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Highly Heterogeneous Media
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Upscaling Needed (Multiscale Basis)
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Flow Field

Darcy Velocity
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Transport in a Heterogenous Media

T = 1
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Transport in a Heterogenous Media

T = 2.5
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Transport in a Heterogenous Media

T = 5.0
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Transport in a Heterogenous Media
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Highly Layered Media

3D Domain Non-Aligned Meshes
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Elastic-Wave Propagation in Seismic
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Electromagnetic Wave Propagation in Nano-Structures

Upscaling may improve convergence
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Goals and Outline

I Upscalling through Multiscale Methods

I Locality: Prompt to be used in parallel computers

I Convergence: High-order accuracy

I Robustness: “Coarse” meshes

I Outline (Part I)

I Historical vision of numerical upscaling in FEM

I Main ideas which originates the MHM method

I Some open questions

I Outline (Part II)
I The MHM method on general polygonal meshes

I The construction and properties of the MHM method

I New error analysis
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80’s - 90’s

Stabilized Method, Bubble Function and GFEM

Boundary layers

Rapid changing coe�cients
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A Prototype: The Advection-Di↵usion Model
(
Lu := �r · (Kru) +↵ ·ru = f in ⌦

u = 0 on @⌦

I ↵ 2 W 1,1(⌦) and r ·↵ = 0 in ⌦

I |⇠|2Cmin  ⇠T K(x) ⇠  Cmax|⇠|2 ⇠ 2 Rd and x 2 ⌦

Find u 2 H1
0 (⌦) such that

a(u, v) = (f, v)⌦ 8v 2 H1
0 (⌦)

where

a(u, v) := (Kru, rv)⌦ + (↵ ·ru, v)⌦

Coercivity:

a(v, v) := kK
1/2

rvk2⌦ + (↵ ·rv, v)⌦ � Cminkrvk2⌦

Frederic  Valentin
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Advection Dominate Problem: H|↵| >> Cmin

GALERKIN  METHOD
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Boundary Layer: SUPG (Hughes & Brooks ‘82)

Let P be a (regular) partition of ⌦ and K an element

V1 :=
�
v1 2 H1

0 (⌦) : v1 |K 2 P1(K), 8K 2 P
 

Find u1 2 V1 such that

a(u1, v1) +
X

K2P
⌧K

Z

K

(Lu1 � f)↵ ·rv1dx = (f, v1)⌦ 8v1 2 V1

⌧K =

(
O(H2

K/Cmin)

O(HK/|↵|)

a(v1, v1) � Cminkrv1k
2
⌦ +

X

K2P
⌧Kk↵ ·rv1k

2
0,K

Frederic  Valentin
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Boundary layer problem

GALERKIN METHOD PRESENT METHODSUPGGalerkin
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Upscaling with Bubbles (Brezzi, Franca et al. ‘92)

f |K 2 R, ↵ |K 2 Rd and K 2 Rd⇥d
|K and K is a triangle

Let B be the bubble space, i.e.,

B :=
�
b 2 H1

0 (P) : bK := b |K 2 P3(K), 8K 2 P
 

Find u := u1 + ub 2 V1 �B such that

a(u, v) = (f, v)⌦ 8v := v1 + vb 2 V1 �B

Take v |K = bK above and use ub |K = CK bK

CKaK(bK , bK) = (f, bK)K � aK(u1, bK) = (f, bK)K � (↵ ·ru1, bK)

) CK =

R
K
bK dx

kK1/2rbKk0,K
(f �↵ ·ru1) |K
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Recovering the SUPG (almost!)
I Take v = v1 and use ub |K = CK bK

a(u1, v1) + a(ub, v1) = (f, v1)⌦

)

a(u1, v1) +
X

K2P
(ub,L

⇤ v1)K = (f, v1)⌦

)

a(u1, v1) +
X

K2P
⌧̃K(↵ ·ru1 � f,↵ ·rv1)K = (f, v1)⌦

We only recover the SUPG for the di↵usive dominate cases

⌧̃K :=

h R
K
bK dx

i2

|K| kK1/2rbKk0,K
= O(H2

K/Cmin)

