Some recent results on algebraic flux correction schemes

Gabriel R. Barrenechea ${ }^{1}$, Volker John ${ }^{2}$ \& Petr Knobloch ${ }^{3}$

${ }^{1}$ Department of Mathematics and Statistics, University of Strathclyde, Scotland
${ }^{2}$ WIAS Institute, Berlin, Germany
${ }^{3}$ Charles University, Prague, Czech Republic

INRIA Projet NACHOS, Nice, Sofia Antipolis, April 2, 2014

Introduction: The discrete maximum principle

The continuous maximum principle :

Theorem

Let u be the solution of the problem

$$
-\Delta u=f \quad \text { in } \Omega,
$$

and $u=0$ on $\partial \Omega$. Then, if $f \geq 0$ in Ω, then $u \geq 0$ in Ω, and attains its minimum at the boundary.

Introduction: The discrete maximum principle

The discrete version :

Theorem

Let $u_{h} \in \mathbb{P}_{1}(\Omega)$ be the solution of the problem

$$
\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega) .
$$

Then, if $f \geq 0$ in Ω and the mesh is acute, then $u_{h} \geq 0$ in Ω, and attains its minimum at the boundary.

```
Remark : Under these hypothesis, the matrix [(\nabla\mp@subsup{\lambda}{j}{},\nabla\mp@subsup{\lambda}{i}{}\mp@subsup{)}{\Omega}{}]\mathrm{ is an M-matrix.}
```

This is, it is invertible, all the diagonal elements are positive, and the off-diagonal ones are non-positive.

Introduction: The discrete maximum principle

The discrete version :

Theorem

Let $u_{h} \in \mathbb{P}_{1}(\Omega)$ be the solution of the problem

$$
\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega) .
$$

Then, if $f \geq 0$ in Ω and the mesh is acute, then $u_{h} \geq 0$ in Ω, and attains its minimum at the boundary.

Remark : Under these hypothesis, the matrix $\left[\left(\nabla \lambda_{j}, \nabla \lambda_{i}\right)_{\Omega}\right]$ is an M-matrix. This is, it is invertible, all the diagonal elements are positive, and the off-diagonal ones are non-positive.

The convection-diffusion equation

The DMP :

Theorem

Let $u_{h} \in \mathbb{P}_{1}(\Omega)$ be the solution of the problem

$$
\varepsilon\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}+\left(\boldsymbol{b} \cdot \nabla u_{h}, v_{h}\right)_{\Omega}=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega) .
$$

Then, if $f \geq 0$ in Ω, the mesh is acute, and $\frac{|b| h}{2 \varepsilon}<1$, then $u_{h} \geq 0$ in Ω, and attains its minimum at the boundary.

Some early solutions

Artificial diffusion :

Find $u_{h} \in \mathbb{P}_{1}(\Omega)$ such that

$$
\varepsilon\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}+\left(\boldsymbol{b} \cdot \nabla u_{h}, v_{h}\right)_{\Omega}+s\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega) .
$$

Some early solutions

Artificial diffusion :

Find $u_{h} \in \mathbb{P}_{1}(\Omega)$ such that

$$
\varepsilon\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}+\left(\boldsymbol{b} \cdot \nabla u_{h}, v_{h}\right)_{\Omega}+\alpha h\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega) .
$$

Bad news: The linear schemes, such as the artificial diffusion, have two main

drawbacks:

- their consistency error leads to a convergence of $O(\sqrt{h})$;

Some early solutions

Artificial diffusion :

Find $u_{h} \in \mathbb{P}_{1}(\Omega)$ such that

$$
\varepsilon\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}+\left(\boldsymbol{b} \cdot \nabla u_{h}, v_{h}\right)_{\Omega}+\alpha h\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega)
$$

Bad news : The linear schemes, such as the artificial diffusion, have two main drawbacks:

- their consistency error leads to a convergence of $O(\sqrt{h})$;

Some early solutions

Artificial diffusion :

Find $u_{h} \in \mathbb{P}_{1}(\Omega)$ such that

$$
\varepsilon\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}+\left(\boldsymbol{b} \cdot \nabla u_{h}, v_{h}\right)_{\Omega}+\alpha h\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega)
$$

Bad news : The linear schemes, such as the artificial diffusion, have two main drawbacks:

- their consistency error leads to a convergence of $O(\sqrt{h})$;
- they produce results which are extremely diffusive.

