

FETI–DPEM2–full method as an efficient technic applied to 3D electromagnetic large-scale simulation

Institut

I. Voznyuk, H. Tortel, A. Litman, Institut Fresnel, UMR-CNRS 7249, Marseille, France

Invited talk, Inria, 2014

Time	Place
2005 – 2009 Bachelor	Novosibirsk State Technical University + SB RAS,
2009 – 2011 Master 2	Faculty of Applied Mathematics and Computer science

Time	Place
2005 – 2009 Bachelor	Novosibirsk State Technical University + SB RAS, Faculty of Applied Mathematics and Computer science
2009 – 2011 Master 2	
2011 – 2014 PhD	The Institut Fresnel, HIPE team (Hyperfrequency, Instrumentation, Processing, Experimentation)

Time	Place
2005 – 2009 Bachelor	Novosibirsk State Technical University + SB RAS, Faculty of Applied Mathematics and Computer science
2009 – 2011 Master 2	
2011 – 2014 PhD	The Institut Fresnel, HIPE team (Hyperfrequency, Instrumentation, Processing, Experimentation)

Aim of PhD	Create a powerful tool which would be able to solve Large-scale
	2D & 3D electromagnetic problems for complex media

Physical statement of problem

Mathematical statement of problem

Numerical method

FETI-DPEM2 classical approach

Its modification (FETI-DPEM2-full method)

Numerical results

3D quantitative Inverse problems

Problem statement

FETI Implementation

Physical statement of problem

Mathematical statement of problem

Numerical method

FETI-DPEM2 classical approach

Its modification (FETI-DPEM2-full method)

Numerical results

3D quantitative Inverse problems

Problem statement

FETI Implementation

Physical statement of problem

Mathematical statement of problem

Numerical method

FETI-DPEM2 classical approach

Its modification (FETI-DPEM2-full method)

Numerical results

3D quantitative Inverse problems

Problem statement

FETI Implementation

Y ZX

Incident field *E^{inc}*

Incident field *E^{inc}*

Total field E^{tot}

0

Y ZX

=

Scattered field $E^{sc} = E^{tot} - E^{inc}$

Two types of problem

5

Two types of problem

2D Helmholtz equation

$$\operatorname{div} \left(\frac{1}{\mu_r^{\text{tot}}} \operatorname{grad} \mathcal{E}^{\text{sc}} \right) + k_0^2 \varepsilon_r^{\text{tot}} \mathcal{E}^{\text{sc}} = \mathcal{J}^{\text{sc}} \text{ in } \Omega$$
where:

$$\mathcal{J}^{\text{sc}} = -\operatorname{div} \left(\left[\frac{1}{\mu_r^{\text{tot}}} - \frac{1}{\mu_r^{\text{inc}}} \right] \operatorname{grad} \mathcal{E}^{\text{inc}} \right) - k_0^2 \left[\varepsilon_r^{\text{tot}} - \varepsilon_r^{\text{inc}} \right] \mathcal{E}^{\text{inc}}$$
Radiation boundary condition

$$\frac{1}{\mu_r^{\text{tot}}} \frac{\partial \mathcal{E}^{\text{sc}}}{\partial n} - jk_0 \mathcal{E}^{\text{sc}} = 0 \text{ on } \Sigma$$

3D Helmholtz equation

$$\nabla \times \left(\frac{1}{\mu_r^{\text{tot}}} \nabla \times \mathcal{E}^{\text{sc}}\right) - k_0^2 \varepsilon_r^{\text{tot}} \mathcal{E}^{\text{sc}} = \mathcal{J}^{\text{sc}} \text{ in } \Omega$$

where:

$$\mathcal{J}^{\rm sc} = -\nabla \times \left(\left[\frac{1}{\mu_r^{\rm tot}} - \frac{1}{\mu_r^{\rm inc}} \right] \nabla \times \mathcal{E}^{\rm inc} \right) + k_0^2 \left[\varepsilon_r^{\rm tot} - \varepsilon_r^{\rm inc} \right] \mathcal{E}^{\rm inc}$$

Radiation boundary condition

$$\vec{n} \times \left(\frac{1}{\mu_r^{\text{tot}}} \nabla \times \mathcal{E}^{\text{sc}}\right) + jk_0 \vec{n} \times \vec{n} \times \mathcal{E}^{\text{sc}} = 0 \text{ on } \Sigma$$

D Helmholtz equation
iv
$$\left(\frac{1}{\mu_r^{\text{tot}}} \operatorname{grad} \mathcal{E}^{\text{sc}}\right) + k_0^2 \varepsilon_r^{\text{tot}} \mathcal{E}^{\text{sc}} = \mathcal{J}^{\text{sc}} \text{ in } \Omega$$

where:
 $\mathcal{J}^{\text{sc}} = -\operatorname{div} \left(\left[\frac{1}{\mu_r^{\text{tot}}} - \frac{1}{\mu_r^{\text{inc}}}\right] \operatorname{grad} \mathcal{E}^{\text{inc}} \right) - k_0^2 \left[\varepsilon_r^{\text{tot}} - \varepsilon_r^{\text{inc}} \right] \mathcal{E}^{\text{inc}}$
Radiation boundary condition
 $\frac{1}{\mu_r^{\text{tot}}} \frac{\partial \mathcal{E}^{\text{sc}}}{\partial n} - jk_0 \mathcal{E}^{\text{sc}} = 0 \text{ on } \Sigma$

