

Model Order Reduction for Maxwell Equations based on Moment Matching

Matthias Bollhöfer (joint work with André Bodendiek) INRIA Sophia Antipolis , July 28, 2015

Outline

- Maxwell's Equations
- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Outline

- Maxwell's Equations

- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Model Problems

Left picture: branchline coupler on a substrate with PMC boundary conditions, two parallel microstriplines, coupled together in form of a transversal bridge, frequency range 1.0 to $10.0 \mathrm{GHz}, N=73^{\prime} 385$.

Right picture: coplanar waveguide with a dielectric overlay, PEC boundary conditions, frequency range 0.6 to $3.0 \mathrm{GHz}, N=32^{\prime} 924$.

Model Problems

PCB circuit on a substrate within the frequency range from 7.5 to $10.0 \mathrm{GHz}, N=226^{\prime} 458$

PEC boundary condition for the conducting lines, PMC boundary condition for the rest

Maxwell's Equations

$$
\begin{aligned}
\frac{\partial(\varepsilon \mathbf{E})}{\partial t} & =-\sigma \mathbf{E}+\nabla \times \mathbf{H} \\
\frac{\partial(\mu \mathbf{H})}{\partial t} & =-\nabla \times \mathbf{E} \\
(0 & =\nabla \cdot(\varepsilon \mathbf{E}), 0=\nabla \cdot(\mu \mathbf{H}))
\end{aligned}
$$

ε electric permittivity, μ magnetic permeability, σ electric conductivity.

Maxwell's Equations

$$
\begin{aligned}
\frac{\partial(\varepsilon \mathbf{E})}{\partial t} & =-\sigma \mathbf{E}+\nabla \times \mathbf{H} \\
\frac{\partial(\mu \mathbf{H})}{\partial t} & =-\nabla \times \mathbf{E} \\
(0 & =\nabla \cdot(\varepsilon \mathbf{E}), 0=\nabla \cdot(\mu \mathbf{H}))
\end{aligned}
$$

ε electric permittivity, μ magnetic permeability, σ electric conductivity.
Discrete equations:

$$
\begin{aligned}
M_{\varepsilon} \dot{E} & =-M_{\sigma} E+G H+B_{E} u \\
M_{\mu} \dot{H} & =-G^{T} E \quad+B_{H} u \\
(0 & \left.=D_{E} M_{\varepsilon} E, \quad 0=D_{H} M_{\mu} H\right) \\
y & =C_{E} E+C_{H} H
\end{aligned}
$$

- u input, y output
- M_{ε}, M_{μ} are sym. pos. def., M_{σ} sym. pos. semidef. (mass matrices)
- G highly singular! (curl operator)

Outline

- Maxwell's Equations
- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
. Numerical Results
- Conclusions

Outline

- Maxwell's Equations
- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Model Order Reduction

$$
\begin{aligned}
\mathcal{M} \dot{x} & =\mathcal{A} x+\mathcal{B} u \\
(0 & =\mathcal{D} x) \\
y & =\mathcal{C} x \\
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A} & =\left(\begin{array}{ll}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right), x=\binom{E}{H} .
\end{aligned}
$$

Model Order Reduction

$$
\begin{aligned}
\mathcal{M} \dot{x} & =\mathcal{A} x+\mathcal{B} u \\
(0 & =\mathcal{D} x) \\
y & =\mathcal{C} x \\
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A} & =\left(\begin{array}{ll}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right), x=\binom{E}{H} .
\end{aligned}
$$

Model Order Reduction: find full rank $S, T \in \mathbb{R}^{2 n, r}$ such that $r \ll 2 n$ and use instead

$$
\begin{aligned}
\left(S^{*} \mathcal{M} T\right) \dot{\tilde{x}} & =\left(S^{*} \mathcal{A} T\right) \tilde{x}+\left(S^{*} \mathcal{B}\right) u \\
(0 & =(\mathcal{D} T) \tilde{x}) \\
\tilde{y} & =(\mathcal{C} T) \tilde{x} \\
& \|y-\tilde{y}\| \text { small }
\end{aligned}
$$

Model Order Reduction

$$
\begin{aligned}
\mathcal{M} \dot{x} & =\mathcal{A} x+\mathcal{B} u \\
(0 & =\mathcal{D} x) \\
y & =\mathfrak{C} x \\
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A} & =\left(\begin{array}{ll}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right), x=\binom{E}{H} .
\end{aligned}
$$

Model Order Reduction: find full rank $S, T \in \mathbb{R}^{2 n, r}$ such that $r \ll 2 n$ and use instead

$$
\begin{aligned}
\hat{\mathcal{H}} \dot{\tilde{x}} & =\hat{\mathcal{A}} \tilde{x}+\hat{\mathcal{B}} u \\
(0 & =\hat{\mathcal{D}} \tilde{x}) \\
\tilde{y} & =\hat{\mathrm{C}} \tilde{x} \\
\| y & -\tilde{y} \| \text { small }
\end{aligned}
$$

Structure-Preserving MOR for Maxwell's Equations

$$
\text { Here use } S=T=\left(\begin{array}{cc}
V & 0 \\
0 & W
\end{array}\right)
$$