Question: Is there an optimal enriching space B ?
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A Rough Di↵usive 1D Case: " ⌧ H

Find u such that

Lu := �
d

d x

✓
K

" d u

d x

◆
= f in ⌦, u = 0 on @⌦

K
"
2 L1(⌦) has multi-scale features

Cmin  K
"(x)  Cmax x 2 ⌦

Find u 2 H1
0 (⌦) such that

Z

⌦
K

" d u

d x

d v

d x
=

Z

⌦
f v d x

kr(u� u1)k0,⌦  C
H

"
kfk0,⌦
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Generalized FEM: Babuska & Osborn ‘83

VH := span {�"i }
N

i=1 , �
d

d x
K

"(x)
d�"

i

d x
= 0 in K, �"i |@K 2 {0, 1}

Find uH 2 VH such that
Z

⌦
K

"d uH
d x

d vH
d x

dx =

Z

⌦
f vH dx 8vH 2 VH

Nodal exactness

IHu :=
NX

i=1

u(xi)�
"
i

uH(xi) = IHu(xi) = u(xi)

Robustness

kr(u� uH)k0,⌦  C Hkfk0,⌦
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A Multi-Scale Benchmark
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The GFEM

solucao exata
solucao por elementos finitos
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90’s – 00’s

RFB, VMS and MsFEM

I Looking for “optimal” enrichments

I Extending GFEM to 2D/3D cases
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RFB (Brezzi, Franca, Russo ‘94) and VMS (Hughes ‘95)
I Since the “optimal” B is unknown, take the whole space

B := �K2PH
1
0 (K)

I Find uH = u1 + ub such that

a(uH , vH) = (f, vH)⌦ 8vH = v1 + vb

I Take vH = vb |K , and observe ub |K solves

aK(ub, vb) = (f, vb)K � aK(u1, vb)

I ub |K := MK(f � Lu1) satisfies

Lub = f � Lu1 in K, ub |@K = 0

,

ub |K = MK(1K) (f � Lu1) |K , (f � Lu1) |K 2 R

Frederic  Valentin
1D case:  Linear + B = whole space
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RFB (Brezzi, Franca, Russo ‘94) and VMS (Hughes ‘95)
I �K := MK(1K) solves

L�K = 1K in K, �K = 0 on @K

B := {�K}
K2P

I Find u 2 V1 such that

a(u1, v1) +
X

K2TH

Z

K

aK(ub, v1) =

a(u1, v1)�
X

K2TH

Z

K

ub↵ ·rv1 dx =

a(u1, v1) +
X

K2TH

R
K
�K

|K|

Z

K

(↵ ·ru1 � f)↵ ·rv1 dx = (f, v1)⌦
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RFB (Brezzi, Franca, Russo ‘94) and VMS (Hughes ‘95)

k↵kH � kKk

R
K
�K

|K|
= O(

ha

k↵k
) Kha

a

K
a ha

Remark: RFB ⌦ VMS

�K =
R
K
g, Brezzi, F. and Franca, L. P. and Hughes, T. J. R. and

Russo, A., CMAME, 1997
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Stabilized Method ⌦ RFB ⌦ VMS

(taille caracteristique
de la maille est petite

Problemes aux conditions

Methode de Galerkin
(taille caracterisque
de la maille est
grande comparee

aux limites pour toutes 
les echelles

les echelles grossieres)
fines echelles sur
(incorpore l’effet des
Residual-free bubbles

consideration)

sur les echelles grossieres

comparee aux echelles 

des fines echelles
(instabilite - effet
Methode numerique

pour les fines echelles
Methode numerique

aux limites (effet des pe

Methode de Galerkin

Methode variationnelle multiechelle Problemes aux conditio

echelles sur les echelles
grossieres est correctem
pris en consideration)

grossieres)

n’est pas pris en 

Methode stabilisee

(elimine les echelles fines)

aux fines echelles

(stable et consistante)
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Skew-Advection Case
SUPG RFB

Frederic  Valentin


Frederic  Valentin
convection 

Frederic  Valentin


Frederic  Valentin
convection 



The Origin of the MHM Method

Motivation and Goal

MsFEM (Hou, Wu and Cai ‘99): Oscillatory Coe↵.

