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Who are we ?

Inria: French national institute for computer science and applied mathematics

Scientific objectives

Methodology-driven team

Key disciplines: applied mathematics and scientific computing

Numerical modeling of physical problems involving waves in interaction with
complex media and irregularly shaped structures

Time-domain and frequency-domain wave propagation problems

Elctromagnetics and elastodynamics

Applications: nanophotonics/nanoplasmonics

Contributions

Theoretical (properties of numerical methods)

Practical (numerical algorithms and associated software)

Research directions

1 High order geometry conforming finite element type methods

2 Solution strategies for multiscale problems

3 Architecture-aware algorithms for high performance computing architectures
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Numerical framework: the DG method

Context

Somewhere between a finite element and a finite volume method, gathering
many good features of both

Extensively developed by the CFD community

Application to wave propagation problems naturally followed

J.S. Hesthaven and T. Warburton (Springer, 2008)
Nodal discontinuous Galerkin methods: algorithms, analysis, and applications

(a) Finite elements:
continuous, non-
constant-per-cell
solution

(b) Finite volumes: dis-
continuous, constant-
per-cell solution

(c) Discontinuous
Galerkin: discontinu-
ous, non-constant-per-
cell solution
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Numerical framework: the DG method
Motivations for electromagnetics

DG for electromagnetic wave propagation in heterogeneous media

Heterogeneity is ideally treated at the element level

Discontinuities occur at material (i.e element) interfaces

Mesh generation process is simplified

Wavelength varies with ε and µ

For a given mesh density, approximation order can be adapted at the
element level in order to fit to the local wavelength

Discretization of irregularly shaped domains

Unstructured simplicial meshes

The basic support of the DG method is the element
(triangle in 2D and tetrahedron in 3D)

Local refinement is facilitated by allowing non-conformity

Non-conformity opens the route to the coupling of different discretization
methods (e.g structured/unstructured)

For time-domain problems, mass matrix is block diagonal (worst case) or diagonal

(J. Xin and W. Cai, J. Sci. Comput., Vol. 50, 2012)
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Brief history of the development of DGTD methods

F. Bourdel, P.A. Mazet and P. Helluy
Proc. 10th Inter. Conf. on Comp. Meth. in Appl. Sc. and Eng., 1992.

Triangular meshes, first-order upwind DG method (i.e FV method)
Time-domain and time-harmonic Maxwell equations

M. Remaki and L. Fezoui, Inria Reserach Report RR-3501, 1998.

Time-domain Maxwell equations
Triangular meshes, P1 interpolation, Runke-Kutta time integration (RKDG)

J.S. Hesthaven and T. Warburton (J. Comput. Phys., Vol. 181, 2002)

Tetrahedral meshes, high order Lagrange polynomials, upwind flux
Runge-Kutta time integration

B. Cockburn, F. Li and C.-W. Shu (J. Comput. Phys., Vol. 194, 2004)

Locally divergence-free RKDG formulation

G. Cohen, X. Ferrieres and S. Pernet (J. Comput. Phys., Vol. 217, 2006)

Hexahedral meshes, high order Lagrange polynomials, penalized formulation
Leap-frog time integration scheme
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Brief history of the development of DGTD methods

V. Kabakian, V. Shankar and W.F. Hall (J. Sci. Comput., Vol. 20, 2004)

Upwind flux
Monomial polynomials
Runge-Kutta time integration scheme

T. Lu, P.W. Zhang and W. Cai (J. Comput. Phys., Vol. 200, 2004)

Dispersive medium (Debye), ADE technique
Perfectly Matched Layers (UPML)
Hybrid quadrangular/triangular meshes
Upwind flux
Runge-Kutta time integration scheme

M.H. Chen, B. Cockburn and F. Reitich (J. Sci. Comput., Vol. 22-23, 2005)

Strong stability preserving Runge-Kutta time integration schemes
Post-processing techniques to double the convergence order

And a steadily increasing number of other works and groups adopting
the method since 2005
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Brief history of the development of DGTD methods

ElectroScience Laboratory, The Ohio State University, USA

Jin-Fa Lee et al.

Interior penalty discontinuous Galerkin formulation

Triangular (2D)/tetrahedral meshes, conformal PMLs

Leap-frog time integration scheme, local time-stepping strategy

S. Dosopoulos and J.F. Lee
IEEE Trans. Ant. Propag., Vol. 58, 2010

S. Dosopoulos and J.F. Lee
J. Comput. Phys., Vol. 229, 2010

By courtesy of J.F. Lee
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Brief history of the development of DGTD methods

Computational Electromagnetics Group
TU Darmstadt, Germany

S. Schnepp, T. Weiland et al.

Non-dissipative (centered flux)
discontinuous Galerkin formulation

Orthogonal quadrangular (2D)/hexahedral
(3D) meshes

Adpative mesh refinement

Leap-frog time integration scheme

S. Schnepp and T. Weiland
Radio Science, Vol. 46, 2011

By courtesy of S. Schnepp
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Brief history of the development of DGTD methods

J. Alvarez, L.D. Angulo, A.R. Bretones and S.G. Garcia
(IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2012)

Spurious-free DGTD method
Study of the role of the penalization parameter with upwind flux

J. Alvarez, L.D. Angulo, A.R. Bretones and S.G. Garcia
(IEEE Ant. Wir. Prop. Lett., Vol. 11, 2012)

3D anisotropic materials
Upwind flux based on solutoin of Riemann problem

S. Yan and J. Jin (IEEE Trans. Ant. Propag, Vol. 65, No. 5, 2017)

Electromagnetic and multiphysics problems
Dynamic adaptation of the interpolation order (p-adaptivity)
Based on cheap error estimator

C.P. Chang, G. Chen, S. Yan and J. Jin
(Int. J. Numer. Model., Electron. Netw. Devices Fields, Vol. 65, No. 5, 2017)

Waveport boundary condition (WPBC)
Modeling of input and output ports for waveguide simulations
Comparisons with ABC and PML
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Brief history of the development of DGTD methods

Introducing a commercial FETD solver breaks
new ground in EM field simulation. Based on
the DGTD method, it allows unstructured
geometry-conforming meshes to be used for the
first time in transient EM field simulation.

