Optimized Schwarz Methods for Time-Harmonic Wave Problems

C. Geuzaine¹, X. Antoine², D. Colignon¹, M. El Bouajaji², N. Marsic^{1,3}, B. Thierry⁴, S. Tournier^{1,5}, A. Vion¹

1 - University of Liège, Belgium

2 - University of Lorraine, France

3 - Technische Universität Darmstadt, Germany

4 - CNRS - University of Paris 6, France

5 - Pontificia Universidad Católica de Chile, Chile

http://onelab.info/wiki/GetDDM http://onelab.info/wiki/DDM_for_Waves

Équipe-Projet Inria NACHOS, 20/06/2017

Intro	oduction		
		0000	000

The Helmholtz case

he Maxwell case

Conclusion

1 Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

ONELAB and GetDDM

ne Maxwell case

ONELAB and GetDD

Conclusion

1 Introduction to domain decomposition method

- 2 The Helmholtz case
- 3 The Maxwell case
- ONELAB and GetDDM
- **5** Conclusion

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conclusion
0000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Reference problem

Scattering of an acoustic wave on an obstacle

With...

- k: wavenumber ; $u^{inc} = e^{ik\mathbf{x}\cdot\boldsymbol{\alpha}}$: incident plane wave
- Sommerfeld radiation condition at infinity

Practical applications

- Communication between submarines
- Electromagnetic waves in urban environment

ntroduction The Helmholtz case	The Maxwell case	ONELAB and GetDL	OM Conclusion
•••••••••••••••	0000000 0000000000000000000000000000000	00000 00000	00

Reference problem

FE: truncation of the domain

With...

- n: unit outwardly directed vector to Ω
- Simple Absorbing Boundary Condition (ABC) on Γ^{∞} (not the topic here)

Domain decomposition method

Numerical solution: major problems

- Solution is a wave: mesh refinement (typical element size: $\pi/(5k)$)
- High frequency ($\lambda := \frac{2\pi}{k} \ll L$): direct solving impossible
- Indefinite operator: iterative solving hard if not impossible

Domain decomposition method

Numerical solution: major problems

- Solution is a wave: mesh refinement (typical element size: $\pi/(5k)$)
- High frequency $(\lambda := \frac{2\pi}{k} \ll L)$: direct solving impossible
- Indefinite operator: iterative solving hard if not impossible

Hybrid method: Domain Decomposition Method (DDM)

Domain decomposition method: principle and origin

$$\begin{cases} -\Delta u &= f \quad (\Omega) \\ u &= 0 \quad (\Gamma) \end{cases}$$

Domain decomposition method: principle and origin

$$\begin{cases} -\Delta u &= f \quad (\Omega) \\ u &= 0 \quad (\Gamma) \end{cases}$$

Schwarz alternating method (H. Schwarz (1870))

$$\begin{cases} -\Delta u_1^{n+1} &= f \quad (\Omega_1) \\ u_1^{n+1} &= 0 \quad (\Gamma_1) \\ u_1^{n+1} &= u_2^n \quad (\Sigma_{1,2}) \end{cases} \quad \begin{cases} -\Delta u_2^{n+1} &= f \quad (\Omega_2) \\ u_2^{n+1} &= 0 \quad (\Gamma_2) \\ u_2^{n+1} &= u_1^{n+1} \quad (\Sigma_{2,1}) \end{cases}$$

And glue the solutions in the overlap.

Domain decomposition method: principle and origin

$$\begin{cases} -\Delta u &= f \quad (\Omega) \\ u &= 0 \quad (\Gamma) \end{cases}$$

Additive Schwarz method

$$\begin{cases} -\Delta u_1^{n+1} &= f \quad (\Omega_1) \\ u_1^{n+1} &= 0 \quad (\Gamma_1) \\ u_1^{n+1} &= u_2^n \quad (\Sigma_{1,2}) \end{cases} \quad \begin{cases} -\Delta u_2^{n+1} &= f \quad (\Omega_2) \\ u_2^{n+1} &= 0 \quad (\Gamma_2) \\ u_2^{n+1} &= u_1^n \quad (\Sigma_{2,1}) \end{cases}$$

And glue the solutions in the overlap.

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conc
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Limitations

- (Very) slow convergence
- Overlap is mandatory
- Even with overlap, the algorithm **does not converge for Helmholtz** equation

Introduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	C
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	0

Limitations

- (Very) slow convergence
- Overlap is mandatory
- Even with overlap, the algorithm **does not converge for Helmholtz** equation

Simple case

$$\begin{cases} (\partial_{xx} + \partial_{yy})u_1^{n+1} + k^2 u_1^{n+1} &= 0 & x \in (-\infty, L), y \in \mathbb{R}, \\ u_1^{n+1}(L, y) &= u_2^n(L, y), \end{cases}$$
$$\begin{cases} (\partial_{xx} + \partial_{yy})u_2^{n+1} + k^2 u_2^{n+1} &= 0 & x \in (0, +\infty), y \in \mathbb{R}, \\ u_2^{n+1}(0, y) &= u_1^n(0, y). \end{cases}$$

