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Nanophotonic: description & modelization

@®0000

@ZZ8 Silicon photonic

Nanophotonic components are devices allowing to manipulate light (see as an
electromagnetic wave) at the nano/micro-metric scale.

Fig. Examples of nanophotonics devices.

By connecting several components it is possible to complete circuit with
complex optical properties.
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Nanophotonic: description & modelization
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@28 Silicon photonic + topology optimization

Shape-optimization applied to nanophotonic: complex geometries.

(a) B. Shen et al., (b) A. Y. Piggot et al., (c) L. F. Frellsen et al., Optics
Nature photonics (2015) Nature photonics (2015)  Express (2016)

Fig. MEB images of manufactured nanophotonic devices
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Nanophotonic: description & modelization

[ele] lele]

@728 Goal

Goal: automatically find the design of components that achieves an optical
function as well as possible.

The optimizable domain C
(that is to say the compo-
nent).

We are looking for the repartition Q of
silicon inside the domain C, that is:

Q silicon part of the component,
C\Q = air.

optimization of a shape in order to maximize a physical objective ‘
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Nanophotonic: description & modelization

@27zl Maxwell's equations

(linear) Maxwell’s equations allows to describe the electric field E : R® — C3
propagation at a given wavelength \:

VxVfok2i12E = 0

where k = 2mc/) is the wavenumber, n the the material’s optical index and
¢ the speed of light.

Optical indices:

o silicon in red (nsiicon =~ 3.5),

e silica in blue (nsijica ~ 1.45),

e air in green (nyr = 1),

e optimizable domain in yellow (C),

y

Z‘\L'X

_ Nsilicon in Q
Ncomponent = naie  in C\Q
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& robustness

Nanophotonic: description & modelization hape optimization problem

| Jelele]

Components are linked through waveguides. Studying them shows that there
exist several propagation modes (eigenvectors associated with the operator
V x V x —k?n?ld such that E(x, y, z) = E(x, y)e'’?).
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(a) A waveguide. (b) Mode &, TEs  (c) Mode £ TMy  (d) Mode &3 TE»
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Nanophotonic: description & modelization

@278 Waveguide modes 2/2
e Every electric field on a waveguide may be decomposed on the &;:

N N .
Bl ) = D)o 3ot snte P [ el o
Jj=1 j=1 JR

)
modes along z; modes along z_ zsfan;?iltiipee;tgzzs
e Orthogonality for all i # j:
/[s,xﬂj+ﬂixsf} ‘nds=0.
r N
e Injection of the n-th mode (E = &, + Z a—_;E_j):
j=1
1 N
nxV xE+ EiUJ[LOEnX%j/I:EXHf:I ‘nds = 2iwpgn X Hp.
= J
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Nanophotonic: description & modelization
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@28 Perfectly Matched Layer

To ensure the unicity of a solution in R3, the electric field must verify at infinity
the Silver-Miiller radiation condition

lim |x| [V x Ex < —iwE ) =0.
|x| =00 |X‘

Numerically we use Perfectly Matched Layers (PML); areas around the
component which fully absorb electromagnetic waves without causing any

reflections.
PML
| | VXxVxXE-KnrE=0
I -l AT X B 2AE = 0
.'. » X xXE—k“n =
fil ‘1L11m 11118 where A is a complex
anisotrope matrix.
PML & |
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Nanophotonic: description & modelization
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@2z8 Full PDE

Variational formulation: E € H(rot, D) solution for all ¢ € H(rot, D) to

//\71V><E-V><¢*fk2n2/\E~¢>*dx+
D

N
iwug/nx <2Hn—;ZHj/[Ex7{f]~ndt) “(nx ¢" xn)ds=0.
r = r

(a) Typical mesh (=5 x 10° tetras.)  (b) FEM simulation (Nédélec el., order 2)
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Shape optimization problem

@®00000

@278 Objective function

We consider a nanophotonic component with N input waveguides and M
output waveguides. For j =1,..., N, we launch a mode &;,; into the j-th
waveguide. We want to obtain other modes £, in the output waveguides.

