Numerical assessment of a high-order non-conforming discontinuous Galerkin method for electromagnetic wave propagation

H. Fahs¹ S. Lanteri¹ F. Rapetti²

¹INRIA, NACHOS project-team 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France

²University of Nice/Sophia Antipolis J.A. Dieudonné Mathematics Laboratory, 06108 Nice Cedex, France

39^{ème} Congrès National d'Analyse Numérique (CANUM 2008)

May 26-30, 2008, Saint Jean de Monts, Vendée, France

H. Fahs (INRIA, NACHOS project-team)

Context and motivations

- Time-domain electromagnetic wave propagation
- Irregulary shaped geometries, heterogeneous media
 - Non-conforming, locally refined, triangular (2D)/tetrahedral (3D) meshes
- Numerical ingredients (starting point to this study)
 - L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno: ESAIM, M2AN, 2005
 - Discontinuous Galerkin time-domain (DGTD) methods
 - Nodal (Lagrange type) polynomial interpolation
 - Explicit time integration
- Overall objectives of this study
 - Investigate strengthes and weaknesses of explicit DGTD methods using non-conforming simplicial meshes with arbitrary level hanging nodes
 - Theoretical and numerical aspects (stability, dispersion error, convergence)
 - Computational aspects

Context and motivations

Non-conforming simplicial meshes

- Red (non-conforming) refinement
 - Each triangle is split into 4 similar triangles
 - Each tetrahedron is split into 8 non-similar tetrahedra
- Can be used for more flexibility in the discretisation of :
 - complex domains,
 - heterogeneous media.
- Expected to reduce memory consumption and computing time

Content

• DGTD- \mathbb{P}_{p_i} method

- Formulation and properties
- Numerical dispersion
- 2 *hp*-like DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method
- Numerical results: 2D case
 - Numerical convergence
 - Computational cost
- OGTD + fourth-order leap-frog time sheme
- Closure

DGTD- \mathbb{P}_{p_i} method

Time-domain Maxwell's equations

```
\epsilon \partial_t \mathbf{E} - curl(\mathbf{H}) = 0 and \mu \partial_t \mathbf{H} + curl(\mathbf{E}) = 0
```

• Boundary conditions : $\partial \Omega = \Gamma_a \cup \Gamma_m$

$$\begin{cases} \mathbf{n} \times \mathbf{E} = \mathbf{0} \text{ on } \Gamma_m \\ \mathbf{n} \times \mathbf{E} - \sqrt{\frac{\mu}{\epsilon}} \mathbf{n} \times (\mathbf{H} \times \mathbf{n}) = \mathbf{n} \times \mathbf{E}_{\text{inc}} - \sqrt{\frac{\mu}{\epsilon}} \mathbf{n} \times (\mathbf{H}_{\text{inc}} \times \mathbf{n}) \text{ on } \Gamma_a \end{cases}$$

- Triangulation of Ω : $\overline{\Omega_h} \equiv \mathcal{T}_h = \bigcup_{T_i \in \mathcal{T}_h} \overline{T_i}$
 - Hanging nodes are allowed
 - $a_{ik} = T_i \cap T_k$ (interface)
 - $p = \{p_i : T_i \in T_h\}, p_i \text{ is the local polynomial degree}$
 - Approximation space: $V_{\rho}(\mathcal{T}_h) := \{ \mathbf{v} \in [L^2(\mathcal{T}_i)]^3 : \mathbf{v}_{|\mathcal{T}_i} \in \mathbb{P}_{\rho_i}(\mathcal{T}_i), \forall \mathcal{T}_i \in \mathcal{T}_h \}$

$\underset{\text{Discretizations}}{\text{DGTD-}}\mathbb{P}_{\rho_i} \text{ method }$

• Variational formulation: $\forall \varphi \in \text{Span}\{\varphi_{ij}, 1 \leq j \leq d_i\}$

$$\begin{cases} \int_{T_i} \epsilon_i \varphi . \partial_t \mathbf{E} = \int_{T_i} curl(\varphi) . \mathbf{H} - \int_{\partial T_i} \varphi . (\mathbf{H} \times \mathbf{n}) \\ \int_{T_i} \mu_i \varphi . \partial_t \mathbf{H} = - \int_{T_i} curl(\varphi) . \mathbf{E} + \int_{\partial T_i} \varphi . (\mathbf{E} \times \mathbf{n}) \end{cases}$$

