

Introduction to Model Order Reduction A Tutorial

Matthias Bollhöfer
INRIA Sophia Antipolis, July 27, 2015

Outline

- Model Order Reduction
- Proper Orthogonal Decomposition
- Balanced Truncation
. Moment Matching
- Conclusions

Outline

- Model Order Reduction
- Proper Orthogonal Decomposition
- Balanced Truncation
. Moment Matching
- Conclusions

Objective of Model Order Reduction (MOR)

Dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Laplace transformation, transfer function $\mathcal{H}(s)$

$$
\begin{aligned}
\mathcal{H}(s) & :=C(s I-A)^{-1} B+D \\
\hat{y}(s) & =\mathcal{H}(s) \hat{u}+\ldots
\end{aligned}
$$

Objective of Model Order Reduction (MOR)

Dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Laplace transformation, transfer function $\mathcal{H}(s)$

$$
\begin{aligned}
\mathcal{H}(s) & :=C(s I-A)^{-1} B+D \\
\hat{y}(s) & =\mathcal{H}(s) \hat{u}+\ldots
\end{aligned}
$$

Here most of the time $B, C^{*} \in \mathbb{R}^{n}$, single-input single-output case

Objective of Model Order Reduction (MOR)

Dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Model Order Reduction: find full rank $S, T \in \mathbb{R}^{n, r}$ such that $r \ll n, S^{*} T=I$ and use instead

Objective of Model Order Reduction (MOR)

Dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Model Order Reduction: find full rank $S, T \in \mathbb{R}^{n, r}$ such that $r \ll n, S^{*} T=I$ and use instead

$$
\begin{aligned}
\left(S^{*} T\right) \dot{\tilde{x}} & =\left(S^{*} A T\right) \tilde{x}+\left(S^{*} B\right) u \\
\tilde{y} & =(C T) \tilde{x}+D u \\
& \|y-\tilde{y}\| \text { small }
\end{aligned}
$$

Objective of Model Order Reduction (MOR)

Dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Model Order Reduction: find full rank $S, T \in \mathbb{R}^{n, r}$ such that $r \ll n, S^{*} T=I$ and use instead

$$
\begin{aligned}
& \dot{\tilde{x}}=\hat{A} \tilde{x}+\hat{B} u \\
& \tilde{y}=\hat{C} \tilde{x} \\
& \|y-\tilde{y}\| \text { small }
\end{aligned}
$$

Objective of Model Order Reduction (MOR)

Dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Model Order Reduction: find full rank $S, T \in \mathbb{R}^{n, r}$ such that $r \ll n, S^{*} T=I$ and use instead

$$
\begin{gathered}
\dot{\tilde{x}}=\hat{A} \tilde{x}+\hat{B} u \\
\tilde{y}=\hat{C} \tilde{x} \\
\|y-\tilde{y}\| \text { small } \\
\mathcal{H}(s)=C(s l-A)^{-1} B+D, \quad \hat{\mathcal{H}}(s)=\hat{C}(s l-\hat{A})^{-1} \hat{B}+\hat{D} \\
\|\mathcal{H}(s)-\hat{\mathcal{H}}(s)\| \text { small }
\end{gathered}
$$

Example

Heat equation

$$
T_{t}=\kappa \Delta T \text { in } \Omega=[0,1]^{2}
$$

Example

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$T(0, y, t)=p(y) u(t), u(t)$ input control,

$$
\frac{\partial T(x, 0, t)}{\partial y}=\frac{\partial T(x, 1, t)}{\partial y}=0, \frac{\partial T(1, y, t)}{\partial x}=-\alpha\left(T(1, y, t)-T_{e}(y)\right)
$$

Example

Heat equation

$$
\begin{gathered}
T_{t}=\kappa \Delta T \text { in } \Omega=[0,1]^{2} \\
T(0, y, t)=p(y) u(t), u(t) \text { input control } \\
\frac{\partial T(x, 0, t)}{\partial y}=\frac{\partial T(x, 1, t)}{\partial y}=0, \frac{\partial T(1, y, t)}{\partial x}=-\alpha\left(T(1, y, t)-T_{e}(y)\right)
\end{gathered}
$$

stationary solution
$E=\int_{\Omega} T d x d y$ output, total temperature
spatial discretization (FDM/FEM)

$$
\begin{aligned}
\dot{T}(t) & =-A T(t)+B u(t) \\
E(t) & =C T(t)
\end{aligned}
$$

A sym. pos. def. rnk B refers to dependence of u w.r.t. y

Outline

. Model Order Reduction

- Proper Orthogonal Decomposition
- Balanced Truncation
. Moment Matching
- Conclusions

Proper Orthogonal Decomposition (POD)

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& y=C x+D u,
\end{aligned} \quad \text { where } \sigma(A) \subset \mathbb{C}^{-}
$$

Proper Orthogonal Decomposition (POD)

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& v=C x+D u .
\end{aligned} \text { where } \sigma(A) \subset \mathbb{C}^{-}
$$

Compute a sequence of snapshots $\tilde{x}^{(1)}=\tilde{x}\left(t_{1}\right), \ldots, \tilde{x}^{(m)}=\tilde{x}\left(t_{m}\right), \tilde{x}^{(i)} \approx x\left(t_{i}\right)$ f.a. i. Set $X=\left[\tilde{X}^{(1)}, \ldots, \tilde{X}^{(m)}\right]$.

Proper Orthogonal Decomposition (POD)

$$
\begin{aligned}
\dot{x} & =A x+B u, \\
y & =C x+D u,
\end{aligned} \quad \text { where } \sigma(A) \subset \mathbb{C}^{-}
$$

Compute a sequence of snapshots $\tilde{x}^{(1)}=\tilde{x}\left(t_{1}\right), \ldots, \tilde{x}^{(m)}=\tilde{x}\left(t_{m}\right), \tilde{x}^{(i)} \approx x\left(t_{i}\right)$ f.a. i. Set $X=\left[\tilde{x}^{(1)}, \ldots, \tilde{X}^{(m)}\right]$.

Euclidean scalar product $(v, w)=v^{*} M w$, find orthonormal basis $z^{(1)}, \ldots, z^{(r)}$ s.t.

$$
\sum_{i=1}^{m}\left\|\tilde{x}^{(i)}-\sum_{j=1}^{r} \mu_{i j} z^{(j)}\right\|_{M}^{2}
$$

is minimized.

Proper Orthogonal Decomposition (POD)

$$
\begin{aligned}
\dot{x} & =A x+B u, \\
y & =C x+D u,
\end{aligned} \quad \text { where } \sigma(A) \subset \mathbb{C}^{-}
$$

Compute a sequence of snapshots $\tilde{x}^{(1)}=\tilde{x}\left(t_{1}\right), \ldots, \tilde{x}^{(m)}=\tilde{x}\left(t_{m}\right), \tilde{x}^{(i)} \approx x\left(t_{i}\right)$ f.a. i. Set $X=\left[\tilde{X}^{(1)}, \ldots, \tilde{X}^{(m)}\right]$.

Euclidean scalar product $(v, w)=v^{*} M w$, find orthonormal basis $z^{(1)}, \ldots, z^{(r)}$ s.t.

$$
\sum_{i=1}^{m}\left\|\tilde{x}^{(i)}-\sum_{j=1}^{r} \mu_{i j} z^{(j)}\right\|_{M}^{2}
$$

is minimized.

- $\mu_{i j}=\left(z^{(i)}, x^{(j)}\right) \quad$ (M-orthogonal projection)
- best rank- r approximation of X given by $M^{1 / 2} X=U \Sigma V^{*}$ (SVD), $Z_{r}=\left[Z^{(1)}, \ldots, Z^{(r)}\right]=M^{-1 / 2} U_{r}$, where U_{r} refers to the leading r columns of U (EMSY-Theorem).