A representative numerical result

Figure 1: Solution using a standard LPS method

A representative numerical result - II

Figure 2: Solution using the first order artificial diffusion method

Solution: nonlinear schemes

Idea :

Find $u_{h} \in \mathbb{P}_{1}(\Omega)$ such that

$$
\varepsilon\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}+\left(\boldsymbol{b} \cdot \nabla u_{h}, v_{h}\right)_{\Omega}+N\left(u_{h} ; u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega) .
$$

Main features

- N is a continuous form, may depend on the residual, or not.
- In some cases (not that many!), the maximum principle can be proved (cf. Burman \& Ern).
- Optimal convergence can be proved in most cases.

Solution: nonlinear schemes

Idea :

Find $u_{h} \in \mathbb{P}_{1}(\Omega)$ such that

$$
\varepsilon\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}+\left(\boldsymbol{b} \cdot \nabla u_{h}, v_{h}\right)_{\Omega}+N\left(u_{h} ; u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega) .
$$

Main features :

- N is a continuous form, may depend on the residual, or not.
- In some cases (not that many!), the maximum principle can be proved (cf. Burman \& Ern).
- Optimal convergence can be proved in most cases.

Solution: nonlinear schemes

Idea :

Find $u_{h} \in \mathbb{P}_{1}(\Omega)$ such that

$$
\varepsilon\left(\nabla u_{h}, \nabla v_{h}\right)_{\Omega}+\left(\boldsymbol{b} \cdot \nabla u_{h}, v_{h}\right)_{\Omega}+N\left(u_{h} ; u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{\Omega} \quad \forall v_{h} \in \mathbb{P}_{1}(\Omega) .
$$

Main features :

- N is a continuous form, may depend on the residual, or not.
- In some cases (not that many!), the maximum principle can be proved (cf. Burman \& Ern).
- Optimal convergence can be proved in most cases.

A more recent alternative (D. Kuzmin) : Algebraic Flux Correction schemes. These work at the matrix level, and have provided very convincing numerical results.

Goals and Outline

(1) Goals:

- Understand the method, and its main features.
- Give the first steps towards a numerical analysis of it.
- Study its numerical behaviour.
(2) The method for the 1D problem.
(3) The discrete maximum principle.
© Solvability of the linear problems, and the nomlinear one.
© Concluding remarks.

Goals and Outline

(1) Goals:

- Understand the method, and its main features.
- Give the first steps towards a numerical analysis of it.
- Study its numerical behaviour.
(2) The method for the 1 D problem.
(3) The discrete maximum principle.
(9) Solvability of the linear problems, and the nonlinear one.
(Concluding remarks.

Algebraic flux correction schemes

Starting point : A finite element discretisation of our problem of the form:

$$
\mathbb{A} U=G
$$

Define:

Algebraic flux correction schemes

Starting point : A finite element discretisation of our problem of the form:

$$
\mathbb{A} \mathrm{U}=\mathrm{G} .
$$

Define:

$$
\mathbb{D}:=\left(d_{i j}\right) \quad \text { where } \quad d_{i j}:=-\max \left\{a_{i j}, 0, a_{j i}\right\} \text { for } i \neq j, \quad d_{i i}=-\sum_{j \neq i} d_{i j} .
$$

Algebraic flux correction schemes

Starting point : A finite element discretisation of our problem of the form:

$$
(\mathbb{A}+\mathbb{D}) \mathrm{U}=\mathrm{G}+\mathbb{D} \mathrm{U}
$$

Define:

$$
\mathbb{D}:=\left(d_{i j}\right) \quad \text { where } \quad d_{i j}:=-\max \left\{a_{i j}, 0, a_{j i}\right\} \text { for } i \neq j, \quad d_{i i}=-\sum_{j \neq i} d_{i j} .
$$

