

Robust shape optimization for nano-photonics

Nicolas Lebbe^{1,2}, Charles Dapogny², Karim Hassan¹, Edouard Oudet², Alain Glière¹

Seminar, team NACHOS (INRIA Sophia Antipolis) | July 2, 2019

¹ Université Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
 ² Université Grenoble Alpes, Grenoble INP, LJK, F-38000 Grenoble, France

Shape optimization p

em Multi-objectives 000000 obustness Geometrical robustn

Silicon photonic

Nanophotonic components are devices allowing to manipulate light (see as an electromagnetic wave) at the nano/micro-metric scale.

Fig. Examples of nanophotonics devices.

By connecting several components it is possible to complete circuit with complex optical properties.

-27

Shape optimization pro 000000000000 Multi-objectives & robustr

Geometrical robustness

Silicon photonic + topology optimization

Shape-optimization applied to nanophotonic: complex geometries.

(a) B. Shen et al., Nature photonics (2015)

(b) *A. Y. Piggot et al., Nature photonics (2015)*

(c) L. F. Frellsen et al., Optics Express (2016)

Fig. MEB images of manufactured nanophotonic devices

 $\mathcal{C} \setminus \Omega = \text{air.}$

optimization of a shape in order to maximize a physical objective

Multi-objectives & robustn 000000

Nanophotonic: description & modelization

- Silicon photonic
- PDE, Maxwell's equations
- Waveguide modes

Shape optimization problem

- Objective function
- Algorithm
- Results

3 Multi-objectives & robustness

- Multi objectives
- Worst-case robustness
- Wavelength robustness

Geometrical robustness

- Lithography and etching
- Shape derivative for dilated/eroded shape
- Application with lithography-etching

Multi-objectives & robustn 000000

Nanophotonic: description & modelization

- Silicon photonic
- PDE, Maxwell's equations
- Waveguide modes

Shape optimization problem

- Objective function
- Algorithm
- Results

3 Multi-objectives & robustness

- Multi objectives
- Worst-case robustness
- Wavelength robustness

Geometrical robustness

- Lithography and etching
- Shape derivative for dilated/eroded shape
- Application with lithography-etching

Shape optimization pro

m Multi-objectives & 000000

cea

Maxwell's equations

(linear) Maxwell's equations allows to describe the electric field $E : \mathbb{R}^3 \to \mathbb{C}^3$ propagation at a given wavelength λ :

$$\nabla \times \nabla \times \mathbf{E} - k^2 n^2_{\downarrow} \mathbf{E} = 0$$

where $k = 2\pi c/\lambda$ is the wavenumber, *n* the **the material's optical index** and *c* the speed of light.

Optical indices:

- silicon in red ($n_{\rm silicon} \simeq 3.5$),
- silica in **blue** $(n_{\text{silica}} \simeq 1.45)$,
- air in green $(n_{air} = 1)$,
- optimizable domain in yellow (C),

$$n_{
m component} = \left\{ egin{array}{cc} n_{
m silicon} & {
m in} & \Omega \ n_{
m air} & {
m in} & \mathcal{C} igar \Omega \end{array}
ight. .$$

Shape optimization pro

n Multi-objectives

ess Geometrical robustnes 0000000000

Waveguide modes 1/2

Components are linked through **waveguides**. Studying them shows that there exist several **propagation modes** (eigenvectors associated with the operator $\nabla \times \nabla \times -k^2 n^2 ld$ such that $\mathbf{E}(x, y, z) = \mathbf{E}(x, y)e^{i\beta z}$).

Shape optimization pro

m Multi-objectives 000000

Waveguide modes 2/2

• Every electric field on a waveguide may be decomposed on the \mathcal{E}_j :

• Orthogonality for all $i \neq j$:

$$\int_{\Gamma} \left[\boldsymbol{\mathcal{E}}_i \times \boldsymbol{\mathcal{H}}_j^* + \boldsymbol{\mathcal{H}}_i \times \boldsymbol{\mathcal{E}}_j^* \right] \cdot \mathbf{n} \, ds = 0.$$

• Injection of the *n*-th mode $(\mathbf{E} = \mathcal{E}_n + \sum_{j=1} \alpha_{-j} \mathcal{E}_{-j})$:

$$\mathbf{n} imes
abla imes \mathbf{E} + rac{1}{2} i \omega \mu_0 \sum_{j=1}^N \mathbf{n} imes \mathcal{H}_j \int_{\Gamma} \left[\mathbf{E} imes \mathcal{H}_j^*
ight] \cdot \mathbf{n} \ ds = 2 i \omega \mu_0 \ \mathbf{n} imes \mathcal{H}_n.$$