Proper Orthogonal Decomposition (POD)

$$
\tilde{x}(t):=\sum_{j=1}^{r} a_{j}(t) z^{(j)} \equiv Z_{r} a(t)
$$

Proper Orthogonal Decomposition (POD)

$$
\tilde{x}(t):=\sum_{j=1}^{r} a_{j}(t) z^{(j)} \equiv Z_{r} a(t)
$$

Solve

$$
\dot{\tilde{x}}=A \tilde{x}+B u, \tilde{y}=C \tilde{x}+D u \text {, s.t. }(\dot{\tilde{x}}-A \tilde{x}-B u) \perp_{M} Z_{r}
$$

Proper Orthogonal Decomposition (POD)

$$
\tilde{x}(t):=\sum_{j=1}^{r} a_{j}(t) z^{(j)} \equiv Z_{r} a(t)
$$

Solve

$$
\begin{aligned}
\dot{\tilde{x}} & =A \tilde{x}+B u, \tilde{y}=C \tilde{x}+D u, \text { s.t. }(\dot{\tilde{x}}-A \tilde{x}-B u) \perp_{M} Z_{r} \\
& \Leftrightarrow \dot{a}=\underbrace{\left(Z_{r}^{*} M A Z_{r}\right)}_{\hat{A}} a+\underbrace{\left(Z_{r}^{*} M B\right)}_{\hat{B}} u, \tilde{y}=\underbrace{\left(C Z_{r}\right)}_{\hat{C}} a+D u
\end{aligned}
$$

Proper Orthogonal Decomposition (POD)

$$
\tilde{x}(t):=\sum_{j=1}^{r} a_{j}(t) z^{(j)} \equiv Z_{r} a(t)
$$

Solve

$$
\begin{gathered}
\dot{\tilde{x}}=A \tilde{x}+B u, \tilde{y}=C \tilde{x}+D u \text {, s.t. }(\dot{\tilde{x}}-A \tilde{x}-B u) \perp_{M} Z_{r} \\
\Leftrightarrow \dot{a}=\underbrace{\left(Z_{r}^{*} M A Z_{r}\right)}_{\hat{A}} a+\underbrace{\left(Z_{r}^{*} M B\right)}_{\hat{B}} u, \tilde{y}=\underbrace{\left(C Z_{r}\right)}_{\hat{c}} a+D u \\
\dot{a}=\hat{A} a+\hat{B} u, \tilde{y}=\hat{C} a+D u
\end{gathered}
$$

\rightarrow solve reduced-order dynamical system for the Fourier coefficients $a_{j}(t)$.

Example

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps (snapshots) SVD, $\sigma_{1}, \ldots, \sigma_{r} \geqslant \tau\|X\|$
$\tau=10^{-2} \Rightarrow r=3, \tau=10^{-4} \Rightarrow r=6$,

Example

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps (snapshots)
SVD, $\sigma_{1}, \ldots, \sigma_{r} \geqslant \tau\|X\|$
$\tau=10^{-2} \Rightarrow r=3, \tau=10^{-4} \Rightarrow r=6$,

Example

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps (snapshots) SVD, $\sigma_{1}, \ldots, \sigma_{r} \geqslant \tau\|X\|$
$\tau=10^{-2} \Rightarrow r=3, \tau=10^{-4} \Rightarrow r=6$,

Remarks POD

- initial phase (offline phase) is expensive (computing snapshots, SVD)
- solving reduced order is almost for free (online phase)
- POD works well for problems like the heat equation (singular values of the analytic solution decay quadratically w.r.t. t)

$$
T(x, y, t) \sim \sum_{l, m} \mu_{l, m} e^{-\kappa\left(l^{2}+m^{2}\right) \pi^{2} t} \sin (l \pi x) \sin (m \pi y)
$$

- POD leads to significantly higher rank for wave equations (singular values of the analytic solution decay linearly w.r.t. t)
- zero eigenvalues of the operator A on the imaginary axis (Maxwell, nullspace of the curl operator) severly interfere with POD.

Remarks POD

Variants of POD, e.g. affine-linear subspace

$$
\underline{x}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}, \quad D:=X-\underline{x}\left(\begin{array}{lll}
1 & \cdots & 1
\end{array}\right)
$$

Compute SVD of $M^{1 / 2} D=U \Sigma V^{*}$ and use for POD affine-linear model

$$
\tilde{x}=\underline{x}+M^{-1 / 2} U_{r} a
$$

Remarks POD

Variants of POD, e.g. affine-linear subspace

$$
\underline{x}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}, \quad D:=X-\underline{x}\left(\begin{array}{lll}
1 & \cdots & 1
\end{array}\right)
$$

Compute SVD of $M^{1 / 2} D=U \Sigma V^{*}$ and use for POD affine-linear model

$$
\tilde{x}=\underline{x}+M^{-1 / 2} U_{r} a
$$

linear $\operatorname{POD} \tau=10^{-2}, r=3 \quad$ versus affine-linear POD $\tau=10^{-2}, r=4$

Remarks POD

Variants of POD, e.g. affine-linear subspace

$$
\underline{x}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}, \quad D:=X-\underline{x}\left(\begin{array}{lll}
1 & \cdots & 1
\end{array}\right)
$$

Compute SVD of $M^{1 / 2} D=U \Sigma V^{*}$ and use for POD affine-linear model

$$
\tilde{x}=\underline{x}+M^{-1 / 2} U_{r} a
$$

linear $\operatorname{POD} \tau=10^{-4}, r=6$

Outline

. Model Order Reduction

- Proper Orthogonal Decomposition
- Balanced Truncation
. Moment Matching
- Conclusions

Balanced Truncation (BT)

$$
\begin{aligned}
\dot{x} & =A x+B u, \\
y & =C x+D u,
\end{aligned}
$$

such that $\sigma(A) \subset \mathbb{C}^{-}$

Balanced Truncation (BT)

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

such that $\sigma(A) \subset \mathbb{C}^{-}$

$$
\begin{gathered}
P(t, s)=\int_{t}^{s} e^{A \tau} B B^{*} e^{A^{*} \tau} d \tau \text { controllability Gramian } \\
Q(t, s)=\int_{t}^{s} e^{A^{*} \tau} C^{*} C e^{A \tau} d \tau \text { observability Gramian } \\
P \equiv P(0, \infty), Q \equiv Q(0, \infty)
\end{gathered}
$$

Balanced Truncation (BT)

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

such that $\sigma(A) \subset \mathbb{C}^{-}$

$$
\begin{gathered}
P(t, s)=\int_{t}^{s} e^{A \tau} B B^{*} e^{A^{*} \tau} d \tau \text { controllability Gramian } \\
Q(t, s)=\int_{t}^{s} e^{A^{*} \tau} C^{*} C e^{A \tau} d \tau \text { observability Gramian } \\
P \equiv P(0, \infty), Q \equiv Q(0, \infty)
\end{gathered}
$$

Positive definiteness of P, Q refer to controllability/observability of the associated dynamical system.

Balanced Truncation (BT)

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

such that $\sigma(A) \subset \mathbb{C}^{-}$

$$
\begin{gathered}
P(t, s)=\int_{t}^{s} e^{A \tau} B B^{*} e^{A^{*} \tau} d \tau \text { controllability Gramian } \\
Q(t, s)=\int_{t}^{s} e^{A^{*} \tau} C^{*} C e^{A \tau} d \tau \text { observability Gramian } \\
P \equiv P(0, \infty), Q \equiv Q(0, \infty)
\end{gathered}
$$

Positive definiteness of P, Q refer to controllability/observability of the associated dynamical system.
The square roots of the eigenvalues of $P Q$ are called Hankel singular values of the dynamical system

Balanced Truncation

Remark. Hankel singular values are invariant to system transformation

Balanced Truncation

Remark. Hankel singular values are invariant to system transformation

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& y=C x+D u,
\end{aligned} \Longleftrightarrow \begin{aligned}
\left(T^{-1} \dot{x}\right) & =\left(T^{-1} A T\right)\left(T^{-1} x\right)+\left(T^{-1} B\right) u \\
y & =(C T)\left(T^{-1} x\right)+D u
\end{aligned}
$$

