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Opening: scientific context

Challenges with the simulation of ElectroMagnetic (EM) wave propagation

Geometrical characteristics of the propagation domain:
dimensions relatively to the wavelength,
irregularly shaped objects and singularities.

Physical characteristics of the propagation medium:
heterogeneity and anisotropy,
physical dispersion and dissipation.

Characteristics of the radiating sources and incident fields

PDE model: the system of Maxwell equations

James Clerk Maxwell (1831-1879)
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Opening: scientific context

Modeling context

Time-harmonic regime

High frequency (F>100 MHz)

Target applications
Interaction of EM fields with living tissues

Exposure of humans to EM fields from wireless communication systems

Medical applications (microwave imaging, microwave hyperthemia, etc.)

Microwave imaging for the detection of buried objects

Numerical ingredients

Unstructured meshes (triangles in 2D, tetrahedra in 3D)

High order discontinuous finite element discretization method

Discontinuous Galerkin method with polynomial interpolation (DGTH-Pp)

Hybrid iterative-direct domain decomposition based solution strategies
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Opening: target applications

Human exposure to electromagnetic fields

Multi-parametric studies, uncertainty quantification
(source position, morphology, electromagnetic parameters)

Plane wave exposure (F=2.14 GHz)

Tetrahedral mesh: 899,872 vertices and 5,335,521 elements

Discretization by a DG-P2 method: 320,131,260 d.o.f
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Opening: objectives

Goals of this study

Formulation and analysis of optimized Schwarz algorithms
for the time-harmonic Maxwell equations

Design of hybrid iterative-direct domain decomposition based solvers
for algebraic systems resulting from DG discretizations

Collaborators

Victorita Dolean (Assistant Professor)
Dieudonné Mathematics Laboratory (UMR 6621)
University of Nice/Sophia Antipolis, France

Mohamed El Bouajaji (PhD student)
Nachos project-team
INRIA Sophia Antipolis - Méditerranée research center, France

Martin Gander (Professor)
Mathematics Section, University of Geneva, Switzerland

Ronan Perrussel (CNRS researcher)
Ampère Laboratory (UMR 5005), Ecole Centrale de Lyon, France
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Opening: related work

Jin-Fa Lee et al.
The Ohio State University, ElectroScience Laboratory, ECE Department

Non-overlapping DD method for modeling large finite antenna arrays
S.-C. Lee, M.-N. Vouvakis and J.-F. Lee, J. Comput. Phys., Vol. 203 (2005)

DP-FETI like DD method for the solution of large electromagnetic problems
M.-N. Vouvakis and J.-F. Lee, Copper Montain Conference on Iterative
Methods (2004)

Second order vector wave equation for the electric field
Non-overlapping Schwarz algorithm
Study of zero-order (Robin) and second-order (with vector and scalar
tangential rotational operators1) transmission conditions
Fourier analysis of formulations for TEz and TMz modes
Non-matching interface grids through the introduction of cement variables
(surfacic electric current densities)

DD approach for non-conformal couplings between FEM and BEM
M.-N. Vouvakis, K. Zhao, S.-M. Seo and J.-F. Lee
J. Comput. Phys., Vol. 225 (2007)

1F. Collino, G. Delbue and P. Joly, CMAME, Vol. 148 (1997).
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Opening: related work

Jianming Jin et al.
University of Illinois at Urbana-Champaign Department of Electrical
and Computer Engineering

Dual-field time-domain finite element DD method (DFDD-TDFEM)
Z. Lou and J-M Jin, J. Comput. Phys., Vol. 222 (2007)

Non-overlapping sudomains
Second order vector wave equations for the electric and magnetic
fields in each subdomain
Staggered Newmark (leap-frog like) time integration
Implicit time integration within each subdomain and explicit time
integration on subdomain interfaces

Dual-primal FETI algorithm for general 3D EM simulations (FETI-DPEM)
Y-J Lin and J-M Jin, EEE Trans. Ant. Propag., Vol. 54, No. 10 (2006)
Y-J Lin and J-M Jin, J. Comput. Phys., Vol. 228 (2009)

