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The continuous maximum principle :

Let u be the solution of the problem

—Au=f in,

and u =0 on 0. Then, if f >0 in Q, then uw > 0 in Q, and attains its
minimum at the boundary.
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The discrete version :

Let up, € P1(Q2) be the solution of the problem

(Vuh,Vvh)Q = (f, Uh)Q ‘v’vh € Pl(Q) .

Then, if f > 0 in Q and the mesh is acute, then up > 0 in ), and attains its
minimum at the boundary.
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The discrete version :

Let up, € P1(Q2) be the solution of the problem

(Vuh,Vvh)Q = (f, Uh)Q ‘v’vh € Pl(Q) .

Then, if f > 0 in Q and the mesh is acute, then up > 0 in ), and attains its
minimum at the boundary.

Remark : Under these hypothesis, the matrix [(VA;, VA;)q] is an M-matrix.
This is, it is invertible, all the diagonal elements are positive, and the

off-diagonal ones are non-positive.
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The DMP :

Let up, € P1(2) be the solution of the problem
e (Vup, Vop)a + (b Vup,vp)a = (f,vp)a Vop € P1(Q).

Then, if f > 0 in Q, the mesh is acute, and % < 1, then up, >0 in Q, and
attains its minimum at the boundary.
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Artificial diffusion :

Find up, € P1(Q2) such that

e (Vup, Vup)a + (b Vup, vp)a + s(un,vn) = (f,on)a Yo, € P1(Q).
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Artificial diffusion :

Find up, € P1(Q2) such that

& (Vuh, Vvh)g aF (b- Vuy, ’Uh)Q +ah (Vuh, Vvh)g = (f, vh)Q Yy, € ]P’l(Q) .
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Artificial diffusion :

Find up, € P1(Q2) such that

& (Vuh, Vvh)g aF (b- Vuy, ’Uh)Q +ah (Vuh, Vvh)g = (f, Uh)Q Yy, € ]P’l(Q) .

Bad news : The linear schemes, such as the artificial diffusion, have two main
drawbacks:

- their consistency error leads to a convergence of O(v/h);
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Artificial diffusion :

Find up, € P1(Q2) such that

& (Vuh, Vvh)g aF (b- Vuy, ’Uh)Q +ah (Vuh, Vvh)g = (f, Uh)Q Yy, € ]P’l(Q) .

Bad news : The linear schemes, such as the artificial diffusion, have two main
drawbacks:

- their consistency error leads to a convergence of O(v/h);

- they produce results which are extremely diffusive.
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Figure 1 : Solution using a standard LPS method

Universityof
Strathclyde
Glasgow

G.R. Barrenechea (Strathclyde) Nice, April 2014



o

Figure 2 : Solution using the first order artificial diffusion method

Universityof
Strathclyde
Glasgow

G.R. Barrenechea yde Nice, April 2014



Idea :
Find up € P1(Q) such that

€ (Vuh,VUh)Q - (b- Vuh,vh)g - N(uh;uh,vh) = (f, ’Uh)Q Y, € Pl(Q) .
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Idea :
Find up € P1(Q) such that

e (Vup, Vup)a + (b: Vup,vp)a + N(up;up,vn) = (f,vn)a Vo, € P1(Q).

Main features :
- N is a continuous form, may depend on the residual, or not.

- In some cases (not that many!), the maximum principle can be proved (cf.
Burman & Ern).

- Optimal convergence can be proved in most cases.
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Idea :
Find up € P1(Q) such that

e (Vup, Vup)a + (b: Vup,vp)a + N(up;up,vn) = (f,vn)a Vo, € P1(Q).

Main features :
- N is a continuous form, may depend on the residual, or not.
- In some cases (not that many!), the maximum principle can be proved (cf.
Burman & Ern).
- Optimal convergence can be proved in most cases.

A more recent alternative (D. Kuzmin) : Algebraic Flux Correction schemes.
These work at the matrix level, and have provided very convincing numerical
results.
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Q@ Goals:
e Understand the method, and its main features.
o Give the first steps towards a numerical analysis of it.
e Study its numerical behaviour.
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Q@ Goals:

e Understand the method, and its main features.
o Give the first steps towards a numerical analysis of it.
e Study its numerical behaviour.

The method for the 1D problem.
The discrete maximum principle.

Solvability of the linear problems, and the nonlinear one.

Concluding remarks.
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Starting point : A finite element discretisation of our problem of the form:

AU =G.
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Starting point : A finite element discretisation of our problem of the form:

AU =G.

Define:

D:=(d;;) where d;; :=—max{a;;,0,a;}fori#j, di=— Z d;j .
JFi
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Starting point : A finite element discretisation of our problem of the form:

(A+D)U=C+DU.