Balanced Truncation

Remark. Hankel singular values are invariant to system transformation

$$
\begin{aligned}
\dot{x}=A x+B u, \\
y=C x+D u,
\end{aligned} \Longleftrightarrow \begin{aligned}
\left(T^{-1} \dot{x}\right) & =\left(T^{-1} A T\right)\left(T^{-1} x\right)+\left(T^{-1} B\right) u, \\
y & =(C T)\left(T^{-1} x\right)+D u \\
& \equiv \quad \begin{aligned}
& \dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u \\
& y=\hat{C} \hat{x}+D u
\end{aligned}
\end{aligned}
$$

Balanced Truncation

Remark. Hankel singular values are invariant to system transformation

$$
\begin{aligned}
\begin{aligned}
\dot{x}=A x+B u, \\
y=C x+D u,
\end{aligned} \Longleftrightarrow \begin{aligned}
\left(T^{-1} \dot{x}\right) & =\left(T^{-1} A T\right)\left(T^{-1} x\right)+\left(T^{-1} B\right) u, \\
y & =(C T)\left(T^{-1} x\right)+D u \\
\equiv & \begin{aligned}
& \dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u \\
& y=\hat{C} \hat{x}+D u
\end{aligned} \\
& \Rightarrow T^{-1} P T^{-*}=\hat{P}, T^{*} Q T=\hat{Q}, T^{-1} P Q T=\hat{P} \hat{Q}
\end{aligned}
\end{aligned}
$$

Balanced Truncation

Remark. Hankel singular values are invariant to system transformation

$$
\begin{aligned}
\dot{x}=A x+B u, \\
y=C x+D u,
\end{aligned} \Longleftrightarrow \begin{aligned}
\begin{aligned}
&\left.T^{-1} \dot{x}\right)=\left(T^{-1} A T\right)\left(T^{-1} x\right)+\left(T^{-1} B\right) u, \\
& y=(C T)\left(T^{-1} x\right)+D u, \\
& \equiv \\
& \dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u \\
& y=\hat{C} \hat{x}+D u,
\end{aligned} \\
\quad \Rightarrow T^{-1} P T^{-*}=\hat{P}, T^{*} Q T=\hat{Q}, T^{-1} P Q T=\hat{P} \hat{Q}
\end{aligned}
$$

A realization with (A, B, C, D) is called balanced if the ass. P and Q are diagonal.

Balanced Truncation

Remark. Hankel singular values are invariant to system transformation

$$
\begin{aligned}
\dot{x}=A x+B u, \\
y=C x+D u,
\end{aligned} \Longleftrightarrow \begin{aligned}
\begin{aligned}
&\left.T^{-1} \dot{x}\right)=\left(T^{-1} A T\right)\left(T^{-1} x\right)+\left(T^{-1} B\right) u, \\
& y=(C T)\left(T^{-1} x\right)+D u, \\
& \equiv \\
& \dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u, \\
& y=\hat{C} \hat{x}+D u,
\end{aligned} \\
\quad \Rightarrow T^{-1} P T^{-*}=\hat{P}, T^{*} Q T=\hat{Q}, T^{-1} P Q T=\hat{P} \hat{Q}
\end{aligned}
$$

A realization with (A, B, C, D) is called balanced if the ass. P and Q are diagonal.

We can construct T such that (A, B, C, D) is balanced!

Balancing the Dynamical System

1. Compute P, Q from the associated Lyapunov linear matrix equations

$$
A P+P A^{*}+B B^{*}=0, \quad A^{*} Q+Q A+C^{*} C=0 .
$$

Balancing the Dynamical System

1. Compute P, Q from the associated Lyapunov linear matrix equations

$$
A P+P A^{*}+B B^{*}=0, \quad A^{*} Q+Q A+C^{*} C=0
$$

2. Factorize P and Q such that

$$
L L^{*} \stackrel{!}{=} P, \quad R^{*} R \stackrel{!}{=} Q
$$

Balancing the Dynamical System

1. Compute P, Q from the associated Lyapunov linear matrix equations

$$
A P+P A^{*}+B B^{*}=0, \quad A^{*} Q+Q A+C^{*} C=0
$$

2. Factorize P and Q such that

$$
L L^{*} \stackrel{!}{=} P, \quad R^{*} R \stackrel{!}{=} Q
$$

3. Build $G=L^{*} R^{*}$ and compute its SVD via $G=U \Sigma V^{*}$

Balancing the Dynamical System

1. Compute P, Q from the associated Lyapunov linear matrix equations

$$
A P+P A^{*}+B B^{*}=0, \quad A^{*} Q+Q A+C^{*} C=0
$$

2. Factorize P and Q such that

$$
L L^{*} \stackrel{!}{=} P, \quad R^{*} R \stackrel{!}{=} Q
$$

3. Build $G=L^{*} R^{*}$ and compute its SVD via $G=U \Sigma V^{*}$
4. Then $T:=L U \Sigma^{-1 / 2}$ balances $(A, B, C, D) \rightarrow(\hat{A}, \hat{B}, \hat{C}, D)$

Balancing the Dynamical System

1. Compute P, Q from the associated Lyapunov linear matrix equations

$$
A P+P A^{*}+B B^{*}=0, \quad A^{*} Q+Q A+C^{*} C=0
$$

2. Factorize P and Q such that

$$
L L^{*} \stackrel{!}{=} P, \quad R^{*} R \stackrel{!}{=} Q
$$

3. Build $G=L^{*} R^{*}$ and compute its SVD via $G=U \Sigma V^{*}$
4. Then $T:=L U \Sigma^{-1 / 2}$ balances $(A, B, C, D) \rightarrow(\hat{A}, \hat{B}, \hat{C}, D)$

$$
\left.T^{*} Q T=\Sigma^{-1 / 2} U^{*} L^{*}\left(R^{*} R\right)\left(L U \Sigma^{-1 / 2}\right)=\Sigma^{-1 / 2} U^{*}\left(U \Sigma V^{*}\right)\left(V \Sigma U^{*}\right) U \Sigma^{-1 / 2}\right)=\Sigma
$$

Balancing the Dynamical System

1. Compute P, Q from the associated Lyapunov linear matrix equations

$$
A P+P A^{*}+B B^{*}=0, \quad A^{*} Q+Q A+C^{*} C=0
$$

2. Factorize P and Q such that

$$
L L^{*} \stackrel{!}{=} P, \quad R^{*} R \stackrel{!}{=} Q
$$

3. Build $G=L^{*} R^{*}$ and compute its SVD via $G=U \Sigma V^{*}$
4. Then $T:=L U \Sigma^{-1 / 2}$ balances $(A, B, C, D) \rightarrow(\hat{A}, \hat{B}, \hat{C}, D)$

$$
\begin{gathered}
\left.T^{*} Q T=\Sigma^{-1 / 2} U^{*} L^{*}\left(R^{*} R\right)\left(L U \Sigma^{-1 / 2}\right)=\Sigma^{-1 / 2} U^{*}\left(U \Sigma V^{*}\right)\left(V \Sigma U^{*}\right) U \Sigma^{-1 / 2}\right)=\Sigma \\
T^{-1} P T^{-*}=\Sigma^{1 / 2} U^{*} L^{-1}\left(L L^{*}\right)\left(L^{-*} U \Sigma^{1 / 2}\right)=\Sigma
\end{gathered}
$$

Balancing the Dynamical System

1. Compute P, Q from the associated Lyapunov linear matrix equations

$$
A P+P A^{*}+B B^{*}=0, \quad A^{*} Q+Q A+C^{*} C=0
$$

2. Factorize P and Q such that

$$
L L^{*} \stackrel{!}{=} P, \quad R^{*} R \stackrel{!}{=} Q
$$

3. Build $G=L^{*} R^{*}$ and compute its SVD via $G=U \Sigma V^{*}$
4. Then $T:=L U \Sigma^{-1 / 2}$ balances $(A, B, C, D) \rightarrow(\hat{A}, \hat{B}, \hat{C}, D)$

$$
\begin{gathered}
\left.T^{*} Q T=\Sigma^{-1 / 2} U^{*} L^{*}\left(R^{*} R\right)\left(L U \Sigma^{-1 / 2}\right)=\Sigma^{-1 / 2} U^{*}\left(U \Sigma V^{*}\right)\left(V \Sigma U^{*}\right) U \Sigma^{-1 / 2}\right)=\Sigma \\
T^{-1} P T^{-*}=\Sigma^{1 / 2} U^{*} L^{-1}\left(L L^{*}\right)\left(L^{-*} U \Sigma^{1 / 2}\right)=\Sigma \\
\Rightarrow T^{-1} P Q T=\Sigma^{2}
\end{gathered}
$$

Benefit of Balancing the Dynamical System

How can we use the balancing decomposition for MOR?