Structured MOR: find full rank $V, W \in \mathbb{R}^{n, r}$ such that $r \ll n$ and use instead

$$
\begin{array}{rlr}
\left(V^{*} M_{\varepsilon} V\right) \dot{e} & =-\left(V^{*} M_{\sigma} V\right) e+\left(V^{*} G W\right) h+\left(V^{*} B_{E}\right) u \\
\left(W^{*} M_{\mu} W\right) \dot{h} & =-\left(W^{*} G^{T} V\right) e \quad+\left(W^{*} B_{H}\right) u \\
(0 & \left.=\left(D_{E} M_{\varepsilon} V\right) e, \quad 0=\left(D_{H} M_{\mu} W\right) h\right) \\
\tilde{y} & =\quad\left(C_{E} V\right) e+\left(C_{H} W\right) h
\end{array}
$$

$$
\|y-\tilde{y}\| \text { small }
$$

Structure-Preserving MOR for Maxwell's Equations

$$
\text { Here use } S=T=\left(\begin{array}{cc}
V & 0 \\
0 & W
\end{array}\right)
$$

Structured MOR: find full rank $V, W \in \mathbb{R}^{n, r}$ such that $r \ll n$ and use instead

$$
\begin{aligned}
\tilde{M}_{\varepsilon} \dot{e} & =-\tilde{M}_{\sigma} e+\tilde{G} h+\tilde{B}_{E} u \\
\tilde{M}_{\mu} \dot{h} & =-\tilde{G}^{T} e \quad+\tilde{B}_{H} u \\
(0 & \left.=\tilde{D}_{E} e, \quad 0=\tilde{D}_{H} h\right) \\
\tilde{y} & =\tilde{C}_{E} e+\tilde{C}_{H} h
\end{aligned}
$$

$$
\|y-\tilde{y}\| \text { small }
$$

Outline

- Maxwell's Equations
- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Moment-Matching — Basic Idea

$$
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{cc}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right), \mathcal{B}=\binom{B_{E}}{B_{H}} \cdot \mathcal{C}=\left(\begin{array}{cc}
C_{E} & C_{H}
\end{array}\right) .
$$

Moment-Matching — Basic Idea

$$
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{cc}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right), \mathcal{B}=\binom{B_{E}}{B_{H}} \cdot \mathcal{C}=\left(\begin{array}{ll}
C_{E} & C_{H}
\end{array}\right) .
$$

Transfer function

$$
\mathcal{H}(s)=\mathcal{C P}(s \mathcal{M}-\mathcal{A})^{-1} \mathcal{B} \quad(\mathcal{P} \text { projector to divergence-free part })
$$

Moment-Matching — Basic Idea

$$
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{cc}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right), \mathcal{B}=\binom{B_{E}}{B_{H}} \cdot \mathcal{C}=\left(\begin{array}{cc}
C_{E} & C_{H}
\end{array}\right) .
$$

Transfer function

$$
\mathcal{H}(s)=\mathcal{C P}(s \mathcal{M}-\mathcal{A})^{-1} \mathcal{B} \quad(\mathcal{P} \text { projector to divergence-free part })
$$

Taylor/Laurent expansion at some expansion point s_{j} :

$$
\mathcal{A}_{j}:=\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1} \mathcal{M}, \mathcal{B}_{j}:=\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1} \mathcal{B}, \mathcal{C}_{j}:=\mathcal{C P}\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1}
$$

Moment-Matching - Basic Idea

$$
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{cc}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right), \mathcal{B}=\binom{B_{E}}{B_{H}} \cdot \mathcal{C}=\left(\begin{array}{ll}
C_{E} & C_{H}
\end{array}\right) .
$$

Transfer function

$$
\mathcal{H}(s)=\mathcal{C P}(s \mathcal{M}-\mathcal{A})^{-1} \mathcal{B} \quad(\mathcal{P} \text { projector to divergence-free part })
$$

Taylor/Laurent expansion at some expansion point s_{j} :

$$
\begin{aligned}
& \mathcal{A}_{j}:=\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1} \mathcal{M}, \mathcal{B}_{j}:=\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1} \mathcal{B}, \mathcal{C}_{j}:=\mathcal{C P}\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1} . \\
& \Rightarrow \mathcal{H}(s)=\sum_{p=0}^{\infty} \mathcal{C P} \overbrace{\left[-\mathcal{A}_{j}\right]^{p} \mathcal{B}_{j}}^{x_{j}^{(p)}}\left(s-s_{j}\right)^{p}=\sum_{p=0}^{\infty} \underbrace{\mathcal{C}_{j}\left[-\mathcal{A}_{j}\right]^{p}}_{Y_{j}^{(p)}} \mathcal{B}\left(s-s_{j}\right)^{p}
\end{aligned}
$$

Moment-Matching — Basic Idea

$$
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{cc}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right), \mathcal{B}=\binom{B_{E}}{B_{H}} \cdot \mathcal{C}=\left(\begin{array}{ll}
C_{E} & C_{H}
\end{array}\right) .
$$

Transfer function

$$
\mathcal{H}(s)=\mathcal{C P}(s \mathcal{M}-\mathcal{A})^{-1} \mathcal{B} \quad(\mathcal{P} \text { projector to divergence-free part })
$$

Taylor/Laurent expansion at some expansion point s_{j} :

$$
\begin{aligned}
& \mathcal{A}_{j}:=\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1} \mathcal{M}, \mathcal{B}_{j}:=\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1} \mathcal{B}, \mathcal{C}_{j}:=\mathcal{C P}\left(s_{j} \mathcal{M}-\mathcal{A}\right)^{-1} . \\
& \Rightarrow \mathcal{H}(s)=\sum_{p=0}^{\infty} \mathcal{C P} \overbrace{\left[-\mathcal{A}_{j}\right]^{p} \mathcal{B}_{j}}^{x_{j}^{(p)}}\left(s-s_{j}\right)^{p}=\sum_{p=0}^{\infty} \underbrace{\mathcal{C}_{j}\left[-\mathcal{A}_{j}\right]^{p}}_{Y_{j}^{(p)}} \mathcal{B}\left(s-s_{j}\right)^{p}
\end{aligned}
$$

$X_{j}^{(p)}$ input moments, Taylor coefficients $Z_{j}^{(p)}=\mathcal{C P} X_{j}^{(p)}=Y_{j}^{(p)} \mathcal{B}$ output moments.