Find uH 2 VMsFEM such that

a(ums, vms) = (f, vms)⌦ 8vms 2 VMsFEM

VMsFEM := span {�"i }
N

i=1

ums :=
NX

i

ci�
"
i

�r · (K"
r�"i ) = 0 in K, �"i =  i on @K

Resonance Error:

kr(u� ums)k0,⌦  C

✓
H +

⇣ "

H

⌘1/2
◆
kfk0,⌦
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Resonance Influence

h
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Relationship: RFB and MsFEM (Sangalli ‘00)

L
"u := �r · (K"

ru) = f in ⌦, u = 0 in @⌦

ums =
NX

i=1

ci�
"
i =

NX

i

ci i

| {z }
u1

+
NX

i=1

ci(�
"
i �  i) = u1 �

X

K

MK(L"u1)

= u1 +
X

K

h
MK(f � L

"u1)| {z }
ub |K

�MK f
i

= uRFB| {z }
u1+ub

�

X

K

MK f

Resonance Error:

kr(u� uRFB)k0,⌦  C

✓
H +

⇣ "

H

⌘1/2◆
kfk0,⌦
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How to setup local upscalling without bubbles ?

Conforming Non-Conforming

I PGEM and RELP
Petrov-Galerkin
enrichment strategies

I LOD
(Quasi) local solutions
decreasing exponentially

I HMM
Local problems around
integration points

I MsFEM
Including oversampling to set
up boundary conditions

I DEM
Discontinuous enrichment
through Lagrange multipliers

I MHM
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PGEM (Franca, Madureira and Valentin ‘05) and
RELP (Barrenechea and Valentin ‘10)

I B := �K2THH
1
0 (K) and E ⇢ H1

0 (⌦)

I Find uH = u1 + ue 2 V1 + E
(
aK(uH , vb) = (f, vb)K 8vb 2 B

a(uH , v1) = (f, v1)⌦ 8v1 2 V1

I Lue = f � Lu1 in K and ue = g on @K
(
Lsg = f � Lsu1 PGEM

Lsg = F ([@nu1]) RELP

I Find u1 2 V1 such that
X

K

aK((I � M̃K)u1, v1) = (f, v1)⌦ �

X

K

aK(M̃f, v1)
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PGEM: Reactive-Di↵usive Equation
I Assume u solves

Lu := �"�u+ u = f in ⌦ and u |@⌦ = 0

I PGEM: Find u1 2 V1 such that
X

K

aK((I � M̃K)u1, v1) = (f, v1)⌦ �

X

K

aK(M̃Kf, v1)

I The enrichment ue := M̃K(f � u1) satisfies
(
Lue = f � u1 in K and ue = g on @K

Ls g := �@ssg + g = f � u1 F ⇢ @K

I Convergence:

ku� u1k1,P = O(H +

s
H3

l

"
), Hl = diam. first layer
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" = 1

A multiscale base on a patch. Lu := �"�u+ u = f
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" = 0.1

A multiscale base on a patch. Lu := �"�u+ u = f
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" = 0.01 (mass lumping revisited)

A multiscale base on a patch. Lu := �"�u+ u = f
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" = 10�6 and f = 1
GALERKIN  METHOD RFB  METHOD

UNUSUAL  METHOD NEW  ENRICHED  METHOD
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Conclusion

I A survey of (some) multiscale methods from the 80’s to
today

I To compromise local upscaling (parallel computation) with
accuracy and robustness is feasible

I Open questions. Can one stay local and...

I get rid of resonance error completely ?

I converge under low regularity ?

I be robust with respect to high-contrast?