Benefit of Balancing the Dynamical System

How can we use the balancing decomposition for MOR?

Partition the factors of the SVD $U \Sigma V^{*}=G$ as

$$
U=\left[U_{1}, U_{2}\right], \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right], \quad V=\left[V_{1}, V_{2}\right]
$$

(leading r columns/rows)

Benefit of Balancing the Dynamical System

How can we use the balancing decomposition for MOR?

Partition the factors of the SVD $U \Sigma V^{*}=G$ as

$$
U=\left[U_{1}, U_{2}\right], \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right], \quad V=\left[V_{1}, V_{2}\right]
$$

(leading r columns/rows)

$$
T_{r}:=L U_{1} \Sigma_{1}^{-1 / 2}, \quad W_{r}:=R^{*} V_{1} \Sigma_{1}^{-1 / 2}
$$

Benefit of Balancing the Dynamical System

How can we use the balancing decomposition for MOR?

Partition the factors of the SVD $U \Sigma V^{*}=G$ as

$$
U=\left[U_{1}, U_{2}\right], \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right], \quad V=\left[V_{1}, V_{2}\right]
$$

(leading r columns/rows)

$$
T_{r}:=L U_{1} \Sigma_{1}^{-1 / 2}, \quad W_{r}:=R^{*} V_{1} \Sigma_{1}^{-1 / 2} \Rightarrow W_{r}^{*} T_{r}=I_{r}
$$

(T_{r}, W_{r} are the leading r columns/rows of T, T^{-1})

Benefit of Balancing the Dynamical System

How can we use the balancing decomposition for MOR?
Partition the factors of the SVD $U \Sigma V^{*}=G$ as

$$
U=\left[U_{1}, U_{2}\right], \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right], \quad V=\left[V_{1}, V_{2}\right]
$$

(leading r columns/rows)

$$
T_{r}:=L U_{1} \Sigma_{1}^{-1 / 2}, \quad W_{r}:=R^{*} V_{1} \Sigma_{1}^{-1 / 2} \Rightarrow W_{r}^{*} T_{r}=I_{r}
$$

(T_{r}, W_{r} are the leading r columns/rows of T, T^{-1})
Associated reduced order model:

$$
\hat{A}:=W_{r}^{*} A T_{r}, \hat{B}:=W_{r}^{*} B, \hat{C}:=C T_{r}, \hat{D}:=D
$$

Benefit of Balancing the Dynamical System

How can we use the balancing decomposition for MOR?
Partition the factors of the SVD $U \Sigma V^{*}=G$ as

$$
U=\left[U_{1}, U_{2}\right], \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right], \quad V=\left[V_{1}, V_{2}\right]
$$

(leading r columns/rows)

$$
T_{r}:=L U_{1} \Sigma_{1}^{-1 / 2}, \quad W_{r}:=R^{*} V_{1} \Sigma_{1}^{-1 / 2} \Rightarrow W_{r}^{*} T_{r}=I_{r}
$$

(T_{r}, W_{r} are the leading r columns/rows of T, T^{-1})
Associated reduced order model:

$$
\hat{A}:=W_{r}^{*} A T_{r}, \hat{B}:=W_{r}^{*} B, \hat{C}:=C T_{r}, \hat{D}:=D
$$

Error bound $\|\hat{y}-y\|_{L_{2}} \leqslant\|\hat{\mathcal{H}}-\mathcal{H}\|_{H_{\infty}}\|u\|_{L_{2}}=2\left(\sigma_{r+1}+\cdots+\sigma_{n}\right)\|u\|_{L_{2}}$

Balanced Truncation Algorithm

1. Compute a low-rank approximation $L_{r} L_{r}^{*} \approx P$ directly from

$$
A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0=A P+P A^{*}+B B^{*}
$$

Balanced Truncation Algorithm

1. Compute a low-rank approximation $L_{r} L_{r}^{*} \approx P$ directly from

$$
A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0=A P+P A^{*}+B B^{*}
$$

2. Compute a low-rank approximation $R_{r}^{*} R_{r} \approx Q$ directly from

$$
A^{*} R_{r}^{*} R_{r}+R_{r}^{*} R_{r} A+C^{*} C \approx 0=A^{*} Q+Q A+C^{*} C
$$

Balanced Truncation Algorithm

1. Compute a low-rank approximation $L_{r} L_{r}^{*} \approx P$ directly from

$$
A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0=A P+P A^{*}+B B^{*} .
$$

2. Compute a low-rank approximation $R_{r}^{*} R_{r} \approx Q$ directly from

$$
A^{*} R_{r}^{*} R_{r}+R_{r}^{*} R_{r} A+C^{*} C \approx 0=A^{*} Q+Q A+C^{*} C
$$

3. Set $G_{r}:=L_{r}^{*} R_{r}^{*}$ and compute SVD of $G_{r}=U_{r} \Sigma_{r} V_{r}^{*}$.

Balanced Truncation Algorithm

1. Compute a low-rank approximation $L_{r} L_{r}^{*} \approx P$ directly from

$$
A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0=A P+P A^{*}+B B^{*} .
$$

2. Compute a low-rank approximation $R_{r}^{*} R_{r} \approx Q$ directly from

$$
A^{*} R_{r}^{*} R_{r}+R_{r}^{*} R_{r} A+C^{*} C \approx 0=A^{*} Q+Q A+C^{*} C
$$

3. Set $G_{r}:=L_{r}^{*} R_{r}^{*}$ and compute SVD of $G_{r}=U_{r} \Sigma_{r} V_{r}^{*}$.
4. Set $T_{r}:=L_{r} U_{r} \Sigma_{r}^{-1 / 2}, W_{r}:=R_{r}^{*} V_{r} \Sigma_{r}^{-1 / 2}$

Balanced Truncation Algorithm

1. Compute a low-rank approximation $L_{r} L_{r}^{*} \approx P$ directly from

$$
A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0=A P+P A^{*}+B B^{*} .
$$

2. Compute a low-rank approximation $R_{r}^{*} R_{r} \approx Q$ directly from

$$
A^{*} R_{r}^{*} R_{r}+R_{r}^{*} R_{r} A+C^{*} C \approx 0=A^{*} Q+Q A+C^{*} C
$$

3. Set $G_{r}:=L_{r}^{*} R_{r}^{*}$ and compute SVD of $G_{r}=U_{r} \Sigma_{r} V_{r}^{*}$.
4. Set $T_{r}:=L_{r} U_{r} \Sigma_{r}^{-1 / 2}, W_{r}:=R_{r}^{*} V_{r} \Sigma_{r}^{-1 / 2}$
5. Define associated reduced order model:

$$
\hat{A}:=W_{r}^{*} A T_{r}, \hat{B}:=W_{r}^{*} B, \hat{C}:=C T_{r}, \hat{D}:=D
$$

The ADI Method

Objective: Solve $A P+P A^{*}+B B^{*}=0$

Alternating direction implicit method (ADI): Given some P_{j-1} and shift τ_{j}, compute

$$
\begin{gathered}
\left(\tau_{j} I+A\right) P_{j-\frac{1}{2}} \stackrel{!}{=}-B B^{*}+P_{j-1}\left(\tau_{j} I-A\right)^{*} \\
P_{j}\left(\tau_{j} I+A\right)^{*} \stackrel{!}{=}-B B^{*}+\left(\tau_{j} I-A\right) P_{j-\frac{1}{2}}
\end{gathered}
$$