DGTD is a competitive alternative to traditional
FDTD based methods to solving Maxwell’s
equations in the time domain. The applications
presented here include the electromagnetic
pulse susceptibility of the differential lines in a
laptop computer, the radar signature of a
landmine under undulating ground, the TDR of
a bent flex circuit, and the return loss of a
connector. All of these examples involve
complicated, curved geometries where the
flexibility of the unstructured meshes used in
DGTD provides powerful advantages over
simulation by conventional brick-shaped FDTD
and FIT meshes.

IEEE Microwave Magazine - April 2010
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Brief history of the development of DGTD methods
Our contributions (2007 to December 2013)

Higher order leap-frog time schemes

H. Fahs and S. Lanteri
J. Comput. Appl. Math., Vol. 234, 2010

Locally implicit time schemes

V. Dolean, H. Fahs, L. Fezoui and S. Lanteri
J. Comput. Phys., Vol. 229, No. 2, 2010

L. Moya, S. Descombes and S. Lanteri
J. Sci. Comp., Vol. 56, No. 1, 2013

Non-conforming triangular meshes

H. Fahs
Numer. Math. Theor. Meth. Appl., Vol. 2, No. 3, 2009

Hybrid structured/unstructured meshes

C. Durochat, S. Lanteri and C. Scheid
Appl. Math. Comput., Vol. 224, 2013

C. Durochat, S. Lanteri and R. Léger
Int. J. Numer. Model., Electron. Netw. Devices Fields, Vol. 27, No. 3, 2014
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Brief history of the development of DGTD methods
Our contributions (Januray 2007 to December 2013)

Numerical dosimetry - Collaboration with Orange Labs, Paris (2003 - 2011)

H. Fahs, A. Hadjem, S. Lanteri, J. Wiart and M.F. Wong

IEEE Trans. Ant. Propag., Vol. 59, No. 12, 2011

DGTD method for time-domain Maxwell-Debye equations

Software: GERShWIN
(discontinuous GalERkin Solver for microWave INteraction with biological tissues)

Exposure of head tissues to an electromagnetic wave emitted by a localized source. Contour lines
of the amplitude of the electric field.
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Brief history of the development of DGTD methods
Our contributions (January 2007 to December 2013)

DEEP-ER FP7 EU project (October 2013 to March 2017))
(Dynamic Exascale Entry Platform - Extended Reach)

Cluster-Booster architecture

Hybrid MPI/OpenMP parallelization

Overview OmpSS integration Benchmarks on KNL Timeplan until D6.3

KNL vs. Haswell vs. Sandy Bridge vs. KNC – run time
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"Head" - Hybrid MPI/OpenMP

KNL Haswell KNC Sandy Bridge

I Node-to-node comparison
Sandy Bridge nodes have 16 cores, Haswell nodes have 24 cores

I Hybrid "MPI/OpenMP": we take the fastest combination of processes and
threads we found for each case.

R. Léger and S. Lanteri A Solver for Bioelectromagnetics on the DEEP-ER Platform
DEEP-ER F2F - Jülich - 2016/10/25 19 / 26

Hybrid MPI/OpenMP parallelization of the GERShWIN DGTD solver. Performance comparison
between Intel Sandy Bridge nodes with 16 cores and Intel Haswell nodes with 24 cores, and Intel
KNC and KNL nodes. Timings are given for the fastest combination of processes and threads we
found for each case.

S. Lanteri (Inria) Zhejiang University 120th anniversary 16 / 76



Brief history of the development of DGTD methods
Our contributions (January 2007 to December 2013)

DEEP-ER FP7 EU project (October 2013 to March 2017))
(Dynamic Exascale Entry Platform - Extended Reach)

Cluster-Booster architecture

Hybrid MPI/OpenMP parallelization

Overview OmpSS integration Benchmarks on KNL Timeplan until D6.3

Flat OpenMP speedup on KNL (strong scaling)
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Parallel Acceleration: OpenMP on 1 KNL node

Linear
P1
P2
P3
P4

I Efficiency between 0.56 and 0.82 only.
I Efficiency is 0.54 maximum without MCDRAM !!

R. Léger and S. Lanteri A Solver for Bioelectromagnetics on the DEEP-ER Platform
DEEP-ER F2F - Jülich - 2016/10/25 21 / 26

OpenMP parallelization of the GERShWIN DGTD solver
Strong scalability on a single Intel KNL node
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Nanophotonics: some generalities
Modeling context and challenges

Nanophotonics is considered as a branch of optical engineering that deals with optics, or the
interaction of light with particles or substances, at deeply subwavelength length scales

Refers to phenomena of ultraviolet, visible and near IR light, with a wavelength of
approximately 300 to 1200 nanometers

Physical phenomena are characterized by a confinement of the electromagnetic field to the
surface or tip of nanostructures resulting in a region referred to as the optical near field

Starting-point PDE model: the system of Maxwell equations
Medium heterogeneity, geometrical features
Strong variations in spatial (and temporal) scales
Local, non-local and possibly non-linear dispersion effects

James Clerk Maxwell (1831-1879)
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Time-domain nanophotonics

DGTD methods for nanophotonics

Theoretical Optics and Photonics group, Humboldt-Universität zu Berlin

K. Busch, M. König and J. Niegemann
Discontinuous Galerkin methods in nanophotonics
Laser and Photonics Reviews, Vol. 5, No. 6, 2011

M. König, K. Busch and J. Niegemann
The discontinuous Galerkin time-domain method for Maxwell’s equations
with anisotropic materials
Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, 2010

Theoretical Electrical Engineering Group in Paderborn University

Y. Grynko, J. Förstner and T. Meier
Application of the discontinous Galerkin time domain method
to the optics of metallic nanostructures
AAPP | Physical, Mathematical, and Natural Sciences, Vol. 89 (S1), 2011

