







# Simulation of RF and Optical Components with Random Input Data

with N. Georg, D. Loukrezis and S. Schöps (TU Darmstadt); NACHOS seminar

Ulrich Römer, 5. April 2018

#### Contents

- Introduction
- Uncertainty Modeling
- Uncertainty Propagation
- Numerical Examples

#### Contents

#### Introduction

- Uncertainty Modeling
- Uncertainty Propagation
- Numerical Examples

#### **Uncertainties in RF and Optical Components**



#### DFG project SIMROCUQ with R. Schuhmann (TU Berlin)



## **Uncertainties in RF and Optical Components**

- Uncertainties in materials and geometry
  - Manufacturing tolerances on nano-scales
  - Material properties/geometries are difficult to measure



Picture from [Preiner et al. 2008]

- Aims of the project:
  - Systematically model and propagate uncertainties in a stochastic setting
  - Develop and assess performance of methods for time-domain and frequency domain settings
- Application focus: periodic metamaterials, plasmonics

Ulrich Römer

#### **Model Problem**





$$\begin{split} \nabla\times\left(\mu_{\mathrm{r}}^{-1}\nabla\times\mathbf{E}\right)-\omega^{2}\underline{\varepsilon}\mu_{0}\mathbf{E}&=0 & \text{ in } D\\ \mathbf{E}|_{\Gamma_{x}^{+}}&=\mathbf{E}|_{\Gamma_{x}^{-}}\boldsymbol{e}^{j\psi_{x}} & \text{ on } \Gamma_{x}^{+}\cup\Gamma_{x}^{-}\\ \mathbf{E}|_{\Gamma_{y}^{-}}&=\mathbf{E}|_{\Gamma_{y}^{+}}\boldsymbol{e}^{j\psi_{y}} & \text{ on } \Gamma_{y}^{+}\cup\Gamma_{y}^{-}\\ \mathbf{n}\times\mathbf{E}&=0 & \text{ on } \Gamma_{z}^{-}\\ (\mu_{\mathrm{r}}^{-1}\nabla\times\mathbf{E})\times\mathbf{n}+\mathcal{F}(\mathbf{E})&=\mathcal{G}(\mathbf{E}^{\mathrm{inc}}) & \text{ on } \Gamma_{z}^{+} \end{split}$$

#### **Model Problem**

Introduce solution space

 $V := \{ \mathbf{v} \in H(\text{curl}, D), \text{ s.t. Dirichlet and periodic b.c.} \}$ 

• Weak formulation: find  $\mathbf{E} \in V$  such that

$$\begin{split} \left( \boldsymbol{\mu}_{r}^{-1} \nabla \times \boldsymbol{\mathsf{E}}, \nabla \times \boldsymbol{\mathsf{E}}' \right)_{D} &- \boldsymbol{\omega}^{2} \boldsymbol{\mu}_{0} \left( \underline{\boldsymbol{\varepsilon}} \boldsymbol{\mathsf{E}}, \boldsymbol{\mathsf{E}}' \right)_{D} \\ &- \left( \boldsymbol{\mathfrak{F}}(\boldsymbol{\mathsf{E}}), \boldsymbol{\mathsf{E}}' \right)_{\Gamma_{z}^{+}} = \left( \boldsymbol{\mathfrak{g}}(\boldsymbol{\mathsf{E}}^{\mathrm{inc}}), \boldsymbol{\mathsf{E}}' \right)_{\Gamma_{z}^{+}} \quad \forall \boldsymbol{\mathsf{E}}' \in \textit{V} \end{split}$$

FEM with Nédélec's elements (2nd order, first kind) leads to

$$\underbrace{\left(\textbf{K}-\boldsymbol{\omega}^{2}\textbf{M}_{\epsilon}(\boldsymbol{\omega})+\textbf{M}^{\mathrm{port}}(\boldsymbol{\omega})\right)}_{=:\textbf{A}}\textbf{e}=\textbf{f}(\textbf{e}^{\mathrm{inc}})$$

## **Sources of Uncertainty**

 Model inputs: constitutive parameters, geometry, initial conditions, boundary conditions, system excitation

[C.J. Roy, W.L. Oberkampf, 2010]



- Numerical approximation errors
- Model-form uncertainty: approximations, abstractions, assumptions on which the model relies