Fourier transform in the y direction (ξ = Fourier variable)

$$\begin{cases} \partial_{xx}\hat{u}_1^{n+1} + (k^2 - \xi^2)\hat{u}_1^{n+1} &= 0 \qquad x \in (-\infty, L), \xi \in \mathbb{R}, \\ \hat{u}_1^{n+1}(L, \xi) &= \hat{u}_2^n(L, \xi), \end{cases}$$
$$\begin{cases} \partial_{xx}\hat{u}_2^{n+1} + (k^2 - \xi^2)\hat{u}_2^{n+1} &= 0 \qquad x \in (0, +\infty), \xi \in \mathbb{R}, \\ \hat{u}_2^{n+1}(0, \xi) &= \hat{u}_1^n(0, \xi), \end{cases}$$

Solution of the ODE

$$\begin{cases} \hat{u}_1^{n+1}(0,\mathbf{x}) &= e^{-2\sqrt{\xi^2 - k^2}L} \hat{u}_1^{n-1}(0,\mathbf{x}), \\ \hat{u}_2^{n+1}(L,\mathbf{x}) &= e^{-2\sqrt{\xi^2 - k^2L}} \hat{u}_2^{n-1}(L,\mathbf{x}), \end{cases}$$

Convergence factor

$$\rho := e^{-2\sqrt{\xi^2 - k^2}L} = \begin{cases} e^{-2i\sqrt{k^2 - \xi^2}L} & \text{if } \xi^2 \le k^2, \\ e^{-2\sqrt{\xi^2 - k^2}L} & \text{otherwise.} \end{cases}$$

Absolute value of the convergence factor

$$|\rho| := \begin{cases} 1 & \text{if } \xi^2 \leq k^2 \quad \text{(Propagative modes)} \\ e^{-2\sqrt{\xi^2 - k^2}L} & \text{otherwise.} \quad \text{(Evanescent modes)} \end{cases}$$

Absolute value of the convergence factor

$$|\rho| := \begin{cases} 1 & \text{if } \xi^2 \leq k^2 \quad \text{(Propagative modes)} \\ e^{-2\sqrt{\xi^2 - k^2}L} & \text{otherwise.} \quad \text{(Evanescent modes)} \end{cases}$$

Solution

P-L. Lions algorithm: Fourrier-Robin type transmission condition

Decompose the domain (here N = 2)

Recast the system into 2 coupled systems

$$\begin{cases} (\Delta + k^2)u_1 &= 0 & (\Omega_1) \\ u_1 &= -u^{inc} & (\Gamma_1) \\ (\partial_{\mathbf{n}_1} - ik)u_1 &= 0 & (\Gamma_1^{\infty}) \\ (\partial_{\mathbf{n}_1} + S_1)u_1 &= (\partial_{\mathbf{n}_1} + S_1)u_2 & (\Sigma_{1,2}) \\ \\ (\Delta + k^2)u_2 &= 0 & (\Omega_2) \\ u_2 &= -u^{inc} & (\Gamma_2) \\ (\partial_{\mathbf{n}_2} - ik)u_2 &= 0 & (\Gamma_2^{\infty}) \\ (\partial_{\mathbf{n}_2} + S_2)u_2 &= (\partial_{\mathbf{n}_2} + S_2)u_1 & (\Sigma_{2,1}) \end{cases}$$

 S_j : Transmission operators

Parallel Schwarz algorithm

Introducing surface unknown $g_{ij} := (\partial_{\mathbf{n}_i} + S_i)u_j$, the algorithm reads (iteration n to n + 1):

() Solve the N independant problems

$$\begin{cases} (\Delta + k^2)u_1^{n+1} &= 0 & (\Omega_1) \\ u_1^{n+1} &= -u^{inc} & (\Gamma_1) \\ (\partial_{\mathbf{n}_1} - ik)u_1^{n+1} &= 0 & (\Gamma_1^{\infty}) \\ (\partial_{\mathbf{n}_1} + \mathcal{S}_1)u_1^{n+1} &= g_{12}^n & (\Sigma_{1,2}) \end{cases} \\ \begin{cases} (\Delta + k^2)u_2^{n+1} &= 0 & (\Omega_2) \\ u_2^{n+1} &= -u^{inc} & (\Gamma_2) \\ (\partial_{\mathbf{n}_1} - ik)u_2^{n+1} &= 0 & (\Gamma_2^{\infty}) \\ (\partial_{\mathbf{n}_2} + \mathcal{S}_2)u_2^{n+1} &= g_{21}^n & (\Sigma_{2,1}) \end{cases} \end{cases}$$

Opdate the surface unknown

$$\begin{cases} g_{12}^{n+1} &= -g_{21}^n + (\mathcal{S}_1 + \mathcal{S}_2) u_2^{n+1} & (\Sigma_{1,2}) \\ g_{21}^{n+1} &= -g_{12}^n + (\mathcal{S}_1 + \mathcal{S}_2) u_1^{n+1} & (\Sigma_{2,1}) \end{cases}$$

Gather the surface unknown in one vector

$$g = (g_{i,j})_{i,j}$$

One iteration of the algorithm reads as:

$$g^{n+1} = \mathcal{A}g^n + b$$

- \mathcal{A} : iteration operator. Applying \mathcal{A} is amount to solving N volume PDEs + N surface PDEs (with $u^{inc} = 0$)
- b: right-hand side, containing physical information (u^{inc}) .

At convergence, g is solution to:

$$(\mathcal{I} - \mathcal{A})g = b \tag{1}$$

Krylov acceleration

System (1) can be solved using a Krylov subspace solver.

