 MB
7,033,834	$DGTH-\mathbb{P}_4$	0.05522	15.7 sec	954 MB

Non-conforming DGTH- \mathbb{P}_{p_i} method

nz	Method	L2 error on E_z	CPU	RAM LU
1,267,878	$DGTH-\mathbb{P}_{1,4}$	0.05586	3.7 sec	252 MB

\mathbb{P}_1	\mathbb{P}_2	\mathbb{P}_3	\mathbb{P}_4
1495	2037	243	183

Local definition of p_i based on the value of a triangle area

S. Lanteri (INRIA)

Outline

The time-harmonic Maxwell equations

2 Discontinuous Galerkin discretization method

- Basic properties
- Formulation
- Numerical results in the 2D TMz case

Obmain decomposition solver

- Formulation in the continuous case
- Classical Schwarz method
- Optimized Schwarz method
- Numerical results in the 3D case

Closure

Formulation in the continuous case

Time harmonic Maxwell system

$$\mathcal{L}\mathbf{W} = i\omega G_0 \mathbf{W} + G_x \partial_x \mathbf{W} + G_y \partial_y \mathbf{W} + G_z \partial_z \mathbf{W} - \mathbf{S} = 0$$

• Flux matrices

$$G_{l} = \begin{bmatrix} 0_{3\times3} & N_{l} \\ -N_{l} & 0_{3\times3} \end{bmatrix} \text{ for } l = x, y, z \text{ and with } {}^{t}N_{l} = -N_{l}$$

• Property : for any $\mathbf{n} = {}^t(n_x, n_y, n_z)$ with $\parallel \mathbf{n} \parallel = 1$,

$$C(\mathbf{n}) = G_0^{-1} (n_x G_x + n_y G_y + n_z G_z) \text{ is diagonalizable}$$
$$C(\mathbf{n}) = T(\mathbf{n}) \Lambda(\mathbf{n}) T^{-1}(\mathbf{n})$$
Eigenvalues : $\lambda_{1,2} = -c$, $\lambda_{3,4} = 0$, $\lambda_{5,6} = c$ with $c = \frac{1}{\sqrt{\epsilon\mu}}$

Formulation in the continuous case

Schwarz algorithm

•
$$\Omega = \bigcup_{j=1}^{N_s} \Omega_j, \ \mathbf{W}^j = \mathbf{W}|_{\Omega_j}$$

- $\Gamma = \Gamma_a$ (for the presentation)
- Overlapping subdomains

$$\begin{array}{lll} \mathcal{L} \mathbf{W}^{j,p+1} &=& 0 \ \ \text{in} \ \Omega_j \\ \mathcal{B}_{\mathbf{n}_{jl}} \mathbf{W}^{j,p+1} &=& \mathcal{B}_{\mathbf{n}_{jl}} \mathbf{W}^{l,p} \ \ \text{on} \ \Gamma_{jl} = \partial \Omega_j \cap \bar{\Omega}_l \\ \mathcal{G}_{\mathbf{n}}^{-} \mathbf{W}^{j,p+1} &=& \mathcal{G}_{\mathbf{n}}^{-} \mathbf{W}_{\text{inc}} \ \ \text{on} \ \Omega_j \cap \Gamma_a \end{array}$$

Classical (natural) interface conditions

$$\mathcal{B}_{n} \equiv G_{n}^{-}$$

 $G_n^-W \iff n \times E + zn \times (n \times H)$ (impedance condition)

Formulation in the continuous case

Schwarz algorithm

•
$$\Omega = \bigcup_{j=1}^{N_s} \Omega_j, \ \mathbf{W}^j = \mathbf{W}|_{\Omega_j}$$

