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Model Problems

Input port

Substrate Dielectric overlay

Input port

Metallic striplines

Left picture: branchline coupler on a substrate with PMC boundary conditions, two
parallel microstriplines, coupled together in form of a transversal bridge, frequency
range 1.0 to 10.0 GHz, N = 73 ′385.

Right picture: coplanar waveguide with a dielectric overlay, PEC boundary conditions,
frequency range 0.6 to 3.0 GHz, N = 32 ′924.
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Model Problems

Input port

Substrate Dielectric overlay

Input port

Metallic striplines

Input port

Output port

PCB circuit on a substrate within the frequency range
from 7.5 to 10.0 GHz, N = 226 ′458

PEC boundary condition for the conducting lines,
PMC boundary condition for the rest
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Maxwell’s Equations

∂(εE)
∂t

= −σE +∇× H

∂(µH)
∂t

= −∇× E

(0 = ∇ · (εE), 0 = ∇ · (µH))

ε electric permittivity, µ magnetic permeability, σ electric conductivity.

Discrete equations:

MεĖ = −MσE + GH + BEu
MµḢ = −GT E + BHu

+ b.c.

(0 = DEMεE, 0 = DHMµH)

y = CEE + CHH

u input, y output
Mε, Mµ are sym. pos. def., Mσ sym. pos. semidef. (mass matrices)
G highly singular! (curl operator)

M. Bollhöfer et al. MOR for Maxwell Equations based Moment Matchings Page 5



Maxwell’s Equations

∂(εE)
∂t

= −σE +∇× H

∂(µH)
∂t

= −∇× E

(0 = ∇ · (εE), 0 = ∇ · (µH))

ε electric permittivity, µ magnetic permeability, σ electric conductivity.

Discrete equations:
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MµḢ = −GT E + BHu

+ b.c.

(0 = DEMεE, 0 = DHMµH)

y = CEE + CHH

u input, y output
Mε, Mµ are sym. pos. def., Mσ sym. pos. semidef. (mass matrices)
G highly singular! (curl operator)

M. Bollhöfer et al. MOR for Maxwell Equations based Moment Matchings Page 5



Outline

Maxwell’s Equations

Model Order Reduction
MOR for Maxwell Equations
Model Order Reduction Based on Moment Matching
Numerical Results

Modified Adaptive-Order Rational Arnoldi Method
Savings for the AORA method
QMR Method
Simplified QMR
QMR with Subspace Recycling

Numerical Results

Conclusions

M. Bollhöfer et al. MOR for Maxwell Equations based Moment Matchings Page 6



Outline

Maxwell’s Equations

Model Order Reduction
MOR for Maxwell Equations
Model Order Reduction Based on Moment Matching
Numerical Results

Modified Adaptive-Order Rational Arnoldi Method
Savings for the AORA method
QMR Method
Simplified QMR
QMR with Subspace Recycling

Numerical Results

Conclusions

M. Bollhöfer et al. MOR for Maxwell Equations based Moment Matchings Page 7



Model Order Reduction

Mẋ = Ax +Bu

(0 = Dx)

y = Cx

M =

(
Mε 0
0 Mµ

)
, A =

(
−Mσ G
−GT 0

)
, x =

(
E
H

)
.

Model Order Reduction: find full rank S,T ∈ R2n,r such that r � 2n and use instead

‖y − ỹ‖ small
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M =
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)
, x =
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E
H
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Model Order Reduction: find full rank S,T ∈ R2n,r such that r � 2n and use instead

(S∗MT ) ˙̃x = (S∗AT ) x̃ + (S∗B) u
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Model Order Reduction

Mẋ = Ax +Bu

(0 = Dx)

y = Cx

M =

(
Mε 0
0 Mµ

)
, A =

(
−Mσ G
−GT 0

)
, x =

(
E
H

)
.