TU Dresden, Institut für Angewandte Photophysik

A. Hille, R. Kullock, S. Grafström and L. M. Eng
Improving nano-optical simulations through curved elements
implemented within the discontinuous Galerkin method
J. Comput. Theor. Nanos., Vol. 7, 2010

Increasingly studied in the recent years
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Time-domain nanophotonics
Taking into account local dispersion effects

The time-domain Maxwell-Drude equations

εlocal(ω) = εr (ω) = ε∞ −
ω2
d

ω2 + iωγd

∂H

∂t
= −∇× E

∂E

∂t
= ∇×H− Jp

∂Jp

∂t
+ γdJp = ω2

dE

Theoretical and numerical study

Analysis of a Generalized Dispersion Model (GDM)

Development based on one 0th-order pole (ZOP), a set of 1st-order generalized poles
(FOGP) and a set of 2nd-order generalized poles (SOGP)

Upwind flux DGTD method with LSRK time scheme

S. Lanteri, C. Scheid and J. Viquerat

SIAM J. Sci. Comput., Vol. 39, No. 3, 2017
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Time-domain nanophotonics
Taking into account local dispersion effects

The time-domain Maxwell-GDM equations

εr,g (ω) = ε∞ −
σ

iω
−
∑
l∈L1

al

iω − bl
−
∑
l∈L2

cl − iωdl

ω2 − el + iωfl

∂H

∂t
= −∇× E

ε∞
∂E

∂t
= ∇×H− J0 −

∑
l∈L1

Jl −
∑
l∈L2

Jl ,

J0 = (σ +
∑
l∈L2

dl )E,

Jl = alE− blPl ∀l ∈ L1,

∂Pl

∂t
= Jl ∀l ∈ L1,

∂Jl
∂t

= (cl − dl fl )E− flJl − elPl ∀l ∈ L2,

∂Pl

∂t
= dlE + Jl ∀l ∈ L2.
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Time-domain nanophotonics

Development of a dedicated software suite for nanophotonics

DIOGENeS - DIscOntinuous GalErkin Nano Solvers
https://diogenes.inria.fr

3D time-domain and frequency-domain Maxwell equations

Drude, Drude-Lorentz and generalized dispersion models

Silver-Muller absorbing boundary condition or CFS-PML technique

TF/SF formulation for imposing complex source models

High order polynomial interpolation

Unstructured and hybrid cubic/tetrahedral meshes

Affine and curvilinear elements

Leap-frog (2nd and 4th order) and optimized Runge-Kutta time schemes

Hybrid MIMD/SIMD parallelization based on MPI/OpenMP
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Time-domain nanophotonics
Taking into account local dispersion effects

(d) Modulus of the E field in the vicinity of
the nanoshell. A 4SOGP dispersion model is
used to describe the gold shell
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(e) Computed scattering cross-sections of
the nanoshell for various gold dispersion
models

Near-field solution and scattering cross-section of a silica/gold nanoshell device. P4 polynomial
approximation is used for the spatial DG discretization, along with curvilinear element for an
enhanced geometrical description of the shell.
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Time-domain nanophotonics
Taking into account local dispersion effects

DGTD method on curvilinear tetrahedral meshes

Classical FEM rely on tessellations composed of straight-edged elements mapped linearly
from a reference element

This represents a serious hindrance for high order methods

Exploit high order mappings for curvilinear tetrahedral elements

Tetrahedral mesh for plasmonic resonance of a gold nanosphere with radius 50 nm. The scatterer
(in red) is enclosed by the total field (TF) region (in blue), delimited by the TF/SF interface on
which the incident field is imposed. Then we find the scattered field (SF) region (in purple),
surrounded by UPMLs (in gray).
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Time-domain nanophotonics
Taking into account local dispersion effects

DGTD method on curvilinear tetrahedral meshes

Classical FEM rely on tessellations composed of straight-edged elements mapped linearly
from a reference element

This represents a serious hindrance for high order methods

Exploit high order mappings for curvilinear tetrahedral elements

Mesh with affine elements Mesh with curvilinear elements

Scattering cross section of a gold nanosphere obtained with P2 and P3 interpolation of the EM
filed compenents, using affine (linear) and curvilinear meshes with various refinement levels.
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Time-domain nanophotonics
Taking into account local dispersion effects

DGTD method on curvilinear tetrahedral meshes

Plasmonic coupling between nanoparticles is at the heart of many applications in
nano-optics

The coupled plasmon resonance induces very intense fields in the gap between the particles

A proper near-field resolution is essential to a good understanding of the properties of such
coupled structures

Mesh with affine elements Mesh with curvilinear elements

Near-field visualization of the electric field Fourier transform for a gold nanosphere dimer.
Surface-to-surface distance is set to 4 nm. Calculations are based on a DGTD-P4 method.
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Time-domain nanophotonics
Taking into account local dispersion effects

DGTD method on curvilinear tetrahedral meshes

Plasmonic coupling between nanoparticles is at the heart of many applications in
nano-optics

The coupled plasmon resonance induces very intense fields in the gap between the particles

A proper near-field resolution is essential to a good understanding of the properties of such
coupled structures

Absorption cross section of a gold nanosphere dimer obtained with P4 approximation using affine
and curvilinear meshes. Calculations are based on a DGTD-P4 method.
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Time-domain nanophotonics
Taking into account local dispersion effects

DGTD with non-uniform distribution of the interpolation order

Dealing with meshes showing large variations in cell size

Impose low orders in small cells and high orders in large cells

Time step-based distribution strategy

0 20 40 60 80 100

10−9

10−8

P1 P2 P3

% of total tetrahedra

c 0
∆
t

Computation of the extinction cross section of a metallic bowtie nanoantenna. Polynomial order
repartition for the bowtie mesh with respect to time-step.
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Time-domain nanophotonics
Taking into account local dispersion effects