The ADI Method

Objective: Solve $A P+P A^{*}+B B^{*}=0$

Alternating direction implicit method (ADI): Given some P_{j-1} and shift τ_{j}, compute

$$
\begin{gathered}
\left(\tau_{j} I+A\right) P_{j-\frac{1}{2}} \stackrel{!}{=}-B B^{*}+P_{j-1}\left(\tau_{j} I-A\right)^{*} \\
P_{j}\left(\tau_{j} I+A\right)^{*} \stackrel{!}{=}-B B^{*}+\left(\tau_{j} I-A\right) P_{j-\frac{1}{2}}
\end{gathered}
$$

- Convergence well-understood in the SPD case, there optimal shifts are known
- General case more complicate
- Here we want to exploit $P_{j}=L_{j} L_{j}^{*}$ explicitly
\longrightarrow low-rank Smith method, low-rank Cholesky-factor ADI

Low-Rank Cholesky-Factor ADI Method

Computing an approximate low-rank solution $L_{r} L_{r}^{*}$ of $A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0$

Low-Rank Cholesky-Factor ADI Method

Computing an approximate low-rank solution $L_{r} L_{r}^{*}$ of $A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0$

1. Compute suitable shift parameters $\tau_{1}, \ldots, \tau_{t} \in \mathbb{C}^{-}$

Low-Rank Cholesky-Factor ADI Method

Computing an approximate low-rank solution $L_{r} L_{r}^{*}$ of $A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0$

1. Compute suitable shift parameters $\tau_{1}, \ldots, \tau_{t} \in \mathbb{C}^{-}$
2. $Z_{1}:=\sqrt{-2 \operatorname{Re}\left(\tau_{1}\right)}\left(\tau_{1} I+A\right)^{-1} B$
$L_{1}:=Z_{1}$

Low-Rank Cholesky-Factor ADI Method

Computing an approximate low-rank solution $L_{r} L_{r}^{*}$ of $A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0$

1. Compute suitable shift parameters $\tau_{1}, \ldots, \tau_{t} \in \mathbb{C}^{-}$
2. $Z_{1}:=\sqrt{-2 \operatorname{Re}\left(\tau_{1}\right)}\left(\tau_{1} I+A\right)^{-1} B$ $L_{1}:=Z_{1}$
3. For $i=2,3, \ldots, t$

$$
\begin{aligned}
Z_{i} & :=\frac{\sqrt{-2 \tau_{i}}}{\sqrt{-2 \tau_{i-1}}}\left[Z_{i-1}-\left(\tau_{i}+\bar{\tau}_{i-1}\right)\left(\tau_{i} I+A\right)^{-1} Z_{i-1}\right] \\
L_{i} & :=\left[L_{i-1}, Z_{i}\right]
\end{aligned}
$$

Low-Rank Cholesky-Factor ADI Method

Computing an approximate low-rank solution $L_{r} L_{r}^{*}$ of $A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0$

1. Compute suitable shift parameters $\tau_{1}, \ldots, \tau_{t} \in \mathbb{C}^{-}$
2. $Z_{1}:=\sqrt{-2 \operatorname{Re}\left(\tau_{1}\right)}\left(\tau_{1} I+A\right)^{-1} B$ $L_{1}:=Z_{1}$
3. For $i=2,3, \ldots, t$

$$
\begin{aligned}
Z_{i} & :=\frac{\sqrt{-2 \tau_{i}}}{\sqrt{-2 \tau_{i-1}}}\left[Z_{i-1}-\left(\tau_{i}+\bar{\tau}_{i-1}\right)\left(\tau_{i} I+A\right)^{-1} Z_{i-1}\right] \\
L_{i} & :=\left[L_{i-1}, Z_{i}\right]
\end{aligned}
$$

4. Repeat step 3 for $i=1,2,3, \ldots, t$ using $\tau_{0}=\tau_{t}, Z_{0}=Z_{t}, L_{0}=L_{t}$ until the "error" is small enough

Low-Rank Cholesky-Factor ADI Method

Computing an approximate low-rank solution $L_{r} L_{r}^{*}$ of $A L_{r} L_{r}^{*}+L_{r} L_{r}^{*} A^{*}+B B^{*} \approx 0$

1. Compute suitable shift parameters $\tau_{1}, \ldots, \tau_{t} \in \mathbb{C}^{-}$
2. $Z_{1}:=\sqrt{-2 \operatorname{Re}\left(\tau_{1}\right)}\left(\tau_{1} I+A\right)^{-1} B$
$L_{1}:=Z_{1}$
3. For $i=2,3, \ldots, t$

$$
\begin{aligned}
Z_{i} & :=\frac{\sqrt{-2 \tau_{i}}}{\sqrt{-2 \tau_{i-1}}}\left[Z_{i-1}-\left(\tau_{i}+\bar{\tau}_{i-1}\right)\left(\tau_{i} I+A\right)^{-1} Z_{i-1}\right] \\
L_{i} & :=\left[L_{i-1}, Z_{i}\right]
\end{aligned}
$$

4. Repeat step 3 for $i=1,2,3, \ldots, t$ using $\tau_{0}=\tau_{t}, Z_{0}=Z_{t}, L_{0}=L_{t}$ until the "error" is small enough

Remark. Shift parameters are essential, optimal values only known if $-A$ is s.p.d. "error" usually measured by changes from $L_{i-1} \rightarrow L_{i}$. each update i increases $L_{i-1} \rightarrow L_{i}$ by rank B

Example Balanced Truncation

Heat equation

$$
T_{t}=\mathrm{\kappa} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Low-Rank Cholesky-Factor ADI using 0.1τ
$\tau=10^{-2} \Rightarrow 23 / 13$ ADI steps, $\tau=10^{-4} \Rightarrow 40 / 29$ ADI steps
SVD of $G=L_{r}^{*} R_{r}^{*}, \sigma_{1}, \ldots, \sigma_{r} \geqslant \tau\|X\|$
$\tau=10^{-2} \Rightarrow r=3, \tau=10^{-4} \Rightarrow r=7$,

Example Balanced Truncation

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Low-Rank Cholesky-Factor ADI using 0.1τ
$\tau=10^{-2} \Rightarrow 23 / 13$ ADI steps, $\tau=10^{-4} \Rightarrow 40 / 29$ ADI steps
SVD of $G=L_{r}^{*} R_{r}^{*}, \sigma_{1}, \ldots, \sigma_{r} \geqslant \tau\|X\|$
$\tau=10^{-2} \Rightarrow r=3, \tau=10^{-4} \Rightarrow r=7$,

Example Balanced Truncation

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Low-Rank Cholesky-Factor ADI using 0.1τ
$\tau=10^{-2} \Rightarrow 23 / 13$ ADI steps, $\tau=10^{-4} \Rightarrow 40 / 29$ ADI steps
SVD of $G=L_{r}^{*} R_{r}^{*}, \sigma_{1}, \ldots, \sigma_{r} \geqslant \tau\|X\|$
$\tau=10^{-2} \Rightarrow r=3, \tau=10^{-4} \Rightarrow r=7$,

Remarks Balanced Truncation

- BT yields error bounds!
- $\sigma(A) \in \mathbb{C}^{-}$essential (similar situation as for POD)
- BT can be generalized to descriptor systems $E \dot{x}=A x+B u$
- Additional properties such as passivity can be preserved by modifying BT (passivity: $\mathcal{H}(s)$ is analytic, $\mathcal{H}(s)+\mathcal{H}(\bar{s})^{*}$ is positive semidefinite f.a. $s \in \mathbb{C}^{+}$)

Outline

. Model Order Reduction

- Proper Orthogonal Decomposition
- Balanced Truncation
. Moment Matching
- Conclusions