Model Order Reduction: find full rank S,T ∈ R2n,r such that r � 2n and use instead

M̂ ˙̃x = Âx̃ + B̂u

(0 = D̂x̃)

ỹ = Ĉx̃

‖y − ỹ‖ small
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Structure-Preserving MOR for Maxwell’s Equations

Here use S = T =

(
V 0
0 W

)
Structured MOR: find full rank V ,W ∈ Rn,r such that r � n and use instead

(V ∗MεV ) ė = −(V ∗MσV ) e + (V ∗GW ) h + (V ∗BE) u

(W ∗MµW ) ḣ = −
(
W ∗GT V

)
e + (W ∗BH) u

(0 = (DEMεV ) e, 0 = (DHMµW ) h)

ỹ = (CEV ) e + (CHW ) h

‖y − ỹ‖ small
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Structure-Preserving MOR for Maxwell’s Equations

Here use S = T =

(
V 0
0 W

)
Structured MOR: find full rank V ,W ∈ Rn,r such that r � n and use instead

M̃ε ė = −M̃σ e + G̃ h + B̃E u

M̃µ ḣ = −G̃T e + B̃H u

(0 = D̃Ee, 0 = D̃Hh)

ỹ = C̃E e + C̃H h
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Moment-Matching — Basic Idea

M =

(
Mε 0
0 Mµ

)
, A =

(
−Mσ G
−GT 0

)
, B =

(
BE

BH

)
. C =

(
CE CH

)
.

Transfer function

H(s) = CP (sM−A)−1
B (P projector to divergence-free part )

Taylor/Laurent expansion at some expansion point sj :

Aj := (sjM−A)−1
M, Bj := (sjM−A)−1

B, Cj := CP (sjM−A)−1 .

⇒ H(s) =

∞∑
p=0

CP

X
(p)
j︷ ︸︸ ︷

[−Aj ]
pBj(s − sj)

p =

∞∑
p=0

Cj [−Aj ]
p︸ ︷︷ ︸

Y
(p)
j

B(s − sj)
p

X (p)
j input moments, Taylor coefficients Z (p)

j = CPX (p)
j = Y (p)

j B output moments.
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Krylov Subspace Methods

Krylov subspace
Kp(A, b) = span{b,Ab, . . . ,Ap−1b}

input Krylov subpace
X (p)

j ∈ Kp(Aj ,Bj).

output Krylov subspace
(Y (p)

j )∗ ∈ Kp(A
∗
j ,C
∗
j ).

Lanczos-type methods [PVL,Gragg’74,Gutknecht’92,Feldmann,Freund’94,. . . ]
generate dual basis T ≡ Tr ∈ R2n,r and S ≡ Sr ∈ R2n,r of

Kr (Aj ,Bj) and Kr (A
∗
j ,C
∗
j )

such that S∗T = I → matches 2r moments Z (0)
j , . . . ,Z (2r−1)

j

Arnoldi-type methods [PRIMA,Odabasioglu et al.’96,’97], [SPRIM,Freund’04,’08]
compute one orthonormal basis S = T = Q ≡ Qr ∈ R2n,r , say, from

Kr (Aj ,Bj)

using modified Gram-Schmidt→ matches r moments Z (0)
j , . . . ,Z (r−1)

j
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Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

M =

(
Mε 0
0 Mµ

)
, A =

(
−Mσ G
−GT 0

)
.

Mẋ = Ax +Bu

y = Cx

Lanczos-type methods: NO! S 6= T !
Arnoldi-type methods: S = T = Q, but block structure is lost

Q =

[
V
W

]
→
[

V 0
0 W

]
twice as big, but . . .
block-structure preserved, still r moments matched
if we are lucky, up to 2r moments could be matched
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ỹ = Ĉx̃
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ỹ = Ĉx̃

Lanczos-type methods: NO! S 6= T !

Arnoldi-type methods: S = T = Q, but block structure is lost

Q =

[
V
W

]
→
[

V 0
0 W

]

twice as big, but . . .
block-structure preserved, still r moments matched
if we are lucky, up to 2r moments could be matched

M. Bollhöfer et al. MOR for Maxwell Equations based Moment Matchings Page 13



Structure-Preserving Moment Matching Methods

Structure Preservation for Maxwell Equations

M =

(
Mε 0
0 Mµ

)
, A =

(
−Mσ G
−GT 0

)
.

M̂ ˙̃x = Âx̃ + B̂u
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Structure-Preserving Moment Matching Methods

Problems

(How to) select sj ∈ [fmin, fmax]

(No) error bounds!? Choice of r , l, accuracy of the reduced model

H(s) = C (sM−A)−1
B, Hr (s) = Ĉ

(
sM̂− Â

)−1
B̂

‖H(iω) −Hr (iω)‖ 6 . . .

multiple expansion points s1, . . . sl ∈ [fmin, fmax]

Restarting Arnoldi and increasing r or l whenever the “error estimate” is not
accurate enough
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Rational Arnoldi Methods

multiple expansion points s1, . . . , sl

multiple associated Taylor expansions

H(s) =
∞∑

p=0

Z (p)
j (s − sj)

p, j = 1, . . . , l

Rational Krylov method: Compute basis Qr for the Krylov subspaces

l∑
j=1

Krj (Aj ,Bj).