3D Helmholtz equation

$$\nabla \times \left(\frac{1}{\mu_r^{\text{tot}}} \nabla \times \mathcal{E}^{\text{sc}}\right) - k_0^2 \varepsilon_r^{\text{tot}} \mathcal{E}^{\text{sc}} = \mathcal{J}^{\text{sc}} \text{ in } \Omega$$

where:

$$\mathcal{J}^{\rm sc} = -\nabla \times \left(\left[\frac{1}{\mu_r^{\rm tot}} - \frac{1}{\mu_r^{\rm inc}} \right] \nabla \times \mathcal{E}^{\rm inc} \right) + k_0^2 \left[\varepsilon_r^{\rm tot} - \varepsilon_r^{\rm inc} \right] \mathcal{E}^{\rm inc}$$

Radiation boundary condition

$$\vec{n} \times \left(\frac{1}{\mu_r^{\text{tot}}} \nabla \times \mathcal{E}^{\text{sc}}\right) + jk_0 \vec{n} \times \vec{n} \times \mathcal{E}^{\text{sc}} = 0 \text{ on } \Sigma$$

Physical statement of problem

Mathematical statement of problem

Numerical method

FETI-DPEM2 classical approach

Its modification (FETI-DPEM2-full method)

Numerical results

3D quantitative Inverse problems

Problem statement

FETI Implementation

Finite Element Method

Pros

✓ Well known

✓ Different media possible

Anisotropic

Inhomogeneous

✓ Arbitrary shaped objects

Finite Element Method

Pros

- ✓ Well known
- ✓ Different media possible

Anisotropic

Inhomogeneous

✓ Arbitrary shaped objects

Cons

- o Time
- \circ Memory
- Parallelization issues

The general problem statement

Finite Element Method

Pros

- ✓ Well known
- ✓ Different media possible
 - Anisotropic
 - Inhomogeneous
- ✓ Arbitrary shaped objects

Cons

- o Time
- o Memory
- Parallelization issues

References		
[1]	Després	1991
[2]	Farhat et al	2001

The general problem statement

Finite Element Method

Pros

- ✓ Well known
- ✓ Different media possible
 - Anisotropic
 - Inhomogeneous
- ✓ Arbitrary shaped objects

Cons

- o Time
- o Memory
- Parallelization issues

Helmholtz equation in 2D case

$$-\operatorname{div}\left(\frac{1}{\mu_r}\operatorname{grad}\mathcal{E}\right) - k_0^2\varepsilon_r\mathcal{E} = jk_0Z_0\mathcal{J} \text{ in }\Omega$$

Radiation boundary condition

$$\frac{1}{\mu_r}\frac{\partial \mathcal{E}}{\partial n} - jk_0\mathcal{E} = 0 \text{ on } \Sigma$$

Helmholtz equation in 2D case

$$-\operatorname{div}\left(\frac{1}{\mu_r}\operatorname{grad}\mathcal{E}\right) - k_0^2\varepsilon_r\mathcal{E} = jk_0Z_0\mathcal{J} \text{ in }\Omega$$

Radiation boundary condition

$$\frac{1}{\mu_r}\frac{\partial \mathcal{E}}{\partial n} - jk_0\mathcal{E} = 0 \text{ on } \Sigma$$

Finite-element discretization

$$\mathbf{K} \; \mathbf{E} = \mathbf{f}$$

Helmholtz equation in 2D case

$$-\operatorname{div}\left(\frac{1}{\mu_r}\operatorname{grad}\mathcal{E}\right) - k_0^2\varepsilon_r\mathcal{E} = jk_0Z_0\mathcal{J} \text{ in }\Omega$$

Radiation boundary condition

$$\frac{1}{\mu_r}\frac{\partial \mathcal{E}}{\partial n} - jk_0\mathcal{E} = 0 \text{ on } \Sigma$$

Finite-element discretization

$$\mathbf{K} \; \mathbf{E} = \mathbf{f}$$

Helmholtz equation in 2D case

$$-\operatorname{div}\left(\frac{1}{\mu_r}\operatorname{grad}\mathcal{E}^{\boldsymbol{i}}\right) - k_0^2\varepsilon_r\mathcal{E}^{\boldsymbol{i}} = jk_0Z_0\mathcal{J}^{\boldsymbol{i}} \operatorname{in}\Omega^{\boldsymbol{i}}$$