Non-overlapping domain decomposition method

2 subdomains and DtN

Let $\Lambda_j: H^{1/2}(\Sigma) \to H^{-1/2}(\Sigma)$ be the DtN (Dirichlet-to-Neumann) map associated to Ω_j :

$$\Lambda_j f = \partial_{\mathbf{n}_j} w_j, \qquad \text{on } \Sigma.$$

with w_i solution of

$$\left(\begin{array}{ccc} (\Delta + k^2)w_j &=& 0 & \mbox{ in }\Omega_j, \\ w_j &=& 0 & \mbox{ on }\Gamma_j, \\ \partial_{\mathbf{n}}w_j - ikw_j &=& 0 & \mbox{ on }\Gamma_j^\infty, \\ w_j &=& f & \mbox{ on }\Sigma. \end{array} \right)$$

Then, if $S_j = -\Lambda_j$, the algorithm converges in 2 iterations.

Remark

Extended to N subdomains: convergencence in N iterations.

Non-overlapping domain decomposition method

One-dimensional case

$$\left\{ \begin{array}{rrrr} u''+k^2u&=&0,& \mbox{ in } [0,1],\\ u(0)&=&e^{\imath kx}=1,\\ u'(1)-\imath ku(1)&=&0. \end{array} \right.$$

Solution

$$u(x) = e^{ikx}$$

Exact DtN

 $\Lambda = \imath k$

Non-overlapping domain decomposition method

Non-overlapping domain decomposition method

Non-overlapping domain decomposition method

Two major investigation fields

- **()** Transmission condition: find a suitable approximation of $-\Lambda_j$
- **2** Coarse space: decrease the linear convergence rate (in terms of N)

Non-overlapping domain decomposition method

Two major investigation fields

- **Q** Transmission condition: find a suitable approximation of $-\Lambda_j$
- **2** Coarse space: decrease the linear convergence rate (in terms of N)

Problem

The DtN map is **non-local** and therefore is not suitable for FE framework.

Non-overlapping domain decomposition method

Two major investigation fields

- **()** Transmission condition: find a suitable approximation of $-\Lambda_j$
- **2** Coarse space: decrease the linear convergence rate (in terms of N)

Problem

The DtN map is **non-local** and therefore is not suitable for FE framework.

Available methods

- Local approaches: Taylor, Padé, ...
- Integral Equation (Joly et. al)
- PML (Vion and Geuzaine)

ie Maxwell case

ONELAB and GetDD

Conclusion

Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

ONELAB and GetDDM

5 Conclusion

Half-space case with straight interface Σ

$$\left\{ \begin{array}{ll} \Delta u+k^2u=0 & \text{ in } \mathbb{R}^3_+=\{\mathbf{x}\in\mathbb{R}^3; x_1>0\},\\ u=g & \text{ on } \Sigma,\\ u \text{ is outgoing}, \end{array} \right.$$

Fourier transform (variable ξ along Σ)

$$\partial_{\mathbf{n}} u(0,\boldsymbol{\xi}) = \mathcal{F}_{\boldsymbol{\xi}}^{-1}(\sigma(\boldsymbol{\xi})\hat{u}(0,\boldsymbol{\xi}))|_{\Sigma}.$$

Symbol of the DtN

$$\sigma^{\mathrm{sq}}(\boldsymbol{\xi}) = \imath k \sqrt{1 - \frac{|\boldsymbol{\xi}|^2}{k^2}}.$$

DtN map

$$\Lambda^{\mathrm{sq}} := \mathrm{Op}\left(\sigma^{\mathrm{sq}}\right) = \imath k \sqrt{1 + \frac{\Delta_{\Sigma}}{k^2}}.$$

Introduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conclusion
00000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Model problem for convergence analysis

Model problem with two subdomains and a circular interface.

$$\begin{cases} (\Delta + k^2)u_0 &= 0 \quad (\Omega_0) \\ \partial_{\mathbf{n}_0}u_0 + \mathcal{S}u_0 &= g_0 \quad (\Sigma) \\ \lim_{|\mathbf{x}| \to +\infty} |\mathbf{x}|^{1/2}(\partial_{|\mathbf{x}|}u_0 - iku_0) = 0 \end{cases} \quad \begin{cases} (\Delta + k^2)u_1 &= 0 \quad (\Omega_1) \\ \partial_{\mathbf{n}_1}u_1 + \mathcal{S}u_1 &= g_1 \quad (\Sigma) \end{cases}$$

Model problem for convergence analysis

Rewrite \mathcal{A}

$$\mathcal{A} = \left(egin{array}{cc} 0 & \mathcal{T}_0 \ \mathcal{T}_1 & 0 \end{array}
ight), \qquad \mathcal{T}_j g_j^n = -g_j^n + 2 \mathcal{S} u_j^{n+1}.$$

Modal decomposition

$$u_0 = \sum_m \alpha_m H_m^{(1)}(kr)e^{im\theta}, \qquad u_1 = \sum_m \beta_m J_m(kr)e^{im\theta},$$
$$\mathcal{S} = \sum_m S_m e^{im\theta}, \qquad \mathcal{T}_j = \sum_m T_{j,m}e^{im\theta}, \qquad g_j = \sum_m g_{j,m}(r)e^{im\theta}.$$

Recurrence relation

$$g_{j,m}^{n+1} = T_{0,m}T_{1,m}g_{j,m}^{n-1}.$$

Convergence factor

$$\forall m, \qquad \rho_m := T_{0,m} T_{1,m} = \left[\frac{-kZ_{0,m} + S_m}{kZ_{0,m} + S_m} \right] \cdot \left[\frac{-kZ_{1,m} + S_m}{kZ_{1,m} + S_m} \right],$$