- $\Gamma = \Gamma_a$ (for the presentation)
- Overlapping subdomains

$$\begin{array}{lll} \mathcal{L}\mathbf{W}^{j,p+1} &=& 0 \ \mbox{in} \ \Omega_j \\ \mathcal{B}_{\mathbf{n}_{jj}}\mathbf{W}^{j,p+1} &=& \mathcal{B}_{\mathbf{n}_{jj}}\mathbf{W}^{l,p} \ \ \mbox{on} \ \ \Gamma_{jl} = \partial\Omega_j \cap \overline{\Omega}_l \\ \mathcal{G}_{\mathbf{n}}^{-}\mathbf{W}^{j,p+1} &=& \mathcal{G}_{\mathbf{n}}^{-}\mathbf{W}_{\rm inc} \ \ \mbox{on} \ \Omega_j \cap \Gamma_a \end{array}$$

Classical (natural) interface conditions

$$\mathcal{B}_{n} \equiv G_{n}^{-}$$
$$G_{n}^{-}W \iff n \times \mathbf{E} + z\mathbf{n} \times (\mathbf{n} \times \mathbf{H}) \text{ (impedance condition)}$$

Classical Schwarz method

- Convergence result
 - V. Dolean, M.J. Gander and L. Gerardo-Giorda, SISC, Vol. 31, No. 3 (2009)
 - Fourier analysis (for constant ε and μ)
 - $\Omega_1 =] \infty, b[imes \mathbb{R}^2$ and $\Omega_2 =]a, +\infty [imes \mathbb{R}^2$ with $a \leq b$

Convergence rate (non-conductive case)

$$\rho(\mathbf{k},\delta) = \left| \left(\frac{\sqrt{\mathbf{k}^2 - \tilde{\omega}^2} - \mathrm{i}\tilde{\omega}}{\sqrt{\mathbf{k}^2 - \tilde{\omega}^2} + \mathrm{i}\tilde{\omega}} \right) e^{-\delta\sqrt{\mathbf{k}^2 - \tilde{\omega}^2}} \right|$$

with $\delta = b - a$ and $\tilde{\omega} = \omega \sqrt{\varepsilon \mu}$

$$\rho(k,\delta) = \begin{cases} \left| \frac{\sqrt{\tilde{\omega}^2 - \mathbf{k}^2} - \tilde{\omega}}{\sqrt{\tilde{\omega}^2 - \mathbf{k}^2} + \tilde{\omega}} \right| & \text{if } |\mathbf{k}|^2 \leq \tilde{\omega}^2 \text{ (propagative modes)} \\ e^{-\delta\sqrt{\mathbf{k}^2 - \tilde{\omega}^2}} & \text{if } |\mathbf{k}|^2 > \tilde{\omega}^2 \text{ (evanescent modes)} \end{cases}$$

Optimized Schwarz method: the non-conductive case

Schwarz algorithm with optimized interface conditions

- V. Dolean, M.J. Gander and L. Gerardo-Giorda, SISC, Vol. 31, No. 3 (2009)
- S_j for $j = 1, \dots, N_s$: tangential operator

 $\text{Interface condition} : \left(\mathcal{B}_{\mathbf{n}_{jl}} + \mathcal{S}_j \mathcal{B}_{\mathbf{n}_{lj}} \right) \mathbf{W}^{j,p+1} = \left(\mathcal{B}_{\mathbf{n}_{jl}} + \mathcal{S}_j \mathcal{B}_{\mathbf{n}_{lj}} \right) \mathbf{W}^{l,p}$

Optimal interface operators

$$\mathcal{S}_j = lpha_j = (\mathrm{i} \widetilde{\omega})^{-1} (\pmb{p}_j - \mathrm{i} \pmb{p}_j)$$
 for $j=1,2$