Radiation boundary condition

$$\frac{1}{\mu_r} \frac{\partial \mathcal{E}^{\boldsymbol{\ell}}}{\partial n} - jk_0 \mathcal{E}^{\boldsymbol{\ell}} = 0 \text{ on } \Sigma$$

Finite-element discretization

$$\mathbf{K} \; \mathbf{E} = \mathbf{f}$$

$$-\operatorname{div}\left(\frac{1}{\mu_r}\operatorname{grad}\mathcal{E}^{\boldsymbol{i}}\right) - k_0^2\varepsilon_r\mathcal{E}^{\boldsymbol{i}} = jk_0Z_0\mathcal{J}^{\boldsymbol{i}} \operatorname{in}\Omega^{\boldsymbol{i}}$$

Radiation boundary condition

$$\frac{1}{\mu_r} \frac{\partial \mathcal{E}^{\boldsymbol{i}}}{\partial n} - jk_0 \mathcal{E}^{\boldsymbol{i}} = 0 \text{ on } \Sigma$$

Finite-element discretization

 $\mathbf{K} \mathbf{E} = \mathbf{f}$

$$K^{i} E^{i} = f^{i} - \int_{\Gamma^{i}} \frac{1}{\mu_{r}} \frac{\partial E^{i}}{\partial n} \Psi d\Gamma$$

Helmholtz equation in 2D case

$$-\operatorname{div}\left(\frac{1}{\mu_r}\operatorname{grad}\mathcal{E}^{\boldsymbol{i}}\right) - k_0^2\varepsilon_r\mathcal{E}^{\boldsymbol{i}} = jk_0Z_0\mathcal{J}^{\boldsymbol{i}} \operatorname{in}\Omega^{\boldsymbol{i}}$$

Radiation boundary condition

$$\frac{1}{\mu_r} \frac{\partial \mathcal{E}^{\boldsymbol{\ell}}}{\partial n} - jk_0 \mathcal{E}^{\boldsymbol{\ell}} = 0 \text{ on } \Sigma$$

- « **C** » corner point
 - interface points
- «**r**» internal points

Finite-element discretization

 $\mathbf{K} \mathbf{E} = \mathbf{f}$

$$K^{i} E^{i} = f^{i} - \int_{\Gamma^{i}} \frac{1}{\mu_{r}} \frac{\partial E^{i}}{\partial n} \Psi d\Gamma$$

Helmholtz equation in 2D case

$$-\operatorname{div}\left(\frac{1}{\mu_r}\operatorname{grad}\mathcal{E}^{\boldsymbol{i}}\right) - k_0^2\varepsilon_r\mathcal{E}^{\boldsymbol{i}} = jk_0Z_0\mathcal{J}^{\boldsymbol{i}} \operatorname{in}\Omega^{\boldsymbol{i}}$$

Radiation boundary condition

$$\frac{1}{\mu_r} \frac{\partial \mathcal{E}^{\boldsymbol{\ell}}}{\partial n} - jk_0 \mathcal{E}^{\boldsymbol{\ell}} = 0 \text{ on } \Sigma$$

Finite-element discretization

 $\mathbf{K} \mathbf{E} = \mathbf{f}$

$$K^{i} E^{i} = f^{i} - \int_{\Gamma^{i}} \frac{1}{\mu_{r}} \frac{\partial E^{i}}{\partial n} \Psi d\Gamma$$

$$\begin{bmatrix} K_{rr}^{i} & K_{rc}^{i} \\ K_{cr}^{i} & K_{cc}^{i} \end{bmatrix} \begin{bmatrix} E_{r}^{i} \\ E_{c}^{i} \end{bmatrix} = \begin{bmatrix} f_{r}^{i} \\ f_{c}^{i} \end{bmatrix} - \int_{\Gamma^{i}} \frac{1}{\mu_{r}} \frac{\partial E^{i}}{\partial n} \Psi \ d\Gamma$$

- « **c** » corner point
 - interface points
- «**r**» internal points

FETI-DPEM2 classical method

FETI-DPEM2 classical method

FETI-DPEM2 classical method

Inside air

 $a_1 = a_2 = a_3 = 2 \text{ m} \approx 5.4\lambda$

Total number of unknowns (**E**): 426,574

80 subdomains Size of interface problem (λ_r) : 93,846 $\approx 22\%$ Total number of corner-points (\mathbf{E}_c): 138

Total number of equations for λ_c : 414 $\approx 0.1\%$

Numerical results of 2D Scattering problem

The interface problem is solved with the *direct method*

L^2 -error = $\frac{ \mathbb{E}_1 - \mathbb{E}_2 ^2}{ \mathbb{E}_1 ^2}$	L2-error of FETI-classical	L2-error of FETI-full
where \mathbb{E}_1 is a solution of FEM	9.3415E-003	2.4155E-012
where \mathbb{E}_2 is a solution of $\mathbf{F} \to \mathbf{I} \mathbf{I}$		