Extension of the FETI-DP method to the vector curl-curl wave equation
Dirichlet condition on tangential components of the electric field
Lagrange multipliers: Neumann-type condition (curl of the electric field)
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Opening: related work

Wei Hong et al.
Southeast University, Nanjing
State Key Laboratory of Millimeter Waves

Partial basic solution vector DD method (PBSV-DDM)
for large-scale EM problems involving periodic structures
Z.-Q. Lü, X. An and W. Hong
IEEE Trans. Ant. Propag., Vol. 56, No. 8 (2008)
DD formulation inspired by the approach of Jin-Fa Lee et al.
(Robin type interface condition and introduction of cement variables)
Formulation of a reduced (interface) system by means of the PBSV 2 method

Jun Zou et al.
The Chinese University of Hong Kong, Department of Mathematics

Nonoverlapping DD method for Maxwell’s equations in 3D
Q. Hu and J. Zou, SINUM, Vol. 41, No. 5 (2003)
Edge-element discretization
Study of a preconditioner for the Schur complement system involving
coarse subspaces/solvers for curl-free and div-free functions

2X. An and Z.-Q. Lü, J. Comput. Phys., Vol. 219 (2006)
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Opening: related work

A. Schädle, F. Schmidt et al.
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Numerical Analysis and Modelling department

DD strategy for the computation of the EM field within
periodic structures
A. Schädle, L. Zschiedrich, S. Burger, R. Klosea, and F. Schmidt
J. Comput. Phys., Vol. 226 (2007)
Schwarz algorithm with transparent boundary conditions
at subdomain interfaces approximated by PML
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Opening: related work

Domain decomposition algorithms for time-harmonic Maxwell equations
with damping
A. Alonso Rodriguez and A. Valli, ESAIM: M2AN, Vol. 35, No. 4 (2001)

Non-overlapping DD method
Study of several preconditioning methods for the Steklov-Poincaré operator

New non-overlapping domain decomposition methods for
the time-harmonic Maxwell system
A. Alonso Rodriguez and L. Gerardo-Giorda, SISC, Vol. 28, No. 1 (2006)

Overlapping Schwarz preconditioners for indefinite time-harmonic Maxwell equations
J. Gopalakrishnan and J.E. Pasciak, Math. Comp, Vol. 72, No. 241 (2001)

Study of Schwarz preconditioners for edge-element discretization

Developments in overlapping Schwarz preconditioning of high order
nodal discontinuous Galerkin discretizations
J. S. Hesthaven, L. N. Olson, and L. C. Wilcox, LNCSE, Vol. 55 (2007)

Helmholtz equation, two-level Schwarz preconditioning for a Krylov method
Overlap improves convergence when using high order interpolation
Necessity of a sufficiently resolved coarse grid at higher frequencies
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Opening: related work

DD19 MS6 - August 17, 14:00pm-15:40pm, Room No. 1
Domain decomposition methods for electromagnetic wave propagation
problems

J. Jin and Z. Lou
University of Illinois at Urbana-Champaign
Department of Electrical and Computer Engineering

J.-F. Lee, V. Rawat and Z. Peng
Ohio State University
ElectroScience Laboratory, ECE Department

J. Zou and Q. Hu
The Chinese University of Hong Kong
Department of Mathematics

W. Hong, H.X. Zhou, W.D. Li and L.Y. Sun
Southeast University, Nanjing
State Key Laboratory of Millimeter Waves

M. Gander, V. Dolean, M. El Bouajaji and S. Lanteri
University of Geneva, Mathematics Section and
INRIA Sophia Antipolis-Méditerranée
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Outline

1 The time-harmonic Maxwell equations

2 Discontinuous Galerkin discretization method
Basic properties
Formulation
Numerical results in the 2D TMz case

3 Domain decomposition solver
Formulation in the continuous case
Classical Schwarz method
Optimized Schwarz method
Numerical results in the 3D case