Algebraic flux correction schemes

Starting point : A finite element discretisation of our problem of the form:

$$
(\underbrace{\mathbb{A}+\mathbb{D}}_{=: \tilde{\mathbb{A}}}) \mathrm{U}=\mathrm{G}+\mathbb{D} \mathrm{U} .
$$

Define:

$$
\mathbb{D}:=\left(d_{i j}\right) \quad \text { where } \quad d_{i j}:=-\max \left\{a_{i j}, 0, a_{j i}\right\} \text { for } i \neq j, \quad d_{i i}=-\sum_{j \neq i} d_{i j} .
$$

Remark: The matrix $\tilde{\mathbb{A}}$ is an M-matrix. Then, it preserves positivity.

Algebraic flux correction schemes

$\underline{\text { Starting point }: ~ A ~ f i n i t e ~ e l e m e n t ~ d i s c r e t i s a t i o n ~ o f ~ o u r ~ p r o b l e m ~ o f ~ t h e ~ f o r m: ~}$

$$
(\underbrace{\mathbb{A}+\mathbb{D}}_{=: \tilde{\mathbb{A}}}) \mathrm{U}=\mathrm{G}+\mathbb{D} \mathrm{U} .
$$

Define:

$$
\mathbb{D}:=\left(d_{i j}\right) \quad \text { where } \quad d_{i j}:=-\max \left\{a_{i j}, 0, a_{j i}\right\} \text { for } i \neq j, \quad d_{i i}=-\sum_{j \neq i} d_{i j} .
$$

Remark: The matrix $\tilde{\mathbb{A}}$ is an M-matrix. Then, it preserves positivity.

Algebraic flux correction schemes

Equivalent system :

$$
\tilde{\mathbb{A}} \mathrm{U}=\mathrm{G}+\mathbb{D} \mathrm{U} .
$$

From the properties of \mathbb{D} it follows that

Algebraic flux correction schemes

Equivalent system :

$$
\tilde{\mathbb{A}} \mathrm{U}=\mathrm{G}+\mathbb{D} \mathrm{U} .
$$

From the properties of \mathbb{D} it follows that

$$
(\mathbb{D U})_{i}=\sum_{j \neq i} f_{i j} \quad \text { where } f_{i j}=d_{i j}\left(u_{j}-u_{i}\right) \text { are the fluxes }
$$

Algebraic flux correction schemes

Equivalent system :

$$
(\tilde{\mathbb{A}} \mathrm{U})_{i}=g_{i}+\sum_{j \neq i} f_{i j}
$$

From the properties of \mathbb{D} it follows that

$$
(\mathbb{D U})_{i}=\sum_{j \neq i} f_{i j} \quad \text { where } f_{i j}=d_{i j}\left(u_{j}-u_{i}\right) \text { are the fluxes }
$$

Goal : To limit the fluxes $f_{i j}$ which are responsible for spurious oscillations.

Algebraic flux correction schemes

Equivalent system :

$$
(\tilde{\mathbb{A}} \mathrm{U})_{i}=g_{i}+\sum_{j \neq i} f_{i j}
$$

From the properties of \mathbb{D} it follows that

$$
(\mathbb{D U})_{i}=\sum_{j \neq i} f_{i j} \quad \text { where } f_{i j}=d_{i j}\left(u_{j}-u_{i}\right) \text { are the fluxes } .
$$

Goal : To limit the fluxes $f_{i j}$ which are responsible for spurious oscillations.

Algebraic flux correction schemes

Equivalent system :

$$
(\tilde{\mathbb{A}} \mathrm{U})_{i}=g_{i}+\sum_{j \neq i} \alpha_{i j}(U) f_{i j}
$$

From the properties of \mathbb{D} it follows that

$$
(\mathbb{D U})_{i}=\sum_{j \neq i} f_{i j} \quad \text { where } f_{i j}=d_{i j}\left(u_{j}-u_{i}\right) \text { are the fluxes }
$$

Goal : To limit the fluxes $f_{i j}$ which are responsible for spurious oscillations.