Moment Matching-Based Model Order Reduction

Dynamical system

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

Transfer function

$$
\mathcal{H}(s)=C(s I-A)^{-1} B
$$

Moment Matching-Based Model Order Reduction

Dynamical system

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& y=C x+D u,
\end{aligned}
$$

Transfer function

$$
\mathcal{H}(s)=C(s I-A)^{-1} B
$$

Taylor expansion at s_{0} :

$$
\mathcal{H}(s)=\sum_{p=0}^{\infty} Z_{0}^{(p)}\left(s-s_{0}\right)^{p}, \text { where } Z_{0}^{(p)}=-C\left(A-s_{0} I\right)^{-p-1} B
$$

Moment Matching-Based Model Order Reduction

Dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Transfer function

$$
\mathcal{H}(s)=C(s I-A)^{-1} B
$$

Taylor expansion at s_{0} :

$$
\mathcal{H}(s)=\sum_{p=0}^{\infty} Z_{0}^{(p)}\left(s-s_{0}\right)^{p}, \text { where } Z_{0}^{(p)}=-C\left(A-s_{0} I\right)^{-p-1} B
$$

$X_{0}^{(p)}:=-\left(A-s_{0} I\right)^{-p-1} B$ input moments, Taylor coefficients $Z_{0}^{(p)}$ output moments.
$Y_{0}^{(p)}:=-C\left(A-s_{0} I\right)^{-p-1}$

Elementary Considerations

Suppose that A is simple, $T^{-1} A T=\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \operatorname{Re}\left(\lambda_{j}\right)<0$.

Elementary Considerations

Suppose that A is simple, $T^{-1} A T=\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \operatorname{Re}\left(\lambda_{j}\right)<0$.
Partition $T=\left[T_{r}, \tilde{T}\right], T^{-1}=\left[\begin{array}{c}w_{r}^{*} \\ \tilde{W}^{*}\end{array}\right]$.

Elementary Considerations

Suppose that A is simple, $T^{-1} A T=\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \operatorname{Re}\left(\lambda_{j}\right)<0$.
Partition $T=\left[T_{r}, \tilde{T}\right], T^{-1}=\left[\begin{array}{c}W_{r}^{*} \\ \tilde{W}^{*}\end{array}\right]$.
associated reduced-order system

$$
\begin{gathered}
\hat{A}:=W_{r}^{*} A T_{r}, \hat{B}:=W_{r}^{*} B, \hat{C}:=C T_{r}, \hat{D}:=D \\
\|\hat{y}-y\|_{L_{2}} \leqslant\|\hat{\mathcal{H}}-\mathcal{H}\|_{H_{\infty}}\|u\|_{L_{2}} \leqslant\|C\|_{2}\|B\|_{2} \operatorname{cond}_{2}(T) \max _{j>r} \frac{1}{\left|\operatorname{Re}\left(\lambda_{j}\right)\right|}\|u\|_{L_{2}}
\end{gathered}
$$

Elementary Considerations

Suppose that A is simple, $T^{-1} A T=\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \operatorname{Re}\left(\lambda_{j}\right)<0$.
Partition $T=\left[T_{r}, \tilde{T}\right], T^{-1}=\left[\begin{array}{c}W_{r}^{*} \\ \tilde{W}^{*}\end{array}\right]$.
associated reduced-order system

$$
\begin{gathered}
\hat{A}:=W_{r}^{*} A T_{r}, \hat{B}:=W_{r}^{*} B, \hat{C}:=C T_{r}, \hat{D}:=D \\
\|\hat{y}-y\|_{L_{2}} \leqslant\|\hat{\mathcal{H}}-\mathcal{H}\|_{H_{\infty}}\|u\|_{L_{2}} \leqslant\|C\|_{2}\|B\|_{2} \operatorname{cond}_{2}(T) \max _{j>r} \frac{1}{\left|\operatorname{Re}\left(\lambda_{j}\right)\right|}\|u\|_{L_{2}}
\end{gathered}
$$

- matching eigenvectors/eigenvalues close to the imaginary axis advantageous
- Taylor expansion of $\mathcal{H}(s)$ sensitive w.r.t. expansion point s_{0}
- Often applications only require $\max _{\omega \in\left[f_{\min }, f_{\max }\right]}\|\hat{\mathcal{H}}(2 \pi i \omega)-\mathcal{H}(2 \pi i \omega)\|_{\infty}$ to be small

Krylov Subspace Methods

Krylov subspace

$$
\mathcal{K}_{p}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{p-1} b\right\}
$$

Krylov Subspace Methods

Krylov subspace

$$
\mathcal{K}_{p}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{p-1} b\right\}
$$

- input Krylov subpace

$$
X_{0}^{(p)}=\left(A-s_{0} I\right)^{-p-1} B \in \mathcal{K}_{p+1}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right), \text { where } B_{0}=\left(A-s_{0} I\right)^{-1} B .
$$

- output Krylov subspace

$$
\left(Y_{0}^{(p)}\right)^{*}=\left(A^{*}-\bar{s}_{0} I\right)^{-p-1} C^{*} \in \mathcal{K}_{p+1}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right), \text { where } C_{0}^{*}=\left(A-s_{0} I\right)^{-*} C^{*}
$$

Krylov Subspace Methods

Krylov subspace

$$
\mathcal{K}_{p}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{p-1} b\right\}
$$

- input Krylov subpace

$$
X_{0}^{(p)}=\left(A-s_{0} I\right)^{-p-1} B \in \mathcal{K}_{p+1}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right), \text { where } B_{0}=\left(A-s_{0} I\right)^{-1} B
$$

- output Krylov subspace

$$
\left(Y_{0}^{(p)}\right)^{*}=\left(A^{*}-\bar{s}_{0} I\right)^{-p-1} C^{*} \in \mathcal{K}_{p+1}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right), \text { where } C_{0}^{*}=\left(A-s_{0} I\right)^{-*} C^{*}
$$

Main idea of moment matching methods:
Compute T_{r} and/or W_{r} from $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right), \mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right)$ s.t. $W_{r}^{*} T_{r}=I$

Krylov Subspace Methods

Krylov subspace

$$
\mathcal{K}_{p}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{p-1} b\right\}
$$

- input Krylov subpace

$$
X_{0}^{(p)}=\left(A-s_{0} I\right)^{-p-1} B \in \mathcal{K}_{p+1}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right), \text { where } B_{0}=\left(A-s_{0} I\right)^{-1} B
$$

- output Krylov subspace

$$
\left(Y_{0}^{(p)}\right)^{*}=\left(A^{*}-\bar{s}_{0} I\right)^{-p-1} C^{*} \in \mathcal{K}_{p+1}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right), \text { where } C_{0}^{*}=\left(A-s_{0} I\right)^{-*} C^{*}
$$

Main idea of moment matching methods:
Compute T_{r} and/or W_{r} from $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right), \mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right)$ s.t. $W_{r}^{*} T_{r}=I$
associated reduced-order system

$$
\hat{A}:=W_{r}^{*} A T_{r}, \hat{B}:=W_{r}^{*} B, \hat{C}:=C T_{r}, \hat{D}:=D
$$

associated reduced-order transfer function

$$
\hat{\mathcal{H}}_{r}(s):=\hat{C}(s I-\hat{A})^{-1} \hat{B}
$$

Moment Matching Methods

Consequences

$$
\hat{\mathcal{H}}_{r}(s):=\sum_{p=0}^{t-1} Z_{0}^{(p)}\left(s-s_{0}\right)^{p}+\sum_{p=t}^{\infty} \hat{Z}_{0}^{(p)}\left(s-s_{0}\right)^{p}
$$

Moment Matching Methods

Consequences

$$
\hat{\mathcal{H}}_{r}(s):=\sum_{p=0}^{t-1} z_{0}^{(p)}\left(s-s_{0}\right)^{p}+\sum_{p=t}^{\infty} \hat{z}_{0}^{(p)}\left(s-s_{0}\right)^{p}
$$

- If $T_{r} \in \mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right)$ and W_{r} s.t. $W_{r}^{*} T_{r}=I$, then $t \geqslant r$
- If $W_{r} \in \mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right)$ and T_{r} s.t. $W_{r}^{*} T_{r}=I$, then $t \geqslant r$
- If $T_{r} \in \mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right)$ and $W_{r} \in \mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right) W_{r}^{*} T_{r}=I$, then $t \geqslant 2 r$.