4 Closure
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The time-harmonic Maxwell equations

εiωE− rot(H) = −z0J , µiωH + rot(E) = 0

E = E(x) is the electric field and H = H(x) is the magnetic field

J = J(x) is the conductive current : J = σE (z0 =

r
µ0

ε0
)

ε = ε(x) : (relative) electric permittivity

µ = µ(x) : (relative) magnetic permeability

σ = σ(x) : electric conductivity

Boundary conditions

PEC boundary : n× E = 0

Absorbing boundary : n× E + zn× (n×H) = n× E∞ + zn× (n×H∞)

Pseudo-conservative system form

iωQW +∇ · F (W) = S with W = t(E,H) and S = t(−z0J, 03×1)
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Discontinuous Galerkin discretization method
Basic properties

Continuous P1 interpolation Discontinuous P1 interpolation

Naturally adapted to heterogeneous media and discontinuous solutions

Can easily deal with unstructured, possibly non-conforming meshes (h-adaptivity)

High order with compact stencils and non-conforming approximations (p-adaptivity)

Usually rely on polynomial interpolation but can also accomodate alternative
functions (e.g plane waves)

Amenable to efficient parallelization

But leads to larger problems compared to continuous finite element methods
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Discontinuous Galerkin discretization method
Basic properties

DG for electromagnetic wave propagation in heterogeneous media

Heterogeneity is ideally treated at the element level
Discontinuities occur at material (i.e element) interfaces
Mesh generation process is simplified

Wavelength varies with ε and µ
For a given mesh density, approximation order can be adapted at the
element level in order to fit to the local wavelength

Discretization of irregularly shaped domains

Unstructured simplicial meshes

The basic support of the DG method is the element
(triangle in 2D and tetrahedron in 3D)

Local refinement is facilitated by allowing non-conformity

Non-conformity opens the route to the coupling of different discretization
methods (e.g structured/unstructured)
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Discontinuous Galerkin discretization method
Formulation

Triangulation: Th =
N[

i=1

τi

Assume J = 0 for simplicity of the presentation

Wi (x) ∈ Pi = Pm[τi ] and Wi (x) =

diX
j=1

Wijϕij(x) with Wij ∈ C6

Z
τi

ϕ (iωQW +∇ · F (W)) dx = 0

⇔
Z
τi

iωQWϕdx−
Z
τi

∇ϕ · F (W)dx +

Z
∂τi

(F (W) · n)ϕdσ = 0

Calculation of the boundary term on ∂τi : centered or upwind numerical flux
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Discontinuous Galerkin discretization method
Numerical results in the 2D TMz case

8>>>>>><>>>>>>:

µiωHx +
∂Ez

∂y
= 0

µiωHy −
∂Ez

∂x
= 0

εiωEz −
∂Hy

∂x
+
∂Hx

∂y
= 0

DGTH-Pp method based on Lagrange (nodal) interpolation

Triangular mesh

Sparse block matrix, 3np × 3np (with np = ((p + 1)(p + 2))/2)

MUMPS multifrontal sparse matrix solver
(P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent, CMAME, Vol. 184, 2000)
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Discontinuous Galerkin discretization method
Numerical results in the 2D TMz case

Numerical convergence of the DGTH-Pp method

Plane wave in vacuum, F=300 MHz

Non-uniform triangular meshes
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Centered flux 1.1 2.1 2.9 4.0
Upwind flux 1.9 3.0 4.0 5.0
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Discontinuous Galerkin discretization method
Numerical results for the 2D time-harmonic Maxwell equations

Scattering of a plane wave by a dielectric cylinder, F=300 MHz

# vertices = 2078 and # elements = 3958

Comparison between conforming DGTH-Pp and
non-conforming DGTH-Ppi methods
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Discontinuous Galerkin discretization method
Numerical results in the 2D TMz case

Scattering of a plane wave by a dielectric cylinder, F=300 MHz

P4 Ppi (i = 1, 2, 3, 4)