07

Shape optimization pro

m Multi-objectives 000000

Perfectly Matched Layer

To ensure the unicity of a solution in $\mathbb{R}^3,$ the electric field must verify at infinity the Silver-Müller radiation condition

$$\lim_{|\mathbf{x}|\to\infty} |\mathbf{x}| \left(\nabla \times \mathbf{E} \times \frac{\mathbf{x}}{|\mathbf{x}|} - i\omega \mathbf{E} \right) = 0.$$

Numerically we use Perfectly Matched Layers (PML); areas around the component which **fully absorb electromagnetic waves** without causing **any reflections**.

where Λ is a complex anisotrope matrix.

 Nanophotonic:
 description & modelization
 Shape optimization problem
 Multi-objectives & robustness
 Geometrical robustness

 000000000
 0000000000
 0000000000
 0000000000
 00000000000

E Full PDE

Variational formulation: $\mathbf{E} \in H(\mathbf{rot}, \mathcal{D})$ solution for all $\phi \in H(\mathbf{rot}, \mathcal{D})$ to

$$\int_{\mathcal{D}} \Lambda^{-1} \nabla \times \mathbf{E} \cdot \nabla \times \phi^* - k^2 n^2 \Lambda \mathbf{E} \cdot \phi^* \, d\mathbf{x} + i\omega\mu_0 \int_{\Gamma} \mathbf{n} \times \left(2 \,\mathcal{H}_n - \frac{1}{2} \sum_{j=1}^N \mathcal{H}_j \int_{\Gamma} \left[\mathbf{E} \times \mathcal{H}_j^* \right] \cdot \mathbf{n} \, dt \right) \cdot (\mathbf{n} \times \phi^* \times \mathbf{n}) \, ds = 0.$$

(a) Typical mesh ($\approx 5 \times 10^5$ tetras.) (b) FEM simulation (Nédélec el., order 2)

Shape optimization problem

Multi-objectives & robustne

Geometrical robustness

Nanophotonic: description & modelization

- Silicon photonic
- PDE, Maxwell's equations
- Waveguide modes

Shape optimization problem

- Objective function
- Algorithm
- Results

3 Multi-objectives & robustness

- Multi objectives
- Worst-case robustness
- Wavelength robustness

Geometrical robustness

- Lithography and etching
- Shape derivative for dilated/eroded shape
- Application with lithography-etching

Shape optimization problem

ocococo

stness Geometrical robustness 0000000000

Objective function

We consider a nanophotonic component with N input waveguides and M output waveguides. For j = 1, ..., N, we launch a mode $\mathcal{E}_{\text{in},j}$ into the *j*-th waveguide. We want to obtain other modes $\mathcal{E}_{\text{out},j}$ in the output waveguides.

The **power** through a surface Γ is physically defined as:

$$P^{\Gamma} = \frac{1}{2} \int_{\Gamma} \mathcal{R}e\left[\mathbf{E} \times \mathbf{H}^*\right] \cdot \mathbf{n} \, ds$$

We deduce the **power carried by a** waveguide mode \mathcal{E}_n along Γ as:

$$P_n^{\Gamma} = \left| \frac{1}{4} \int_{\Gamma} \left[\mathbf{E} \times \mathcal{H}_n^* + \mathbf{H} \times \mathcal{E}_n^* \right] \cdot \mathbf{n} \, ds \right|^2$$

Shape optimization problem

Shape optimization methods

Shape optimization (a.k.a. inverse design) is a set of methods allowing to find an unparameterized structure which maximizes a given figure of merit.

(a) Genetic algorithm, B. Shen et al., Nature photonics (2015)

(b) Density-based, A. Y. Piggot et al., Nature C. M. Lalau-Keraly et al., photonics (2015)

(c) Geometric (level-set), Optics express (2013)

Fig. Different shape optimization methods.

Shape optim. (Hadamard's method) 1/2

Goal: for an objective function $\mathcal{J}(\Omega)$, implement a gradient-based algorithm using the **shape derivative** of $\mathcal{J}(\Omega)$.

Difficulty: how to define what we meant by "small variation" of a shape ?