 $Z_{0,m} = -\frac{H_m^{(1)'}(kR_0)}{H_m^{(1)}(kR_0)} \text{ and } Z_{1,m} = \frac{J_m(kR_0)}{J_m(kR_0)}. \quad \text{Remark: } (S_m = 0) \Rightarrow (\rho_m = 1)$

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conclusion
0000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Model problem for convergence analysis

Square root operator

$$\mathcal{S}^{\mathrm{sq}} = -\Lambda^{\mathrm{sq}} = -ik\sqrt{1 - \frac{\Delta_{\Sigma}}{k^2}}.$$

Modal decomposition

$$S_m^{sq} = -ik\sqrt{1 - \frac{m^2}{k^2 R_0^2}}.$$

 ${\rm Remark}: \mbox{ if } m^2 = k^2 R_0^2 \mbox{ then } \rho_m^{\rm sq} = 1.$

Impedance Boundary Condition (IBC) [Després, 1991]

Low frequency approximation ($\xi \rightarrow 0$):

$$\sigma^{\rm sq}(\xi) = \imath k \sqrt{1 - \frac{|\boldsymbol{\xi}|^2}{k^2}} \approx ik. \qquad \qquad \mathcal{S}^{\rm IBC} u = -\imath k u.$$

Transmission Operators for Helmholtz equation

Optimized Order 2 [Gander, Magoulès and Nataf, 2002]

$$\sigma^{\rm sq}(\xi) = \imath k \sqrt{1 - \frac{|\boldsymbol{\xi}|^2}{k^2}} \approx a(\delta\xi) - b(\delta\xi)\xi^2,$$

where a and b are solution of the min-max problem

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta}\in\mathbb{C}} \left(\max_{\xi_{min}\in(0,k-\delta\xi)\cup(k+\delta\xi,\xi_{max})} |\widetilde{\rho}(\xi;\boldsymbol{\alpha},\boldsymbol{\beta})| \right),$$

where $\widetilde{\rho}$ is the convergence factor in the case $(-\infty, 0] \times \mathbb{R}$ and $[0, +\infty) \times \mathbb{R}$:

$$\widetilde{\rho}(\xi) = \left| \frac{\sigma^{sq}(\xi) - \sigma^{oo2}(\xi; a, b)}{\sigma^{sq}(\xi) + \sigma^{oo2}(\xi; a, b)} \right|^2.$$

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Con
00000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Optimized Order 2 [Gander, Magoulès and Nataf, 2002]

$$\sigma^{\rm sq}(\xi) = \imath k \sqrt{1 - \frac{|\boldsymbol{\xi}|^2}{k^2}} \approx a(\delta\xi) - b(\delta\xi)\xi^2.$$

$$\mathcal{S}^{\mathsf{OO2}}u = a(\delta\xi)u + b(\delta\xi)\Delta_{\Sigma}u,$$

troduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conc
0000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Modified DtN [Boubendir, Antoine and Geuzaine, 2012]

$$\mathcal{S}^{\mathrm{sq},\varepsilon}u = -\imath k \sqrt{1 + \frac{\Delta_{\Sigma}}{k_{\varepsilon}^2}}u,$$

where $k_{\varepsilon} = k + i\varepsilon$ and $\varepsilon > 0$.

Optimal ε

Searching for ε_{opt} such that:

 $\min_{\varepsilon>0} \max_m |\rho_m^{\mathrm{sq},\varepsilon}| \,.$

Assume that $\max_m |\rho_m^{\mathrm{sq},\varepsilon}|$ is reached on $m = kR_0$, then we can prove that

 $\varepsilon_{opt} \approx 0.39 k^{1/3} R_0^{-2/3}.$

Formally extended to other curves by (\mathcal{H} : local mean curvature):

$$\varepsilon_{opt} \approx 0.39 k^{1/3} \mathcal{H}^{2/3}$$

Transmission Operators for Helmholtz equation

Modified DtN [Boubendir, Antoine and Geuzaine, 2012]

$$\mathcal{S}^{\mathrm{sq},\varepsilon} u = -\imath k \sqrt{1 + \frac{\Delta_{\Sigma}}{k_{\varepsilon}^2}} u,$$

where $k_{\varepsilon} = k + i\varepsilon$ and $\varepsilon = 0.39k^{1/3}\mathcal{H}^{2/3}$ (\mathcal{H} : local mean curvature).

Modal decomposition

Classical Padé approximants on square root

$$\sqrt{1+X} \approx R_{N_p}(X) = c_0 + \sum_{\ell=1}^{N_p} \frac{a_\ell X}{1+b_\ell X},$$

 N_p is the number of Padé approximants.

Localization of the nonlocal operator $\mathcal{S}^{\mathrm{sq},\varepsilon}u=-\imath k\sqrt{1+\frac{\Delta_{\Sigma}}{k_{\varepsilon}^2}}~u$

$$\mathcal{S}^{\mathsf{GIBC}(N_p,\,\varepsilon)}u = -ikc_0u - ik\sum_{\ell=1}^{N_p} a_\ell \mathsf{div}_{\Sigma}\left(\frac{1}{k_{\varepsilon}^2}\nabla_{\Sigma}\right)\left(\mathcal{I} + b_\ell \mathsf{div}_{\Sigma}\left(\frac{1}{k_{\varepsilon}^2}\nabla_{\Sigma}\right)\right)^{-1}u.$$