Numerical results of 2D Scattering problem

The interface problem is solved with the *direct method*

$r_2 \qquad \mathbb{E}_1 - \mathbb{E}_2 ^2$	L2-error of	L2-error of
L^2 -error = $\frac{ -1 - 2 }{ \mathbb{E}_1 ^2}$	FETI-classical	FETI-full
where \mathbb{E}_1 is a solution of FEM	9 3415 F-003	2 4155 F-012
where \mathbb{E}_2 is a solution of FETI		

Inside air

 $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{F} \cdot \text{m}^{-1}$ $\mu_0 = 4\pi \cdot 10^{-7} \text{H} \cdot \text{m}^{-1}$ f = 1 GHzThe wavelength $\lambda \approx 0.3 \text{ m}$ Domain of $\approx 2\lambda \times 2\lambda \times 2\lambda$ Excitation

Dipole located at (0.05, 0.05, 0)oriented as (1.0, 1.0, 0)

Scatterers

2 spheres $\varepsilon_r^1 = 2.85$ $\varepsilon_r^2 = 5.00$ $\mu_1 = \mu_2 = 1.0$ $R_1 = R_2 = 0.04 \,\mathrm{m} \approx 0.13\lambda$

19

Total number of unknowns (**E**): 302,561

10 subdomains Size of interface problem (λ_r) : $37,499 \approx 12\%$ Total number of corner-edges (\mathbf{E}_c): 495

Total number of equations for λ_c : 1418 $\approx 0.5\%$

Numerical results of 3D Scattering problem

 $Re(E^{sc})$

The interface problem is solved with the *direct method*

$L^{2}\text{-error} = \frac{ \mathbb{E}_{1} - \mathbb{E}_{2} ^{2}}{ \mathbb{E}_{1} ^{2}}$ where \mathbb{E}_{1} is a solution of FEM	$\frac{L^2 \text{-} \text{error}}{\mathbf{E}^{\text{tot}}}$	L^2 -error \mathbf{E}^{sc}
where \mathbb{E}_2 is a solution of FETI	2.0187 E-10	9.9886E-011

The Interface Problem (IP) Matrix

$\mathbf{F}_{\lambda_r\lambda_r}$	$-\mathbf{F}_{\lambda_r \mathbf{E}_c}$	0]	$\lceil \lambda_r \rceil$	$\left[-\mathrm{d}_{\lambda_r}\right]$
$-\mathbf{F}_{\mathbf{E}_c\lambda_r}$	$\mathrm{F}_{\mathbf{E}_{c}\mathbf{E}_{c}}$	$\mathrm{F}_{\mathbf{E}_c\lambda_c}$	$ \mathbf{E}_c =$	$= d_{\mathbf{E}_c}$
$\lfloor -\mathrm{F}_{\lambda_c\lambda_r}$	$-\mathrm{F}_{\lambda_c \mathbf{E}_c}$	$F_{\lambda_c\lambda_c}$	$\lfloor \lambda_c \rfloor$	$\left\lfloor -\mathrm{d}_{\lambda_{c}} \right\rfloor$

Bottlenecks

Inverting and storing $(K_{rr}^i)^{-1}$ matrices

Storing the Interface Problem (IP) matrix

The Interface Problem (IP) Matrix

$\mathbf{F}_{\lambda_r\lambda_r}$	$-\mathbf{F}_{\lambda_r \mathbf{E}_c}$	0]	$\left\lceil \lambda_r \right\rceil$		$\left[-\mathrm{d}_{\lambda_r}\right]$
$-\mathbf{F}_{\mathbf{E}_c\lambda_r}$	$\mathrm{F}_{\mathbf{E}_{c}\mathbf{E}_{c}}$	$\mathbf{F}_{\mathbf{E}_c \lambda_c}$	$ \mathbf{E}_{c} $	=	$\mathrm{d}_{\mathbf{E}_c}$
$\left\lfloor -\mathrm{F}_{\lambda_{c}\lambda_{r}} ight angle$	$-F_{\lambda_c \mathbf{E}_c}$	$F_{\lambda_c\lambda_c}$	$\lfloor \lambda_c \rfloor$		$\left\lfloor -\mathrm{d}_{\lambda_c} \right\rfloor$

GMRES

iterative method

The Interface Problem (IP) Matrix

$\int F_{\lambda_r \lambda_r}$	$-F_{\lambda_r \mathbf{E}_c}$	0]	$\lceil \lambda_r \rceil$		$\left[-\mathrm{d}_{\lambda_r}\right]$
$-\mathbf{F}_{\mathbf{E}_c\lambda_r}$	$\mathrm{F}_{\mathbf{E}_{c}\mathbf{E}_{c}}$	$\mathbf{F}_{\mathbf{E}_c \lambda_c}$	$ \mathbf{E}_{c} $	=	$\mathrm{d}_{\mathbf{E}_c}$
$[-F_{\lambda_c\lambda_r}]$	$-F_{\lambda_c \mathbf{E}_c}$	$\mathbf{F}_{\lambda_c\lambda_c}$	$\lfloor \lambda_c \rfloor$		$-d_{\lambda_c}$

