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Nanophotonic components are devices allowing to manipulate light (see as an
electromagnetic wave) at the nano/micro-metric scale.

Fig. Examples of nanophotonics devices.

By connecting several components it is possible to complete circuit with
complex optical properties.

Silicon photonic
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Shape-optimization applied to nanophotonic: complex geometries.

(a) B. Shen et al.,
Nature photonics (2015)

(b) A. Y. Piggot et al.,
Nature photonics (2015)

(c) L. F. Frellsen et al., Optics
Express (2016)

Fig. MEB images of manufactured nanophotonic devices

Silicon photonic + topology optimization
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Goal: automatically find the design of components that achieves an optical
function as well as possible.

The optimizable domain C
(that is to say the compo-
nent).

We are looking for the repartition Ω of
silicon inside the domain C, that is:

Ω = silicon part of the component,
C\Ω = air.

optimization of a shape in order to maximize a physical objective

Goal
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(linear) Maxwell’s equations allows to describe the electric field E : R3 → C3

propagation at a given wavelength λ:

∇×∇× E− k2n
↓

2E = 0

where k = 2πc/λ is the wavenumber, n the the material’s optical index and
c the speed of light.

Optical indices:

• silicon in redred (nsilicon ' 3.5),
• silica in blueblue (nsilica ' 1.45),
• air in greengreen (nair = 1),
• optimizable domain in yellowyellow (C),

ncomponent =
{

nsilicon in Ω
nair in C\Ω .

Maxwell’s equations
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Components are linked through waveguides. Studying them shows that there
exist several propagation modes (eigenvectors associated with the operator
∇×∇×−k2n2Id such that E(x , y , z) = E(x , y)e iβz).

(a) A waveguide. (b) Mode E0 TE0 (c) Mode E1 TM0 (d) Mode E3 TE2

Waveguide modes 1/2
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• Every electric field on a waveguide may be decomposed on the E j :

E(x , y , z) =
N∑

j=1

αjE j (x , y)e iβj z

︸ ︷︷ ︸
modes along z+

+
N∑

j=1

α−jE−j (x , y)e−iβ−j z

︸ ︷︷ ︸
modes along z−

+
∫
R

E r
x (x , y)e iβr

x z dx︸ ︷︷ ︸
essential spectrum
⇔ radiative modes

.

• Orthogonality for all i 6= j:∫
Γ

[
E i ×H∗j + Hi × E∗j

]
· n ds = 0.

• Injection of the n-th mode (E = En +
N∑

j=1

α−jE−j):

n×∇× E + 1
2 iωµ0

N∑
j=1

n×Hj

∫
Γ

[
E×H∗j

]
· n ds = 2iωµ0 n×Hn.

Waveguide modes 2/2
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To ensure the unicity of a solution in R3, the electric field must verify at infinity
the Silver-Müller radiation condition

lim
|x|→∞

|x|
(
∇× E× x

|x| − iωE
)

= 0.

Numerically we use Perfectly Matched Layers (PML); areas around the
component which fully absorb electromagnetic waves without causing any
reflections.

∇×∇× E− k2n2E = 0
↓

∇×Λ−1∇×E−k2n2ΛE = 0

where Λ is a complex
anisotrope matrix.

Perfectly Matched Layer
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Variational formulation: E ∈ H(rot,D) solution for all φ ∈ H(rot,D) to∫
D

Λ−1∇× E · ∇ × φ∗ − k2n2ΛE · φ∗ dx +

iωµ0

∫
Γ
n×

(
2 Hn −

1
2

N∑
j=1

Hj

∫
Γ

[
E×H∗j

]
· n dt

)
· (n× φ∗ × n) ds = 0.

(a) Typical mesh (≈ 5× 105 tetras.) (b) FEM simulation (Nédélec el., order 2)

Full PDE
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We consider a nanophotonic component with N input waveguides and M
output waveguides. For j = 1, . . . ,N, we launch a mode E in,j into the j-th
waveguide. We want to obtain other modes Eout,j in the output waveguides.

E in,1

E in,2

E in,N

Eout,1

Eout,2

Eout,M

The power through a surface Γ is phys-
ically defined as:

PΓ = 1
2

∫
Γ
Re [E×H∗] · n ds

We deduce the power carried by a
waveguide mode En along Γ as:

PΓ
n =

∣∣∣∣14
∫

Γ
[E×H∗n + H× E∗n ] · n ds

∣∣∣∣2

Objective function
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Shape optimization (a.k.a. inverse design) is a set of methods allowing to find
an unparameterized structure which maximizes a given figure of merit.

(a) Genetic algorithm,
B. Shen et al., Nature
photonics (2015)

(b) Density-based,
A. Y. Piggot et al., Nature
photonics (2015)

(c) Geometric (level-set),
C. M. Lalau-Keraly et al.,
Optics express (2013)

Fig. Different shape optimization methods.

Shape optimization methods
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Goal: for an objective function J (Ω), implement a gradient-based algorithm
using the shape derivative of J (Ω).

Difficulty: how to define what we meant by "small variation" of a shape ?