Modal decomposition for different number of N_p

Vanishing modes are not well approximated

$$S_m^{\mathrm{sq},\varepsilon} = -ik\sqrt{1 - \left(\frac{m^2}{k_\varepsilon^2 R_0^2}\right)}.$$

Complex Padé approximants on square root (α : rotation of the branch cut)

$$\sqrt{1+X} = e^{i\alpha/2} \sqrt{(1+X)e^{-i\alpha}} \approx R_{N_p}^{\alpha}(X) = C_0(\alpha) + \sum_{\ell=1}^{N_p} \frac{A_\ell(\alpha)X}{1+B_\ell(\alpha)X}.$$

Localization of the nonlocal operator $\mathcal{S}^{\mathrm{sq},\varepsilon}u=-\imath k\sqrt{1+rac{\Delta\Sigma}{k_{\varepsilon}^2}}~u$

$$\mathcal{S}^{\mathsf{GIBC}(N_p,\,\alpha,\,\varepsilon)}u = -ikC_0(\alpha)u - ik\sum_{\ell=1}^{N_p} A_\ell(\alpha)\mathsf{div}_{\Sigma}\left(\frac{1}{k_{\varepsilon}^2}\nabla_{\Sigma}\right)\left(\mathcal{I} + B_\ell(\alpha)\mathsf{div}_{\Sigma}\left(\frac{1}{k_{\varepsilon}^2}\nabla_{\Sigma}\right)\right)^{-1}u.$$

Modal decomposition for different number of N_p and $\alpha = \pi/4$

Eigenvalue distribution in the complex plane for the exact and Padé-localized square-root transmission operator of order 4 (left) and 8 (right).

Eigenvalues distribution with respect to the number of Padé approximants

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conclusi
00000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Comparison of the transmission operators

Convergence factor

Comparison of the transmission operators

Eigenvalue distribution in the complex plane for (I - A)

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conclu
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

"concentric-" and "pie-" decomposition

troduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Concl
000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Con
00000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Convergence for the "circle-pie" decomposition. Number of iterations vs. wavenumber.

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conc
000000000000000000	000000000000000000000	000000000000000000000000000000000000000	00000	00

Convergence for the "circle-concentric" decomposition. Number of iterations vs. mesh density

The Helmholtz case

The Maxwell case

ONELAB and GetDE

Conclusion

Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

ONELAB and GetDDM

5 Conclusion

Non-Overlapping DDM for Maxwell

P-L. Lions algorithm

From iteration n to n + 1:

• Solve, for $i = 1, \ldots, N$:

$$\begin{cases} \operatorname{\mathbf{curl}}\operatorname{\mathbf{curl}}\mathbf{E}_{i}^{(n+1)} - k^{2} \mathbf{E}_{i}^{(n+1)} &= \mathbf{0} & \operatorname{in} \Omega_{i}, \\ \gamma_{i}^{T}(\mathbf{E}_{i}^{(n+1)}) &= -\gamma_{i}^{T}(\mathbf{E}^{\operatorname{inc}}) & \operatorname{in} \Gamma_{i}^{D}, \\ -\frac{i}{k}\gamma_{i}^{t}(\operatorname{\mathbf{curl}}\mathbf{E}_{i}^{(n+1)}) + \mathcal{S}(\gamma_{i}^{T}(\mathbf{E}_{i}^{(n+1)})) &= \mathbf{g}_{ij}^{(n)} & \operatorname{in} \Sigma_{ij}. \end{cases}$$

Opdate surface quantities:

$$\begin{split} \boldsymbol{g}_{ji}^{(n+1)} &= \frac{i}{k} \gamma_i^t (\mathbf{curl} \ \mathbf{E}_i^{(n+1)}) + \mathcal{S}(\gamma_i^T(\mathbf{E}_i^{(n+1)})) \\ &= -\boldsymbol{g}_{ij}^{(n)} + 2\mathcal{S}(\gamma_i^T(\mathbf{E}_j^{(n+1)})), \quad \text{on } \Sigma_{ij}. \end{split}$$

where we have introduce the trace operators:

$$\gamma_i^t: \mathbf{v}_i \mapsto \mathbf{n}_i \times \mathbf{v}_{i|\partial \Omega_i} \quad \text{and} \quad \gamma_i^T: \mathbf{v}_i \mapsto \mathbf{n}_i \times (\mathbf{v}_{i|\partial \Omega_i} \times \mathbf{n}_i).$$

Non-Overlapping DDM for Maxwell

Krylov acceleration

As for the Helmholtz case, the whole algorithm can be recast into a linear system:

$$(\mathcal{I} - \mathcal{A})g = b.$$

Transmission operators

Again, the transmission operator ${\mathcal S}$ has a direct impact on the iteration operator ${\mathcal A}.$

Transmission Operators for Maxwell

Half-space problem ($\Omega := (-\infty, 0) \times \mathbb{R}^2$))

$$\begin{cases} \mathbf{curl} \mathbf{H} + i\mathbf{k}\mathbf{E} = 0 & (\Omega) \\ \mathbf{curl} \mathbf{E} - i\mathbf{k}\mathbf{H} = 0 & (\Omega) \\ \gamma^{T}(\mathbf{E}) = -\gamma^{T}(\mathbf{E}^{\text{inc}}) & (\Sigma) \\ \lim_{\|\mathbf{x}\| \to \infty} \|\mathbf{x}\| \left(\mathbf{E} + \frac{\mathbf{x}}{\|\mathbf{x}\|} \times \mathbf{H}\right) = 0 \end{cases}$$