GMRES

iterative method

 $-\mathbf{F}_{\lambda_r \mathbf{E}_c}$

 $\mathrm{F}_{\mathbf{E}_{c}\mathbf{E}_{c}}$

 $F_{\lambda_r\lambda_r}$

 $-\mathrm{F}_{\mathbf{E}_c\lambda_r}$

The Interface Problem (IP) Matrix

0

 $F_{\mathbf{E}_c\lambda_c}$

 λ_r

 \mathbf{E}_{c}

=

GMRES

iterative method

 $-\mathrm{d}_{\lambda_r}$

 $\mathrm{d}_{\mathbf{E}_c}$

The Domain Decomposition into $N_s = 50$ **subdomains**

The Domain Decomposition into $N_s = 50$ **subdomains**

□ The $L^2 - error ||E^{FEM} - E^{FETI}|| = 9.18E-002$

PML problem introduction

The Domain Decomposition into $N_s = 50$ **subdomains**

□ The $L^2 - error ||E^{FEM} - E^{FETI}|| = 9.18E-002$

D But sometimes

Ω^i	27	28	29	31	41
L^2 -error	0.5085	0.2435	0.3509	0.5687	0.2995

PML problem introduction

The Domain Decomposition into $N_s = 50$ **subdomains**

□ The $L^2 - error ||E^{FEM} - E^{FETI}|| = 9.18E-002$

D But sometimes

Ω^i	27	28	29	31	41
L^2 -error	0.5085	0.2435	0.3509	0.5687	0.2995

PML problem introduction

The Domain Decomposition into $N_s = 50$ **subdomains**

□ The $L^2 - error ||E^{FEM} - E^{FETI}|| = 9.18E-002$

□ But sometimes

Ω^i	27	28	29	31	41
L^2 -error	0.5085	0.2435	0.3509	0.5687	0.2995

Conclusion

There is something really strange going on with the PML media

Convergence of Lagrange multipliers in subdomain Ω^{31}

Nature of the "PML-error"

Convergence of Lagrange multipliers in subdomain Ω^{31}

Nature of the "PML-error"

Convergence of Lagrange multipliers in subdomain Ω^{31}

Nature of the "PML-error"

What we can play with

□ Number of Lagrange multipliers?

EMDA approach

What we can play with

- □ Number of Lagrange multipliers?
- □ Constraints between subdomains?

EMDA approach

What we can play with

- □ Number of Lagrange multipliers?
- □ Constraints between subdomains?
- □ Robin-type boundary conditions?

EMDA approach

What we can play with

- □ Number of Lagrange multipliers?
- □ Constraints between subdomains?
- □ Robin-type boundary conditions?

Robin-type Boundary Conditions

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$
What we can play with

- □ Number of Lagrange multipliers?
- □ Constraints between subdomains?
- □ Robin-type boundary conditions?

Classical approach [1] $\alpha^i = j k_0$

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

Refe	rences	
[1]	Després	1991

What we can play with

- □ Number of Lagrange multipliers?
- □ Constraints between subdomains?
- □ Robin-type boundary conditions?

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j\chi)$

References		
[1]	Després	1991
[2]	Boubendir et al	2000

What we can play with

- □ Number of Lagrange multipliers?
- □ Constraints between subdomains?
- □ Robin-type boundary conditions?

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j \chi)$

References		
[1]	Després	1991
[2]	Boubendir et al	2000

What we can play with

- □ Number of Lagrange multipliers?
- □ Constraints between subdomains?
- □ Robin-type boundary conditions?

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j \chi)$

References		
[1]	Després	1991
[2]	Boubendir et al	2000

What we can play with

- □ Number of Lagrange multipliers?
- □ Constraints between subdomains?
- □ Robin-type boundary conditions?

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j \chi)$

What we can play with

- □ Number of Lagrange multipliers?
- Constraints between subdomains?
- □ Robin-type boundary conditions?

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j \chi)$

What we can play with

- □ Number of Lagrange multipliers?
- Constraints between subdomains?
- □ Robin-type boundary conditions?

Robin-type Boundary Conditions

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

What we can play with

- Number of Lagrange multipliers?
- Constraints between subdomains?
- **Robin-type boundary conditions?**

$\square PML \rightarrow Sommerfeld?$

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j \chi)$

References		
[1]	Després	1991
[2]	Boubendir et al	2000

What we can play with

- Number of Lagrange multipliers?
- Constraints between subdomains?
- **Robin-type boundary conditions?**

Robin-type Boundary Conditions

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

$\square PML \rightarrow Sommerfeld?$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j \chi)$

What we can play with

- Number of Lagrange multipliers?
- Constraints between subdomains?
- **Robin-type boundary conditions?**

Robin-type Boundary Conditions

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

$\square PML \rightarrow Sommerfeld?$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j \chi)$