DGTD with non-uniform distribution of the interpolation order

Dealing with meshes showing large variations in cell size

Impose low orders in small cells and high orders in large cells

Time step-based distribution strategy
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Extinction cross section of the bowtie nanoantenna obtained with P1, P3 and P1 − P3

approximations. Less than 2 % of relative error is observed between full P3 and P1 − P3

computations, for a speedup factor superior to 2.
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Time-domain nanophotonics
Taking into account local dispersion effects

0 10

|E| field map in the bowtie antenna obtained with a P1 − P3 approximation. The field values are
scaled to [0, 10].
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Time-domain nanophotonics
Taking into account local dispersion effects

Application to photovoltaics
Light trapping in complex solar cell
structures

Realistic modeling of geometrical
features such as textures

Assessment of plasmomic effects on
absorption

For the design and optimization of
solar cell structures

In collaboration with Urs Aeberhard,
IEK-5 Photovoltaik,
Forschungszentrum Jülich, Germany
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Time-domain nanophotonics
Taking into account local dispersion effects

Application to photovoltaics
Light trapping in complex solar cell structures

Starting from AFM (Atomic Force Microscopy) images

Exploit MeshGems suite (http://www.meshgems.com/)

Imposing periodicity

Original model Modified model Symmetrized model
with periodic boundaries
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Time-domain nanophotonics

Application to photovoltaics - Light trapping in complex solar cell structures

Dealing with optical data

Optical data are given from measurements and fitted to a generalized dispersion model

Sum of one 0th-order pole (ZOP), 1st-order generalized poles (FOGP), and 2nd-order
generalized poles (SOGP)

εr,g (ω) = ε∞ −
σ

iω
−
∑
l∈L1

al

iω − bl
−
∑
l∈L2

cl − iωdl

ω2 − el + iωfl

Optimization method based on Simulated Annealing
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(f) Asi-i, real part.
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(g) Asi-i, imaginary part.
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Time-domain nanophotonics
Taking into account local dispersion effects

Application to photovoltaics
Light trapping in complex solar cell structures

Performance results: Occigen Bull/Atos cluster at CINES
Intel E5-2690, 2.6 GHz, 24 cores on each node, 64 GB or 128 GB RAM per node

Solver # cores Elapsed Speedup

DGTD-P1 96 584 sec 1.00 (1.0)
- 192 292 sec 2.00 (2.0)
- 384 146 sec 4.00 (4.0)
DGTD-P2 96 974 sec 1.00 (1.0)
- 192 490 sec 2.00 (2.0)
- 384 246 sec 3.95 (4.0)
DGTD-P3 192 808 sec 1.00 (1.0)
- 384 418 sec 1.95 (2.0)

Strong scalability analysis of the DGTD-Pk solver on the Occigen system. Tetrahedral mesh with
305,265 vertices and 1,689,764 elements. Timings for 1000 time steps. Execution mode: 1 MPI
process per core.
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Time-domain nanophotonics
Taking into account non-local dispersion effects

Hydrodynamic Drude model

The existence of plasmons roots in the interaction between the free electrons of a metal
with an external varying electromagnetic field

Various models exist for modeling this coupling depending on the considered material
and frequency range

The most famous is the Drude model describing permittivity function of noble metals
up to the visible range of frequencies

All these models share a common assumption, which is the local response assumption
(LRA)

This hypothesis states that, at any point of the metal, the polarization of the electrons
only depends on the electromagnetic fields at this precise point

For scales approaching the nanometer, plasmons exhibit features that cannot be correctly
predicted in the LRA framework

Modified models are required, called non-local models (NLM), owing to their accounting
for what happens in the vicinity of the electron to determine its response
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Time-domain nanophotonics
Taking into account non-local dispersion effects

The time-domain Maxwell-Hydrodynamic Drude equations

εr (k, ω) = ε∞ − εlocal(ω)− εnon local(k, ω)



∂H

∂t
= −∇× E

ε∞
∂E

∂t
= ∇×H− Jl − Jnl

∂Jl
∂t

+ γlJl = ω2
l E

∂Jnl
∂t

+ γnlJnl = β2∇Qnl + ω2
nlE

∂Qnl

∂t
= ∇.Jnl

A. Moreau, C. Ciraci and D.R. Smith - Physical Review B 87, 045401 (2013)

S. Raza, S.I. Bozhevolnyi, M. Wubs, N.A. Mortensen

J. Phys.: Condens. Matter 27, 183204 (topical review, 2015)
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Time-domain nanophotonics
Taking into account non-local dispersion effects

The time-domain Maxwell-Hydrodynamic Drude equations

Numerical study in the 2D case

Centered flux DGTD method with leap-frog time scheme

N. Schmitt, C. Scheid, S. Lanteri, A. Moreau and J. Viquerat

J. Comput. Phys., Vol. 316, 2016

Local model Non-local model

Non-local resonance of a gold nanodisk with radius 2 nm. The plots show the modulus of the
electric field in the Fourier space. The right panel shows the excited bulk plasmon due to
non-local model, which does not appear for the local model, on the left panel.
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Time-domain nanophotonics
Taking into account non-local dispersion effects

The time-domain Maxwell-Hydrodynamic Drude equations

Extension to the 3D case

PhD thesis of Nikolai Schmitt, ongoing

Upwind flux, low storage Runge-Kutta and curvilinear elements

Preliminary results at PIERS 2017, St Petersburg, Russia, May 22-25
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Outline

1 Context

2 Time-domain modeling
Brief history of the development of DGTD methods
DGTD methods for nanoscale light/matter interactions

3 Frequency-domain modeling
Hybridizable DG method
Scalable DD-based HDG solver

4 Closure
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The challenge with DG for frenquency-domain problems

3D frequency-domain Maxwell’s equations
iωεrE− curl H = −J, in Ω

iωµrH + curl E = 0, in Ω

n× E = 0, on Γm

n× E + n× (n×H) = n× Einc + n× (n×Hinc), on Γa

Classical DG formulation

Naturally adapted to heterogeneous media and discontinuous solutions

Can easily deal with unstructured, possibly non-conforming meshes (h-adaptivity)

High order with compact stencils and non-conforming approximations (p-adaptivity)