DGTH-P4 and non-conforming DGTH-Ppi methods
Contour lines of Ez
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Discontinuous Galerkin discretization method
Numerical results in the 2D TMz case

Scattering of a plane wave by a dielectric cylinder, F=300 MHz

Centered numerical flux

Conforming DGTH-Pp methods

nz Method L2 error on Ez CPU RAM LU

390,274 DGTH-P1 0.37977 1.3 sec 97 MB
1,186,224 DGTH-P2 0.05830 4.1 sec 255 MB
3,225,808 DGTH-P3 0.05527 7.9 sec 547 MB
7,033,834 DGTH-P4 0.05522 15.7 sec 954 MB

Non-conforming DGTH-Ppi
method

nz Method L2 error on Ez CPU RAM LU

1,267,878 DGTH-P1,4 0.05586 3.7 sec 252 MB

P1 P2 P3 P4

1495 2037 243 183

Local definition of pi based on the value of a triangle area
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Domain decomposition solver
Formulation in the continuous case

Time harmonic Maxwell system

LW = iωG0W + Gx∂xW + Gy∂yW + Gz∂zW − S = 0

Flux matrices

Gl =

[
03×3 Nl

−Nl 03×3

]
for l = x , y , z and with tNl = −Nl

Property : for any n = t(nx , ny , nz) with ‖ n ‖= 1,

C (n) = G−1
0 (nxGx + nyGy + nzGz) is diagonalizable

C (n) = T (n)Λ(n)T−1(n)

Eigenvalues : λ1,2 = −c , λ3,4 = 0 , λ5,6 = c with c =
1√
εµ
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Domain decomposition solver
Formulation in the continuous case

Schwarz algorithm

Ω =
Ns⋃
j=1

Ωj , Wj = W|Ωj

Γ = Γa (for the presentation)

Overlapping subdomains
LWj,p+1 = 0 in Ωj

Bnjl
Wj,p+1 = Bnjl

Wl,p on Γjl = ∂Ωj ∩ Ω̄l

G−n Wj,p+1 = G−n Winc on Ωj ∩ Γa

Classical (natural) interface conditions

Bn ≡ G−n

G−n W ⇐⇒ n× E + zn× (n×H) (impedance condition)
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Domain decomposition solver
Classical Schwarz method

Convergence result

V. Dolean, M.J. Gander and L. Gerardo-Giorda, SISC, Vol. 31, No. 3 (2009)

Fourier analysis (for constant ε and µ)

Ω1 =]−∞, b[×R2 and Ω2 =]a,+∞[×R2 with a ≤ b

Convergence rate (non-conductive case)

ρ(k, δ) =

∣∣∣∣∣
(√

k2 − ω̃2 − iω̃√
k2 − ω̃2 + iω̃

)
e−δ
√

k2−ω̃2

∣∣∣∣∣
with δ = b − a and ω̃ = ω

√
εµ

ρ(k, δ) =


∣∣∣∣∣
√
ω̃2 − k2 − ω̃√
ω̃2 − k2 + ω̃

∣∣∣∣∣ if |k|2 ≤ ω̃2 (propagative modes)

e−δ
√

k2−ω̃2
if |k|2 > ω̃2 (evanescent modes)
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Domain decomposition solver
Optimized Schwarz method: the non-conductive case

Schwarz algorithm with optimized interface conditions

V. Dolean, M.J. Gander and L. Gerardo-Giorda, SISC, Vol. 31, No. 3 (2009)

Sj for j = 1, · · · ,Ns : tangential operator

Interface condition :
`
Bnjl + SjBnlj

´
Wj,p+1 =

`
Bnjl + SjBnlj

´
Wl,p

Optimal interface operators

Sj = αj = (iω̃)−1(pj − ipj) for j = 1, 2

Case p1 p2 Asymptotic ρ

1 0 0 1

2

√
CC

1
4
ω̃√

2
√

h

√
CC

1
4
ω̃√

2
√

h
1−
√

2C
1
4
ω̃√

C

√
h

3
C

1
4 C

3
8
ω̃

2h
1
4

C
3
4 C

1
8
ω̃

h
3
4

1− C
1
8
ω̃

C
1
4

h
1
4

Conductive case ⇒ talk of M. Gander in DD19 MS6
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Domain decomposition solver