What we can play with

- Number of Lagrange multipliers?
- Constraints between subdomains?
- **Robin-type boundary conditions?**

Robin-type Boundary Conditions

$$\vec{n} \times \left(\frac{1}{\mu_r} \nabla \times \mathcal{E}^i\right) + \alpha^i \vec{n} \times \vec{n} \times \mathcal{E}^i = \Lambda^i \text{ on } \Gamma^i$$

$\square PML \rightarrow Sommerfeld?$

Classical approach [1]	Evanescent Modes Damping Algorithm (EMDA) [2]
$\alpha^i = j k_0$	$\alpha^i = j k_0 (1 + j \chi)$

Recent conclusion

|--|

Memory	
FEM	FETI-full
≈ 1 200 000	≈ 3 500 000
Time	
FEM	FETI-full
2 568 sec	838 sec

IEI 2.45 4.9 0

Domain of 252 λ^3

eferences

[1] Voznyuk et al (submitted) 2014

Y Z

2D & 3D Direct Scattering problems

Physical statement of problem

Mathematical statement of problem

Numerical method

FETI-DPEM2 classical approach

Its modification (FETI-DPEM2-full method)

Numerical results

3D quantitative Inverse problems

Problem statement

FETI Implementation

Numerical results

Just an object

Just an object

Source

Source

Measurement setup

 $E^{mes}: N_{src} \times N_{rec}$

3D Fresnel database [1]

- □ Set of homogeneous targets
- □ 162 transmitting dipoles
- □ 32 receiver positions
- $\Box \quad \text{Distance: } r = 1.796 \ m$

References[1]J.-M. Geffrin and P. Sabouroux2009

Anechoic chamber

□ Find ε_r such as the cost functional $J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} ||E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r)||_W^2$ has to be minimized. □ W - covariance matrix, related to $E^{mes} = E^{far}(\varepsilon_r) + \underline{noise}$ □ $E_{s,r}^{far}(\varepsilon_r) - \text{simulated far-field}$

□ Find ε_r such as the cost functional $J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} ||E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r)||_W^2$ has to be minimized. □ W - covariance matrix, related to $E^{mes} = E^{far}(\varepsilon_r) + \underline{noise}$ □ $E_{s,r}^{far}(\varepsilon_r) - \text{simulated far-field}$

□ Find ε_r such as the cost functional $J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} ||E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r)||_W^2$ has to be minimized. □ W - covariance matrix, related to $E^{mes} = E^{far}(\varepsilon_r) + \underline{noise}$ □ $E_{s,r}^{far}(\varepsilon_r) - \text{simulated far-field}$

□ Find ε_r such as the cost functional $J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} ||E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r)||_W^2$ has to be minimized. □ W - covariance matrix, related to $E^{mes} = E^{far}(\varepsilon_r) + \underline{noise}$ □ $E_{s,r}^{far}(\varepsilon_r) - \text{simulated far-field}$

Near-to-Far field transformation[1] (Dirichlet-to-Neumann map)

$$\mathbf{E}(r) = \bigoplus_{S} \{-jw\mu \left[\hat{n}' \times \mathbf{H}(r')\right] G_0(r,r') + \left[\hat{n}' \cdot \mathbf{E}(r')\right] \nabla' G_0(r,r') + \left[\hat{n}' \times \mathbf{E}(r')\right] \times \nabla' G_0(r,r') \} dS'$$

$$S = \partial \Omega$$

Refe	erences	
[1]	JM. Jin	2002

□ Find ε_r such as the cost functional $J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} ||E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r)||_W^2$ has to be minimized. □ W - covariance matrix, related to $E^{mes} = E^{far}(\varepsilon_r) + \underline{noise}$ □ $E_{s,r}^{far}(\varepsilon_r) - \text{simulated far-field}$

Near-to-Far field transformation[1] (Dirichlet-to-Neumann map)

$$\mathbf{E}(r) = \bigoplus_{S} \{-jw\mu \left[\hat{n}' \times \mathbf{H}(r')\right] G_0(r,r') + \left[\hat{n}' \cdot \mathbf{E}(r')\right] \nabla' G_0(r,r') + \left[\hat{n}' \times \mathbf{E}(r')\right] \times \nabla' G_0(r,r') \} dS'$$

Refe	rences	
[1]	JM. Jin	2002

□ Find ε_r such as the cost functional $J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} ||E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r)||_W^2$ has to be minimized. □ W - covariance matrix, related to $E^{mes} = E^{far}(\varepsilon_r) + \underline{noise}$ □ $E_{s,r}^{far}(\varepsilon_r) - \text{simulated far-field}$

Near-to-Far field transformation[1] (Dirichlet-to-Neumann map)

$$\mathbf{E}(r) = \bigoplus_{S} \{-jw\mu \left[\hat{n}' \times \mathbf{H}(r')\right] G_0(r,r') + \left[\hat{n}' \cdot \mathbf{E}(r')\right] \nabla' G_0(r,r') + \left[\hat{n}' \times \mathbf{E}(r')\right] \times \nabla' G_0(r,r') \} dS'$$

Refe	rences	
[1]	JM. Jin	2002

 \Box Find ε_r such as the cost functional

$$J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} \left\| E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r) \right\|_{W}^{2}$$
has to be minimized.