Krylov Subspace Methods — Lanczos (PVL)

Lanczos-type method (Padé via Lanczos)

Krylov Subspace Methods — Lanczos (PVL)

Lanczos-type method (Padé via Lanczos)
Generate dual bases T_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right)$ and W_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right)$

Krylov Subspace Methods — Lanczos (PVL)

Lanczos-type method (Padé via Lanczos)
Generate dual bases T_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right)$ and W_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right)$
We obtain $\left(s_{0} I-A\right)^{-1} T_{r-1}=T_{r} \underline{L}_{r}$ and $\left(s_{0} I-A\right)^{-*} W_{r-1}=W_{r} \underline{\underline{L}}_{r}$, where

Krylov Subspace Methods — Lanczos (PVL)

Lanczos-type method (Padé via Lanczos)
Generate dual bases T_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right)$ and W_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right)$
We obtain $\left(s_{0} I-A\right)^{-1} T_{r-1}=T_{r} \underline{L}_{r}$ and $\left(s_{0} I-A\right)^{-*} W_{r-1}=W_{r} \underline{\underline{L}}_{r}$, where

$$
W_{r}^{*} T_{r}=l \text { and }
$$

Krylov Subspace Methods — Lanczos (PVL)

Lanczos-type method (Padé via Lanczos)
Generate dual bases T_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right)$ and W_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-*}, C_{0}^{*}\right)$
We obtain $\left(s_{0} I-A\right)^{-1} T_{r-1}=T_{r} \underline{L}_{r}$ and $\left(s_{0} I-A\right)^{-*} W_{r-1}=W_{r} \underline{\underline{L}}_{r}$, where

$$
W_{r}^{*} T_{r}=I \text { and }
$$

$$
\underline{L}_{r}=\left[\begin{array}{cccc}
I_{11} & I_{12} & & 0 \\
I_{21} & I_{22} & I_{23} & \\
& \ddots & \ddots & \ddots \\
0 & & I_{r-1, r-2} & I_{r-1, r-1} \\
\hline 0 & & & I_{r, r-1}
\end{array}\right], \hat{L}_{r}=\left[\begin{array}{cccc}
\bar{I}_{11} & \bar{l}_{21} & & 0 \\
\bar{I}_{12} & \bar{I}_{22} & \bar{I}_{32} & \\
& \ddots & \ddots & \ddots \\
0 & & \bar{I}_{r-2, r-1} & \bar{I}_{r-1, r-1} \\
\hline 0 & & & \bar{I}_{r-1, r}
\end{array}\right] .
$$

Krylov Subspace Methods — Lanczos (PVL)

$$
\begin{aligned}
& t:=\left(s_{0} I-A\right)^{-1} B, w:=\left(s_{0} I-A\right)^{-*} C^{*} \\
& T_{1}:=t /\|t\|, W_{1}=w /\left(T_{1}^{*} w\right)
\end{aligned}
$$

Krylov Subspace Methods — Lanczos (PVL)

$$
\begin{aligned}
& t:=\left(s_{0} I-A\right)^{-1} B, w:=\left(s_{0} I-A\right)^{-*} C^{*} \\
& T_{1}:=t /\|t\|, W_{1}=w /\left(T_{1}^{*} w\right) \\
& I_{01}=I_{10}:=0
\end{aligned}
$$

Krylov Subspace Methods — Lanczos (PVL)

$$
\begin{aligned}
& t:=\left(s_{0} I-A\right)^{-1} B, w:=\left(s_{0} I-A\right)^{-*} C^{*} \\
& T_{1}:=t /\|t\|, W_{1}=w /\left(T_{1}^{*} w\right) \\
& I_{01}=I_{10}:=0 \\
& \text { For } i=1,2, \ldots, r-1 \\
& \quad t:=\left(s_{0} I-A\right)^{-1} T_{i} \\
& \quad l_{i i}:=W_{i}^{*} t \\
& \quad t:=t-T_{i} l_{i i}-T_{i-1} I_{i-1, i} \\
& \quad l_{i+1, i}:=\|t\|, T_{i+1}:=t / I_{i+1, i} \\
& \quad w:=\left(s_{0} I-A\right)^{-*} W_{i} \\
& \quad w:=w-W_{i} \bar{I}_{i i}-W_{i-1} \bar{I}_{i, i-1} \\
& \quad I_{i, i+1}:=W^{*} T_{i}, W_{i+1}:=w / I_{i, i+1}
\end{aligned}
$$

Krylov Subspace Methods - Arnoldi

Arnoldi-type method

Krylov Subspace Methods - Arnoldi

Arnoldi-type method
Generate orthonormal basis T_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right)$

Krylov Subspace Methods - Arnoldi

Arnoldi-type method

Generate orthonormal basis T_{r} of $\mathcal{K}_{r}\left(\left(s_{0} I-A\right)^{-1}, B_{0}\right)$
We obtain $\left(s_{0} I-A\right)^{-1} T_{r-1}=T_{r} \underline{H}_{r}$, where $T_{r}^{*} T_{r}=I$ and

$$
\underline{H}_{r}=\left[\begin{array}{cccc}
h_{11} & \cdots & \cdots & h_{1, r-1} \\
h_{21} & h_{22} & & \vdots \\
& \ddots & \ddots & \vdots \\
0 & & h_{r-1, r-2} & h_{r-1, r-1} \\
\hline 0 & & & h_{r, r-1}
\end{array}\right]
$$

Krylov Subspace Methods - Arnoldi

$$
\begin{aligned}
& t:=\left(s_{0} I-A\right)^{-1} B \\
& T_{1}:=t /\|t\|
\end{aligned}
$$

Krylov Subspace Methods - Arnoldi

$$
\begin{aligned}
& t:=\left(s_{0} I-A\right)^{-1} B \\
& T_{1}:=t /\|t\| \\
& \text { For } i=1,2, \ldots, r-1 \\
& t:=\left(s_{0} I-A\right)^{-1} T_{i} \\
& \text { For } j=1,2, \ldots, i \\
& h_{j i}:=T_{j}^{*} t \\
& t:=t-T_{j} h_{j i} \\
& \quad h_{i+1, i}:=\|t\|, T_{i+1}:=t / h_{i+1, i}
\end{aligned}
$$

Example Krylov Subspace Methods

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion point $s_{0}=0$
PVL use $r=3, r=5$, Arnoldi uses $r=3,5,10,15,20$

Example Krylov Subspace Methods

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion point $s_{0}=0$
PVL use $r=3, r=5$, Arnoldi uses $r=3,5,10,15,20$

Example Krylov Subspace Methods

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion point $s_{0}=0$
PVL use $r=3, r=5$, Arnoldi uses $r=3,5,10,15,20$

Example Krylov Subspace Methods

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion point $s_{0}=0$
PVL use $r=3, r=5$, Arnoldi uses $r=3,5,10,15,20$

Example Krylov Subspace Methods

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion point $s_{0}=0$
PVL use $r=3, r=5$, Arnoldi uses $r=3,5,10,15,20$

$$
\text { PVL }(r=3) \quad \text { versus } \quad \text { Arnoldi }(r=10)
$$

Example Krylov Subspace Methods

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion point $s_{0}=0$
PVL use $r=3, r=5$, Arnoldi uses $r=3,5,10,15,20$

$$
\text { PVL }(r=5) \quad \text { versus } \quad \text { Arnoldi }(r=15)
$$

Example Krylov Subspace Methods

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion point $s_{0}=0$
PVL use $r=3, r=5$, Arnoldi uses $r=3,5,10,15,20$

$$
\text { PVL }(r=5) \quad \text { versus } \quad \text { Arnoldi }(r=20)
$$

Remarks Krylov Subspace Methods

- PVL matches twice as many moments, but unstable (reorthogonalization, break downs), no symmetry preservation
- Arnoldi more stable, either B or C^{*} is taken into acount, stable, preserves symmetry