Let $\theta : \mathbb{R}^3 \to \mathbb{R}^3$ a vector field such that Ω is modified into $(\mathsf{Id} + \theta)(\Omega) = \{\mathbf{x} + \theta(\mathbf{x}), \mathbf{x} \in \Omega\}.$

The following first order expansion holds

$$\mathcal{J}((\mathsf{Id}+ heta)(\Omega)) = \mathcal{J}(\Omega) + \mathcal{J}'(\Omega)(heta) + o(heta).$$

Shape optim. (Hadamard's method) 2/2

Maximization of the power carried by a mode on a waveguide Γ_{out} , that is:

$$\mathcal{J}(\Omega) \hspace{2mm} = \hspace{2mm} \left| rac{1}{4\omega\mu_0} \int_{\Gamma_{\mathrm{out}}} [\mathsf{E}_\Omega imes (
abla imes \mathcal{E}_j^*) + (
abla imes \mathsf{E}_\Omega) imes \mathcal{E}_j^*] \cdot \mathbf{n} \hspace{0.5mm} ds
ight|^2,$$

where \mathbf{E}_{Ω} is solution of the PDE with $n_{\text{component}} = n_{\text{air}} + (n_{\text{silicon}} - n_{\text{air}})\chi_{\Omega}$.

Using an adjoint-based method we find that:

$$\mathcal{J}'(\Omega)(oldsymbol{ heta}) = \int_{\partial\Omega} oldsymbol{ heta} \cdot \mathbf{n} \; V(s) \; ds$$

where
$$V(s) = k^2 \int_0^l \mathcal{R}e\left[\frac{\mathbf{n} \times \mathbf{E} \times \mathbf{n} \cdot \mathbf{n} \times \mathbf{A}^* \times \mathbf{n}}{(n_{silicon}^2 - n_{air}^2)^{-1}} - \frac{(n^2 \mathbf{E}) \cdot \mathbf{n} (n^2 \mathbf{A}^*) \cdot \mathbf{n}}{(n_{silicon}^{-2} - n_{air}^{-2})^{-1}}\right] dl,$$

with **A** solution of a PDE close to the one of **E**.

 $\theta_{\text{opt}} = tV(s) \mathbf{n} \text{ and } t \text{ small} \quad \Rightarrow \quad \mathcal{J}((\mathsf{Id} + \theta_{\text{opt}})(\Omega)) > \mathcal{J}(\Omega).$

07

Discontinuity at interfaces and regularity

The shape derivative use $(n^2 \mathbf{E}) \cdot \mathbf{n}$. n^2 and $\mathbf{E} \cdot \mathbf{n}$ are discontinuous on an interface but numerically all the quantities are continuous on the same tetrahedron

(a) E_v , explicit **(b)** E_v , non-explicit

Fig. An explicit mesh forces all the field's components to be continuous.

Optical index regularization:

$$n_\eta^2 = n_{
m air}^2 + (n_{
m silicon}^2 - n_{
m air}^2) h_\eta(d_\Omega)$$

where h_n is a smooth approximation of the Heaviside function and d_{Ω} the signed distance to Ω .

let \mathbf{E}_n be solution to Maxwell equation using n_{η} . We have

$$\lim_{\eta\to 0} \|\mathbf{E}_{\eta} - \mathbf{E}\|_{\mathcal{H}(\mathbf{rot},\mathcal{D})} = 0.$$

Shape optimization problem

Multi-objectives & robustnes

Geometrical robustness

cea

Numerical representation of shapes

(a) Level-set function

The shape Ω is represented by the 0 level set of the function $\phi : \mathbb{R}^2 \to \mathbb{R}$:

$$\Omega = \{\mathbf{x}, \phi(\mathbf{x}) < \mathbf{0}\}, \qquad \partial \Omega = \{\mathbf{x}, \phi(\mathbf{x}) = \mathbf{0}\}.$$

If Ω_0 is represented by $\phi_0 = \phi(\mathbf{x}, 0)$ then $\Omega_1 = (Id + Vn)(\Omega_0)$ is given by $\phi_1 = \phi(\mathbf{x}, 1)$ where ϕ is solution to the following Hamilton-Jacobi equation

$$\begin{cases} \partial_t \phi(\mathbf{x}, t) + V \| \nabla_{\mathbf{x}} \phi(\mathbf{x}, t) \| = 0 \\ \phi(\mathbf{x}, 0) = \phi_0 \end{cases}$$

Multi-objectives & robustn 000000 Geometrical robustness

Algorithm in practice

(a) Computation of the electric field \mathbf{E}_{Ω} and the adjoint by FEM

(b) *Computation of the vector field using the shape derivative*

(c) Modification of the shape solving the Hamilton-Jacobi

Fig. One step of the shape optimization algorithm.