□ Find ε_r such as the cost functional $J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} ||E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r)||_W^2$ has to be minimized.

□ An iterative quasi-Newton method with constraints

□ Find ε_r such as the cost functional $J(\varepsilon_r, E^{far}) = \frac{1}{2} \sum_{s=1}^{N_{src}} \sum_{r=1}^{N_{rec}} ||E_{s,r}^{mes} - E_{s,r}^{far}(\varepsilon_r)||_W^2$ has to be minimized. □ An iterative quasi-Newton method with constraints $\mathcal{L}(\varepsilon_r, E, P) = \mathcal{J}(\varepsilon_r, E) + \mathcal{R}e(P | \triangle E + k^2 \varepsilon_r E - S)$

Recent conclusion

Successful combination of the Inversion algorithm and FETI method [1]

- ·				
KΘ	τρι	'nΩ'n	IC A	
I.C				

Conclusions

- Development of the 3D FETI-DPEM2-*full* method
- Implementation to the Large-Scale
 - Direct problems
 - Inverse quantitative problems
Perspective

- Play with the transmission conditions
- Parallelization
- □ Introduce *a*-*priori* information in inversion

Merci beaucoup

- > The FETI-DPEM2-full method has been applied to the inversion algorithm
- In order to accelerate the inversion process we have studied some implementation issues of the proposed method such as the initialization of the FETI solution and the stopping criterion for GMRES
- The numerical code has been verified on some classical inversion problems of the Fresnel database

FUTURE:

- Improving the transmitting condition between subdomains
- Parallelization
- Level-set approach

Y

k = 13 points per wavelength

The limit of FEM: $\approx 1\ 200\ 000$ unknowns

Total number of unknowns: **3 145 899**

Number of tetrahedras: 2 789 530 Number of points: 445 785

177 subdomains

Approximate size of one subdomain: 18 000

Size of interface problem (number of λ_r): 684 084

Total number of corner-edges: 18 622

Total number of λ_c : 52 818

Y zx

Test case

Frequency f = 7GHzNumber of unknowns: 1 205 329

Memory	
FEM	FETI
$\approx 1\ 200\ 000$	≈ 3 500 000

Time	
<u>FEM</u>	<u>FETI</u>
<i>LU</i> dec	$(LU)^i$
	$F_{E_c E_c}$ cst
LUx = b	$F_{E_c E_c}$ dec
	15 iters = 150 $F * \lambda$
2 568 sec	838 sec

- ➢ In the framework of the tests based on the modeling the super-ellipsoids we studied the efficiency of the FETI-DPEM2-full method
- > Pros: Memory requirement, time of computation, natural parallelization
- Cons: Multi-source calculation

FETI. 2 points

FETI. 2 points

Four - phase environment

Shock wave

Four - phase environment: Volume fraction: • Air 10 - 50% • Glass 1 - 10% • Emulsion > 50% • Products of reaction Mass fraction: • Air 1 - 5% • Glass 10 - 50% • Emulsion > 50% • Products of reaction

Fif teen equations

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial \rho u}{\partial x} = 0 \\ \frac{\partial \rho u}{\partial t} &+ \frac{\partial \left(\rho u^2 + \rho^2 E_{\rho} + \rho w E_w\right)}{\partial x} = 0 \\ \frac{\partial \rho \alpha_i}{\partial t} &+ \frac{\partial \rho \alpha_i u}{\partial x} = 0, i = 1 \dots 4 \\ \frac{\partial \rho c_i}{\partial t} &+ \frac{\partial \left(\rho u c_i + \rho E_{w^i}\right)}{\partial x} = 0, i = 1 \dots 4 \\ \frac{\partial w_j}{\partial t} &+ \frac{\partial \left(u w_j + E_{c_j}\right)}{\partial x} = 0, j = 1 \dots 3 \\ \frac{\partial \rho S}{\partial t} &+ \frac{\partial \rho S u}{\partial x} = 0 \\ \frac{\partial \rho \left(E + \frac{u^2}{2}\right)}{\partial t} &+ \frac{\partial \left(\rho u \left(E + \frac{u^2}{2} + \rho E_{\rho} + w_i E_{w_i}\right) + \rho E_{c_i} E_{w_i}\right)}{\partial x} = 0 \end{split}$$

Numerical results of 3D task

Test	Number of unknowns
1	$219,\!283$
2	$1,\!013,\!587$
3	$1,\!844,\!154$

Scheme of FETI-idea...

P1 – if there is enough memory for IP P2 – if there is enough memory for **1** inverse matrix

Scheme of life ...