Surface electric and magnetic currents

$$\mathbf{J} = \mathbf{n} \times \mathbf{E}, \qquad \mathbf{M} = \mathbf{n} \times \mathbf{H}$$

MtE

$$\mathbf{M} + \Lambda^{\mathrm{sq}}(\mathbf{n} \times \mathbf{J}) = 0,$$

with

$$\Lambda^{\mathrm{sq}} = (\Lambda_1^{\mathrm{sq}})^{-1} \Lambda_2^{\mathrm{sq}},$$

$$\Lambda_1^{\mathrm{sq}} = \left(\mathbf{I} + \nabla_{\Sigma} \frac{1}{k^2} \mathrm{div}_{\Sigma} - \mathbf{curl}_{\Sigma} \frac{1}{k^2} \mathrm{curl}_{\Sigma}\right)^{1/2}, \qquad \Lambda_2^{\mathrm{sq}} = \left(\mathbf{I} - \frac{1}{k^2} \mathbf{curl}_{\Sigma} \mathrm{curl}_{\Sigma}\right).$$

Transmission Operators for Maxwell

$$\Lambda^{\mathrm{sq}} = (\Lambda_1^{\mathrm{sq}})^{-1} \Lambda_2^{\mathrm{sq}},$$
$$\Lambda_1^{\mathrm{sq}} = \left(\mathbf{I} + \nabla_{\Sigma} \frac{1}{k^2} \mathrm{div}_{\Sigma} - \mathbf{curl}_{\Sigma} \frac{1}{k^2} \mathrm{curl}_{\Sigma}\right)^{1/2}, \qquad \Lambda_2^{\mathrm{sq}} = \left(\mathbf{I} - \frac{1}{k^2} \mathbf{curl}_{\Sigma} \mathrm{curl}_{\Sigma}\right).$$

Oth-order transmission condition IBC(0) [Després, 1992]

$$\mathcal{S}_{\mathsf{IBC}(0)}(\gamma^T(\mathbf{E})) = \gamma^T(\mathbf{E}).$$

Optimized impedance boundary condition $GIBC(\alpha)$ [Alonso-Rodriguez and Gerardo-Giorda, 2006]

$$\mathcal{S}_{\mathsf{GIBC}(\alpha)}(\gamma^T(\mathbf{E})) = \alpha \left(\mathbf{I} - \frac{1}{k^2}\mathbf{curl}_{\Sigma}\mathbf{curl}_{\Sigma}\right) \gamma^T(\mathbf{E}),$$

where α is chosen thanks to an optimization process.

Transmission Operators for Maxwell

$$\Lambda^{\mathrm{sq}} = (\Lambda_1^{\mathrm{sq}})^{-1} \Lambda_2^{\mathrm{sq}},$$
$$\Lambda_1^{\mathrm{sq}} = \left(\mathbf{I} + \nabla_{\Sigma} \frac{1}{k^2} \mathrm{div}_{\Sigma} - \mathbf{curl}_{\Sigma} \frac{1}{k^2} \mathrm{curl}_{\Sigma}\right)^{1/2}, \qquad \Lambda_2^{\mathrm{sq}} = \left(\mathbf{I} - \frac{1}{k^2} \mathbf{curl}_{\Sigma} \mathrm{curl}_{\Sigma}\right).$$

Optimized second-order GIBC(α , β) [Rawat and Lee, 2010]

$$\mathcal{S}_{\mathsf{GIBC}(a, b)}(\gamma^{T}(\mathbf{E})) = \left(\mathbf{I} + \frac{a}{k^{2}} \nabla_{\Sigma} \mathrm{div}_{\Sigma}\right)^{-1} \left(\mathbf{I} - \frac{b}{k^{2}} \mathbf{curl}_{\Sigma} \mathrm{curl}_{\Sigma}\right) \gamma^{T}(\mathbf{E}),$$

where a and b are chosen so that an optimal convergence rate is obtained for the (TE) and (TM) modes.

This condition has been generalized in [Dolean, Gander, Lanteri, Lee and Peng, 2015].

Transmission Operators for Maxwell

Modified square root operator

$$\Lambda^{\mathrm{sq},\varepsilon} = (\Lambda_1^{\mathrm{sq},\varepsilon})^{-1} \Lambda_2^{\mathrm{sq},\varepsilon},$$

$$\Lambda_1^{\mathrm{sq},\varepsilon} = \left(\mathbf{I} + \nabla_{\Sigma} \frac{1}{k_{\varepsilon}^2} \mathrm{div}_{\Sigma} - \mathbf{curl}_{\Sigma} \frac{1}{k_{\varepsilon}^2} \mathrm{curl}_{\Sigma}\right)^{1/2}, \qquad \Lambda_2^{\mathrm{sq},\varepsilon} = \left(\mathbf{I} - \frac{1}{k_{\varepsilon}^2} \mathbf{curl}_{\Sigma} \mathrm{curl}_{\Sigma}\right).$$

Padé-localized square-root transmission condition GIBC(N_p, α, ε) [El Bouajaji, Antoine, Geuzaine, Thierry, 2014]

$$\begin{aligned} \mathcal{S}_{\mathsf{GIBC}(N_p,\,\alpha,\,\varepsilon)}(\gamma^T(\mathbf{E})) &= \left(C_0 + \sum_{\ell=1}^{N_p} A_\ell X \left(\mathcal{I} + B_\ell X\right)^{-1}\right)^{-1} \\ & \left(\mathcal{I} - \mathbf{curl}_{\Sigma} \frac{1}{k_{\varepsilon}^2} \mathrm{curl}_{\Sigma}\right) \gamma^T(\mathbf{E}), \end{aligned}$$

with $X := \nabla_{\Sigma} \frac{1}{k_{\varepsilon}^2} \operatorname{div}_{\Sigma} - \operatorname{curl}_{\Sigma} \frac{1}{k_{\varepsilon}^2} \operatorname{curl}_{\Sigma}$, and where k_{ε} , C_0 , A_{ℓ} and B_{ℓ} are defined as in the Helmholtz case.