Numerical results in 2D (TMz mode)

Scattering of a plane wave by a dielectric cylinder, F=300 MHz
# vertices = 2078 and # elements = 3958
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Domain decomposition solver

Numerical results in 2D (TMz mode)

Scattering of a plane wave by a dielectric cylinder, F=300 MHz
# vertices = 2078 and # elements = 3958 - Upwind flux

Classical Schwarz method

Method L2 error on Ez Ns # iter BiCGStab (ε = 10−6)

DGTH-P1 0.16400 4 317
- 0.16400 16 393

DGTH-P2 0.05701 4 650
- 0.05701 16 734

DGTH-P3 0.05519 4 1067
- 0.05519 16 1143

DGTH-P4 0.05428 4 1619
- 0.05427 16 1753

DGTH-Pi 0.05487 4 352
- 0.05487 16 414
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Domain decomposition solver

Numerical results in 2D (TMz mode)
Scattering of a plane wave by a dielectric cylinder, F=300 MHz
# vertices = 2078 and # elements = 3958 - Upwind flux
DGTH-Pi (Ns = 4): 25.8 sec (classical) / 3.6 sec (optimized)

Optimized Schwarz method (case 1)

Method L2 error on Ez Ns # iter BiCGStab (ε = 10−6)

DGTH-P1 0.16457 4 52 ( 6.1) a

- 0.16467 16 83 ( 4.7)
DGTH-P2 0.05705 4 61 (10.7)

- 0.05706 16 109 ( 6.7)
DGTH-P3 0.05519 4 71 (15.0)

- 0.05519 16 139 ( 8.2)
DGTH-P4 0.05427 4 83 (19.5)

- 0.05527 16 170 (10.3)

DGTH-Pi 0.05486 4 49 ( 7.2)
- 0.05491 16 81 ( 5.1)

a# iter classical/# iter optimized
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Domain decomposition solver

Numerical results in 2D (TMz mode)
Scattering of a plane wave by a dielectric cylinder, F=300 MHz
# vertices = 2078 and # elements = 3958
Ns = 4 subdomains

Optimized Schwarz method (case 1)

Method Flux L2 error # iter BiCGStab RAM LU (min/max)
on Ez (ε = 10−6)

DGTH-P1 Upwind 0.16457 52 26 MB/ 27 MB
- Centered 0.35274 53 15 MB/ 15 MB

DGTH-P2 Upwind 0.05705 61 69 MB/ 71 MB
- Centered 0.05823 61 39 MB/ 41 MB

DGTH-P3 Upwind 0.05519 71 140 MB/147 MB
- Centered 0.05520 77 86 MB/ 90 MB

DGTH-P4 Upwind 0.05427 83 237 MB/249 MB
- Centered 0.05527 85 156 MB/161 MB

DGTH-Pi Upwind 0.05486 49 54 MB/ 69 MB
- Centered 0.05583 49 33 MB/ 42 MB
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Domain decomposition solver
Numerical results in the 3D case

Solution methods

Interface system

BiCGstab(`) (G.L.G. Sleijpen and D.R. Fokkema, ETNA, Vol.1, 1993)

No preconditioner, ` = 6

Local systems

MUMPS multifrontal sparse matrix solver
(P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent, CMAME, Vol. 184, 2000)

Mixed arithmetic strategy: LU in 32 bit + iterative refinement

Hardware platform

Bull Novascale 3045 system of the CEA/CCRT center
(Centre de Calcul Recherche et Technologie)

Intel Itanium 2/1.6 GHz, InfiniBand
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

Characteristics of the tetrahedral meshes

Mesh # vertices # tetrahedra

M1 131,922 744,000
M2 355,714 2,041,536
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