Case	p_1	<i>p</i> ₂	Asymptotic ρ
1	0	0	1
2	$\frac{\sqrt{C}C_{\tilde{\omega}}^{\frac{1}{4}}}{\sqrt{2}\sqrt{h}}$	$\frac{\sqrt{C}C_{\tilde{\omega}}^{\frac{1}{4}}}{\sqrt{2}\sqrt{h}}$	$1-rac{\sqrt{2}C_{ ilde{\omega}}^{rac{1}{4}}}{\sqrt{C}}\sqrt{h}$
3	$\frac{C^{\frac{1}{4}}C^{\frac{3}{8}}_{\tilde{\omega}}}{2h^{\frac{1}{4}}}$	$\frac{C^{\frac{3}{4}}C^{\frac{1}{8}}_{\tilde{\omega}}}{h^{\frac{3}{4}}}$	$1-rac{C_{\widetilde\omega}^{rac{1}{8}}}{C^{rac{1}{4}}}h^{rac{1}{4}}$

Conductive case \Rightarrow talk of M. Gander in DD19 MS6

S. Lanteri (INRIA)

- Numerical results in 2D (TMz mode)
 - Scattering of a plane wave by a dielectric cylinder, F=300 MHz
 - # vertices = 2078 and # elements = 3958

• Numerical results in 2D (TMz mode)

- $\bullet\,$ Scattering of a plane wave by a dielectric cylinder, F=300 MHz
- # vertices = 2078 and # elements = 3958 Upwind flux

Classical Schwarz method

Method	L2 error on E_z	Ns	$\#$ iter BiCGStab ($arepsilon=10^{-6}$)
$DGTH-\mathbb{P}_1$	0.16400	4	317
-	0.16400	16	393
$DGTH_2$	0.05701	4	650
-	0.05701	16	734
DGTH-₽₃	0.05519	4	1067
-	0.05519	16	1143
$DGTH extsf{-}\mathbb{P}_4$	0.05428	4	1619
-	0.05427	16	1753
DGTH-ℙ _i	0.05487	4	352
-	0.05487	16	414

- Numerical results in 2D (TMz mode)
 - $\bullet\,$ Scattering of a plane wave by a dielectric cylinder, F=300 MHz $\,$
 - # vertices = 2078 and # elements = 3958 Upwind flux
 - DGTH- \mathbb{P}_i ($N_s = 4$): 25.8 sec (classical) / 3.6 sec (optimized)

Optimized Schwarz method (case 1)

Method	L2 error on E_z	Ns	$\#$ iter BiCGStab ($arepsilon=10^{-6}$)
$DGTH-\mathbb{P}_1$	0.16457	4	52 (6.1) ^a
-	0.16467	16	83 (4.7)
$DGTH_2$	0.05705	4	61 (10.7)
-	0.05706	16	109 (6.7)
$DGTH-\mathbb{P}_3$	0.05519	4	71 (15.0)
-	0.05519	16	139 (8.2)
$DGTH-\mathbb{P}_4$	0.05427	4	83 (19.5)
-	0.05527	16	170 (10.3)
DGTH-ℙ _i	0.05486	4	49 (7.2)
-	0.05491	16	81 (5.1)

^a# iter classical/# iter optimized

• Numerical results in 2D (TMz mode)

- $\bullet\,$ Scattering of a plane wave by a dielectric cylinder, F=300 MHz $\,$
- # vertices = 2078 and # elements = 3958
- N_s = 4 subdomains

Optimized Schwarz method (case 1)

Method	Flux	L2 error	# iter BiCGStab	RAM LU (min/max)
		on E_z	$(arepsilon=10^{-6})$	
$DGTH_{\mathbb{P}_1}$	Upwind	0.16457	52	26 MB/ 27 MB
-	Centered	0.35274	53	15 MB/ 15 MB
$DGTH_2$	Upwind	0.05705	61	69 MB/ 71 MB
-	Centered	0.05823	61	39 MB/ 41 MB
DGTH-₽₃	Upwind	0.05519	71	140 MB/147 MB
-	Centered	0.05520	77	86 MB/ 90 MB
DGTH-₽₄	Upwind	0.05427	83	237 MB/249 MB
-	Centered	0.05527	85	156 MB/161 MB
DGTH-ℙ _i	Upwind	0.05486	49	54 MB/ 69 MB
-	Centered	0.05583	49	33 MB/ 42 MB