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conclusio
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

Transmission Operators for Maxwell

Convergence Analysis for a Model Problem

Model problem with two subdomains and a spherical interface:

 $\Omega_0 = \{ \mathbf{x} \in \mathbb{R}^3, ||\mathbf{x}|| > R_0 \}, \quad \Omega_1 = \{ \mathbf{x} \in \mathbb{R}^3, ||\mathbf{x}|| < R_0 \}.$

Convergence Analysis for a Model Problem

Let

$$\begin{cases} A_{m,1} = \imath \mu_{m,\varepsilon}^{-\frac{1}{2}} \xi_m^{(1)'}(kR_0) - \xi_m^{(1)}(kR_0), & B_{m,1} = \imath \mu_{m,\varepsilon}^{-\frac{1}{2}} \psi_m'(kR_0) - \psi_m(kR_0), \\ A_{m,2} = \imath \xi_m^{(1)'}(kR_0) - \mu_{m,\varepsilon}^{\frac{1}{2}} \xi_m^{(1)}(kR_0), & B_{m,2} = \imath \psi_m'(kR_0) - \mu_{m,\varepsilon}^{\frac{1}{2}} \psi_m(kR_0), \\ A_{m,3} = \imath \mu_{m,\varepsilon}^{-\frac{1}{2}} \psi_m'(kR_0) + \psi_m(kR_0), & B_{m,3} = \imath \mu_{m,\varepsilon}^{-\frac{1}{2}} \xi_m^{(1)'}(kR_0) + \xi_m^{(1)}(kR_0), \\ A_{m,4} = \imath \psi_m'(kR_0) + \mu_{m,\varepsilon}^{\frac{1}{2}} \psi_m(kR_0), & B_{m,4} = \imath \xi_m^{(1)'}(kR_0) + \mu_{m,\varepsilon}^{\frac{1}{2}} \xi_m^{(1)}(kR_0), \end{cases}$$

where

- $\mu_{m,\varepsilon} = 1 \frac{m(m+1)}{k_{\varepsilon}^2 R^2}$
- ψ_m and ζ_m are respectively the first- and second-kind Ricatti-Bessel functions of order m
- $\xi_m^{(1)} = \psi_m + \imath \zeta_m$ is the first-kind spherical Hankel's function of order m
Convergence Analysis for a Model Problem

We can show that:

$$\mathbf{g}^{(n+1),m} = \begin{pmatrix} (\mathbf{g}_{12}^{(n+1),m})_1\\ (\mathbf{g}_{12}^{(n+1),m})_2\\ (\mathbf{g}_{21}^{(n+1),m})_1\\ (\mathbf{g}_{21}^{(n+1),m})_2 \end{pmatrix} = \mathbb{A}_m \mathbf{g}^{(n),m} := \begin{pmatrix} 0 & 0 & \frac{B_{m,1}}{A_{m,3}} & 0\\ 0 & 0 & 0 & \frac{B_{m,2}}{A_{m,4}}\\ \frac{B_{m,3}}{A_{m,1}} & 0 & 0 & 0\\ 0 & \frac{B_{m,4}}{A_{m,2}} & 0 & 0 \end{pmatrix} \mathbf{g}^{(n),m}$$

with \mathbb{A}_m the iteration matrix for a mode $m \geq 1$, with eigenvalues

$$\lambda_{m,1} = \sqrt{\frac{B_{m,1} \ B_{m,3}}{A_{m,1} \ A_{m,3}}} = -\lambda_{m,2}, \quad \lambda_{m,3} = \sqrt{\frac{B_{m,2} \ B_{m,4}}{A_{m,2} \ A_{m,4}}} = -\lambda_{m,4}.$$

One can prove that $\mathcal{A} = \operatorname{diag}((\mathbb{A}_m)_{m \geq 1})$. Therefore, studying the global convergence of the DDM for \mathcal{A} requires the spectral study of the modal iteration matrices \mathbb{A}_m , for $m \geq 1$.

Convergence Analysis for a Model Problem

Quasi-optimality of GIBC(sq, ε)

One can prove that $\rho(\mathbb{A}_m) < 1, \forall m \ge 1$, and that

$$\lim_{m \to \infty} \lambda_{m,(1,3)} = -\lim_{m \to \infty} \lambda_{m,(2,4)} = \frac{i\varepsilon}{2k + i\varepsilon},$$

i.e., we have two opposite accumulation points in the complex plane for the evanescent modes.

Optimal parameters for GIBC(α) and GIBC(α , β)

In what follows, the optimal parameters α and β were computed numerically by solving the min-max problem

$$\min_{(\alpha,\beta)\in\mathbb{C}^2}\max_{m\geq 1}\rho(\mathbb{A}_m)$$

with the Matlab function fminsearch.

Convergence Analysis for a Model Problem

Eigenvalue distribution in the complex plane for $(I-\mathcal{A})$ and different transmission operators.