The power through a surface I is phys-

ically defined as:

_— Eour1 »
f ] L P =L [Re[ExHT-nds
Eout,2 2 Jr
Eing —

We deduce the power carried by a
waveguide mode £, along I' as:

Einn Eourt r 1 « "
— P,,:‘Z/[Ex’i-t,,—i-HxS,,]-nds
r

2
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Shape optimization problem
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@27zl Shape optimization methods

Shape optimization (a.k.a. inverse design) is a set of methods allowing to find
an unparameterized structure which maximizes a given figure of merit.

424_}1!’“) @ Initial parar;;t::rzanon iter 1 iter 7 |

L -
Boundary
parameterization t
Ier

440 nm 12<O_n>m
300 nmi .4_> i.

(a) Genetic algorithm, (b) Density-based, (c) Geometric (level-set),
B. Shen et al., Nature A. Y. Piggot et al., Nature C. M. Lalau-Keraly et al.,
photonics (2015) Optics express (2013)

photonics (2015)
. Different shape optimization methods.
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tives & robustness

Goal: for an objective function J(2), implement a gradient-based algorithm
using the shape derivative of J(Q).

Difficulty: how to define what we meant by "small variation" of a shape ?

Let 8 : R® — R a vector field such that Q is modified into
(Id 4+ 6)(Q2) = {x+ 6(x),x € Q}.
The following first order expansion holds

J((1d +0)(Q)) = T(Q) + T (Q)(6) + o(6).
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Shape optimization problem
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@278 Shape optim. (Hadamard’s method) 2/2

Maximization of the power carried by a mode on a waveguide o, that is:

2

1

J(Q) T

)

/ [Ea x (VX &)+ (V xEq)x E]-nds
Fout

where Egq is solution of the PDE with Ncomponent = Nair + (Nsiticon — Nair) Xa-

Using an adjoint-based method we find that:

J'(Q)(8) = / 6-nV(s)ds

o0

/ * 2 3 2A%Y .
where V(s):k2/Re[nXExn nxA*xn (n°E)-n(n°A")-n dl
0

2 2 \— ) 2y _
(nsilicon - nair) ! (nsilicon - nair ) !
with A solution of a PDE close to the one of E.

Oope = tV(s)n and t small = J((Id + 0op)(Q)) > T(Q).
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Shape optimization problem
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@228 Discontinuity at interfaces and regularity

The shape derivative use (n°E) - n. n? and E - n are discontinuous on an
interface but numerically all the quantities are continuous on the same
tetrahedron.
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where h;, is a smooth approxima-
tion of the Heaviside function and
dq the signed distance to Q.

YAVAVAVA

VAVA
VAVAVAVAVAVA

\VAVAVAVA

AVAVAY

\VAVAVA

let E, be solution to Maxwell

E,, licit b) E,, -explicit ! .
(a) exphict ( ) v, non-explict equation using n,. We have

Fig. An explicit mesh forces all the field's

components to be continuous. Tll'f:o IEn — Ellt(ror,p) = O
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Shape optimization problem

O0000e®

@27zl Numerical representation of shapes

-

(a) Level-set function (b) 3D shape of the component

The shape Q is represented by the 0 level set of the function ¢ : R* — R:
Q={x,¢(x) <0},  0Q={x,¢(x) =0}

If Qo is represented by ¢o = ¢(x,0) then Q1 = (Id + Vn)(Q) is given by
@1 = ¢(x,1) where ¢ is solution to the following Hamilton-Jacobi equation

Orp(x, t) + V[ Vxp(x, 1) | 0
¢(x,0)

oo
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escription & modelization imizati i-objectives & robustness G

-
i i ':
-
1 J- !
| -~ I
i - I
| I
! - :
L __ e ___.,
-»
(a) Computation of the (b) Computation of the (c) Modification of the
electric field Eq and the vector field using the shape shape solving the
adjoint by FEM derivative Hamilton-Jacobi

Fig. One step of the shape optimization algorithm.
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Nanophotonic: d iption & mod [ Shape optimization problem ulti- & robustness

@000

@28 Example 1/3: crossing
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% modelization Shape optimization problem | ives & robustness
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2 (pum)

(c) Energy density

(d) Electric field

Fig. £y — &1 converter.
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Multi-objectives & robustness
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e Multi-objectives & robustness
@ Multi objectives
@ Worst-case robustness
@ Wavelength robustness
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Multi-objectives & robustness