Krylov Subspace Methods

Krylov subspace

$$
\mathcal{K}_{p}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{p-1} b\right\}
$$

Krylov Subspace Methods

Krylov subspace

$$
\mathcal{K}_{p}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{p-1} b\right\}
$$

- input Krylov subpace

$$
X_{j}^{(p)} \in \mathcal{K}_{p}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)
$$

- output Krylov subspace

$$
\left(Y_{j}^{(p)}\right)^{*} \in \mathcal{K}_{p}\left(\mathcal{A}_{j}^{*}, \mathcal{C}_{j}^{*}\right)
$$

Krylov Subspace Methods

Krylov subspace

$$
\mathcal{K}_{p}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{p-1} b\right\}
$$

- input Krylov subpace

$$
X_{j}^{(p)} \in \mathcal{K}_{p}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)
$$

- output Krylov subspace

$$
\left(Y_{j}^{(p)}\right)^{*} \in \mathcal{K}_{p}\left(\mathcal{A}_{j}^{*}, \mathcal{C}_{j}^{*}\right)
$$

- Lanczos-type methods [PVL,Gragg'74,Gutknecht'92,Feldmann,Freund'94,...] generate dual basis $T \equiv T_{r} \in \mathbb{R}^{2 n, r}$ and $S \equiv S_{r} \in \mathbb{R}^{2 n, r}$ of

$$
\mathcal{K}_{r}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right) \text { and } \mathcal{K}_{r}\left(\mathcal{A}_{j}^{*}, \mathcal{C}_{j}^{*}\right)
$$

such that $S^{*} T=I \rightarrow$ matches $2 r$ moments $Z_{j}^{(0)}, \ldots, Z_{j}^{(2 r-1)}$

Krylov Subspace Methods

Krylov subspace

$$
\mathcal{K}_{p}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{p-1} b\right\}
$$

- input Krylov subpace

$$
X_{j}^{(p)} \in \mathcal{K}_{p}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)
$$

- output Krylov subspace

$$
\left(Y_{j}^{(p)}\right)^{*} \in \mathcal{K}_{p}\left(\mathcal{A}_{j}^{*}, \mathcal{C}_{j}^{*}\right)
$$

- Lanczos-type methods [PVL,Gragg'74,Gutknecht'92,Feldmann,Freund'94,...] generate dual basis $T \equiv T_{r} \in \mathbb{R}^{2 n, r}$ and $S \equiv S_{r} \in \mathbb{R}^{2 n, r}$ of

$$
\mathcal{K}_{r}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right) \text { and } \mathcal{K}_{r}\left(\mathcal{A}_{j}^{*}, \mathcal{C}_{j}^{*}\right)
$$

such that $S^{*} T=I \rightarrow$ matches $2 r$ moments $Z_{j}^{(0)}, \ldots, Z_{j}^{(2 r-1)}$

- Arnoldi-type methods [PRIMA,Odabasioglu et al.'96,'97], [SPRIM,Freund'04,'08] compute one orthonormal basis $S=T=Q \equiv Q_{r} \in \mathbb{R}^{2 n, r}$, say, from

$$
\mathcal{K}_{r}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)
$$

using modified Gram-Schmidt \rightarrow matches r moments $Z_{j}^{(0)}, \ldots, Z_{j}^{(r-1)}$

Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

$$
\begin{aligned}
& \mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{cc}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right) . \\
& \mathcal{M} \dot{x}=\mathcal{A} x+\mathcal{B} u \\
& y=\mathfrak{C} x
\end{aligned}
$$

Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

$$
\begin{aligned}
\mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{cc}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right) . \\
\begin{aligned}
\left(S^{*} \mathcal{M} T\right) \dot{\tilde{x}} & =\left(S^{*} \mathcal{A} T\right) \tilde{x}+\left(S^{*} \mathcal{B}\right) u \\
\tilde{y} & =(\mathcal{C} T) \tilde{x}
\end{aligned}
\end{aligned}
$$

Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

$$
\begin{aligned}
& \mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{ll}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right) . \\
& \hat{\mathcal{M}} \dot{\tilde{x}}=\hat{\mathcal{A}} \tilde{x}+\hat{\mathcal{B}} u \\
& \tilde{y}=\hat{\mathfrak{C}} \tilde{x}
\end{aligned}
$$

Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

$$
\begin{aligned}
& \mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{cc}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right) . \\
& \hat{\mathcal{M}} \dot{\tilde{x}}=\hat{\mathcal{A}} \tilde{x}+\hat{\mathcal{B}} u \\
& \tilde{y}=\hat{\mathcal{C}} \tilde{x}
\end{aligned}
$$

- Lanczos-type methods: NO! $S \neq T$!

Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

$$
\begin{aligned}
& \mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{ll}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right) . \\
& \hat{\mathcal{M}} \dot{\tilde{x}}=\hat{\mathcal{A}} \tilde{x}+\hat{\mathcal{B}} u \\
& \tilde{y}=\hat{\mathfrak{C}} \tilde{x}
\end{aligned}
$$

- Lanczos-type methods: NO! $S \neq T$!
- Arnoldi-type methods: $S=T=Q$, but block structure is lost

Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

$$
\begin{aligned}
& \mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{ll}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right) . \\
& \hat{\mathcal{M}} \dot{\tilde{x}}=\hat{\mathcal{A}} \tilde{x}+\hat{\mathcal{B}} u \\
& \tilde{y}=\hat{\mathcal{C}} \tilde{x}
\end{aligned}
$$

- Lanczos-type methods: NO! $S \neq T$!
- Arnoldi-type methods: $S=T=Q$, but block structure is lost

$$
Q=\left[\begin{array}{c}
V \\
W
\end{array}\right] \rightarrow\left[\begin{array}{cc}
V & 0 \\
0 & W
\end{array}\right]
$$

Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

$$
\begin{aligned}
& \mathcal{M}=\left(\begin{array}{cc}
M_{\varepsilon} & 0 \\
0 & M_{\mu}
\end{array}\right), \mathcal{A}=\left(\begin{array}{ll}
-M_{\sigma} & G \\
-G^{T} & 0
\end{array}\right) . \\
& \hat{\mathcal{M}} \dot{\tilde{x}}=\hat{\mathcal{A}} \tilde{x}+\hat{\mathcal{B}} u \\
& \tilde{y}=\hat{\mathbb{C}} \tilde{x}
\end{aligned}
$$

- Lanczos-type methods: NO! $S \neq T$!
- Arnoldi-type methods: $S=T=Q$, but block structure is lost

$$
Q=\left[\begin{array}{c}
V \\
W
\end{array}\right] \rightarrow\left[\begin{array}{cc}
V & 0 \\
0 & W
\end{array}\right]
$$

- twice as big, but ...
- block-structure preserved, still r moments matched
- if we are lucky, up to $2 r$ moments could be matched

Structure-Preserving Moment Matching Methods

Problems

- (How to) select $s_{j} \in\left[f_{\text {min }}, f_{\text {max }}\right]$
- (No) error bounds!? Choice of r, I, accuracy of the reduced model

$$
\begin{gathered}
\mathcal{H}(s)=\mathcal{C}(s \mathcal{M}-\mathcal{A})^{-1} \mathcal{B}, \quad \mathcal{H}_{r}(s)=\hat{\mathcal{C}}(s \hat{\mathcal{M}}-\hat{\mathcal{A}})^{-1} \hat{\mathcal{B}} \\
\left\|\mathcal{H}(i \omega)-\mathcal{H}_{r}(i \omega)\right\| \leqslant \ldots
\end{gathered}
$$

- multiple expansion points $s_{1}, \ldots s_{l} \in\left[f_{\text {min }}, f_{\text {max }}\right]$
- Restarting Arnoldi and increasing r or / whenever the "error estimate" is not accurate enough

Rational Arnoldi Methods

- multiple expansion points s_{1}, \ldots, s_{l}
- multiple associated Taylor expansions

$$
\mathcal{H}(s)=\sum_{p=0}^{\infty} Z_{j}^{(p)}\left(s-s_{j}\right)^{p}, j=1, \ldots, l
$$

- Rational Krylov method: Compute basis Q_{r} for the Krylov subspaces

$$
\sum_{j=1}^{1} \mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)
$$

Rational Arnoldi Methods

- multiple expansion points s_{1}, \ldots, s_{l}
- multiple associated Taylor expansions

$$
\mathcal{H}(s)=\sum_{p=0}^{\infty} Z_{j}^{(p)}\left(s-s_{j}\right)^{p}, j=1, \ldots, l
$$

- Rational Krylov method: Compute basis Q_{r} for the Krylov subspaces

$$
\sum_{j=1}^{1} \mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right) .
$$

Lemma (Key-Lemma, Grimme,Gallivan'98)

If $s_{j} \neq s_{k}$ then

$$
\mathcal{A}_{k} \cdot \mathcal{A}_{j}^{p-1} \mathcal{B}_{j} \in \mathcal{K}_{p}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{k}, \mathcal{B}_{k}\right)
$$

Rational Arnoldi Methods

- multiple expansion points s_{1}, \ldots, s_{l}
- multiple associated Taylor expansions

$$
\mathcal{H}(s)=\sum_{p=0}^{\infty} Z_{j}^{(p)}\left(s-s_{j}\right)^{p}, j=1, \ldots, l
$$

- Rational Krylov method: Compute basis Q_{r} for the Krylov subspaces

$$
\sum_{j=1}^{1} \mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)
$$

Lemma (Key-Lemma, Grimme,Gallivan'98)

If $s_{j} \neq s_{k}$ then

$$
\mathcal{A}_{k} \cdot \mathcal{A}_{j}^{p-1} \mathcal{B}_{j} \in \mathcal{K}_{p}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{k}, \mathcal{B}_{k}\right)
$$

\Rightarrow mixing inverses with different shifts leads to a separate sum of Krylov subspaces, no "mixed powers of inverses"

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\mathcal{K}_{r_{3}}\left(\mathcal{A}_{3}, \mathcal{B}_{3}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\mathcal{K}_{r_{3}}\left(\mathcal{A}_{3}, \mathcal{B}_{3}\right)+\mathcal{K}_{r_{4}}\left(\mathcal{A}_{4}, \mathcal{B}_{4}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],. . . and many others