• Centered fluxes [M. Remaki : 2000, COMPEL]

$$\{\mathbf{E}_{h}\}_{ik} = \frac{\mathbf{E}_{i|a_{ik}} + \mathbf{E}_{k|a_{ik}}}{2}, \ \{\mathbf{H}_{h}\}_{ik} = \frac{\mathbf{H}_{i|a_{ik}} + \mathbf{H}_{k|a_{ik}}}{2}$$

- Leap-frog time scheme
 - Unknowns related to **E** are approximated at $t^n = n\Delta t$

• Unknowns related to **H** are approximated at $t^{n+\frac{1}{2}} = (n+\frac{1}{2})\Delta t$

DGTD- \mathbb{P}_{p_i} method

• Matrix form of the DGTD- \mathbb{P}_{p_i} scheme :

$$\begin{cases} \epsilon_i \mathbb{M}_i \frac{\mathbf{E}_i^{n+1} - \mathbf{E}_i^n}{\Delta t} = \mathbb{K}_i \mathbf{H}_i - \sum_{k \in \mathcal{V}_i} \mathbb{S}_{ik} \mathbf{H}_k \\ \mu_i \mathbb{M}_i \frac{\mathbf{H}_i^{n+3/2} - \mathbf{H}_i^{n+1/2}}{\Delta t} = -\mathbb{K}_i \mathbf{E}_i - \sum_{k \in \mathcal{V}_i} \mathbb{S}_{ik} \mathbf{E}_k \end{cases}$$

- M_i is the positive definite symmetric mass matrix of size d_i
- **K**_{*i*} is the symmetric stiffness matrix of size *d*_{*i*}
- \mathbb{S}_{ik} is the interface matrix of size $d_i \times d_k$:

$$(\mathbb{S}_{ik})_{jl} = rac{1}{2}\int_{a_{ik}} arphi_j.(oldsymbol{\psi}_l imes \mathbf{n}_{ik})$$

- If a_{ik} is a conforming interface ⇒ no problem
- If a_{ik} is a non-conforming interface ⇒ we calculate S_{ik} using the Gauss-Legendre numerical quadrature [Fahs *et al* : 2007, RR-6162, INRIA]

Properties of the DGTD- \mathbb{P}_{p_i} scheme

• Stable under a CFL-like condition on Δt

•
$$\mathcal{E}^n = \frac{1}{2} \sum_{i=1}^{N} \epsilon_i^{\ t} \mathbf{E}_i^n \mathbb{M}_i \mathbf{E}_i^n + \mu_i^{\ t} \mathbf{H}_i^{n-\frac{1}{2}} \mathbb{M}_i \mathbf{H}_i^{n+\frac{1}{2}}$$
 is exactly conserved (when $\Gamma_a = \emptyset$)

• H. Fahs, S. Lanteri and F. Rapetti: INRIA, RR-6023, 2006

$$\forall \text{ internal face } a_{ik} \ (k \in \mathcal{V}_i)$$
$$c_i \Delta t (2\alpha_i + \beta_{ik}) \le 4 \min \left(\frac{|T_i|}{P_i^x}, \frac{|T_i|}{P_i^y} \right)$$

• Numerical CFL values for the DGTD-Pp method

р	0	1	2	3	4	5	6
CFL	1.0	0.3	0.2	0.1	0.08	0.06	0.045

• Convergence analysis [Fezoui et al : 2005, M2AN]

$$\mathcal{O}(Th^{\min(s,p)}) + \mathcal{O}(\Delta t^2)$$

- The asymptotic convergence order is bounded by 2 independently of p
- This convergence result seems sub-optimal

Properties of the DGTD- \mathbb{P}_{p_i} method

• Two-dimensional Maxwell's equation (TMz)

$$\begin{cases} \epsilon \frac{\partial E_z}{\partial t} - \frac{\partial H_y}{\partial x} + \frac{\partial H_x}{\partial y} = 0\\ \mu \frac{\partial H_x}{\partial t} + \frac{\partial E_z}{\partial y} = 0\\ \mu \frac{\partial H_y}{\partial t} - \frac{\partial E_z}{\partial x} = 0 \end{cases}$$

- Eigenmode in a unitary PEC square cavity
- f = 0.212 GHz, $p_i = p = \text{constant}$
- 7-irregular non-conforming meshes (a centered zone is refined 3 times)
 - For $p = 0, 1 \Rightarrow 10$ points per wavelength in the coarse mesh and 80 in the refined zone
 - For $p = 2, 3, 4 \Rightarrow 6$ points per wavelength in the coarse mesh and 48 in the refined zone