Usually rely on polynomial interpolation but can also accomodate alternative functions
(e.g plane waves)

Amenable to efficient parallelization

But leads to larger problems compared to continuous finite element methods
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Hybridizable DG method

B. Cockburn, J. Gopalakrishnan and R. Lazarov
Unified hybridization of discontinuous Galerkin, mixed, and continuous
Galerkin methods for second order elliptic problems
SIAM J. Numer. Anal., Vol. 47, No. 2 (2009)

N.C. Nguyen, J. Peraire and B. Cockburn
Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations
J. Comput. Phys., Vol. 230, No. 19 (2011)

S. Lanteri, L. Li and R. Perrussel
Numerical investigation of a high order hybridizable discontinuous Galerkin method for
2d time-harmonic Maxwell’s equations
COMPEL, Vol. 2, No. 3, pp. 1112-1138 (2013)

L. Li, S. Lanteri and R. Perrussel
A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm
for the solution of 3d time-harmonic Maxwell’s equation
J. Comput. Phys., Vol. 256, pp. 563-581 (2014)
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Hybridizable DG method in 3D

Principles of a HDG formulation

Keep the advantages of classical DG methods

Introduce an hybrid variable to decouple local problems defined at the element level

Solve a reduced linear system for the hybrid variable unknowns only

Complexity: number of globally coupled degrees of freedom

Classical DG method with Pp interpolation

(p + 1)(p + 2)(p + 3)Ne , Ne is the # of elements

HDG method with Pp interpolation

(p + 1)(p + 2)Nf , Nf is the # of faces

For a simplicial mesh Nf ≈ 2Ne and the ratio DG/HDG is ≈
p + 3

2

Continuous finite element formulation based on Nedelec’s first family of face/edge elements
in a simplex (tetrahedron)

p(p + 2)(p + 3)

2
Ne

For a simplicial mesh Nf ≈ 2Ne and the ratio HDG/FE is ≈
4(p + 1)

p(p + 3)
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Hybridizable DG method in 3D

Notations and definitions

Th a simplicial mesh of the computational domain

F I
h and FB

h the union of all inner and boundary faces of Th, respectively (Fh := F I
h ∪ F

B
h )

Discontinuous FE spaces

Vh =
{

v∗ ∈
[
L2(Ω)

]3 | v∗ Ke
∈ [Ppe (Ke)]3 , ∀Ke ∈ Th

}
Mh =

{
η ∈

[
L2(Fh)

]3 | η
Ff
∈ [Ppf (Ff )]3 , (η · n)

Ff
= 0, ∀Ff ∈ Fh

}
For a face F = K

+ ∩ K
−

, we define mean (average) values {·} and jumps J·K , JJ·KK

{v}F =
1

2
(v+ + v−) , JvKF = n+ × v+ + n− × v− and JJvKKF = v+ − v−

where n± the outward unitary normals, v± the traces of v on F .
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Hybridizable DG method in 3D

Local formulation

Find (Eh,Hh) in the space Vh × Vh such that (for all K in Th)
(iωεEh, v

∗)K − (Hh, curl v∗)K +
〈
γt(Ĥh), n× v∗

〉
∂K

= 0, ∀v∗ ∈ Vh,

(iωµHh, v
∗)K + (Eh, curl v∗)K −

〈
γt(Êh), n× v∗

〉
∂K

= 0, ∀v∗ ∈ Vh.

with γt(·) = −n× (n× ·).

Numerical traces Λh := γt(Ĥh), ∀F ∈ Fh

γt(Êh) = γt(Eh) + τKn× (Λh − γt(Hh)), on ∂K

where τ is a stabilization parameter.
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Hybridizable DG method in 3D

Global formulation of the HDG method

Find (Eh,Hh,Λh) ∈ Vh × Vh ×Mh such that ∀(v∗,Λ∗) ∈ Vh ×Mh

(iωεEh, v
∗)Th − (Hh, curl v∗)Th + 〈Λh, n× v∗〉∂Th = 0

(iωµHh, v
∗)Th + (Eh, curl v∗)Th −

〈
γt(Êh), n× v∗

〉
∂Th

= 0

〈
Jγt(Êh)K,Λ∗

〉
Fh

− 〈Λh,Λ
∗〉Γa − =

〈
ginc,Λ∗

〉
Γa

Using the definition of the numerical traces
(iωεEh, v

∗)Th − (Hh, curl v∗)Th + 〈Λh, n× v∗〉∂Th = 0

(iωµHh, v
∗)Th + (curl Eh, v

∗)Th + 〈τn× (Hh − Λh) , n× v∗〉∂Th = 0

〈n× Eh,Λ
∗〉∂Th + 〈τ(γt(Hh)− Λh),Λ∗〉∂Th − 〈Λh,Λ

∗〉Γa =
〈

ginc,Λ∗
〉

Γa
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Hybridizable DG method in 3D

Global formulation of the HDG method

Find (Eh,Hh,Λh) ∈ Vh × Vh ×Mh such that ∀(v∗,Λ∗) ∈ Vh ×Mh

(iωεEh, v
∗)Th − (Hh, curl v∗)Th + 〈Λh, n× v∗〉∂Th = 0

(iωµHh, v
∗)Th + (Eh, curl v∗)Th −

〈
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ginc,Λ∗
〉

Γa
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Hybridizable DG method in 3D
Implementation of the HDG method

Electromagnetic field

(Eh Ke
,Hh Ke

) := (Ee ,He)

Ee (x) =
[
E e
x (x) ,E e

y (x) ,E e
z (x)

]T
and He (x) =

[
He
x (x) ,He

y (x) ,He
z (x)

]T
We seek an approximation of the components of the EM field by a linear combination of basis
functions ϕe

j (x) ∈ Ppe (Ke), i.e.

E e
ξ (x) =

Ne
K∑

j=1

E e
ξ [ j ]ϕe

j (x) , He
ξ (x) =

Ne
K∑

j=1

He
ξ [ j ]ϕe

j (x)

where ξ ∈ {x , y , z} and E e
ξ [ j ], He

ξ [ j ] are the DoF.

