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At optical frequencies (                          ),
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Surface plasmons and geometries

3
Numerical methods in plasmonic structures, CARVALHO, 2018

For simple geometries, one can get the expression of surface plasmons (use of separation 
of variables and deal with ODEs).
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Surface plasmons and geometries
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In more complex geometries: 

-one has to solve PDEs with sign-changing coefficients (mathematical challenges)
-for non regular geometry singular behaviors appear 
-phenomenon of nanofocusing at sub-wavelength (multiple scales to handle)
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Surface plasmons and geometries
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Goal: develop accurate methods that take into account the multiple scales inherent.

In more complex geometries: 

-one has to solve PDEs with sign-changing coefficients (mathematical challenges)
-for non regular geometry singular behaviors appear 
-phenomenon of nanofocusing at sub-wavelength (multiple scales to handle)
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The plasmonic scattering problem

4

uinc = ei
�!
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" = "�(!) := 1�
!2
p

!2 + i!�

"d > 0

"m(!) µm > 0

µd > 0

imaginary part

4 6 8 10 12 14 16

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Fréquence (PHz)

 

 

Partie imaginaire
Partie réelle

Frequency (PHz)

real part
imaginary part

Numerical methods in plasmonic structures, CARVALHO, 2018



/14

Time-harmonic equations for the TM 
polarization

5
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Work at a chosen frequency.
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✤ Radiation condition at finite distance

Mathematically:
-due to the dissipation, the problem has a unique solution 
(Variational formulation + Fredholm theory)
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Numerical illustrations

6

We computed the total field for a triangular silver inclusion embedded in vacuum. We 
use Finite Element of order 2, with a plane wave of incidence                .�⇡/12
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coarse mesh refined mesh

We computed the total field for a triangular silver inclusion embedded in vacuum. We 
use Finite Element of order 2, with a plane wave of incidence                .�⇡/12

The solution is not stable ! Strong oscillations near the corners.
To understand the reasons of such instabilities and how to avoid 
them, we study a limit problem by neglecting dissipation.
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Outline

7

✤ Introduction

✤ The limit problem

✤ Analysis at the corners

✤ Multiscale-FEM approach

✤ Extensions
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The dissipationless Drude’s model

8

At optical frequencies one can neglect dissipation 
so that the metal’s permittivity follows the law:
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Now we consider the scattering problem with 
sign-changing coefficient (chosen frequency):

Numerical methods in plasmonic structures, CARVALHO, 2018



/14

The dissipationless Drude’s model

8

At optical frequencies one can neglect dissipation 
so that the metal’s permittivity follows the law:

" = "0(!) := 1�
!2
p

!2
< 0

4 6 8 10 12 14 16

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Fréquence (PHz)

 

 

Partie imaginaire
Partie réelle

Frequency (PHz)

real part
imaginary part

x

y

div
⇣

1
"(!)rHz

⌘
+

!2

c2
µHz = 0 in BR

@nHz � ikHz = @nu
inc � ikuinc

on �R

Now we consider the scattering problem with 
sign-changing coefficient (chosen frequency):

DR

@DR

DR

@DR

Numerical methods in plasmonic structures, CARVALHO, 2018



/14

The dissipationless Drude’s model
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Mathematically this implies for our problem:
-difficulties to prove existence and uniqueness of the solution
-the corners of the inclusion may cause strong singular behavior
-standard approximation with Finite Elements Methods may fail 
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For a metal : 

is sign changing ?

Well-posedness of the problem

⌦d

⌦m

"d > 0

"m < 0

@DR

���������

Find u := uinc
+ usac 2 H1

(DR) such that:

div("�1ru) +
!2

c2
µu = 0 in DR,

@nu� iku = @uinc � ikuinc
on @DR.

H1(DR) := {u|
Z

DR

|u|2 + |ru|2 dx < +1}
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Idea: build ad hoc isomorphisms to compensate the change of sign.
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If the interface is smooth:

Ic = {�1} Ic =
h
��2⇡

� ; �
��2⇡

i
If the interface has corners:

�

� ! 0, Ic ! R�

� ! ⇡, Ic ! {�1}
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For a metal : 

is sign changing ?

Critical interval and critical frequencies
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is sign changing ?

Two configurations (1)

Outside Ic
(YES) Finite Elements converge (under some condition on the mesh):

design symmetric meshes near the interface to ensure optimal
FE convergence

The scattering problem has a unique solution u 2 H1(DR)

Numerical methods in plasmonic structures, CARVALHO, 2018

Chesnel, Ciarlet (2013), Carvalho, Chesnel, Ciarlet (2017), Bonnet-Ben Dhia, Carvalho, Ciarlet (2018).
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is sign changing ?

Two configurations (2)

Inside Ic
(NO)  No FEM convergence

The scattering problem is ill-posed in H1(DR)
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Two configurations (2)

Inside Ic
(NO)  No FEM convergence

The scattering problem is ill-posed in H1(DR)

Numerical results for triangular silver inclusion in 
vacuum for " 2 Ic
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By energy flux: 
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Near the corners the solution decomposes as
u = b+s+ + b�s� + ũ, ũ 2 H1(DR), s± 62 H1(DR), b± 2 C

-one singularity carries energy absorbed by the corner
-the other brings energy emitted from the corner

The physical solution takes into account the one that does not add 
energy into the system, the outgoing solution in the waveguide 
setting.
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PMLs enable to artificially bound the strip while making the propagative modes become 
evanescent.
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Back to dissipative medium
Considering losses in the metal, then the problem is well-posed. The black-hole waves 
becomes of finite energy. If dissipation is small, it requires meshes sufficiently refined at 
the corners to capture the oscillations. 
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becomes of finite energy. If dissipation is small, it requires meshes sufficiently refined at 
the corners to capture the oscillations. 
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✤ The limit problem
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✤ Multiscale-FEM approach

✤ Extensions
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Consider more relevant models for the metal’s permittivity.
(Drude-Lorentz model or hydrodynamic Drude’s model)

Schmitt, Scheid, Lanteri, Viquerat, Moreau, (2016).
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Near the corners, the solution decomposes as u = bs+ ũ, ũ 2 H1(DR), b 2 C

There are techniques to compute this singular coefficient using a singular complement 
(solution of the homogeneous problem, composed of the 2 singularities and a regular 
part).

This decomposition incites to use the singular complement method: if one knows 
explicitly     , solve forbs ũ

No mesh constrains

We don’t know b

Carvalho, Ciarlet (in preparation).

Introduce one extra problem to solve (technical) but it has to be solved only once !
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Multiscale asymptotic
boundary integral approach
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No high mesh constraints

High mesh constraints

Adapt the mathematical difficulties

Use of SCM

The black-hole is of “infinite" energy. What does it mean in the time domain ?
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Thank you for your attention.
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