Lemma (Key-Lemma, Grimme,Gallivan’98)

If sj 6= sk then
Ak ·Ap−1

j Bj ∈ Kp(Aj ,Bj) +K1(Ak ,Bk)

⇒ mixing inverses with different shifts leads to a separate sum of Krylov
subspaces, no “mixed powers of inverses”
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Rational Arnoldi Methods

Traditional Rational Arnoldi methods build Qr w.r.t. Krj (Aj ,Bj), j = 1, . . . , l
one after another using modified Gram-Schmidt.

[Ruhe’94], [Gallivan,Grimme,van Dooren’95], [Grimme’99], [Bai’02],
[Gugercin,Antoulas’06], [Lee,Chu,Feng’06],. . . and many others

Adaptive-Order Rational Arnoldi (AORA) [Lee,Chu,Feng’06]
Qr is generated by interchangeably increasing the size rj of Krj (Aj ,Bj).

At each step sj is selected w.r.t. the largest output moment error Z (r)
j − Z̃ (r)

j which
can be computed cheaply
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Expansion Point Selection

AORA called repeatedly l = 1, 2, 3, . . . with increasing number of expansion points

relative error |H
(l)
r (s)−H

(l−1)
r (s)|

|H
(l)
r (s)|

between two computed reduced-order transfer

functions used as measure [Köhler et al.’10’12]

global stopping criterion [Grimme,Gallivan’98]
∑l

i=1 2i−l |H
(i)
r (s)−H

(i−1)
r (s)|

|H
(i)
r (s)|

6 ε
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Model Order Reduction — Numerical Results

model problems have a frequency range in [fmin, fmax]

computed reduced order models have fixed size n = 25(50)

SPRIM uses expansion point s0 = fmin+fmax
2

expansion point selection based on relative error 10−9

strategy finally leads to l = 8 expansion points s1, . . . , s8

Rational Arnoldi (RA) and Adaptive Order Rational Arnoldi (AORA) repeated 5
times

RA uses fixed sizes j = n/l for each Krylov subspace Kj

AORA adaptively increases each Kji
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Model Order Reduction — Numerical Results
Branchline Coupler

Input port

Substrate
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Model Order Reduction — Numerical Results
Branchline Coupler

relative error

εrel(f ) =
|H(s) − H̃(s)|

|H(s)|
,

s = 2π i f with f ∈ [109, 1010] displayed as reference
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Model Order Reduction — Numerical Results
Coplanar Waveguide

Dielectric overlay

Input port

Metallic striplines
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Model Order Reduction — Numerical Results
Coplanar Waveguide

relative error
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Modified Adaptive-Order Rational Arnoldi Method

Repeatedly calling AORA method requires to recompute spanQr from scratch.

Lemma

Suppose that
spanQ(l)

r = K
r
(l)
1

(s1) + · · ·+K
r
(l)
l

(sl),

spanQ(l+1)
r = K

r
(l+1)
1

(s1) + · · ·+K
r
(l+1)
l

(sl) +K
r
(l+1)
l+1

(sl+1)

such that
r(l+1)
1 6 r(l)

1 · · · r
(l+1)
l 6 r(l)

l .

Then K
r
(l+1)
1

(s1) + · · ·+K
r
(l+1)
l

(sl) can be directly extracted from spanQ(l)
r .

Lemma requires that shifts s1, . . . , sl are selected in the same order
new shift sl+1 can be injected at any time
only new shift sl+1 requires to solve systems with sl+1M−A

−→ mAORA (modified AORA)
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Solving Systems in the Modified AORA Method

Recall

J (sM−A) is complex-symmetric, where J =

(
I 0
0 −I

)
Schur complement S(s) = s2Mε + sMσ + GM−1

µ GT is complex-symmetric

(modified) AORA requires solving a sequence complex-symmetric systems with
varying shifts and varying right hand sides

A(sj)xjp = bjp

Save memory and time: Only compute factorization of A(s∗) for some
characteristic shift s∗ = 2π i

√
fminfmax.