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],. . . and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],. . . and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\mathcal{K}_{1}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots, l$ one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],... and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\mathcal{K}_{1}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots, l$ one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],... and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\mathcal{K}_{1}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{3}, \mathcal{B}_{3}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],. . . and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\mathcal{K}_{1}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{3}, \mathcal{B}_{3}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{4}, \mathcal{B}_{4}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],. . . and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\mathcal{K}_{2}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{3}, \mathcal{B}_{3}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{4}, \mathcal{B}_{4}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],. . . and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\mathcal{K}_{2}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\mathcal{K}_{2}\left(\mathcal{A}_{3}, \mathcal{B}_{3}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{4}, \mathcal{B}_{4}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],. . . and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\mathcal{K}_{2}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\mathcal{K}_{3}\left(\mathcal{A}_{3}, \mathcal{B}_{3}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{4}, \mathcal{B}_{4}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],. . . and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\mathcal{K}_{2}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\mathcal{K}_{3}\left(\mathcal{A}_{3}, \mathcal{B}_{3}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{4}, \mathcal{B}_{4}\right)+\mathcal{K}_{1}\left(\mathcal{A}_{5}, \mathcal{B}_{5}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, l one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],... and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06] Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\cdots+\mathcal{K}_{r_{l}}\left(\mathcal{A}_{l}, \mathcal{B}_{l}\right)
$$

Rational Arnoldi Methods

- Traditional Rational Arnoldi methods build Q_{r} w.r.t. $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right), j=1, \ldots$, , one after another using modified Gram-Schmidt.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\mathcal{K}_{r_{2}}\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)+\cdots+\mathcal{K}_{r_{1}}\left(\mathcal{A}_{l}, \mathcal{B}_{l}\right)
$$

- [Ruhe'94], [Gallivan,Grimme,van Dooren'95], [Grimme'99], [Bai'02], [Gugercin,Antoulas'06], [Lee,Chu,Feng'06],... and many others
- Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng'06]
Q_{r} is generated by interchangeably increasing the size r_{j} of $\mathcal{K}_{r_{j}}\left(\mathcal{A}_{j}, \mathcal{B}_{j}\right)$.

$$
\operatorname{span} Q_{r}=\mathcal{K}_{r_{1}}\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)+\cdots+\mathcal{K}_{r_{l}}\left(\mathcal{A}_{l}, \mathcal{B}_{l}\right)
$$

- At each step s_{j} is selected w.r.t. the largest output moment error $Z_{j}^{(r)}-\tilde{Z}_{j}^{(r)}$ which can be computed cheaply

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

$$
s_{1}=2 \pi i f_{\min }, s_{2}=2 \pi i \sqrt{f_{\min } f_{\max }}, s_{3}=2 \pi i f_{\max }
$$

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

$$
s_{1}, s_{2}, s_{3}, s_{4}
$$

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

$$
s_{1}, s_{2}, s_{3}, s_{4}, s_{5}
$$

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

$$
s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, \mathbf{s}_{6}
$$

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

$$
s_{1}, \ldots, s_{l}
$$

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

$$
s_{1}, \ldots, s_{l}
$$

- relative error $\frac{\left|\mathcal{H}_{r}^{(1)}(s)-\mathcal{H}_{r}^{(1-1)}(s)\right|}{\left|\mathcal{H}_{r}^{(1)}(s)\right|}$ between two computed reduced-order transfer functions used as measure [Köhler et al.'10'12]

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

$$
s_{1}, \ldots, s_{l}
$$

- relative error $\frac{\left|\mathcal{H}_{r}^{(1)}(s)-\mathcal{H}_{r}^{(1-1)}(s)\right|}{\left|\mathcal{H}_{r}^{(1)}(s)\right|}$ between two computed reduced-order transfer functions used as measure [Köhler et al.'10'12]

Expansion Point Selection

- AORA called repeatedly $I=1,2,3, \ldots$ with increasing number of expansion points

$$
s_{1}, \ldots, s_{l}
$$

- relative error $\frac{\left|\mathcal{H}_{r}^{(1)}(s)-\mathcal{H}_{r}^{(1-1)}(s)\right|}{\left|\mathcal{H}_{r}^{(1)}(s)\right|}$ between two computed reduced-order transfer functions used as measure [Köhler et al.'10'12]

- global stopping criterion [Grimme,Gallivan'98] $\sum_{i=1}^{l} 2^{i-l} \frac{\left|\mathcal{H}_{r}^{(i)}(s)-\mathcal{H}_{r}^{(i-1)}(s)\right|}{\left|\mathcal{H}_{r}^{(i)}(s)\right|} \leqslant \varepsilon$

Outline

- Maxwell's Equations
- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Model Order Reduction - Numerical Results

- model problems have a frequency range in $\left[f_{\min }, f_{\max }\right]$
- computed reduced order models have fixed size $n=25(50)$
- SPRIM uses expansion point $s_{0}=\frac{f_{\min }+f_{\max }}{2}$
- expansion point selection based on relative error 10^{-9}
- strategy finally leads to $I=8$ expansion points s_{1}, \ldots, s_{8}
- Rational Arnoldi (RA) and Adaptive Order Rational Arnoldi (AORA) repeated 5 times
- RA uses fixed sizes $j=n / l$ for each Krylov subspace \mathcal{K}_{j}
- AORA adaptively increases each $\mathcal{K}_{j_{i}}$

Model Order Reduction - Numerical Results

Branchline Coupler

- size $N=73385$, discretized using FIT
- frequency range $\left[f_{\text {min }}, f_{\text {max }}\right]=\left[10^{9}, 10^{10}\right]$

Model Order Reduction - Numerical Results
 Branchline Coupler

relative error

$$
\epsilon_{\text {rel }}(f)=\frac{|\mathcal{H}(s)-\tilde{\mathcal{H}}(s)|}{|\mathcal{H}(s)|}
$$