Algebraic flux correction schemes

Equivalent system :

$$
(\tilde{\mathbb{A}} \mathrm{U})_{i}=g_{i}+\sum_{j \neq i} \alpha_{i j}(U) f_{i j}
$$

From the properties of \mathbb{D} it follows that

$$
(\mathbb{D U})_{i}=\sum_{j \neq i} f_{i j} \quad \text { where } f_{i j}=d_{i j}\left(u_{j}-u_{i}\right) \text { are the fluxes }
$$

Goal : To limit the fluxes $f_{i j}$ which are responsible for spurious oscillations. The limiters $\alpha_{i j}$ should satisfy the following:

- $\alpha_{i j} \in[0,1]$;
- $\alpha_{i j}$ should be as close to 1 as possible;
- $\alpha_{i j} \approx 1$ where the Galerkin solution is smooth.

Definition of the limiters

(1) Compute $P_{i}^{+}, P_{i}^{-}, Q_{i}^{+}, Q_{i}^{-}$in such a way that, for each pair of neighbouring nodes x_{i}, x_{j} with indices such that $a_{j i} \leq a_{i j}$ one performs the updates

$$
\begin{array}{ll}
P_{i}^{+}:=P_{i}^{+}+\max \left\{0, f_{i j}\right\}, & P_{i}^{-}:=P_{i}^{-}-\max \left\{0, f_{j i}\right\}, \\
Q_{i}^{+}:=Q_{i}^{+}+\max \left\{0, f_{j i}\right\}, & Q_{i}^{-}:=Q_{i}^{-}-\max \left\{0, f_{i j}\right\}, \\
Q_{j}^{+}:=Q_{j}^{+}+\max \left\{0, f_{i j}\right\}, & Q_{j}^{-}:=Q_{j}^{-}-\max \left\{0, f_{j i}\right\},
\end{array}
$$

(2) Set

$$
R_{i}^{+}:=\min \left\{1, \frac{Q_{i}^{+}}{P_{i}^{+}}\right\} \quad, \quad R_{i}^{-}:=\min \left\{1, \frac{Q_{i}^{-}}{P_{i}^{-}}\right\}
$$

(3) Finally,

$$
\alpha_{i j}=\left\{\begin{array}{ll}
R_{i}^{+} & \text {if } f_{i j}>0, \\
R_{i}^{-} & \text {if } f_{i j}<0,
\end{array} \quad i, j=1, \ldots, N\right.
$$

The 1D convection-diffusion equation

Model problem :

$$
-\varepsilon u^{\prime \prime}+b u^{\prime}=g \quad \text { in }(0,1) \quad u(0)=u(1)=0,
$$

with positive constants ε and b.
Galerkin FEM : Equidistant nodes $x_{i}=i h$, with $h=1 / N$. Find $u_{h} \in \mathbb{P}_{1}(0,1)$
such that $u_{h}(0)=u_{h}(1)=0$ and

The 1D convection-diffusion equation

Model problem :

$$
-\varepsilon u^{\prime \prime}+b u^{\prime}=g \quad \text { in }(0,1) \quad u(0)=u(1)=0,
$$

with positive constants ε and b.
Galerkin FEM : Equidistant nodes $x_{i}=i h$, with $h=1 / N$. Find $u_{h} \in \mathbb{P}_{1}(0,1)$ such that $u_{h}(0)=u_{h}(1)=0$ and

$$
\varepsilon\left(u_{h}^{\prime}, v_{h}^{\prime}\right)+\left(b u_{h}^{\prime}, v_{h}\right)=\left(g, v_{h}\right) \quad \forall v_{h} \in \mathbb{P}_{1}(0,1) .
$$

Difference equation form : Setting $u_{i}=u_{h}\left(x_{i}\right)$, this problem is rewritten as