Convergence Analysis for a Model Problem

Influence of the Padé approximation on the eigenvalue distribution.

Convergence Analysis for a Model Problem

Spectral radius of \mathbb{A}_m for different transmission operators.

Convergence Analysis for a Model Problem

Spectral radius of \mathbb{A}_m for different Padé transmission operators.

Concentric cylinder decomposition: Number of GMRES iterations vs. wavenumber ($N_{\text{dom}} = 5$, $n_{\lambda} = 20$).

Concentric cylinder decomposition (TE case): Number of GMRES iterations vs. wavenumber ($N_{\text{dom}} = 5$, $n_{\lambda} = 20$).

Concentric cylinder decomposition (TM case): Number of GMRES iterations vs. wavenumber ($N_{dom} = 5$, $n_{\lambda} = 20$).

ntroduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conclusio
000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	00

GMRES convergence history for different Padé orders.

roduction	The Helmholtz case	The Maxwel
00000000000000000	000000000000000000000000000000000000000	0000000

• Maxwell case

ONELAB and GetDD

Conclusion

Numerical example

Int

Falcon jet ($N_{dom} = 4, \lambda = 10, n_{\lambda} = 10$)

troduction The Helmholtz case Th

The Maxwell case

ONELAB and GetDDI

Conclusion

Numerical example

Numerical example: scalability issue

Concentric cylinder decomposition (TM case): of iterations vs. number of subdomains (k = 30, $n_{\lambda} = 20$).

Integral Equation based transmission operator

Joined work with X. Claeys and F. Collino

Dissipative Electric Field Integral Equation

$$\int_{\Sigma} \boldsymbol{u} \, \mathcal{S}(\overline{\boldsymbol{v}}) \, d\sigma := \int_{\Sigma \times \Sigma} \mathcal{G}_{\alpha}(\mathbf{x} - \boldsymbol{y}) [\; \alpha^{-1} \mathrm{div}_{\Sigma} \boldsymbol{u}(\mathbf{x}) \mathrm{div}_{\Sigma} \boldsymbol{v}(\boldsymbol{y}) + \alpha \, \boldsymbol{u}(\mathbf{x}) \cdot \boldsymbol{v}(\boldsymbol{y}) \;] d\sigma(\mathbf{x}, \boldsymbol{y})$$

with $\mathcal{G}_{\alpha}(\mathbf{x}) := \exp(-\alpha |\mathbf{x}|)/(2\pi |\mathbf{x}|)$ satisfies $-\Delta \mathcal{G}_{\alpha} + \alpha^2 \mathcal{G}_{\alpha} = 2\delta_0$. We have $(\alpha = k)$:

he Helmholtz case

ne Maxwell case

ONELAB and GetDDM

Conclusion

Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

5 Conclusion

ONELAB

Open Numerical Engineering LABoratory

Provides ready-to-use finite element codes for different community.

- Magnetostatic
- Acoustic time reversal
- 2D Acoustic scattering
- GetDDM
- . . .

2D acoustic scattering

Magnetodynamic

http://onelab.info. Available on Android and iOS markets

Introduction	The Helmholtz case	The Maxwell case	ONELAB and GetDDM	Conclusion
GetDDM				

A simple, flexible and ready-to-use environment

• Direct link between discrete and continuous weak-formulations

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}\Omega \qquad \forall v \longleftrightarrow \qquad \stackrel{1}{\underbrace{ \begin{array}{c} \text{Galerkin } \{ \ [\ Grad \ Dof \{u\}, \ \{Grad \ u\} \]; \\ \text{In Omega; Jacobian JVol; Integration II; } \\ \end{array}}}_{j}$$

• Parallelism made simple

• Click & run: GUI, full examples and scripts, numerous geometries, ...

Introduction

The Helmholtz case

e Maxwell case

ONELAB and GetDDM

Conclusion

Figure: Sample models available online at http://onelab.info/wiki/GetDDM.

Introduction

The Helmholtz case

e Maxwell case

ONELAB and GetDDM

Conclusion

Velocity profile and pressure field. Dimensions: $9192m \times 2904m$. 700Hz (~ 4000λ in the domain) with N = 358 subdomains on 4296 CPUs: > 2.3 billions unknowns.

Remark: also works on non academic cases

Conclusion

2 The Helmholtz case

ONELAB and GetDDM

5 Conclusion

Conclusion

Efficient transmission condition for Helmholtz and Maxwell

- Quasi-optimal in wavenumber and mesh refinement
- Suitable for EE framework

Open source implementation readily available for testing:

- Preprint, code and examples on http://onelab.info/wiki/GetDDM
- Work from laptops to massively parallel computer clusters:
 - marmousi.pro test-case (Helmholtz) at 700Hz (approx. 4000 wavelengths in the domain) with N = 358 subdomains on 4296 CPUs: > 2.3 billions unknowns
 - waveguide3d.pro test-case (Maxwell) with N = 3,500 subdomains on 3,500 CPUs (cores): > 300 million unknowns.

Perspectives

Mathematics side

- "Padé" operator:
 - Fine analysis on the number of Pade approximants
 - Stability at high frequency regime
- Integral Equation operator:
 - Coupling with Padé for propagative modes
 - Kernel truncation
 - Other integral equation
- Optimization method on complexified square root operator

GetDDM

- Link with HPDDM library (P. Jolivet, P-H. Tournier, F. Nataf)
- Automatic partitioning (Scotch, Metis, ...)
- "Production mode": real physical cases

Conclusion