$s=2 \pi i f$ with $f \in\left[10^{9}, 10^{10}\right]$ displayed as reference

Model Order Reduction - Numerical Results

Coplanar Waveguide

- size $N=32924$, discretized using FIT
- frequency range $\left[f_{\min }, f_{\max }\right]=\left[0.6 \cdot 10^{9}, 3.0 \cdot 10^{9}\right]$

Model Order Reduction - Numerical Results
 Coplanar Waveguide

relative error

$$
\epsilon_{\text {rel }}(f)=\frac{|\mathcal{H}(s)-\tilde{\mathcal{H}}(s)|}{|\mathcal{H}(s)|}
$$

$s=2 \pi$ if with $f \in\left[0.6 \cdot 10^{9}, 3.0 \cdot 10^{9}\right]$ displayed as reference

Outline

. Maxwell's Equations

- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Outline

. Maxwell's Equations

- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Modified Adaptive-Order Rational Arnoldi Method

Repeatedly calling AORA method requires to recompute span Q_{r} from scratch.

Modified Adaptive-Order Rational Arnoldi Method

Repeatedly calling AORA method requires to recompute span Q_{r} from scratch.

Lemma

Suppose that

$$
\begin{gathered}
\operatorname{span} Q_{r}^{(I)}=\mathcal{K}_{r_{1}^{(I)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I)}}\left(s_{l}\right) \\
\operatorname{span} Q_{r}^{(I+1)}=\mathcal{K}_{r_{1}^{(I+1)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I+1)}}\left(s_{l}\right)+\mathcal{K}_{r_{l+1}^{(I+1)}}\left(s_{l+1}\right)
\end{gathered}
$$

such that

$$
r_{1}^{(I+1)} \leqslant r_{1}^{(I)} \cdots r_{I}^{(I+1)} \leqslant r_{l}^{(I)}
$$

Then $\mathcal{K}_{r_{1}^{(I+1)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I+1)}}\left(s_{l}\right)$ can be directly extracted from $\operatorname{span} Q_{r}^{(I)}$.

Modified Adaptive-Order Rational Arnoldi Method

Repeatedly calling AORA method requires to recompute span Q_{r} from scratch.

Lemma

Suppose that

$$
\begin{gathered}
\operatorname{span} Q_{r}^{(I)}=\mathcal{K}_{r_{1}^{(I)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I)}}\left(s_{l}\right) \\
\operatorname{span} Q_{r}^{(I+1)}=\mathcal{K}_{r_{1}^{(I+1)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I+1)}}\left(s_{l}\right)+\mathcal{K}_{r_{l+1}^{(I+1)}}\left(s_{l+1}\right)
\end{gathered}
$$

such that

$$
r_{1}^{(I+1)} \leqslant r_{1}^{(I)} \cdots r_{I}^{(I+1)} \leqslant r_{l}^{(I)}
$$

Then $\mathcal{K}_{r_{1}^{(I+1)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(l+1)}}\left(s_{l}\right)$ can be directly extracted from $\operatorname{span} Q_{r}^{(I)}$.

- Lemma requires that shifts s_{1}, \ldots, s_{l} are selected in the same order

Modified Adaptive-Order Rational Arnoldi Method

Repeatedly calling AORA method requires to recompute $\operatorname{span} Q_{r}$ from scratch.

Lemma

Suppose that

$$
\begin{gathered}
\operatorname{span} Q_{r}^{(I)}=\mathcal{K}_{r_{1}^{(I)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I)}}\left(s_{l}\right) \\
\operatorname{span} Q_{r}^{(I+1)}=\mathcal{K}_{r_{1}^{(I+1)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I+1)}}\left(s_{l}\right)+\mathcal{K}_{r_{l+1}^{(I+1)}}\left(s_{l+1}\right)
\end{gathered}
$$

such that

$$
r_{1}^{(I+1)} \leqslant r_{1}^{(I)} \cdots r_{I}^{(I+1)} \leqslant r_{l}^{(I)}
$$

Then $\mathcal{K}_{r_{1}^{(I+1)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(l+1)}}\left(s_{l}\right)$ can be directly extracted from $\operatorname{span} Q_{r}^{(I)}$.

- Lemma requires that shifts s_{1}, \ldots, s_{l} are selected in the same order
- new shift s_{I+1} can be injected at any time

Modified Adaptive-Order Rational Arnoldi Method

Repeatedly calling AORA method requires to recompute $\operatorname{span} Q_{r}$ from scratch.

Lemma

Suppose that

$$
\begin{gathered}
\operatorname{span} Q_{r}^{(I)}=\mathcal{K}_{r_{1}^{(I)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I)}}\left(s_{l}\right) \\
\operatorname{span} Q_{r}^{(I+1)}=\mathcal{K}_{r_{1}^{(I+1)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(I+1)}}\left(s_{l}\right)+\mathcal{K}_{r_{l+1}^{(I+1)}}\left(s_{l+1}\right)
\end{gathered}
$$

such that

$$
r_{1}^{(I+1)} \leqslant r_{1}^{(I)} \cdots r_{l}^{(I+1)} \leqslant r_{l}^{(I)}
$$

Then $\mathcal{K}_{r_{1}^{(I+1)}}\left(s_{1}\right)+\cdots+\mathcal{K}_{r_{l}^{(l+1)}}\left(s_{l}\right)$ can be directly extracted from $\operatorname{span} Q_{r}^{(I)}$.