Resonance in a PEC cavity

Non-conforming mesh

The centered zone is locally refined 3 times 7-irregular mesh

Numerical dispersion

DGTD- \mathbb{P}_p method : time evolution of the H_x component Zoom on the last 5 periods

Numerical dispersion

DGTD- \mathbb{P}_p method : time evolution of the L^2 error

DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method

H. Fahs, S. Lanteri and F. Rapetti: INRIA, RR-6162, 2007

H. Fahs, L. Fezoui, S. Lanteri and F. Rapetti: IEEE Trans. Magn., 2008

- The DGTD- \mathbb{P}_{ρ_c} : \mathbb{P}_{ρ_f} method consists in using:
 - high polynomial degrees "pc" in the coarse elements,
 - low polynomial degrees "p_f" in the refined elements.
- If $p_c = p_f = p$, we find again the classical DGTD- \mathbb{P}_p scheme

Cubic polynomials in the coarse elements and constant polynomials in the fine elements

< 🗆 -

DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method Eigenmode in a PEC cavity

DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method : time evolution of the H_x component Zoom on the last 5 periods

CANUM 2008 14 / 28

DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method Eigenmode in a PEC cavity

DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method : time evolution of the L^2 error

Comparison in terms of # DOF between DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} and DGTD- \mathbb{P}_p methods using the 7-irregular mesh

DGTD-₽ _p	\mathbb{P}_0	\mathbb{P}_1	\mathbb{P}_2	\mathbb{P}_3	\mathbb{P}_4
# DOF	2304	6912	3456	5760	8640
DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f}	$\mathbb{P}_2:\mathbb{P}_0$	$\mathbb{P}_3:\mathbb{P}_0$	$\mathbb{P}_2:\mathbb{P}_1$	$\mathbb{P}_3:\mathbb{P}_1$	$\mathbb{P}_3:\mathbb{P}_2$
# DOF	896	1152	1920	2176	3712

Percentage of # DOF saved by the DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} method

	DGTD-₽ ₂	$DGTD ext{-}\mathbb{P}_3$	DGTD-₽ ₄
DGTD- $\mathbb{P}_2:\mathbb{P}_0$	-74%	-84%	-90%
$DGTD-\mathbb{P}_3:\mathbb{P}_0$	-64%	-80%	-87%
$DGTD-\mathbb{P}_2:\mathbb{P}_1$	-46%	-67%	-78%
$DGTD-\mathbb{P}_3:\mathbb{P}_1$	-37%	-62%	-75%
$DGTD-\mathbb{P}_3:\mathbb{P}_2$	+7%	-35%	-57%

Numerical Results Two-Concentric PEC cylinders

H. Fahs: IJNAM, submitted. Also INRIA, RR-6311, 2007

Numerical convergence of the DGTD- \mathbb{P}_p method Global (space and time) L^2 error versus the square root of # DOF Non-conforming meshes

Slopes: 1.0 (DGTD- \mathbb{P}_0 method) and 2.0 (DGTD- \mathbb{P}_p , $\forall p \ge 1$, method)

Numerical Results Two-Concentric PEC cylinders

Numerical convergence of the DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_t} method Global (space and time) L^2 error versus the square root of # DOF Non-conforming meshes

Slopes: 1.7 ($\forall p_c > p_f, p_f = 0$) and 2.2 ($\forall p_c > p_f, p_f \ge 1$)

Numerical Results

Scattering of a plane wave by a dielectric cylinder

DGTD- \mathbb{P}_{p} : Conforming triangular mesh

method	DGTD-₽₀	DGTD-₽ ₁	DGTD-₽ ₂	DGTD-₽ ₃
L ² error, CPU (min)	13.6%, 20	7.15%, 178	5.20%, 542	5.22%, 1817
# DOF	11920	35760	71520	119200

DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f} : Non-conforming triangular mesh

method	$DGTD-\mathbb{P}_1:\mathbb{P}_0$	$DGTD-\mathbb{P}_2:\mathbb{P}_0$	$DGTD-\mathbb{P}_2:\mathbb{P}_1$	$DGTD-\mathbb{P}_3:\mathbb{P}_2$
L ² error, CPU (min)	11.6%, 9	5.36%, 25	5.39%, 33	5.37%, 179
# DOF	11450	19700	26100	46700