# **Types of Uncertainties**

- Aleatory uncertainty (What is the length of any piece?)
  - Irreducible/stochastic uncertainty
  - Manufacturing process
  - Probabilistic approach
- Epistemic uncertainty (What is the length of a specific piece?)
  - Reducible uncertainty
  - Lack of knowledge
  - Interval/Fuzzy arithmetic vs probabilistic approach (Bayesian)

## **Uncertainty Quantification**

- Uncertainty propagation (forward UQ)
- Given density functions of inputs, determine output densities



## **Inverse Problems in a Bayesian Setting**

- Inverse UQ in a Bayesian setting
- Given measurement data, determine density of inputs



## **Problem Formulation**

#### **Problem Formulation**

- Modeling: identify a (small) vector of input random variables Y with joint distribution f<sub>Y</sub>, capturing the uncertainties under consideration
- Propagation: compute probabilities (or moments) of the system output Q in an efficient way



#### Contents

- Introduction
- Uncertainty Modeling
- Uncertainty Propagation
- Numerical Examples

## **Probabilities and Random Variables**

Real continuous random variable

 $Y: \Theta \to \Xi \quad \text{image } \Xi \subseteq \mathbb{R}$ 

- Random realization  $y = Y(\theta)$
- Probability density function f<sub>Y</sub>

C

$$P(a \leqslant Y \leqslant b) = \int_{a}^{b} f_{Y}(y) \, \mathrm{d}y$$

Moments

$$\begin{split} \mathbb{E}[Y] &= \int_{\Xi} y \; f_Y(y) \; \mathrm{d}y \\ \mathrm{Var}[Y] &= \int_{\Xi} (y - \mathbb{E}[Y])^2 \; f_Y(y) \; \mathrm{d}y \end{split}$$



## **Random Vectors**

- Vector of random variables  $\mathbf{Y}: \Theta \to \mathbb{R}^M$  (components are random variables)
- Mean value defined component-wise
- Correlation

 $\operatorname{cov}(Y_i, Y_j) = \mathbb{E}\left[(Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])\right]$  (covariance matrix)



• Independence:  $f_{\mathbf{Y}} = f_1(y_1) \cdots f_M(y_M)$  (implies no correlation)

#### **Random Fields**

A stochastic process is a collection of random variables

$$\{k_t \mid t \in T\}$$
 interval  $T = [a, b]$ 

if  $T \subset \mathbb{R}$  (random process), if  $T \subset \mathbb{R}^n$  (random field)



# Karhunen-Loève Expansion

Consider the Fredholm integral equation

$$\int_0^1 \operatorname{Cov}[k](\boldsymbol{s}, t) \varphi_i(t) \, \mathrm{d}t = \lambda_i \varphi_i(\boldsymbol{s})$$

Karhunen-Loève expansion

$$k(\theta, t) = \mathbb{E}[k](t) + \sum_{i=1}^{\infty} \sqrt{\lambda_i} \varphi_i(t) Y_i(\theta)$$

- For a Gaussian random field:  $Y_i \sim \mathcal{N}(0, 1)$  i.i.d
- KLE eigenfunctions are orthonormal (L<sup>2</sup>-sense)
- Eigenvalues are real positive, with zero as only cummulation point
- Y<sub>i</sub> are pairwise uncorrelated with zero mean and unit variance

#### **Uncertainties in the Geometry**



- NURBS curves  $\mathbf{C}_{\mathbf{y}}(\xi) = \sum_{j=0}^{n} R_{j}(\xi) \mathbf{P}_{ij}(\mathbf{y})$
- Domain mapping

$$\mathbf{T}_{\mathbf{y}}(\boldsymbol{\xi},\boldsymbol{\eta}) = \boldsymbol{\eta} \mathbf{C}_{\mathbf{y}}^{u}(\boldsymbol{\xi}) + (1-\boldsymbol{\eta}) \mathbf{C}_{\mathbf{y}}^{\prime}(\boldsymbol{\xi})$$

#### **Uncertainties in the Material**



Parametric model for permittivity

$$\underline{\epsilon}(\boldsymbol{\omega}, \mathbf{y}) = \left( n(\boldsymbol{\omega}, \mathbf{y})^2 - \kappa(\boldsymbol{\omega}, \mathbf{y})^2 - j(2n(\boldsymbol{\omega}, \mathbf{y})\kappa(\boldsymbol{\omega}, \mathbf{y})) \right) \epsilon_0$$