- Lemma requires that shifts s_{1}, \ldots, s_{l} are selected in the same order
- new shift s_{I+1} can be injected at any time
- only new shift s_{I+1} requires to solve systems with $s_{I+1} \mathcal{M}-\mathcal{A}$
- \longrightarrow mAORA (modified AORA)

Solving Systems in the Modified AORA Method

Recall

- $\mathcal{J}(s \mathcal{M}-\mathcal{A})$ is complex-symmetric, where $\mathcal{J}=\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right)$
- Schur complement $\mathcal{S}(s)=s^{2} M_{\varepsilon}+s M_{\sigma}+G M_{\mu}^{-1} G^{T}$ is complex-symmetric

Solving Systems in the Modified AORA Method

Recall

- $\mathcal{J}(s \mathcal{M}-\mathcal{A})$ is complex-symmetric, where $\mathcal{J}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- Schur complement $\mathcal{S}(s)=s^{2} M_{\varepsilon}+s M_{\sigma}+G M_{\mu}^{-1} G^{T}$ is complex-symmetric
- (modified) AORA requires solving a sequence complex-symmetric systems with varying shifts and varying right hand sides

$$
A\left(s_{j}\right) x_{j p}=b_{j p}
$$

Solving Systems in the Modified AORA Method

Recall

- $\mathcal{J}(s \mathcal{M}-\mathcal{A})$ is complex-symmetric, where $\mathcal{J}=\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right)$
- Schur complement $\mathcal{S}(s)=s^{2} M_{\varepsilon}+s M_{\sigma}+G M_{\mu}^{-1} G^{T}$ is complex-symmetric
- (modified) AORA requires solving a sequence complex-symmetric systems with varying shifts and varying right hand sides

$$
A\left(s_{j}\right) x_{j p}=b_{j p}
$$

- Save memory and time: Only compute factorization of $A\left(s_{*}\right)$ for some characteristic shift $s_{*}=2 \pi i \sqrt{f_{\text {min }} f_{\max }}$.
- For all $s_{j} \neq s_{*}$ use (recycling) Krylov subspace method as wrapper.

Outline

. Maxwell's Equations

- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
. Numerical Results
- Conclusions

QMR Method - Sketch

Two-sided Lanczos Method

$$
A V_{k}=V_{k+1} \underline{T_{k}}, A^{T} \tilde{V}_{k}=\tilde{V}_{k+1} \underline{\tilde{T}_{k}}
$$

QMR Method - Sketch

Two-sided Lanczos Method

$$
A V_{k}=V_{k+1} \underline{T_{k}}, A^{T} \tilde{V}_{k}=\tilde{V}_{k+1} \underline{\tilde{T}_{k}}
$$

QMR for $A x=b$ based on two-sided Lanczos method:

- $r_{0}=b-A x_{0}, v_{1}=r_{0} /\left\|r_{0}\right\|$
- $x_{k}=x_{0}+V_{k} y$
- quasi-minimize

$$
\left\|b-A x_{k}\right\| \leqslant\left\|V_{k+1}\right\| \cdot\| \| r_{0}\left\|e_{1}-\underline{T_{k}} y\right\|
$$

$\longrightarrow y$ from least squares solution
$\longrightarrow x$

- [Freund et al. '91,'93,'94]

Outline

. Maxwell's Equations

- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conctusions

Simplified QMR Method for J-Symmetric Matrices

- $A^{T} J=J A$, where $J=J^{T}, J$ nonsingular
- use specific left initial guess $\tilde{v}_{1}=J v_{1}$

Simplified QMR Method for J-Symmetric Matrices

- $A^{T} J=J A$, where $J=J^{T}, J$ nonsingular
- use specific left initial guess $\tilde{v}_{1}=J v_{1}$
- \rightarrow QMR simplifies
- half of the work can be skipped,
- A^{T} is not referenced,
- computation time reduced,
- structure exploited

Simplified QMR Method for J-Symmetric Matrices

- $A^{T} J=J A$, where $J=J^{T}, J$ nonsingular
- use specific left initial guess $\tilde{v}_{1}=J v_{1}$
- \rightarrow QMR simplifies
- half of the work can be skipped,
- A^{T} is not referenced,
- computation time reduced,
- structure exploited
- simplified QMR can be generalized to preconditioned case, where preconditioner satisfies $P^{T} J=J P$
- [Freund et al. '94,'95]

Simplified QMR Method for J-Symmetric Matrices

- $A^{T} J=J A$, where $J=J^{T}, J$ nonsingular
- use specific left initial guess $\tilde{v}_{1}=J v_{1}$
- \rightarrow QMR simplifies
- half of the work can be skipped,
- A^{T} is not referenced,
- computation time reduced,
- structure exploited
- simplified QMR can be generalized to preconditioned case, where preconditioner satisfies $P^{T} J=J P$
- [Freund et al. '94,'95]
- Maxwell equations: complex-symmetric system A with complex-symmetric preconditioner P satisfy J-symmetry!