Contour lines of Ex for x = 0.5, DGTH-P1 method

Mesh M1, # vertices = 131,922 Mesh M2, # vertices = 355,714
Centered flux
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

Contour lines of Ey for x = 0.5, DGTH-P1 method

Mesh M1, # vertices = 131,922 Mesh M2, # vertices = 355,714
Centered flux
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

x-wise distributions for y = z = 0.3, DGTH-P1 method

Ex component Ey component
Mesh M1, # vertices = 131,922
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

x-wise distributions for y = z = 0.3, DGTH-P1 method

Ex component Ey component
Centered flux

S. Lanteri (INRIA) DD for Maxwell equations 38 / 53



Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

Solution of the interface system, DGTH-P1 method

Centered flux Upwind flux
Mesh M1, # vertices = 131,922
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

Solution of the interface system, DGTH-P1 method

Mesh M1, # vertices = 131,922 Mesh M2, # vertices = 355,714
Centered flux
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

Mesh M1, # vertices = 131,922

Performance results, DGTH-P1 method

Flux # d.o.f Ns # it CPU (min/max) Elapsed time

Centered 17,856,000 128 25 650 sec/651 sec 652 sec
- - 256 31 401 sec/402 sec 403 sec (1.60)a

- - 512 38 180 sec/183 sec 184 sec (3.55)

Upwind 17,856,000 128 24 557 sec/558 sec 559 sec
- - 256 31 318 sec/319 sec 320 sec (1.75)
- - 512 38 142 sec/143 sec 144 sec (3.90)

aParallel speedup
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

Mesh M1, # vertices = 131,922

Performance results, DGTH-P1 method

Flux Ns RAM LU (min/max) CPU LU (min/max) Elapsed time LU

Centered 128 1.17 GB/1.58 GB 180 sec/181 sec 182 sec
- 256 0.42 GB/0.64 GB 47 sec/ 48 sec 49 sec (3.7)a

- 512 0.16 GB/0.24 GB 12 sec/ 13 sec 14 sec (13.0)

Upwind 128 1.29 GB/1.77 GB 214 sec/215 sec 216 sec
- 256 0.46 GB/0.70 GB 55 sec/ 56 sec 57 sec (3.8)
- 512 0.18 GB/0.27 GB 14 sec/ 15 sec 16 sec (13.5)

aParallel speedup
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Domain decomposition solver
Numerical results in the 3D case

Scattering of a plane wave by a coated perfectly conducting cube

F=900 MHz, Ω = [0, 1]3

Centered flux

Performance results, DGTH-P1 method

Mesh # d.o.f Ns # it CPU (min/max) Elapsed time

M1 17,856,000 128 25 650 sec/651 sec 652 sec

M2 48,996,864 512 42 705 sec/710 sec 711 sec
- - 1024 49 380 sec/383 sec 384 sec (1.85)a

Mesh Ns RAM LU (min/max) CPU LU (min/max) Elapsed time LU

M1 128 1.17 GB/1.58 GB 180 sec/181 sec 182 sec

M2 512 0.61 GB/0.97 GB 92 sec/ 93 sec 93 sec
- 1024 0.23 GB/0.38 GB 23 sec/ 25 sec 27 sec (3.4)

aParallel speedup
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Domain decomposition solver
Numerical results in the 3D case

Geometric models
Built from segmented medical images

Extraction of surfacic (triangular) meshes of the tissue interfaces
using specific tools

Marching cubes + adaptive isotropic surface remeshing
Delaunay refinement

Generation of tetrahedral meshes using a Delaunay/Voronoi tool
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Domain decomposition solver
Numerical results in the 3D case

Plane wave exposure: F=1.8 GHz

Characteristics of the tetrahedral meshes

Mesh # vertices # tetrahedra Lmin (mm) Lmax (mm) Lavg (mm)

M1 188,101 1,118,952 9.04 23.86 9.09
M2 309,599 1,853,832 1.15 24.76 6.93
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Domain decomposition solver
Numerical results in the 3D case: homogeneous propagation media