## **Uncertainties in the Material**

#### Data according to [Johnson et al. 1972]

| Index | Frequency            | Refractive                         | Extinction                  | Refractive                         | Extinction                  |
|-------|----------------------|------------------------------------|-----------------------------|------------------------------------|-----------------------------|
| i     | f <sub>i</sub> [THz] | index n <sub>i</sub> <sup>Au</sup> | coefficient $\kappa_i^{Au}$ | index n <sub>i</sub> <sup>Ag</sup> | coefficient $\kappa_i^{Ag}$ |
| 0     | 396.55               | $0.14\pm0.02$                      | $4.542\pm0.015$             | $0.03\pm0.02$                      | $5.242\pm0.015$             |
| 1     | 425.57               | $0.13\pm0.02$                      | $4.103\pm0.010$             | $0.04\pm0.02$                      | $4.838\pm0.010$             |
| 2     | 454.58               | $0.14\pm0.02$                      | $3.697\pm0.007$             | $0.05\pm0.02$                      | $4.483\pm0.007$             |

• Interpolate with Lagrange polynomials  $L_i(\omega)$ 

$$n(\omega, \mathbf{y}) = \sum_{i=0}^{2} n_i L_i(\omega), \quad k(\omega, \mathbf{y}) = \sum_{i=0}^{2} k_i L_i(\omega)$$
$$\mathbf{y} = (n_0, \dots, n_2, k_0, \dots, k_2)$$

Karhunen-Loève expansion [Römer et al. 2017] can be used instead

# **Stochastic Problem**

- Parameter vector  $\mathbf{y} \in \Xi \subset \mathbb{R}^M$ , independent with density  $f_{\mathbf{Y}}$
- Parametric problem: find E ∈ L<sup>2</sup><sub>fy</sub>(Ξ) ⊗ V such that almost everywhere (a.e.)

$$\begin{split} \left( \boldsymbol{\mu}_r^{-1} \nabla \times \boldsymbol{\mathsf{E}}, \nabla \times \boldsymbol{\mathsf{E}}' \right)_D &- \boldsymbol{\omega}^2 \boldsymbol{\mu}_0 \left( \underline{\boldsymbol{\varepsilon}}(\boldsymbol{y}) \boldsymbol{\mathsf{E}}, \boldsymbol{\mathsf{E}}' \right)_D \\ &- \left( \boldsymbol{\mathfrak{F}}(\boldsymbol{\mathsf{E}}), \boldsymbol{\mathsf{E}}' \right)_{\Gamma_z^+} = \left( \boldsymbol{\mathfrak{g}}(\boldsymbol{\mathsf{E}}^{\mathrm{inc}}), \boldsymbol{\mathsf{E}}' \right)_{\Gamma_z^+} \quad \forall \boldsymbol{\mathsf{E}}' \in \textit{V} \end{split}$$

material and geometric variability entirely represented by  $\underline{\varepsilon}(\textbf{y})$ 

FEM with Nédélec's elements (2nd order, first kind) leads to

$$\mathbf{A_y}\mathbf{e}(\mathbf{y}) = \mathbf{f}(\mathbf{e}^{\mathrm{inc}})$$

In the end we compute a quantity of interest (scattering parameter)

$$\mathfrak{Q}(\mathbf{y}) := (\mathbf{E}(\mathbf{y}), \mathbf{q})_{\Gamma_z^+}$$

#### Contents

- Introduction
- Uncertainty Modeling
- Uncertainty Propagation
- Numerical Examples

# **Sampling Strategies**

- Systems with random input data require repetitive solution of the model equations
- Monte Carlo



 Random selection of points, no structure

- Collocation
  *y*<sub>1</sub>
  *y*<sub>1</sub>
  *y*<sub>1</sub>
  *y*<sub>2</sub>
- Deterministic points, points with high probability
- Aim is to improve slow convergence of the Monte Carlo method

## **Polynomial Surrogate Model**

#### Key Idea

Compute polynomial surrogate (meta) model

$$\mathfrak{Q}(\mathbf{y}) \approx \mathfrak{Q}_{N}(\mathbf{y}) := \sum_{i=1}^{N} q_{i} \Phi_{i}(\mathbf{y})$$

- $\Phi_i$  are global polynomial basis functions (spectral method)
- Coefficients *q<sub>i</sub>* are determined by collocation, Galerkin, projection, regression method,...