Outline

. Maxwell's Equations

- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

QMR with Subspace Recycling

Krylov subspace methods with subspace recycling

- GCROT, GCRO-DR [De Sturler et al.'99,'06]
- recycling BiCG, recycling BiCGStab [Ahuja et al. '12,'13]

Main idea: $U, \tilde{U} \in \mathbb{C}^{n, r}, C=A U, \tilde{C}=A^{T} \tilde{U}, r \ll n$ given subspaces, $D_{c}=\tilde{C}^{T} C$. Apply Lanczos (Arnoldi) to the systems

$$
\begin{aligned}
& A V_{k}=V_{k+1} \underline{T_{k}} \\
& A^{T} \tilde{V}_{k}=\tilde{V}_{k+1} \underline{\tilde{I}_{k}}
\end{aligned}
$$

with updated initial guess and projected initial residual

$$
x_{0}^{(\text {new })}=x_{0}+U D_{c}^{-1} \tilde{C}^{T} r_{0}, r_{0}^{(\text {new })}=\left(I-C D_{c}^{-1} \tilde{C}^{T}\right) r_{0}
$$

QMR with Subspace Recycling

Krylov subspace methods with subspace recycling

- GCROT, GCRO-DR [De Sturler et al.'99,'06]
- recycling BiCG, recycling BiCGStab [Ahuja et al. '12,'13]

Main idea: $U, \tilde{U} \in \mathbb{C}^{n, r}, C=A U, \tilde{C}=A^{T} \tilde{U}, r \ll n$ given subspaces, $D_{c}=\tilde{C}^{T} C$. Apply Lanczos (Arnoldi) to the projected systems

$$
\begin{aligned}
& \left(I-C D_{c}^{-1} \tilde{C}^{T}\right) A V_{k}=V_{k+1} \underline{T_{k}} \\
& \left(I-\tilde{C} D_{c}^{-T} C^{T}\right) A^{T} \tilde{V}_{k}=\tilde{V}_{k+1} \underline{\tilde{I}_{k}}
\end{aligned}
$$

with updated initial guess and projected initial residual

$$
x_{0}^{(\text {new })}=x_{0}+U D_{c}^{-1} \tilde{C}^{T} r_{0}, r_{0}^{(\text {new })}=\left(I-C D_{c}^{-1} \tilde{C}^{T}\right) r_{0}
$$

Recycling QMR/BiCG in a Nutshell

$$
U, \tilde{U}, C=A U, \tilde{C}=A^{\top} \tilde{U}, D_{c}=\tilde{C}^{\top} C .
$$

Changing the methods:

BiCG/QMR		Recycling BiCG/QMR
init x_{0}		$x_{0}^{(\text {new })}=x_{0}+U D_{c}^{-1} \tilde{C}^{T} r_{0}$
init $r_{0}=b-A x_{0}$		$r_{0}^{(\text {new })}=\left(I-C D_{c}^{-1} \tilde{C}^{T}\right) r_{0}$
matvec $A x$		$\left(I-C D_{c}^{-1} \tilde{C}^{T}\right) A x$
matvec $A^{T} x$		$\left(I-\tilde{C} D_{c}^{-T} C^{T}\right) A^{T} x$
solution update $x=x+\alpha p$	$x=x+\alpha\left(I-U D_{c}^{-1} \tilde{C}^{T}\right) p$	

Recycling QMR/BiCG in a Nutshell

$$
U, \tilde{U}, C=A U, \tilde{C}=A^{\top} \tilde{U}, D_{c}=\tilde{C}^{\top} C .
$$

Changing the methods:

BiCG/QMR		Recycling BiCG/QMR
init x_{0}		$x_{0}^{(\text {new })}=x_{0}+U D_{c}^{-1} \tilde{C}^{T} r_{0}$
init $r_{0}=b-A x_{0}$		$r_{0}^{(\text {new })}=\left(I-C D_{c}^{-1} \tilde{C}^{T}\right) r_{0}$
matvec $A x$		$\left(I-C D_{c}^{-1} \tilde{C}^{T}\right) A x$
matvec $A^{T} x$		$\left(I-\tilde{C} D_{c}^{-T} C^{T}\right) A^{T} x$
solution update $x=x+\alpha p$	$x=x+\alpha\left(I-U D_{c}^{-1} \tilde{C}^{T}\right) p$	

Preconditioning and simplified QMR: a little bit more tricky but similar

Outline

. Maxwell's Equations

- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Modified AORA versus AORA

Model Order Reduction
 Numerical Results

Sampling 20 frequencies $s_{j}=2 \pi i f_{j}$
$f_{j} \in\left[f_{\text {min }}, f_{\text {max }}\right]=\left[0.6 \cdot 10^{9}, 3 \cdot 10^{9}\right]$
Use complex-symmetric Schur complement system
Preconditioner: $L U$-decomposition for $s_{*}=\sqrt{f_{\text {min }} f_{\text {max }}}$

Comparison

- simplified QMR without subspace recycling
- simplified QMR using subspace recycling

Model Order Reduction

Numerical Results

Preconditioner: LU decomposition for $\mathcal{S}\left(\boldsymbol{s}_{*}\right)$
Preconditioned SQMR Without Subspace Recycling

Model Order Reduction

Numerical Results

Preconditioner: LU decomposition for $\mathcal{S}\left(\boldsymbol{s}_{*}\right)$

Preconditioned SQMR With Subspace Recycling

Outline

. Maxwell's Equations

- Model Order Reduction
- MOR for Maxwell Equations
- Model Order Reduction Based on Moment Matching
- Numerical Results
- Modified Adaptive-Order Rational Arnoldi Method
- Savings for the AORA method
- QMR Method
- Simplified QMR
- QMR with Subspace Recycling
- Numerical Results
- Conclusions

Conclusions

- (adaptive order) rational Arnoldi yields reduced order model for Maxwell equations
- main important structures can be preserved
- outer iteration: several calls of (modified) rational Arnoldi, inner iteration: preconditioned SQMR
- Recycling techniques \rightarrow modified AORA, recycling SQMR

This work was supported by the research network MoreSim4Nano funded by the German Federal Ministry of Education and Science (BMBF) with grant no. 05M10MBA.