Numerical results in the 3D case

- Solution methods
 - Interface system
 - $BiCGstab(\ell)$ (G.L.G. Sleijpen and D.R. Fokkema, ETNA, Vol.1, 1993)
 - No preconditioner, $\ell=6$
 - Local systems
 - MUMPS multifrontal sparse matrix solver (P.R. Amestoy, I.S. Duff and J.-Y. L'Excellent, CMAME, Vol. 184, 2000)
 - $\bullet\,$ Mixed arithmetic strategy: LU in 32 bit + iterative refinement
- Hardware platform
 - Bull Novascale 3045 system of the CEA/CCRT center (Centre de Calcul Recherche et Technologie)
 - Intel Itanium 2/1.6 GHz, InfiniBand

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0,1]^3$

Characteristics of the tetrahedral meshes

Mesh	# vertices	# tetrahedra
M1	131,922	744,000
M2	355,714	2,041,536

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0, 1]^3$

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega=[0,1]^3$

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0, 1]^3$

x-wise distributions for y = z = 0.3, DGTH- \mathbb{P}_1 method

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0, 1]^3$

x-wise distributions for y = z = 0.3, DGTH- \mathbb{P}_1 method

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0, 1]^3$

Solution of the interface system, DGTH- \mathbb{P}_1 method

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0, 1]^3$

Solution of the interface system, DGTH- \mathbb{P}_1 method

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0,1]^3$
- Mesh M1, # vertices = 131,922

Performance results, DGTH- \mathbb{P}_1 method

Flux	# d.o.f	Ns	# it	CPU (min/max)	Elapsed time
Centered	17,856,000	128	25	650 sec/651 sec	652 sec
-	-	256	31	401 sec/402 sec	403 sec $(1.60)^a$
-	-	512	38	180 sec/183 sec	184 sec (3.55)
Upwind	17,856,000	128	24	557 sec/558 sec	559 sec
-	-	256	31	318 sec/319 sec	320 sec (1.75)
-	-	512	38	142 sec/143 sec	144 sec (3.90)

^aParallel speedup

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0,1]^3$
- Mesh M1, # vertices = 131,922

Performance results, DGTH- \mathbb{P}_1 method

Flux	Ns	RAM LU (min/max)	CPU LU (min/max)	Elapsed time LU
Centered	128	1.17 GB/1.58 GB	180 sec/181 sec	182 sec
-	256	0.42 GB/0.64 GB	47 sec/ 48 sec	49 sec $(3.7)^a$
-	512	0.16 GB/0.24 GB	12 sec/ 13 sec	14 sec (13.0)
Upwind	128	1.29 GB/1.77 GB	214 sec/215 sec	216 sec
-	256	0.46 GB/0.70 GB	55 sec/ 56 sec	57 sec (3.8)
-	512	0.18 GB/0.27 GB	14 sec/ 15 sec	16 sec (13.5)

^aParallel speedup

Numerical results in the 3D case

- Scattering of a plane wave by a coated perfectly conducting cube
- F=900 MHz, $\Omega = [0,1]^3$
- Centered flux

Performance results, DGTH- \mathbb{P}_1 method

Mesh	# d.o.f	Ns	# it	CPU (min/max)	Elapsed time
M1	17,856,000	128	25	650 sec/651 sec	652 sec
M2	48,996,864	512	42	705 sec/710 sec	711 sec
-	-	1024	49	380 sec/383 sec	384 sec $(1.85)^a$

Mesh	Ns	RAM LU (min/max)	CPU LU (min/max)	Elapsed time LU
M1	128	1.17 GB/1.58 GB	180 sec/181 sec	182 sec
M2	512	0.61 GB/0.97 GB	92 sec/ 93 sec	93 sec
-	1024	0.23 GB/0.38 GB	23 sec/ 25 sec	27 sec (3.4)