Let θ : R3 → R3 a vector field such that Ω is modified into

(Id + θ)(Ω) = {x + θ(x), x ∈ Ω}.

The following first order expansion holds

J ((Id + θ)(Ω)) = J (Ω) + J ′(Ω)(θ) + o(θ).

Shape optim. (Hadamard’s method) 1/2

Nicolas Lebbe July 2, 2019 11 / 33



Nanophotonic: description & modelization Shape optimization problem Multi-objectives & robustness Geometrical robustness

Maximization of the power carried by a mode on a waveguide Γout, that is:

J (Ω) =
∣∣∣∣ 1
4ωµ0

∫
Γout

[EΩ × (∇× E∗j ) + (∇× EΩ)× E∗j ] · n ds
∣∣∣∣2 ,

where EΩ is solution of the PDE with ncomponent = nair + (nsilicon − nair)χΩ.

Using an adjoint-based method we find that:

J ′(Ω)(θ) =
∫
∂Ω

θ · n V (s) ds

where V (s) = k2
∫ l

0
Re
[
n× E× n · n× A∗ × n

(n2
silicon − n2

air)−1 − (n2E) · n (n2A∗) · n
(n−2

silicon − n−2
air )−1

]
dl ,

with A solution of a PDE close to the one of E.

θopt = tV (s) n and t small ⇒ J ((Id + θopt)(Ω)) > J (Ω).

Shape optim. (Hadamard’s method) 2/2
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The shape derivative use (n2E) · n. n2 and E · n are discontinuous on an
interface but numerically all the quantities are continuous on the same
tetrahedron.

(a) Ey , explicit (b) Ey , non-explicit

Fig. An explicit mesh forces all the field’s
components to be continuous.

Optical index regularization:

n2
η = n2

air + (n2
silicon − n2

air)hη(dΩ)

where hη is a smooth approxima-
tion of the Heaviside function and
dΩ the signed distance to Ω.

let Eη be solution to Maxwell
equation using nη. We have

lim
η→0
‖Eη − E‖H(rot,D) = 0.

Discontinuity at interfaces and regularity
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(a) Level-set function (b) 3D shape of the component

The shape Ω is represented by the 0 level set of the function φ : R2 → R:

Ω = {x, φ(x) < 0}, ∂Ω = {x, φ(x) = 0}.

If Ω0 is represented by φ0 = φ(x, 0) then Ω1 = (Id + Vn)(Ω0) is given by
φ1 = φ(x, 1) where φ is solution to the following Hamilton-Jacobi equation{

∂tφ(x, t) + V ‖∇xφ(x, t)‖ = 0
φ(x, 0) = φ0

.

Numerical representation of shapes
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(a) Computation of the
electric field EΩ and the
adjoint by FEM

(b) Computation of the
vector field using the shape
derivative

(c) Modification of the
shape solving the
Hamilton-Jacobi

Fig. One step of the shape optimization algorithm.

Algorithm in practice
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(a) Initial shape (b) Optimized shape
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(d) Energy density (e) Electric field

Example 1/3: crossing
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Fig. Initial shape as 2× 2
holes.

Fig. Initial shape as 5× 5
holes.

Fig. Initial shape as 8× 8
holes.

Example 1/3: crossing, multiple initializations
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(a) Initial shape (b) Optimized shape (c) Conv. graph

(d) Energy density (e) Electric field

Example 2/3: power divider

Nicolas Lebbe July 2, 2019 18 / 33



Nanophotonic: description & modelization Shape optimization problem Multi-objectives & robustness Geometrical robustness

(a) Optimized shape (b) Conv. graph

(c) Energy density (d) Electric field

Fig. E0 → E1 converter.

(a) Optimized shape (b) Conv. graph

(c) Energy density (d) Electric field

Fig. E0 → E2 converter.

Example 3/3: modes converters
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(a) Optimized (b) Conv. graph

(c) λ = 1.31 µm (d) λ = 1.55 µm

Fig. maxΩ J1.31(Ω) + J1.55(Ω).

(a) Optimized (b) Conv. graph

(c) λ = 1.31 µm (d) λ = 1.55 µm

Fig. maxΩ min[J1.31(Ω),J1.55(Ω)].

Note: on this slide (only) simulations are done in 2D.

Multi-objectives: duplexer
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We are interested in the case where all the objectives Ji (Ω) are of equal
importance, meaning that we maximize

max
Ω

min
i=1,...,N

Ji (Ω).

At each iteration we search for θ such that

max
θ

min
i=1,...,N

Ji (Ω) + J ′i (Ω)(θ).

We can find a common descent direction for each objectives by solving the
following linear program:

max
α, r

r

s.t. α ∈ [0, 1]N , r ∈ R,
N∑

i=1

αi = 1,Ji (Ω) +
N∑

j=1

αj 〈Vi ,Vj〉 < r , i = 1, ...,N
.

Multi-objectives descent
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Nanophotonic components are subject to several uncertain parameters:
wavelength, temperature, height of the silicon plate, edges rugosity, etching
process etc. ...

Let X be the set of possibe parameters. For instance if we only consider λ then
X = [λ0 − ελ, λ0 + ελ] (more generally X is an hypercube).