-97

Shape optimization problem

Multi-objectives & robustr

Geometrical robustness

Example 1/3: crossing

Nicolas Lebbe

Multi-objectives & robu

Geometrical robustness

Example 1/3: crossing, multiple initializations

Fig. Initial shape as 2×2 Fig. Initial shape as 5×5 Fig. Initial shape as 8×8
holes.holes.holes.

-27

Shape optimization problem

Multi-objectives & robustn

Geometrical robustness

Example 2/3: power divider

Nicolas Lebbe

07

Shape optimization problem

Multi-objectives & robustno 000000 Geometrical robustness

Example 3/3: modes converters

Shape optimization prob

Multi-objectives & robustness

Nanophotonic: description & modelizatior

- Silicon photonic
- PDE, Maxwell's equations
- Waveguide modes

Shape optimization problem

- Objective function
- Algorithm
- Results

3 Multi-objectives & robustness

- Multi objectives
- Worst-case robustness
- Wavelength robustness

Geometrical robustness

- Lithography and etching
- Shape derivative for dilated/eroded shape
- Application with lithography-etching

Shape optimization probl

Multi-objectives & robustness

Geometrical robustness

Multi-objectives: duplexer

Note: on this slide (only) simulations are done in 2D.

Nicolas Lebbe

Shape optimization pro

Multi-objectives & robustness

s Geometrical robustness

cea

Multi-objectives descent

We are interested in the case where all the objectives $\mathcal{J}_i(\Omega)$ are of equal importance, meaning that we maximize

 $\max_{\Omega} \min_{i=1,\ldots,N} \mathcal{J}_i(\Omega).$

At each iteration we search for $\boldsymbol{\theta}$ such that

$$\max_{\theta} \min_{i=1,...,N} \mathcal{J}_i(\Omega) + \mathcal{J}'_i(\Omega)(\theta).$$

We can find a **common** descent direction for each objectives by solving the following linear program:

$$\left\{\begin{array}{ll} \max\limits_{\alpha, r} r \\ \textbf{s.t.} \quad \alpha \in \left[0, 1\right]^{N}, \ r \in \mathbb{R}, \\ \sum\limits_{i=1}^{N} \alpha_{i} = 1, \mathcal{J}_{i}(\Omega) + \sum\limits_{j=1}^{N} \alpha_{j} \left\langle V_{i}, V_{j} \right\rangle < r, \ i = 1, ..., N \end{array}\right.$$

2 Worst-case robustness

Nanophotonic components are subject to **several uncertain parameters**: wavelength, temperature, height of the silicon plate, edges rugosity, etching process etc. ...

Let X be the set of possibe parameters. For instance if we only consider λ then $X = [\lambda_0 - \varepsilon_{\lambda}, \lambda_0 + \varepsilon_{\lambda}]$ (more generally X is an hypercube).

We are looking for a robust component (worst-case), that is

$$\max_{\Omega} \min_{\delta \in X} \mathcal{J}_{\delta}(\Omega) \simeq \max_{\Omega} \min_{\delta = \delta_1, ..., \delta_n} \mathcal{J}_{\delta}(\Omega).$$

For a $\pm 50 \text{ nm}$ robustness we could maximize:

$$\max_{\Omega} \min \left[\mathcal{J}_{-50 \text{ nm}}(\Omega), \mathcal{J}_{0 \text{ nm}}(\Omega), \mathcal{J}_{+50 \text{ nm}}(\Omega) \right].$$

Shape optimization prol 00000000000 Multi-objectives & robustness

Geometrical robustness

cea

Wavelength robustness 1/2: power divider

Shape optimization prol 000000000000 Multi-objectives & robustness

Geometrical robustness

cea

Wavelength robustness 2/2: duplexer

 Shape optimization pr 000000000000 Multi-objectives & robustne

Nanophotonic: description & modelization

- Silicon photonic
- PDE, Maxwell's equations
- Waveguide modes
- Shape optimization problem
 - Objective function
 - Algorithm
 - Results
- 3 Multi-objectives & robustness
 - Multi objectives
 - Worst-case robustness
 - Wavelength robustness

Geometrical robustness

- Lithography and etching
- Shape derivative for dilated/eroded shape
- Application with lithography-etching

Shape optimization pro

n Multi-objectives 000000 Geometrical robustness

22 Physical problem

Because of the manufacturing process the produced shapes are not exactly the same as the ones we are asking for.