Hybrid variable

Λh Ff
:= Λf and Λf (x) = Λf

u (x) uf + Λf
w (x) wf

We seek an approximation of the components of the hybrid variable by a linear combination of
basis functions ψf

j (x) of Ppf (Ff ), i.e.

where Λf
ν (x) =

Nf
F∑

j=1

Λf
ν [ j ]ψf

j (x) ν ∈ {u,w} and Λf
ν [ j ] are the DoF.
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Hybridizable DG method in 3D

Global linear system for hybrid variable

KΛ = g

where

K =

|Th|∑
e=1

[Ae
HDG ]T

(
−Be [Ae ]−1 Ce + Ge

)
Ae

HDG

and

g =

|Th|∑
e=1

ge

Ae
HDG maps the DoF of the global trace on Fh to the DoF of the local trace on ∂K e .

Local linear system for EM field

AeW e = −CeAe
HDGΛ

where

W e =
[
E e

x ,E
e
y ,E

e
z ,H

e
x ,H

e
y ,H

e
z

]T
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Hybridizable DG method in 3D

ANR TECSER project (May 2014 - April 2017)
Funded by DGA (French armament procurement agency)
http://www-sop.inria.fr/nachos/projects/tecser

Implementation of HDG for arbitrary high order interpolation

Local definition (element-wise and face-wise) of the interpolation degree

Extension of the formulation to a non-conforming hybrid hexahedral/tetrahedral
mesh

Scalability improvement
PDE-based Schwarz domain decomposition algorithm
Algebraic domain decomposition algorithm (MaPHyS solver)

Coupling with a BEM for an accurate treatement of far field radiation

HORSE software
High Order solver for Radar cross Section Evaluation
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Hybridizable DG method in 3D
HDG system solution strategy

PDE-based domain decomposition approach: Schwarz algorithm

Time-harmonic Maxwell equations in global vectorial form

LW = g in Ω

Ω =

Ns⋃
j=1

Ωj , Wj = W|Ωj
with Ns : # subdomains


LWj,p+1 = 0 in Ωj

Bnjl W
j,p+1 = Bnjl W

l,p on Γjl = ∂Ωj ∩ Ω̄l

G−n Wj,p+1 = G−n Winc on Ωj ∩ Γa

Classical (natural) interface conditions: Bn ≡ G−n

G−n W ⇐⇒
1

Zr
(n× E) + n× (n×H) =

1

Zr
(n× E)− γt(H) (impedance condition)

with Zr =

√
µr

εr
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Hybridizable DG method in 3D
HDG system solution strategy

PDE-based domain decomposition approach: Schwarz algorithm

L. Li, S. Lanteri and R. Perrussel
A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm
for the solution of 3d time-harmonic Maxwell’s equation
J. Comput. Phys., Vol. 256, pp. 563- 581 (2014)

Conditions targeted by the HDG scheme on each interior face

JÊhK = 0 and JJΛhKK = 0

with n× Êh = n× γt(Êh) and γt(Êh) = −n× (n× Êh).

In Ωi , Λ
(i)
h is by definition single-valued on each face

⇒ For any face in the interior of Ωi , JJΛ
(i)
h KK = 0 is automatically satisfied

At the interface between two subdomains Ωi and Ωj , the hybrid variables is a priori
double-valued
⇒ JJΛhKK = Λ

(i)
h − Λ

(j)
h = 0 has to be explicitly enforced

Equivalent condition

JÊhK− Z
(1)
r JJΛhKK = 0 and JÊhK + Z

(2)
r JJΛhKK = 0
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Hybridizable DG method in 3D
Numerical and performance results

Plane wave in vacuum

Computational domain: the unit cube Ω = [0.0, 1.0]3

Silver-Müller absorbing boundary condition on ∂Ω

Electromagnetic parameters: ε = mu = 1

Fequency: 600 MHz

Wavelength: λ ' 0.5 m

Penalty parameter: τ = 1

Mesh # elements # faces h

M1 2, 692 5, 544 0.2500
M2 6, 144 12, 928 0.1875
M3 12, 000 25, 000 0.1500
M4 20, 736 42, 912 0.1250

Characteristics of regular tetrahedral meshes
used for numerical convergence analysis
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Hybridizable DG method in 3D
Numerical and performance results

Plane wave in vacuum

Computational domain: the unit cube Ω = [0.0, 1.0]3

Silver-Müller absorbing boundary condition on ∂Ω

Electromagnetic parameters: ε = µ = 1

Fequency: 600 MHz

Wavelength: λ ' 0.5 m

Penalty parameter: τ = 1

HDG method # DoF for Λ field # DoF for EM field

HDG-P1 257,472 497,664
HDG-P2 514,944 1,244,160
HDG-P3 858,240 2,488,320
HDG-P4 1,287,360 4,354,560

Discrete system size for mesh M4 (# elements = 20,736)
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Hybridizable DG method in 3D
Numerical and performance results

Plane wave in vacuum: numerical convergence analysis
(Error = ‖E− Eh‖2)

Error Order

M1 7.10 e−02 −
M2 4.27 e−02 1.8
M3 2.85 e−02 1.8
M4 2.03 e−02 1.9

HDG-P1

Error Order

M1 6.78 e−03 −
M2 2.90 e−03 2.9
M3 1.49 e−03 3.0
M4 8.68 e−04 3.0

HDG-P2

Error Order

M1 3.89 e−04 −
M2 1.24 e−04 4.0
M3 5.09 e−05 4.0
M4 2.46 e−05 4.0

HDG-P3

Error Order

M1 2.05 e−05 −
M2 4.89 e−06 5.0
M3 1.61 e−06 5.0
M4 6.48 e−07 5.0

HDG-P4

⇒ Optimal convergence order (similar results for ‖H−Hh‖2)

S. Lanteri (Inria) Zhejiang University 120th anniversary 53 / 76



Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation

SAR measures the rate at which electric energy is absorbed by the tissues when exposed to an
electromagnetic field