#### **Stochastic Collocation Method**

- Choose points in random domain  $\{\mathbf{y}^{(j)}\}_{j=1}^{N}$  and enforce collocation condition

$$\mathfrak{Q}(\mathbf{y}^{(j)}) = \sum_{i=1}^{N} q_i \Phi_i(\mathbf{y}^{(j)}), \quad j = 1, \dots, N$$

- Requirements: solution at collocation points Q(y<sup>(j)</sup>)
- Call solver with input values y<sup>(j)</sup>: non-intrusive method



### **Stochastic Collocation Method**

Collocation conditions can be written as

$$\begin{bmatrix} \Phi_{1}(\mathbf{y}^{(1)}) & \Phi_{2}(\mathbf{y}^{(1)}) & \cdots & \Phi_{N}(\mathbf{y}^{(1)}) \\ \Phi_{1}(\mathbf{y}^{(2)}) & \Phi_{2}(\mathbf{y}^{(2)}) & \cdots & \Phi_{N}(\mathbf{y}^{(2)}) \\ \vdots & \vdots & \ddots & \cdots \\ \Phi_{1}(\mathbf{y}^{(N)}) & \Phi_{2}(\mathbf{y}^{(N)}) & \cdots & \Phi_{N}(\mathbf{y}^{(N)}) \end{bmatrix} \begin{bmatrix} q_{1} \\ q_{2} \\ \vdots \\ q_{N} \end{bmatrix} = \begin{bmatrix} \Omega(\mathbf{y}^{(1)}) \\ \Omega(\mathbf{y}^{(2)}) \\ \vdots \\ \Omega(\mathbf{y}^{(N)}) \end{bmatrix}$$

or in matrix-vector notation  $\boldsymbol{W}\boldsymbol{q}=\boldsymbol{\Omega}$ 

- Choice of collocation points and polynomial basis is crucial
  - Collocation points: Gauß, Clenshaw Curtis, Leja
  - Polynomial basis: polynomial chaos, Lagrange

# **Collocation Points**

Tensor grid: collocation points are obtained as

$$\{\mathbf{y}^{(i)}\} = \{y_1^{(1)}, \dots, y_1^{(N_1)}\} \times \cdots \times \{y_M^{(1)}, \dots, y_M^{(N_M)}\}$$

Number of points  $N = N_1 \cdots N_M$ 



- Complexity increases exponentially with the dimension: curse-of-dimensionality
- Sparse grids delay the curse-of-dimensionality
  - A priori construction of spare grids, cf. Smolyak
  - Adaptive generation of grid is even more efficient

# Adaptive Sparse Collocation

Polynomial model

$$\mathcal{Q}_{N}(\mathbf{y}) = \sum_{n=1}^{N} q_{\mathbf{i}_{n}} \Phi_{\mathbf{i}_{n}}(\mathbf{y})$$

Collocation points  $\Lambda_N = \bigcup_n \{\mathbf{y}^{(\mathbf{i}_n)}\}$ 

- Points and polynomials are one-to-one
- Leja points: hierarchical, one point per degree

[A. Chkifa, A. Cohen, C. Schwab, 2014]



## Adaptive Sparse Collocation

- Selection of new points: Greedy strategy
  - Compute solutions for neighbour set  $\mathcal{N}(\Lambda_{N-1})$  (red points)
  - Select point satisfying

 $\mathbf{i}_N = \operatorname{argmax}\{|\mathbf{q}_{\mathbf{i}_n}|, \mathbf{i}_n \in \mathcal{N}(\Lambda_{N-1})\}$ 

• Update  $\Lambda_N = \Lambda_{N-1} \cup \{i_N\}$ 



# **Adjoint Method**

- Linear output quantity  $Q(\mathbf{y}) = \mathbf{q}^T \mathbf{e}(\mathbf{y})$
- Primal systemAdjoint system

$$\mathbf{A}_{\mathbf{y}}\mathbf{e}(\mathbf{y}) = \mathbf{f}(\mathbf{e}^{\mathrm{inc}}) \qquad \qquad \mathbf{A}_{\mathbf{y}}^{*}\mathbf{z}(\mathbf{y}) = \mathbf{q}$$

- Approximate both primal and adjoint problem with adaptive collocation method
- Adjoint error indicator

$$\epsilon(\mathbf{y}) = \left| \mathbf{z}^* \left( \mathbf{A}_{\mathbf{y}} \mathbf{e}_{N}(\mathbf{y}) - \mathbf{f}(\mathbf{e}^{\mathrm{inc}}) \right) \right| \approx \left| \mathbf{z}_{N}^* \left( \mathbf{A}_{\mathbf{y}} \mathbf{e}_{N}(\mathbf{y}) - \mathbf{f}(\mathbf{e}^{\mathrm{inc}}) \right) \right|$$