^aParallel speedup

Numerical results in the 3D case

Geometric models

- Built from segmented medical images
- Extraction of surfacic (triangular) meshes of the tissue interfaces using specific tools
 - Marching cubes + adaptive isotropic surface remeshing
 - Delaunay refinement
- Generation of tetrahedral meshes using a Delaunay/Voronoi tool

Numerical results in the 3D case

- Plane wave exposure: F=1.8 GHz
- Characteristics of the tetrahedral meshes

Mesh	# vertices	# tetrahedra	L _{min} (mm)	L _{max} (mm)	L _{avg} (mm)
M1	188,101	1,118,952	9.04	23.86	9.09
M2	309,599	1,853,832	1.15	24.76	6.93

Numerical results in the 3D case: homogeneous propagation media

Performance results, DGTH- \mathbb{P}_1 method

Numerical results in the 3D case: heterogeneous propagation media

Numerical results in the 3D case: heterogeneous propagation media

Performance results, DGTH- \mathbb{P}_1 method

Numerical results in the 3D case: heterogeneous propagation media

Performance results, DGTH- \mathbb{P}_1 method

Outline

The time-harmonic Maxwell equations

2 Discontinuous Galerkin discretization method

- Basic properties
- Formulation
- Numerical results in the 2D TMz case

3 Domain decomposition solver

- Formulation in the continuous case
- Classical Schwarz method
- Optimized Schwarz method
- Numerical results in the 3D case

Closure

Closure: foreseen research directions

DGTH- \mathbb{P}_p method

- Hierarchical basis expansions
- hp-adaptivity
- Hybridized DGTH formulation
 - (B. Cockburn, J. Gopalakrishnan and R. Lazarov, SINUM, Vol. 47 (2009))

Domain decomposition methods

- Optimized Schwarz algorithms for conductive media
- Numerical treatment of second-order interface conditions with DGTH formulations in 2D and 3D
- Algebraic preconditioning of the interface system (in collaboration with L. Giraud and J. Roman, INRIA Bordeaux - Sud-Ouest)

Subdomain solver

- Shifted ILU preconditioned iterative solver (in collaboration with Y. Saad, University of Minnesota)
- Block ILU preconditioned iterative solver (in collaboration with M. Bollhoefer, TU Braunschweig)

Closure: foreseen research directions

DGTH- \mathbb{P}_p method

- Hierarchical basis expansions
- hp-adaptivity
- Hybridized DGTH formulation
 - (B. Cockburn, J. Gopalakrishnan and R. Lazarov, SINUM, Vol. 47 (2009))

Domain decomposition methods

- Optimized Schwarz algorithms for conductive media
- Numerical treatment of second-order interface conditions with DGTH formulations in 2D and 3D
- Algebraic preconditioning of the interface system (in collaboration with L. Giraud and J. Roman, INRIA Bordeaux - Sud-Ouest)

Subdomain solver

- Shifted ILU preconditioned iterative solver (in collaboration with Y. Saad, University of Minnesota)
- Block ILU preconditioned iterative solver (in collaboration with M. Bollhoefer, TU Braunschweig)

Closure: scientific context

NACHOS project-team at INRIA Sophia Antipolis - Méditerranée

Scientific objectives

- Design, analysis and validation of numerical methods and high performance resolution algorithms for the computer simulation of evolution problems in complex domains and heterogeneous media
- Research directions
 - High-order finite element discretization methods on simplicial meshes
 - Hybrid explicit/implicit time integration strategies
 - Domain decomposition resolution algorithms
 - High performance computing related aspects

Computational electromagnetics

- System of Maxwell equations
- Interaction of EM fields with biological tissues
- Interaction of charged particles with EM fields (Vlasov/Maxwell equations)

Thank you for your attention!

Thank you for your attention!