L Jeo}

@28 Multi-objectives: duplexer
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Note: on this slide (only) simulations are done in 2D.
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Multi-objectives & robustness

oe

@220 Multi-objectives descent

We are interested in the case where all the objectives [J;(2) are of equal
importance, meaning that we maximize

max min Ji(Q)-

At each iteration we search for 8 such that

max TF?,NJAQ) + 71 (22)(0).

i=

We can find a common descent direction for each objectives by solving the
following linear program:

max r
o, r

s.t. a e[0,1]", r eR,

Za,—lj —I—Zaj Vi,Vi))<r, i=1,..,N
Nicolas Lebbe July 2, 2019



Multi-objectives & robustness

@228 \Worst-case robustness

Nanophotonic components are subject to several uncertain parameters:
wavelength, temperature, height of the silicon plate, edges rugosity, etching
process etc. ...

Let X be the set of possibe parameters. For instance if we only consider \ then
X = [Xo — ex, Xo + 2] (more generally X is an hypercube).

We are looking for a robust component (worst-case), that is

max min J5(Q) ~ max
Q sex Q =b1,...,

For a 50 nm robustness we could maximize:

mg?x min [j750 nm(Q)a Jo nm(Q)7 J+s0 nm(Q)] .
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Multi-objectives & robustness
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@278 Wavelength robustness 1/2: power divider
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Fig. Non-robust optimization.
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Shape optimization problem Multi-objectives & robustness G | robustness
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Geometrical robustness
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e Geometrical robustness
@ Lithography and etching
@ Shape derivative for dilated/eroded shape
@ Application with lithography-etching
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scription & modelization Shape optimization problem |\ i-objectives & robustness

@28 Physical problem

Because of the manufacturing process the produced shapes are not exactly the
same as the ones we are asking for.

(a) Optimal shape Q (b) Procuced shape Ws(2)
If we try to produce Q we will get Ws(£2) with ¢ an uncertain parameter.

Question: What is the shape derivative of J5(Q2) = J(Ws(Q2)) ?
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iption & modelization Sh imization problem M

@28 Lithography-etching process in practice

R

(a) Asked shape (b) Initial plate (c) Adding resin (d) Lithography
(e) Cleaning (f) Etching (g) Final plate (h) Obtained shape

Fig. Main steps of the lithography-etching process.
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Geometrical robustness

[ele] lo}

cea Modelization

| Q — QIithogra hy — Qetching

e Lithography: convolution-thresholding of the caracteristic function
Qlithography - {Xa (XQ * G)(X) > 5}

where G correspond to a centered gaussian with fixed variance and s € ]0, 1]
the threshold to change the resin's state.

e Etching: dilation or erosion
Qetching - (ld + 6")(Q|ithography)

where § is a small uncertain parameter with values in the interval [—7, 7).
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Geometrical robustness

ooo0e

@28 Lithography approximation

Fig. Optimized shape , Q after
where f is an analytic function. lithography, Q after approximation.

Reminder:
Qlithography - {X7 (XQ * G)(X) > 5}

Hardly differentiable ...

We locally approximate the shape up to
the second order (locally convolution be-
tween a parabola and a gaussian). As
such

ﬁlithography = (Id + f(l{)l’l)(Q)

In conclusion we have Qeiching =~ (Id + gs(x)n) ().
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iption & modelization Sh

Theorem:

Let J5(2) = J((Id +6n)(2)) where J is defined as previously. If § is sufficently
small so that (Id + dn) is a diffeormorphism from Q into the dilated shape
(Id 4+ on)(2) then we have the following shape derivative:

T5()(0) = / 0 - nV{igisny) © (Id + dn)(s)H ds
80

where H = ((Id + 6Vn)~'n - n) |det(ld + §Vn)|.

— In other word, simulating Maxwell equations with (Id + on)(Q2) gives us
information on how to modify Q to optimize J5(2).

Solving maxa min[J;_, (2), 7(2), Tg,,, ()] should give us a shape which is
robust to the (simplified) lithography-etching process with 6 € [—n, 7).
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Geometrical robustness
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@278 Example 1/4: power divider
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Geometrical robustness
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Example 2/4: mode converter 1 — 3
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Geometrical robustness
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@228 Example 3/4: mode converter 1 — 2
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Geometrical robustness
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