Define:

D:= (d”) where dij = —max{aij,O, ajz-} fori 3& j, d” = — Z dij .
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Starting point : A finite element discretisation of our problem of the form:

(A+D)U=G+DU.
——"

=:A

Define:

D:=(d;;) where d;; :=—max{a;;,0,a;}fori#j, di=— Z d;j .
JFi
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Starting point : A finite element discretisation of our problem of the form:

(A+D)U=G+DU.
——"

=:A

Define:

D:=(d;;) where d;; :=—max{a;;,0,a;}fori#j, di=— Z d;j .
JFi

Remark: The matrix A is an M-matrix. Then, it preserves positivity.
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Equivalent system :

AU=G+DU.
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Equivalent system :

AU=G+DU.
From the properties of D it follows that

(]D)U)l. = Z fi; where f;; = d;j(u; — u;) are the fluxes.
J#i
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Equivalent system :

(AU)Z =g+ E fij
J#i
From the properties of D it follows that

(]D)U)l. = Z fij where f;; = d;j(u; — u;) are the fluxes.
JAi
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Equivalent system :

(AU)Z =gi+t Zfij
J#i
From the properties of D it follows that
(]D)U)l. = Z fij where f;; = d;j(u; — u;) are the fluxes.
J#i

Goal : To limit the fluxes f;; which are responsible for spurious oscillations.
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Equivalent system :

(AU) _gz+za1j fz]
J#

From the properties of D it follows that

= Z fij where f;; = d;j(u; — u;) are the fluxes.
JAi

Goal : To limit the fluxes f;; which are responsible for spurious oscillations.
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Equivalent system :

(AU) _gz+za1j fz]
J#

From the properties of D it follows that

= Z fij where f;; = d;j(u; — u;) are the fluxes.
J#i
Goal : To limit the fluxes f;; which are responsible for spurious oscillations.
The limiters «;; should satisfy the following:
- g € [0,1];
- a4 should be as close to 1 as possible;

- a4 ~ 1 where the Galerkin solution is smooth.
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@ Compute Pf, P, Q;’, Q; in such a way that, for each pair of
neighbouring nodes x;, z; with indices such that a;; < a;; one performs
the updates

P;r = PiJr + max{O, fij}; .P,; = Pii - maX{O, fﬂ} 5

Qf = Qf +max{0, f;;},  Q; =Q; —max{0, fi;},
QF =@ +max{0, fi;},  Qj ==Q; —max{0, f},

Q Set
QF O
R? ::min{l,—i} , RS ::min{l, 1_},
P, 5
@ Finally,
%_{RZ if fi; <0, i,j=1,...,N.
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Model problem :

—eu" +bu' =g in(0,1) wu(0)=u(l)=0,

with positive constants € and b.
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Model problem :
—eu”" +bu' =g in(0,1) u(0)=u(l)=0,
with positive constants € and b.
Galerkin FEM : Equidistant nodes z; = ih, with » = 1/N. Find up € P1(0,1)
such that u(0) = up(1) = 0 and

S(U;“’U;l) + (bu;zavh) = (gavh) V’Uh S P](O, 1) .
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Model problem :
—eu”" +bu' =g in(0,1) u(0)=u(l)=0,
with positive constants € and b.
Galerkin FEM : Equidistant nodes z; = ih, with » = 1/N. Find up € P1(0,1)
such that u(0) = up(1) = 0 and
e(uy,,vy,) + (bup, vn) = (g,vn) Vo, € P1(0,1) .

Difference equation form : Setting u; = up(z;), this problem is rewritten as

Ui—1 — 2U; + Uiq Ujp1 — Ui—1
— 5 b
h 2h

=g i=1,...,N—1.
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Model problem :
—eu”" +bu' =g in(0,1) u(0)=u(l)=0,
with positive constants € and b.
Galerkin FEM : Equidistant nodes z; = ih, with » = 1/N. Find up € P1(0,1)
such that u(0) = up(1) = 0 and
e(uy,,vy,) + (bup, vn) = (g,vn) Vo, € P1(0,1) .

Difference equation form : Setting u; = up(z;), this problem is rewritten as

Ui—1 — 2U; + Uiq Ujp1 — Ui—1
— 5 b
h 2h

=qg; t=1,...,N—1.
Assume: Pe := % > 1.
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Algebraic problem with limited fluxes:

AU + Z Oé” ij = gz Wlth fij = dij(uj — ’U,z) .
J#i

For the 1D problem: the system reduces to ug = uy = 0, and

— 2 + Uigq Wig1 — Wi—1
(€+ﬂl ) hQZ ‘ b ‘ 2hl =9Yi; 7':17 ')N_]-’
where
Uj — Uj—
1 if w41 #u; and 1711<1,
Bi = Uit+1 — Ug
0 otherwise,
~__ bh
and é = % —e =¢(Pe—1).
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Consider any € > bh/2 —e. Then any solution of the nonlinear problem
satisfies the discrete mazimum principle, i.e., for any i € {1,..., N}, one has

gi >0 = w; > min{u;_1, Uiy1} -

Moreover, for any k,l € {0,1,...,N + 1} with k+ 1 < I, one has

g >0, i=k+1,...;,0—1 = w; > min{ug,w}, i=k,...,l.
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Other possible choices: The artificial diffusion matrix D can be defined using
different combinations of the diffusion and convection matrices. For example:

(F) é=2r —c=¢(Pe—1).
(C) &= bl
(P) &= %" (coth Pe — 3-).