Represents the power absorbed per mass of tissues and has units of W·kg−1

SAR(x) = σ(x) |E(x)|2 / ρ(x)

σ electric conductivity (S·m−1)

E electric field (V·m−1)

ρ density (Kg·m−3)
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Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation
Exposure of head tissues to a localized source

Computational domain

Artificial boundary: sphere of radius r = 0.3 m

Heterogeneous geometrical model of the head tissues

Source term: Jz = Z0δ(x− xs)

Z0 free impedance

δ Dirac delta function

xs = (−0.100, 0.025, −0.015) : localization of the source

Frequency: 1.8 GHz

Vacuum Skin Skull CSF Brain

ε 1.00 38.66 11.60 68.25 43.88
σ (S·m−1) 0.00 1.18 0.27 2.28 0.97
λ (mm) 166.6 26.79 48.90 20.16 25.14
ρ 1.0 1100.0 1200.0 1000.0 1050.0
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Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation
Exposure of head tissues to a localized source

Unstructured tetrahedral mesh: 1,853,832 elements and 3,911,256 faces

Fequency: 1.8 GHz - Penalty parameter: τ = 1

Contour lines of SAR - HDG−P1 method
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Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation
Exposure of head tissues to a localized source

Unstructured tetrahedral mesh: 1,853,832 elements and 3,911,256 faces

Fequency: 1.8 GHz - Penalty parameter: τ = 1

Contour lines of SAR - HDG−P2 method
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Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation
Exposure of head tissues to a localized source

Unstructured tetrahedral mesh: 1,853,832 elements and 3,911,256 faces

Fequency: 1.8 GHz - Penalty parameter: τ = 1

HDG−P1 method HDG−P2 method

Contour lines of SAR
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Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation
Exposure of head tissues to a localized source

Unstructured tetrahedral mesh: 1,853,832 elements and 3,911,256 faces

Fequency: 1.8 GHz - Penalty parameter: τ = 1

HDG−P1 method HDG−P2 method

Contour lines of SAR
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Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation
Exposure of head tissues to a localized source

Unstructured tetrahedral mesh: 1,853,832 elements and 3,911,256 faces

Fequency: 1.8 GHz - Penalty parameter: τ = 1

HDG−Pploc method targeting 9 points per wavelength

HDG−P2 method HDG−Pploc method

Contour lines of SAR
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Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation
Exposure of head tissues to a localized source

Unstructured tetrahedral mesh: 1,853,832 elements and 3,911,256 faces

Fequency: 1.8 GHz - Penalty parameter: τ = 1

# DoF EM: 49,312,008 Λ: 24,352,518

P1: 41,282,088 P1: 20,213,250
P2: 8,019,480 P2: 4,131,468

P3: 10,440 P3: 7,800
P4: 0 P4: 0

Distribution of the interpolation degree
in elements and faces of the mesh
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Hybridizable DG method in 3D
Numerical and performance results

Numerical dosimetry - SAR calculation
Exposure of head tissues to a localized source

Unstructured tetrahedral mesh: 1,853,832 elements and 3,911,256 faces

Fequency: 1.8 GHz - Penalty parameter: τ = 1

Performance results: Occigen Bull/Atos cluster at CINES
Intel E5-2690, 2.6 GHz, 24 cores on each node, 64 GB or 128 GB RAM per node

HDG method # cores # iter Fact. Time Sol. Time Wall time Speedup

HDG-P2 384 52 21.1 sec 255.6 sec 278.4 sec 1.00
- 768 65 6.5 sec 142.4 sec 149.6 sec 1.85
- 1536 78 2.5 sec 79.2 sec 82.4 sec 3.40

HDG-Pploc 192 42 51.0 sec 288.1 sec 341.0 sec 1.00
384 54 13.7 sec 159.6 sec 174.1 sec 1.95

- 768 60 4.5 sec 84.7 sec 89.6 sec 3.80
- 1536 74 1.6 sec 52.0 sec 53.9 sec 6.35

Strong scalability analysis: PDE-based Schwarz algorithm with PaStiX as a local solver
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a jet

Unstructured tetrahedral mesh: 1,645,874 elements and 3,521,251 faces

Fequency: 600 MHz - Wavelength: λ ' 0.5 m - Penalty parameter: τ = 1

HDG method # DoF Λ field # DoF EM field

HDG-P1 21,127,506 39,500,976
HDG-P2 42,255,012 98,752,440
HDG-P3 70,425,020 197,504,880

0.1

0.2

0.3

4.590e-06

3.881e-01
|E|

0.7

1.4

2.1

9.453e-06

2.573e+00
|E|

0.9

1.8

2.7

1.568e-06

3.294e+00
|E|

Contour line of |E| - HDG−P1 to HDG−P3
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a jet

Unstructured tetrahedral mesh: 1,645,874 elements and 3,521,251 faces

Fequency: 600 MHz - Wavelength: λ ' 0.5 m - Penalty parameter: τ = 1

Performance results: Occigen Bull/Atos cluster at CINES
Intel E5-2690, 2.6 GHz, 24 cores on each node
64 GB or 128 GB RAM per node

HDG method # cores # iter Fact. Time Sol. Time Wall time Speedup

HDG-P1 384 3 2.6 sec 3.7 sec 6.8 sec 1.0
- 768 4 0.8 sec 2.3 sec 3.4 sec 2.0

HDG-P2 384 10 16.7 sec 40.5 sec 58.7 sec 1.0
- 768 12 5.1 sec 21.5 sec 27.1 sec 2.2

HDG-P3 768 23 18.8 sec 102.1 sec 122.6 sec 1.0
1536 26 5.1 sec 52.0 sec 58.7 sec 2.1

Strong scalability analysis: PDE-based Schwarz algorithm with PaStiX as a local solver
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a squadron of jets