I respect the maximum principle ?
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MHM

Multiscale Hybrid-Mixed Method

A First Glance
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I Christopher Harder - MSDenver/USA

I Europe
I Theophile Chaumont and Stephane Lanteri - Inria/France
I Claire Scheid and Roland Masson - Université de

Nice/France
I Fabrice Jaillet - IUT Lyon1/France
I Gabriel Barrenechea - University of Strathclyde/UK
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MHM Method: A Brief Historical Perspective

Year / Article Contribution

2013
JCP
SINUM

2015
MMS

2016
M2AN
MathComp
Springer

2017
CMAME

2018
MMS

Original idea. A priori and a posteriori
analysis: Darcy model

Extension to the reactive-advective
dominated problem

MHM for Elasticity
Uniform Convergence
Foundations of the MHM

MHM for Stokes equations

MHM for Maxwell equations
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Setting

Let P be a (coarse) partition of ⌦
and @P its boundary

V :=
�
v 2 L2(⌦) : v 2 H1(K)

 

⇤ :=
�
�nK

|
@K

: � 2 H(div,⌦)
 

Here K ⇢ P and @K ⇢ @P

z

x

Ω

K

y

(·, ·)P :=
X

K2P
(·, ·)K and (·, ·)

@P :=
X

K2P
(·, ·)

@K



The Origin of the MHM Method

MHM Method

Hybrid Formulation (Raviart-Thomas ’77)

Find (u, �) 2 V ⇥ ⇤ such that

(Kru, r v)P + (�, v)
@P = (f, v)P 8v 2 V

(µ, u)
@P = 0 8µ 2 ⇤

) u 2 H1
0 (⌦) solves

�r·(Kru) = f in ⌦ and u |@⌦ = 0

) Kru · nK = �� on @K

z

x

Ω

K

y



The Origin of the MHM Method

MHM Method

The MHM Method
Find (u0,H ,�H) 2 V0 ⇥ ⇤H such that

(�H , v0)@TH = (f, v0)TH 8v0 2 V0

(µH , T �H)@TH + (µH , u0,H)@TH = �(µH , T̂ f)@TH 8µH 2 ⇤H

where T �H =
P

i
ci T  i|{z}

⌘i

and T̂ f

(K�1
r ⌘i, r v?)K = �( i, v

?)@K

(K�1
r T̂ f , r v?)K = (f, v?)K

�H =
X

i

ci  i

uH := u0,H + T �H + T̂ f

Frederic  Valentin
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Frederic  Valentin
Local

Frederic  Valentin
Global
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A Typical Heterogenous Basis Function
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MHM Method

Relationship with Other Methods

l = 0, f 2 R
K ⌘ I
RT0/P0

Multi-Scale K

Hou at al. (2002)

l = 0, 1
Multi-Scale K

Arbogast (2004)
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Numerical Validation
An Oscillatory Coe�cient Case
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The Highly-Oscillatory Problem (" = 1
16)

K(x) =
2 + 1.8 sin 2⇡x

"

2 +
1.8 sin 2⇡y

"

+
2 +

1.8 sin 2⇡y

"

2 +
1.8 cos 2⇡x

"

,
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Numerical Validation

Space P2(F ) (16⇥ 16 Elements)

uh0,H + Th �H + T̂h f

Z
-0.0826 0.0832 Y X0.000314
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Numerical Validation

Spaces P0(F ) and P2(F )

uh0,H

Z

0.00108 0.0397 0.0784

LAG2_Levelset

-0.000945 0.045 0.0909

LAG0_Levelset

-0.000454 0.04 0.0805

Gal_Levelset

XY
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Numerical Validation

Spaces P0(F ) and P2(F )

uh0,H + Th �H + T̂h f

Z

-0.000454 0.04 0.0805

Gal_Levelset

-0.000636 0.0405 0.0816

LAG2_Levelset

-0.00913 0.0426 0.0944

LAG0_Levelset

XY
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Numerical Validation

Numerical Validation
A Sharp Boundary Layer Case
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Numerical Validation

Setting: " = 10�5

y

x10

1 u = 1

u = 0

u = 0

u = 1 a
60

o
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Numerical Validation

Same Number of D.O.Fs and Order of Approx.

MHM SUPG

Frederic  Valentin
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advection

Frederic  Valentin
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Numerical Validation

Internal Layer: No Need of Shock-Capturing

PROFILE ZOOM
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Numerical Validation

To be continued in Part II

The MHM method

in

Polygon
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