Performance results, DGTH-P1 method
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Mesh # d.o.f Ns # it CPU (min/max) Elapsed time

M1 26,854,848 160 24 1204 sec/1209 sec 1210 sec

Mesh RAM LU (min/max) CPU LU (min/max) Elapsed time LU

M1 2.1 GB/3.1 GB 493 sec/494 sec 495 sec
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Domain decomposition solver
Numerical results in the 3D case: heterogeneous propagation media
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Domain decomposition solver
Numerical results in the 3D case: heterogeneous propagation media

Performance results, DGTH-P1 method
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256 sub
512 sub

Mesh # d.o.f Ns # it CPU (min/max) Elapsed time

M1 26,854,848 160 30 1311 sec/1313 sec 1314 sec
- - 320 36 525 sec/ 527 sec 528 sec (2.5)

M2 44,491,968 256 42 1816 sec/1823 sec 1824 sec
- - 512 49 782 sec/ 784 sec 785 sec (2.3)
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Domain decomposition solver
Numerical results in the 3D case: heterogeneous propagation media

Performance results, DGTH-P1 method
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256 sub
512 sub

Mesh Ns RAM LU (min/max) CPU LU (min/max) Elapsed time LU

M1 160 2.1 GB/3.1 GB 490 sec/495 sec 496 sec
- 320 0.8 GB/1.2 GB 130 sec/131 sec 132 sec (3.8)

M2 256 2.2 GB/3.2 GB 525 sec/527 sec 528 sec
- 512 0.8 GB/1.3 GB 138 sec/140 sec 142 sec (3.7)
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Closure: foreseen research directions

DGTH-Pp method

Hierarchical basis expansions
hp-adaptivity
Hybridized DGTH formulation
(B. Cockburn, J. Gopalakrishnan and R. Lazarov, SINUM, Vol. 47 (2009))

Domain decomposition methods

Optimized Schwarz algorithms for conductive media
Numerical treatment of second-order interface conditions with DGTH
formulations in 2D and 3D
Algebraic preconditioning of the interface system
(in collaboration with L. Giraud and J. Roman, INRIA Bordeaux - Sud-Ouest)

Subdomain solver
Shifted ILU preconditioned iterative solver
(in collaboration with Y. Saad, University of Minnesota)
Block ILU preconditioned iterative solver
(in collaboration with M. Bollhoefer, TU Braunschweig)

S. Lanteri (INRIA) DD for Maxwell equations 51 / 53



Closure: foreseen research directions

DGTH-Pp method

Hierarchical basis expansions
hp-adaptivity
Hybridized DGTH formulation
(B. Cockburn, J. Gopalakrishnan and R. Lazarov, SINUM, Vol. 47 (2009))

Domain decomposition methods

Optimized Schwarz algorithms for conductive media
Numerical treatment of second-order interface conditions with DGTH
formulations in 2D and 3D
Algebraic preconditioning of the interface system
(in collaboration with L. Giraud and J. Roman, INRIA Bordeaux - Sud-Ouest)

Subdomain solver
Shifted ILU preconditioned iterative solver
(in collaboration with Y. Saad, University of Minnesota)
Block ILU preconditioned iterative solver
(in collaboration with M. Bollhoefer, TU Braunschweig)

S. Lanteri (INRIA) DD for Maxwell equations 51 / 53



Closure: scientific context
Nachos project-team at INRIA Sophia Antipolis - Méditerranée

Scientific objectives

Design, analysis and validation of numerical methods and high performance
resolution algorithms for the computer simulation of evolution problems in
complex domains and heterogeneous media

Research directions
High-order finite element discretization methods on simplicial meshes
Hybrid explicit/implicit time integration strategies
Domain decomposition resolution algorithms
High performance computing related aspects

Computational electromagnetics

System of Maxwell equations

Interaction of EM fields with biological tissues

Interaction of charged particles with EM fields (Vlasov/Maxwell equations)
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Closure

Thank you for your attention!
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