Unstructured tetrahedral mesh: 8,539,215 elements and 18,045,563 faces

Fequency: 600 MHz - Wavelength: λ ' 0.5 m - Penalty parameter: τ = 1

HDG method # DoF Λ field # DoF EM field

HDG-P1 108,273,378 204,941,160
HDG-P2 216,546,756 512,352,900
HDG-P3 360,911,260 1,024,705,800
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a squadron of jets

Unstructured tetrahedral mesh: 8,539,215 elements and 18,045,563 faces

Fequency: 600 MHz - Wavelength: λ ' 0.5 m - Penalty parameter: τ = 1

Performance results: Occigen Bull/Atos cluster at CINES
Intel E5-2690, 2.6 GHz, 24 cores on each node
64 GB or 128 GB RAM per node

HDG method # cores # iter Fact. Time Sol. Time Wall time Speedup

HDG-P1 1536 2 4.4 sec 3.8 sec 9.0 sec 1.00
- 3072 3 1.7 sec 3.1 sec 5.1 sec 1.75

HDG-P2 1536 14 30.0 sec 85.0 sec 115.0 sec 1.00
- 3072 15 8.9 sec 40.0 sec 49.9 sec 2.30

HDG-P3 3072 28 34.0 sec 185.1 sec 221.6 sec 1.00

Strong scalability analysis: PDE-based Schwarz algorithm with PaStiX as a local solver
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Outline

1 Context

2 Time-domain modeling
Brief history of the development of DGTD methods
DGTD methods for nanoscale light/matter interactions

3 Frequency-domain modeling
Hybridizable DG method
Scalable DD-based HDG solver

4 Closure
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Closure

Particular thanks to:

Stéphane Descombes (Professor Côte d’Azur University and Inria)

Clément Durochat (former PhD student, Inria)

Loula Fezoui (Senior research scientist, Inria)

Alexis Gobé (PhD student, Inria)

Raphaël Léger (fixed-term engineer, Inria)

Liang Li (Assistant professor, School of Mathematical Sciences, UESTC, China)

Ludovic Moya (former PhD student, then fixed-term engineer, Inria)

Claire Scheid (Assistant professor, Côte d’Azur University and Inria)

Nikoläı Schmitt (PhD student, Inria)

Jonathan Viquerat (former PhD student, then fixed-term engineer, Inria)

Emmanuel Agullo, Luc Giraud and Matthieu Kuhn (Potsdoc)
Hiepacs project-team, Inria Bordeaux-Sud Ouest
Numerical linear algebra solvers
PaStiX (sparse direct solver) and MaPHyS (algebraic DDM solver)
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Closure

Ongoing and future works

HDG method for frequency-domain treatment of plasmonic structures
With Liang Li, School of Mathematical Sciences, UESTC, China
In collaboration with Martijn Wubs, DTU Fotonik, Technical University of Denmark

DG-based time-domain modeling of electron beam interaction with nanostructures
PhD thesis of Nikolai Schmitt, ongoing
In collaboration with Kurt Busch, Theoretical Optics & Photonics group
Institut für Physik of Humboldt-Universität zu Berlin, Germany

Exponential time integration schemes for grid-induced stiffness and
high order DGTD method
PhD thesis of Hao Wang (China Scholarship Council fellowship)
In collaboration with Bin Li and Li Xu, School of Physical Electronics
UESTC, Chengdu, China

Reduced-order DGTD modeling
With Kun Li and Liang Li, School of Mathematical Sciences, UESTC, China

Multiscale DG method for time-domain Maxwell equations
PhD thesis of Alexis Gobé, ongoing
In collaboration with Frédéric Valentin, LNCC, Petropolis, Brazil
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Closure

Thank you for your attention !

Nachos project-team

Numerical methods and high performance algorithms for the numerical modeling of
wave interaction with complex geometries/media

Common project-team with J.A. Dieudonné Mathematics Laboratory
UMR CNRS 7351, Côte d’Azur University
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a PEC sphere of radius r = 0.5 m

Incident plane wave angles: θinc = 90◦ and φinc = 0◦

Fequency: 900 MHz - Wavelength: λ ' 0.3333 m - Penalty parameter: τ = 1

Artificial boundary: sphere of radius R

RCS computation σRCS(θ, φ) with θ = 90◦ and φ = 0◦ to 180◦

Parallel simulations performed on the PlaFRIM system

Nodes with 2 dodeca-core Intel Haswell Xeon E5-2680@2.5 GHz, RAM 128 GB

Simulations on 4 nodes and 96 cores

Objective of the study

Validation of RCS computation

Reference solution from BEM solver (Airbus Group Innovations)
CPU: 2 mn 30 sec on 8 cores

Influence of the distance between the object and the absorbing boundary

Absorbing boundary is a sphere of different radius
R = r + 1.5λ, r + 2λ, r + 3λ and r + 4λ (⇒ 4 different meshes)
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a PEC sphere of radius r = 0.5 m

Local adaptation of the interpolation degree (9 points per wavelength): 52 sec

# elements # faces
94, 353 207, 142

P1 12, 977 18, 667
P2 65, 050 134, 346
P3 16, 195 39, 778
P4 131 384
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a PEC sphere of radius r = 0.5 m

Local adaptation of the interpolation degree (9 points per wavelength): 1 mn 51 sec

# elements # faces
119, 244 260, 716

P1 12, 920 18, 474
P2 70, 023 141, 995
P3 31, 943 71, 274
P4 4, 358 11, 967
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a PEC sphere of radius r = 0.5 m

Local adaptation of the interpolation degree (9 points per wavelength): 5 mn 12 sec

# elements # faces
203, 597 439, 311

P1 13, 088 18, 703
P2 93, 106 176, 087
P3 86, 917 191, 581
P4 10, 486 28, 314
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Hybridizable DG method in 3D
Numerical and performance results

Scattering of a plane wave by a PEC sphere of radius r = 0.5 m

Local adaptation of the interpolation degree (9 points per wavelength): 8 mn 1 sec

# elements # faces
334, 768 714, 939

P1 13, 525 19, 401
P2 125, 724 223, 466
P3 177, 914 388, 914
P4 17, 605 48, 236
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