## **Adjoint Adaptive Sparse Collocation**

- Selection of new points revisited
  - Enlarge the neighbour set  $\mathcal{N}(\Lambda_{N-1})$
  - Select point satisfying

 $\mathbf{i}_N = \operatorname{argmax} \{ \epsilon(\mathbf{y}^{(\mathbf{i}_n)}), \mathbf{i}_n \in \mathcal{N}(\Lambda_{N-1}) \}$ 

• Update 
$$\Lambda_N = \Lambda_{N-1} \cup \{\mathbf{i}_N\}$$



#### Contents

- Introduction
- Uncertainty Modeling
- Uncertainty Propagation
- Numerical Examples

## **Distributions of Inputs**





- Absence of large data sets: uniform or Beta dist. are chosen
  - Beta dist.: approximates normal distribution with bounded image
  - Uniform distribution: maximum entropy distribution for random variable in an interval

### **Convergence of Polynomial Approximation**

Consider polynomial chaos expansion

$$\Omega(\mathbf{y}) \approx \sum_{n=1}^{N} q_{\mathbf{i}_n} \Phi_{\mathbf{i}_n}(\mathbf{y})$$

Exponential decay of Fourier coefficients q<sub>i</sub> indicates smoothness



# Single Frequency Case

 Reconstructed density of reflection coefficient (obtained by sampling the surrogate model)



Moments and failure probabilities

| N <sup>MC</sup> | E      | $\sqrt{\mathbb{V}}$   | F     |
|-----------------|--------|-----------------------|-------|
| 10 <sup>3</sup> | 0.6939 | $6.20 \times 10^{-3}$ | 14.3% |
| 10 <sup>4</sup> | 0.6939 | $6.48 \times 10^{-3}$ | 13.9% |
| 10 <sup>5</sup> | 0.6940 | $6.47 \times 10^{-3}$ | 14.1% |
| 106             | 0.6940 | $6.45 \times 10^{-3}$ | 14.2% |

## **Broadband Results**

Variability of reflection coefficient



Moments and failure probabilities

|                  | E       | $\sqrt{\mathbb{V}}$ | $\mathcal{F}_{res}$ |
|------------------|---------|---------------------|---------------------|
| S <sub>res</sub> | 0.685   | 0.017               | 21.9%               |
| fres [THz]       | 413.827 | 0.324               | -                   |

# Summary

- Uncertainties in material and geometry of optical grating coupler
- Quantify uncertainty of coupling resonance
- Uncertainty propagation with Stochastic Collocation
  - Greedy adaptive method
  - Adjoint error indicator to steer adaptivity
- Fast decay of Fourier coefficients: numerical indicator for smoothness
- Recover density of reflection coefficient and most sensitive parameters

# Bibliography

- 1. Georg, N. S., Loukrezis, D., Römer, U., and Schöps, S., Uncertainty Quantification for an Optical Grating Coupler with an Adjoint Error-Based Leja Adaptive Collocation Method, *in preparation*, 2018.
- D. Loukrezis, U. Römer, H. De Gersem, "Numerical Comparison of Leja and Clenshaw-Curtis Dimension-Adaptive Collocation for Stochastic Parametric Electromagnetic Field Problems," arXiv preprint:1712.07223, 2017.
- U. Römer, C. Schmidt, S. Schöps, and U. van Rienen, Low-dimensional stochastic modeling of the electrical properties of biological tissues, IEEE *Transactions on Magnetics* 53.6, 2017.
- Preiner, M. J., Shimizu, K. T., White J. S., and Melosh, N. A., Efficient optical coupling into metal-insulator-metal plasmon modes with subwavelength diffraction gratings, *Applied Physics Letters* 92, 2008.
- 5. Johnson, P. B., Christy, R. W., Optical constants of the noble metals, *Physical review B* 6, 1972.
- 6. C.J. Roy, W.L. Oberkampf, A complete framework for verification, validation and uncertainty quantification in scientific computing, 48th AIAA Aerospace Sciences Meeting, 2010.
- A. Chkifa, A. Cohen, and C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs, *Foundations of Computational Mathematics* 14.4, 2014.

#### Thank you for your attention!