Numerical results. Physical statement of task.

Sources

 $\mathbf{X}\mathbf{\nabla}$

	Measurements
	FEM solution
•••••	FETI solution

✤ Helmholtz equation

$$-\operatorname{div}\left(\frac{1}{\mu_r(\vec{r})}\operatorname{grad} E(\vec{r})\right) - k_0^2 \varepsilon_r(\vec{r}) E(\vec{r}) = jk_0 Z_0 J(\vec{r}), \text{ in } \Omega$$

Radiation boundary condition

Finite-elements discretization $\mathbb{K} E = f$

 $\Sigma = \partial \Omega$

✤ Helmholtz equation

$$-\operatorname{div}\left(\frac{1}{\mu_r(\vec{r})}\operatorname{grad} E(\vec{r})\right) - k_0^2\varepsilon_r(\vec{r})E(\vec{r}) = jk_0Z_0J(\vec{r}), \text{ in }\Omega$$

* Radiation boundary condition $\frac{1}{\mu_r(\vec{r})} \frac{\partial E(\vec{r})}{\partial n} - jk_0 E(\vec{r}) = 0,$

on Σ

> Finite-elements discretization $\mathbb{K}\mathbf{E} = \mathbf{f}$

 $\Sigma = \partial \Omega$

2D Helmholtz equation:

div
$$\left(\frac{1}{\mu_r^{\text{tot}}} \text{grad } \mathbf{E}^{\text{sc}}\right) + k_0^2 \varepsilon_r^{\text{tot}} \mathbf{E}^{\text{sc}} = \mathbf{J}^{\text{sc}} \text{ in } \Omega$$

where:

$$\mathbf{J}^{\mathrm{SC}} = -\operatorname{div}\left(\left[\frac{1}{\mu_r^{\mathrm{tot}}} - \frac{1}{\mu_r^{\mathrm{inc}}}\right]\operatorname{grad} \mathbf{E}^{\mathrm{inc}}\right) - k_0^2 \left[\varepsilon_r^{\mathrm{tot}} - \varepsilon_r^{\mathrm{inc}}\right] \mathbf{E}^{\mathrm{inc}}$$

$$\frac{\mathsf{BC:}}{-\frac{1}{2}} \frac{\partial \mathbf{E}^{\mathrm{SC}}}{\partial \mathbf{E}^{\mathrm{SC}}} - jk_0 \mathbf{E}^{\mathrm{SC}} = 0 \text{ on } \Sigma$$

$$\frac{1}{\mu_r}\frac{\partial \mathbf{E}}{\partial n} - jk_0\mathbf{E}^{\mathrm{SC}} =$$

3D "rot-rot" equation:

$$\nabla \times \left(\frac{1}{\mu_r^{\text{tot}}} \nabla \times \mathbf{E}^{\text{sc}}\right) - k_0^2 \varepsilon_r^{\text{tot}} \mathbf{E}^{\text{sc}} = \mathbf{J}^{\text{sc}}$$

where:

where:

$$\mathbf{J}^{\mathrm{SC}} = -\nabla \times \left(\left[\frac{1}{\mu_r^{\mathrm{tot}}} - \frac{1}{\mu_r^{\mathrm{inc}}} \right] \nabla \times \mathbf{E}^{\mathrm{inc}} \right) + k_0^2 \left[\varepsilon_r^{\mathrm{tot}} - \varepsilon_r^{\mathrm{inc}} \right] \mathbf{E}^{\mathrm{inc}}$$
BC:

$$\vec{n} \times (\nabla \times \mathbf{E}^{\mathrm{SC}}) + jk_0\vec{n} \times \vec{n} \times \mathbf{E}^{\mathrm{SC}} = 0 \text{ on } \Sigma$$

Inside air $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{F} \cdot \text{m}^{-1}$ $\mu_0 = 4\pi \cdot 10^{-7} \text{H} \cdot \text{m}^{-1}$ 1 source f = 800 MHz

The wavelength $\lambda \approx 0.37m$ Domain of $\approx 21\lambda \times 21\lambda$

3 different areas $\varepsilon_r^1, \varepsilon_r^2, \varepsilon_r^3$ and $\mu_r^1 = \mu_r^2 = \mu_r^3 = 1.0$

Inside air $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{F} \cdot \text{m}^{-1}$ $\mu_0 = 4\pi \cdot 10^{-7} \text{H} \cdot \text{m}^{-1}$ Polarization of dipole (1.0, 1.0, 0.0) f = 1 GHz

The wavelength $\lambda \approx 0.3$ m Domain of $\approx 2\lambda \times 2\lambda \times 2\lambda$

2 spheres $\varepsilon_r^1 = 2.85$ $\varepsilon_r^2 = 5.00$ $R_1 = R_2 = 0.04 \,\mathrm{m} \approx 0.13\lambda$

$$z = 0$$

 $x \wedge$

FETI-DPEM method

FETI-DPEM method