Data: b= f =1, N =16, = 0.03, i.e., we solve

=

""‘w ‘\"

—0.03u" +v' =1 1in(0,1),

and u(0) = u(1) = 0.
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Figure 3 : Comparison of the exact solution (green) and discrete solution with &
from (F).
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Figure 4 : Comparison of the exact solution (green) and discrete solution with &
from (C).
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Figure 5 : Comparison of the exact solution (green) and discrete solution with &
from (P).

Strathclyde
Glasgow

G.R. Barrenechea 2 Nice, April 2014



- Computations very sensitive to rounding errors.
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- Computations very sensitive to rounding errors.

Idea : replace the condition u; < min{w;_1,u;4+1} by u; < min{u;_1,u;41} — 7.
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- Computations very sensitive to rounding errors.

Idea : replace the condition u; < min{w;_1,u;4+1} by u; < min{u;_1,u;41} — 7.

- Not a remedy!
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- Computations very sensitive to rounding errors.

Idea : replace the condition u; < min{w;_1,u;4+1} by u; < min{u;_1,u;41} — 7.

- Not a remedy!

Conclusion: The nonlinear problem is not solvable in general!
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- Computations very sensitive to rounding errors.

Idea : replace the condition u; < min{w;_1,u;4+1} by u; < min{u;_1,u;41} — 7.

- Not a remedy!
Conclusion: The nonlinear problem is not solvable in general!

Example: N =4,=0.03,b=1, f; =6, fo = —6, f3 =3, f4 = —2, and € from
().
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- Computations very sensitive to rounding errors.

Idea : replace the condition u; < min{w;_1,u;4+1} by u; < min{u;_1,u;41} — 7.

- Not a remedy!
Conclusion: The nonlinear problem is not solvable in general!

Example: N =4,=0.03,b=1, f; =6, fo = —6, f3 =3, f4 = —2, and € from
().

Reminder of the problem:

Uj—1 — 2U; + Ujq1 N Sl R

~(e + Bilu) &) g
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bh bh
2

For every choice of € € [ — &, T] and every possible 5; € [0,1], the problem

Ui—1 — 2U; + Uiq1 p Uil — Uil
h2 2h g’L bl

—(8 + B; 5)

has a unique solution.
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Main remark : The lack of solvability is due to the discontinuity of the
coefficients 3;
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Main remark : The lack of solvability is due to the discontinuity of the
coefficients (;

Let us suppose that the functions 3; : R¥N*1 —[0,1],i=1,..., N — 1, are
continuous, and let € be any of the previous choices. Then, the nonlinear FCT
scheme has a solution.

Proof: Write the method as the fixed point equation
M(B(u))u=g,

apply the fact that the determinant is a continuous function of the entries of a
matrix, and Brouwer’s fixed point Theorem. []
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Let ug, . ..,un+1 be a solution of the modified FCT scheme with any functions

B1,---,Bn € [0,1] as described before. Then
9i >0 = w; > min{u;—1, Uip1}

fori=1,...,N.

or

w; > max{u;_1,ujt1} —h,

Nice, April 2014
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The problem : —zu” + u' = 0 subject to u(0) =1 and u(1) = 0. We measured
o MAX :=up™* —1;
o RMAX := max{(u™* —1)/h};
o Peramrax the value of Pe for which the maximum RMAX is attained.

Table 1 : Violation of the discrete maximum principle for the continuous g;.

Pe € [1,20) Pe € |20, 0)
&€ MAX RMAX PBRMAX MAX [ RMAX [ PeRMAX

10~ T 6.62—3 | 2.65—2 1.25 no Pe > 20
10—2 3.55—3 | 9.27-2 1.85 no Pe > 20
1073 7.14—4 | 1.28-1 2.79 4.88—15 | 4.88—14 25.0
104 1.06—4 | 1.40-1 3.77 5.60—14 | 9.23—13 21.6
10-5 1.41-5 | 1.47-1 4.80 4.81-13 | 5.59—-10 21.6
10~ 1.77—-6 | 1.51-1 5.84 6.06—12 6.92—-8 22.9
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Data: ¢ = 1074, ~ 12,000 Q; elements, discontinuous a; as before,
continuous as follows

Rf =R; = min{l, min{Q, ~Q7'} } .

max{P;", —P, 7}

Figure 6 : Discontinuous «;;, non-symmetric
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Figure 7 : Continuous «;;, non-symmetric
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@ Some further insight on FCT schemes.

@ Analysis of a wider class of schemes.
@ Counter-examples of existence of solutions for the original method.

@ A modification that is proved to possess solutions, but satisfies only a
weak version of the DMP.
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@ Some further insight on FCT schemes.
@ Analysis of a wider class of schemes.
@ Counter-examples of existence of solutions for the original method.

@ A modification that is proved to possess solutions, but satisfies only a
weak version of the DMP.

Future extensions:
@ Deeper study of the symmetric version in higher dimensions.

@ Maximum principle on general meshes.

(Order of) convergence.

Time-dependent problems.

Coupled nonlinear problems in chemical reactions.
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