For all sj 6= s∗ use (recycling) Krylov subspace method as wrapper.
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QMR Method — Sketch

Two-sided Lanczos Method

AVk = Vk+1Tk , AT Ṽk = Ṽk+1T̃k

QMR for Ax = b based on two-sided Lanczos method:

r0 = b − Ax0, v1 = r0/‖r0‖
xk = x0 + Vky

quasi-minimize
‖b − Axk‖ 6 ‖Vk+1‖ ·

∥∥‖r0‖e1 − Tky
∥∥

−→ y from least squares solution
−→ x

[Freund et al. ’91,’93,’94]
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Simplified QMR Method for J-Symmetric Matrices

AT J = JA, where J = JT , J nonsingular

use specific left initial guess ṽ1 = Jv1

→ QMR simplifies

half of the work can be skipped,
AT is not referenced,
computation time reduced,
structure exploited

simplified QMR can be generalized to preconditioned case, where preconditioner
satisfies PT J = JP

[Freund et al. ’94,’95]

Maxwell equations: complex-symmetric system A with complex-symmetric
preconditioner P satisfy J-symmetry!
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QMR with Subspace Recycling

Krylov subspace methods with subspace recycling

GCROT, GCRO-DR [De Sturler et al.’99,’06]

recycling BiCG, recycling BiCGStab [Ahuja et al. ’12,’13]

Main idea: U, Ũ ∈ Cn,r , C = AU, C̃ = AT Ũ, r � n given subspaces, Dc = C̃T C.
Apply Lanczos (Arnoldi) to the

projected

systems

(I − CD−1
c C̃T )

AVk = Vk+1Tk ,

(I − C̃D−T
c CT )

AT Ṽk = Ṽk+1T̃k

with updated initial guess and projected initial residual

x(new)
0 = x0 + UD−1

c C̃T r0, r(new)
0 = (I − CD−1

c C̃T )r0.
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Recycling QMR/BiCG in a Nutshell

U, Ũ, C = AU, C̃ = AT Ũ, Dc = C̃T C.

Changing the methods:

BiCG/QMR Recycling BiCG/QMR

init x0 x(new)
0 = x0 + UD−1

c C̃T r0

init r0 = b − Ax0 r(new)
0 = (I − CD−1

c C̃T )r0

matvec Ax (I − CD−1
c C̃T )Ax

matvec AT x (I − C̃D−T
c CT )AT x

solution update x = x + αp x = x + α(I − UD−1
c C̃T )p

Preconditioning and simplified QMR: a little bit more tricky but similar
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U, Ũ, C = AU, C̃ = AT Ũ, Dc = C̃T C.
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Modified AORA versus AORA
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Output port
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Model Order Reduction
Numerical Results

Dielectric overlay

Input port

Metallic striplines

Sampling 20 frequencies sj = 2π i fj

,

fj ∈ [fmin, fmax] = [0.6 · 109, 3 · 109]

Use complex-symmetric Schur complement system

Preconditioner: LU-decomposition for s∗ =
√

fminfmax

Comparison

simplified QMR without subspace recycling

simplified QMR using subspace recycling
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Model Order Reduction
Numerical Results

Preconditioner: LU decomposition for S(s∗)

Preconditioned SQMR Without Subspace Recycling

0.5 1 1.5 2

x 10
10

0

50

100

150

200

frequency sampling

it
e
ra

ti
o
n
 s

te
p
s

iteration steps, precd. SQMR

0.5 1 1.5 2

x 10
10

0

2

4

6

8

10

12

14

frequency sampling

[s
e

c
]

Computation time, precd. SQMR

M. Bollhöfer et al. MOR for Maxwell Equations based Moment Matchings Page 38



Model Order Reduction
Numerical Results

Preconditioner: LU decomposition for S(s∗)

Preconditioned SQMR With Subspace Recycling
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Conclusions

(adaptive order) rational Arnoldi yields reduced order model for Maxwell equations

main important structures can be preserved

outer iteration: several calls of (modified) rational Arnoldi,
inner iteration: preconditioned SQMR

Recycling techniques→ modified AORA, recycling SQMR

This work was supported by the research network MoreSim4Nano funded by the
German Federal Ministry of Education and Science (BMBF) with grant no.
05M10MBA.
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