Remarks Krylov Subspace Methods

- PVL matches twice as many moments, but unstable (reorthogonalization, break downs), no symmetry preservation
- Arnoldi more stable, either B or C^{*} is taken into acount, stable, preserves symmetry
- size r of the subspace not known in advance, no error bounds
- possibly multiple calls necessary, e.g. compare $\left\|\hat{\mathcal{H}}_{r_{l}}(s)-\hat{\mathcal{H}}_{r_{l+1}}(s)\right\| /\left\|\hat{\mathcal{H}}_{r_{l+1}}(s)\right\|$ from two subsequent calls

Remarks Krylov Subspace Methods

- PVL matches twice as many moments, but unstable (reorthogonalization, break downs), no symmetry preservation
- Arnoldi more stable, either B or C^{*} is taken into acount, stable, preserves symmetry
- size r of the subspace not known in advance, no error bounds
- possibly multiple calls necessary, e.g. compare $\left\|\hat{\mathcal{H}}_{r_{l}}(s)-\hat{\mathcal{H}}_{r_{l+1}}(s)\right\| /\left\|\hat{\mathcal{H}}_{r_{l+1}}(s)\right\|$ from two subsequent calls
- Krylov subspace methods are extremeley sensitive to the choice of s_{0}, location of eigenvalues of A is helpful (e.g. real and negative), frequency range as well
- shift S_{0} on the imaginary axis, usually complex-valued matrices T, W

Rational Krylov Subspace Methods

- Use multiple Taylor expansions at s_{1}, \ldots, s_{l}

$$
\mathcal{H}(s)=\sum_{p=0}^{\infty} Z_{j}^{(p)}\left(s-s_{j}\right)^{p}, j=1, \ldots, l
$$

Rational Krylov Subspace Methods

- Use multiple Taylor expansions at s_{1}, \ldots, s_{l}

$$
\mathcal{H}(s)=\sum_{p=0}^{\infty} Z_{j}^{(p)}\left(s-s_{j}\right)^{p}, j=1, \ldots, l
$$

- Rational Krylov method: Compute basis T_{r} for the Krylov subspaces

$$
\sum_{j=1}^{l} \mathcal{K}_{r_{j}}\left(\left(s_{j} I-A\right)^{-1}, B_{j}\right), \text { where } B_{j}=\left(s_{j} I-A\right)^{-1} B
$$

Rational Krylov Subspace Methods

- Use multiple Taylor expansions at s_{1}, \ldots, s_{l}

$$
\mathcal{H}(s)=\sum_{p=0}^{\infty} Z_{j}^{(p)}\left(s-s_{j}\right)^{p}, j=1, \ldots, l
$$

- Rational Krylov method: Compute basis T_{r} for the Krylov subspaces

$$
\sum_{j=1}^{l} \mathcal{K}_{r_{j}}\left(\left(s_{j} I-A\right)^{-1}, B_{j}\right), \text { where } B_{j}=\left(s_{j} I-A\right)^{-1} B
$$

and/or possibly basis W_{r} (such that $W_{r}^{*} T_{r}=I$) for the Krylov subspaces

$$
\begin{gathered}
\sum_{j=1}^{l} \mathcal{K}_{r_{j}}\left(\left(s_{j} I-A\right)^{-*}, C_{j}^{*}\right), \text { where } C_{j}=\left(s_{j} I-A\right)^{-*} C^{*} \\
r=r_{1}+\cdots+r_{l}
\end{gathered}
$$

Rational Arnoldi Methods

Lemma (Partial Fraction Decomposition)

Suppose that $s_{i} \neq s_{j}$, then

$$
\left(s_{i} I-A\right)^{-1} \cdot\left(s_{j} I-A\right)^{-p+1} B_{j} \in \mathcal{K}_{p}\left(\left(s_{j} I-A\right)^{-1}, B_{j}\right)+\mathcal{K}_{1}\left(\left(s_{i} I-A\right)^{-1}, B_{i}\right)
$$

Rational Arnoldi Methods

Lemma (Partial Fraction Decomposition)

Suppose that $s_{i} \neq s_{j}$, then

$$
\left(s_{i} I-A\right)^{-1} \cdot\left(s_{j} I-A\right)^{-p+1} B_{j} \in \mathcal{K}_{p}\left(\left(s_{j} I-A\right)^{-1}, B_{j}\right)+\mathcal{K}_{1}\left(\left(s_{i} I-A\right)^{-1}, B_{i}\right)
$$

- \Rightarrow mixing inverses with different shifts leads to a separate sum of Krylov subspaces, no "mixed powers of inverses"
- We may run the Arnoldi method with shifts s_{1}, \ldots, s_{l} simultaneously, e.g., one shift after another or cyclically

Example Rational Arnoldi Method

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps Use expansion points $s_{j} \in\{0, \pm i, \pm 2 i, \pm 3 i, \ldots\}, j=1, \ldots, l$ rational Arnoldi uses $r=5,10, I=1,3,5$ cyclically

Example Rational Arnoldi Method

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion points $s_{j} \in\{0, \pm i, \pm 2 i, \pm 3 i, \ldots\}, j=1, \ldots, l$ rational Arnoldi uses $r=5,10, I=1,3,5$ cyclically

Arnoldi $(r=5) \quad$ versus \quad rational Arnoldi $(r=5, I=3)$

Example Rational Arnoldi Method

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion points $s_{j} \in\{0, \pm i, \pm 2 i, \pm 3 i, \ldots\}, j=1, \ldots, l$ rational Arnoldi uses $r=5,10, I=1,3,5$ cyclically

Arnoldi $(r=5) \quad$ versus \quad rational Arnoldi $(r=5, I=5)$

Example Rational Arnoldi Method

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion points $s_{j} \in\{0, \pm i, \pm 2 i, \pm 3 i, \ldots\}, j=1, \ldots, l$ rational Arnoldi uses $r=5,10, I=1,3,5$ cyclically

Arnoldi $(r=10) \quad$ versus \quad rational Arnoldi $(r=10, I=3)$

Example Rational Arnoldi Method

Heat equation

$$
T_{t}=\mathrm{k} \Delta T \text { in } \Omega=[0,1]^{2}
$$

$N=100$ grid points in x-, y-direction $t_{e}=10, M=20$ time steps
Use expansion points $s_{j} \in\{0, \pm i, \pm 2 i, \pm 3 i, \ldots\}, j=1, \ldots, l$
rational Arnoldi uses $r=5,10, I=1,3,5$ cyclically
Arnoldi $(r=10) \quad$ versus \quad rational Arnoldi $(r=10, I=5)$

Remarks Rational Arnoldi Method

- Choice of multiple shifts not clear in advance, sometimes one shift is enough
- Multiple shifts may reduce the error $\left\|\hat{\mathcal{H}}_{r_{l}}(s)-\hat{\mathcal{H}}_{r_{l+1}}(s)\right\| /\left\|\hat{\mathcal{H}}_{r_{l+1}}(s)\right\|$ between two subsequent rational Arnoldi calls more uniformly
- Adaptive strategies to select s_{j} exist
- Multiple shifts require more LU decompositions

Outline

. Model Order Reduction

- Proper Orthogonal Decomposition
- Balanced Truncation
. Moment Matching
- Conclusions

Conclusions

- Three different approaches to perform model order reduction presented
- Discussion here only simplified!
- no clear winner, problem-dependent
- POD: use SVD of a snapshot sequence, BT: use low-rank approximation of the associated Gramians Moment Matching: build bases of the associated Krylov subspace
- Many additional topics to be discussed (generalizations to $E \dot{x}=A x+B u$, error estimates for Krylov-type methods, numerical solvers for solving the shifted systems, parametrized systems, time-dependent systems, nonlinear systems,...)