We are looking for a robust component (worst-case), that is

max
Ω

min
δ∈X
Jδ(Ω) ' max

Ω
min

δ=δ1,...,δn
Jδ(Ω).

For a ±50 nm robustness we could maximize:

max
Ω

min [J−50 nm(Ω),J0 nm(Ω),J+50 nm(Ω)] .

Worst-case robustness
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(a) Optimized (b) Conv. graph

(c) Spectrum

Fig. Non-robust optimization.

(a) Optimized (b) Conv. graph

(c) Sim. ±50 nm (d) Spectrum

Fig. Robust (λ± 50nm) optimization.

Wavelength robustness 1/2: power divider

Nicolas Lebbe July 2, 2019 23 / 33



Nanophotonic: description & modelization Shape optimization problem Multi-objectives & robustness Geometrical robustness

1.26 1.32 1.39 1.46 1.53 1.60
0

0.2

0.4

0.6

0.8

1

(a) Initial spectrum

20 40 60 80
0

0.2

0.4

0.6

0.8

1

(b) Conv. graph (c) Optimized spectrum

-2 -1 1 2
-2

-1

1

2

0

1

E
n
e
rg

y
 d

e
n
s
ity

(d) λ = 1.285 µm
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(e) λ = 1.335 µm

-2 -1 1 2
-2

-1

1

2

0

1

E
n
e
rg

y
 d

e
n
s
ity

(f) λ = 1.525 µm

-2 -1 1 2
-2

-1

1

2

0

1

E
n
e
rg

y
 d

e
n
s
ity

(g) λ = 1.575 µm

Wavelength robustness 2/2: duplexer
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Because of the manufacturing process the produced shapes are not exactly the
same as the ones we are asking for.

(a) Optimal shape Ω (b) Procuced shape Ψδ(Ω)

If we try to produce Ω we will get Ψδ(Ω) with δ an uncertain parameter.

Question: What is the shape derivative of Jδ(Ω) = J (Ψδ(Ω)) ?

Physical problem
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(a) Asked shape (b) Initial plate (c) Adding resin (d) Lithography

(e) Cleaning (f) Etching (g) Final plate (h) Obtained shape

Fig. Main steps of the lithography-etching process.

Lithography-etching process in practice
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Ω → Ωlithograhy → Ωetching

• Lithography: convolution-thresholding of the caracteristic function

Ωlithography = {x, (χΩ ∗ G)(x) > s}

where G correspond to a centered gaussian with fixed variance and s ∈ ]0, 1[
the threshold to change the resin’s state.

• Etching: dilation or erosion

Ωetching = (Id + δn)(Ωlithography)

where δ is a small uncertain parameter with values in the interval [−η, η].

Modelization
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Reminder:

Ωlithography = {x, (χΩ ∗ G)(x) > s}

Hardly differentiable ...

We locally approximate the shape up to
the second order (locally convolution be-
tween a parabola and a gaussian). As
such

Ω̃lithography = (Id + f (κ)n)(Ω)

where f is an analytic function.
Fig. Optimized shape Ω, Ω after
lithography, Ω after approximation.

In conclusion we have Ωetching ' (Id + gδ(x)n)(Ω).

Lithography approximation
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Theorem:

Let Jδ(Ω) = J ((Id+δn)(Ω)) where J is defined as previously. If δ is sufficently
small so that (Id + δn) is a diffeormorphism from Ω into the dilated shape
(Id + δn)(Ω) then we have the following shape derivative:

J ′δ(Ω)(θ) =
∫
∂Ω

θ · nV(Id+δn)(Ω) ◦ (Id + δn)(s)H ds

where H =
(

(Id + δ∇n)−1n · n
)
|det(Id + δ∇n)|.

→ In other word, simulating Maxwell equations with (Id + δn)(Ω) gives us
information on how to modify Ω to optimize Jδ(Ω).

Solving maxΩ min[Jg−η (Ω),J (Ω),Jg+η (Ω)] should give us a shape which is
robust to the (simplified) lithography-etching process with δ ∈ [−η, η].

Shape derivative for dilated/eroded shape
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(a) Non-robust shape Ωnr (b) Robust shape Ωr

(c) Objective variation for
Ωnr, δ ∈ [−50, 50] nm

(d) Objective variation for
Ωr, δ ∈ [−50, 50] nm

Example 1/4: power divider
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(a) Non-robust Ωnr (b) Robust Ωr

(c) Objective for Ωnr,
δ ∈ [−25, 25] nm

(d) Objective for Ωr,
δ ∈ [−25, 25] nm

Example 2/4: mode converter 1→ 3
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(a) Non-robust shape (b) Robust optimal shape
-1

1

Example 3/4: mode converter 1→ 2
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(a) Optimal shape (b) Conv. graph (c) Robustness

(d) λ = 1.31 µm,
δ = +10 nm

(e) λ = 1.31 µm,
δ = −10 nm

(f) λ = 1.55 µm,
δ = +10 nm

(g) λ = 1.55 µm,
δ = −10 nm

Example 4/4: duplexer
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Thanks for your attention
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