Scattering of a plane wave by a dielectric cylinder

1D distribution of H_y along y = 0.0 at t = 5

Numerical Results

Scattering of a plane wave by multilayered dielectric cylinders

Region	Region 1	Region 2	Region 3	Region 4	Region 5	Region 6
€r	$\epsilon_1 = 1$	$\epsilon_2 = 4$	$\epsilon_3 = 9$	$\epsilon_4 = 16$	$\epsilon_5 = 64$	$\epsilon_0 = 1$
λ (m)	1	0.5	0.33	0.25	0.125	1
Radii (m)	$R_1 = 0.1$	$R_2 = 0.2$	$R_{3} = 0.3$	$R_4 = 0.4$	$R_{5} = 0.5$	$R_0 = 1.0$

- Ω is a cylinder of radius one
- First order Silver-Müller ABC at the artificial boundary
- No exact solution is available
- Reference solution is constructed in a very fine conforming mesh using DGTD- \mathbb{P}_4 method

# nodes	# triangles	# DOF
25001	49750	746250

Region	Region 1	Region 2	Region 3	Region 4	Region 5	Region 6
Interpolation order	<i>P</i> 1	P2	<i>р</i> 3	<i>P</i> 4	р ₅	<i>P</i> 6
Level of refinement	0	1	2	3	4	0
# triangles non-conforming mesh	40	320	1280	5120	20480	400
# triangles conforming mesh	2640	2880	2880	2880	2880	14400

< D

H. Fahs (INRIA, NACHOS project-team)

DGTD- \mathbb{P}_p method - Conforming mesh

$p_i = p$	Error on Hy	Error on E_z	CPU (min)	# DOF
0	8.6 %	12.7 %	25	28560
1	7.6 %	7.80 %	137	85680
2	2.2 %	1.30 %	286	171360
3	2.2 %	1.20 %	842	285600

DGTD- \mathbb{P}_{p_i} method - Non-conforming mesh

$p_1, p_2, p_3, p_4, p_5, p_6$	Error on H _y	Error on <i>E</i> _z	CPU (min)	# DOF
4,3,2,1,0,2	5.0 %	1.7 %	12	49720
4,3,2,2,0,2	4.8 %	1.8 %	13	65080
4,3,2,2,1,4	3.5 %	2.6 %	17	109640
4,2,2,4,1,4	3.2 %	2.6 %	21	154440
2,2,2,2,0,2	4.8 %	1.8 %	10	63440
2,2,2,2,1,2	3.5 %	2.5 %	14	104400
2,2,2,2,2,4	2.5 %	1.6 %	20	169440

H. Fahs (INRIA, NACHOS project-team)

DGTD- \mathbb{P}_p method Conforming mesh

DGTD- \mathbb{P}_{p_i} method Non-conforming mesh

1D distribution of E_z along y = 0.0 at t = 5

< D >

DGTD- \mathbb{P}_p method Conforming mesh

DGTD- \mathbb{P}_{p_i} method Non-conforming mesh

1D distribution of H_y along y = 0.0 at t = 5

Fourth-order leap-frog scheme

GOAL : Increase the order of the existing Leap-Frog (LF) scheme

- Accuracy increased with respect to the LF2 scheme
 - 12 to 20 times more accurate than the LF2 scheme
- Very easy to implement
- CFL(LF4) = 2.85×CFL(LF2)
 - Requires 1.4 times less CPU time than the LF2 scheme
- Requires 2 times more memory than the LF2 scheme

Test case: Eigenmode in a unitary square cavity							
DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_t} method using non-conforming mesh							
LF2 LF4							
DGTD- \mathbb{P}_{p_c} : \mathbb{P}_{p_f}	# DOF	Error	CPU (min)	Error	CPU (min)		
DGTD- \mathbb{P}_3 : \mathbb{P}_2	6668	1.3E-03	17	2.3E-05	12		
$DGTD-\mathbb{P}_4:\mathbb{P}_2$	9138	1.3E-03	27	1.5E-05	19		
$DGTD-\mathbb{P}_4:\mathbb{P}_3$	10290	3.2E-04	61	1.5E-05	44		

Works in progress

- Preliminary extension to 3D
 - Non-conforming local refinement of tetrahedral meshes
 - Evaluation of the non-conforming interface matrix S_{ik}
- Stability analysis of the 4th-order DGTD method
- Future works
 - Design of an *a posteriori* error estimator for an *hp*-adaptive DGTD method

Thank you for your attention!

Works in progress

- Preliminary extension to 3D
 - Non-conforming local refinement of tetrahedral meshes
 - Evaluation of the non-conforming interface matrix S_{ik}
- Stability analysis of the 4th-order DGTD method
- Future works
 - Design of an *a posteriori* error estimator for an *hp*-adaptive DGTD method

Thank you for your attention!