If we try to produce Ω we will get $\Psi_{\delta}(\Omega)$ with δ an uncertain parameter.

Question: What is the shape derivative of $\mathcal{J}_{\delta}(\Omega) = \mathcal{J}(\Psi_{\delta}(\Omega))$?

Fig. Main steps of the lithography-etching process.

• Lithography: convolution-thresholding of the caracteristic function

$$\Omega_{\mathsf{lithography}} = \{ \mathsf{x}, (\chi_{\Omega} * G)(\mathsf{x}) > s \}$$

where G correspond to a centered gaussian with fixed variance and $s \in]0,1[$ the threshold to change the resin's state.

• Etching: dilation or erosion

$$\Omega_{\text{etching}} = (\mathsf{Id} + \delta \mathbf{n})(\Omega_{\text{lithography}})$$

where δ is a small uncertain parameter with values in the interval $[-\eta, \eta]$.

Shape optimization pro

Multi-objectives & robustne

Geometrical robustness

Lithography approximation

Reminder:

$$\Omega_{\text{lithography}} = \{\mathbf{x}, (\chi_{\Omega} * G)(\mathbf{x}) > s\}$$

Hardly differentiable ...

We locally approximate the shape up to the second order (locally convolution between a parabola and a gaussian). As such

$$\widetilde{\Omega}_{\text{lithography}} = (\text{Id} + f(\kappa)\mathbf{n})(\Omega)$$

where f is an analytic function.

Fig. Optimized shape Ω , Ω after lithography, Ω after approximation.

In conclusion we have $\Omega_{\text{etching}} \simeq (\text{Id} + g_{\delta}(\mathbf{x})\mathbf{n})(\Omega).$

Shape optimization pro 00000000000 Multi-objectives & robustne

Geometrical robustness

cea

Shape derivative for dilated/eroded shape

Theorem:

Let $\mathcal{J}_{\delta}(\Omega) = \mathcal{J}((\mathsf{Id} + \delta \mathbf{n})(\Omega))$ where \mathcal{J} is defined as previously. If δ is sufficiently small so that $(\mathsf{Id} + \delta \mathbf{n})$ is a diffeormorphism from Ω into the dilated shape $(\mathsf{Id} + \delta \mathbf{n})(\Omega)$ then we have the following shape derivative:

$$\mathcal{J}_{\delta}'(\Omega)(oldsymbol{ heta}) = \int_{\partial\Omega} oldsymbol{ heta} \cdot {\sf n} V_{(\mathsf{Id}+\delta\mathsf{n})(\Omega)} \circ (\mathsf{Id}+\delta\mathsf{n})(s) H \, ds$$

where $H = ((Id + \delta \nabla \mathbf{n})^{-1} \mathbf{n} \cdot \mathbf{n}) |det(Id + \delta \nabla \mathbf{n})|.$

 \rightarrow In other word, simulating Maxwell equations with $(Id + \delta \mathbf{n})(\Omega)$ gives us information on how to modify Ω to optimize $\mathcal{J}_{\delta}(\Omega)$.

Solving $\max_{\Omega} \min[\mathcal{J}_{\mathcal{G}_{-\eta}}(\Omega), \mathcal{J}(\Omega), \mathcal{J}_{\mathcal{G}_{+\eta}}(\Omega)]$ should give us a shape which is robust to the (simplified) lithography-etching process with $\delta \in [-\eta, \eta]$.

Nicolas Lebbe

Shape optimization pro 000000000000 Multi-objectives & robustnes

Geometrical robustness

Example 1/4: power divider

Shape optimization pro

Multi-objectives & ro 000000 Geometrical robustness

Real part of H

Real part of H

Real part of H

cea

Example 2/4: mode converter $1 \rightarrow 3$

707

Shape optimization pro

Multi-objectives & robu

Geometrical robustness

Example 3/4: mode converter $1 \rightarrow 2$

Shape optimization pro

Multi-objectives & robustne

Geometrical robustness

Example 4/4: duplexer

- **Nicolas Lebbe**, Charles Dapogny, Édouard Oudet, Karim Hassan and Alain Glière, *Robust shape and topology optimization of nanophotonic devices using the level set method*, in press, Journal of Computational physics (2018).
- **Nicolas Lebbe**, Alain Glière and Karim Hassan, *High-efficiency and broadband photonic polarization rotator based on multilevel shape optimization*, published in Optics Letters 44, no. 8, 1960–1963 (2019).