The 1D convection-diffusion equation

Model problem :

$$
-\varepsilon u^{\prime \prime}+b u^{\prime}=g \quad \text { in }(0,1) \quad u(0)=u(1)=0,
$$

with positive constants ε and b.
Galerkin FEM : Equidistant nodes $x_{i}=i h$, with $h=1 / N$. Find $u_{h} \in \mathbb{P}_{1}(0,1)$ such that $u_{h}(0)=u_{h}(1)=0$ and

$$
\varepsilon\left(u_{h}^{\prime}, v_{h}^{\prime}\right)+\left(b u_{h}^{\prime}, v_{h}\right)=\left(g, v_{h}\right) \quad \forall v_{h} \in \mathbb{P}_{1}(0,1) .
$$

Difference equation form : Setting $u_{i}=u_{h}\left(x_{i}\right)$, this problem is rewritten as

$$
-\varepsilon \frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}}+b \frac{u_{i+1}-u_{i-1}}{2 h}=g_{i} \quad i=1, \ldots, N-1 .
$$

The 1D convection-diffusion equation

Model problem :

$$
-\varepsilon u^{\prime \prime}+b u^{\prime}=g \quad \text { in }(0,1) \quad u(0)=u(1)=0,
$$

with positive constants ε and b.
Galerkin FEM : Equidistant nodes $x_{i}=i h$, with $h=1 / N$. Find $u_{h} \in \mathbb{P}_{1}(0,1)$ such that $u_{h}(0)=u_{h}(1)=0$ and

$$
\varepsilon\left(u_{h}^{\prime}, v_{h}^{\prime}\right)+\left(b u_{h}^{\prime}, v_{h}\right)=\left(g, v_{h}\right) \quad \forall v_{h} \in \mathbb{P}_{1}(0,1) .
$$

Difference equation form : Setting $u_{i}=u_{h}\left(x_{i}\right)$, this problem is rewritten as

$$
-\varepsilon \frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}}+b \frac{u_{i+1}-u_{i-1}}{2 h}=g_{i} \quad i=1, \ldots, N-1
$$

Assume: $P e:=\frac{b h}{2 \varepsilon}>1$.

The 1D convection-diffusion equation

Algebraic problem with limited fluxes:

$$
(\mathbb{A U})_{i}+\sum_{j \neq i}\left(1-\alpha_{i j}\right) f_{i j}=g_{i} \quad \text { with } \quad f_{i j}=d_{i j}\left(u_{j}-u_{i}\right) .
$$

For the 1D problem: the system reduces to $u_{0}=u_{N}=0$, and

$$
-\left(\varepsilon+\beta_{i} \tilde{\varepsilon}\right) \frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}}+b \frac{u_{i+1}-u_{i-1}}{2 h}=g_{i}, \quad i=1, \ldots, N-1,
$$

where

$$
\beta_{i}=\left\{\begin{array}{ll}
1 & \text { if } u_{i+1} \neq u_{i} \\
0 & \text { otherwise }
\end{array} \text { and } \quad \frac{u_{i}-u_{i-1}}{u_{i+1}-u_{i}}<1,\right.
$$

and $\tilde{\varepsilon}=\frac{b h}{2}-\varepsilon=\varepsilon(P e-1)$.

The Discrete Maximum Principle

Theorem

Consider any $\tilde{\varepsilon} \geq b h / 2-\varepsilon$. Then any solution of the nonlinear problem satisfies the discrete maximum principle, i.e., for any $i \in\{1, \ldots, N\}$, one has

$$
g_{i} \geq 0 \quad \Rightarrow \quad u_{i} \geq \min \left\{u_{i-1}, u_{i+1}\right\} .
$$

Moreover, for any $k, l \in\{0,1, \ldots, N+1\}$ with $k+1<l$, one has

$$
g_{i} \geq 0, \quad i=k+1, \ldots, l-1 \quad \Rightarrow \quad u_{i} \geq \min \left\{u_{k}, u_{l}\right\}, \quad i=k, \ldots, l .
$$

Some numerics and the choice of $\tilde{\varepsilon}$

Other possible choices: The artificial diffusion matrix \mathbb{D} can be defined using different combinations of the diffusion and convection matrices. For example:
(F) $\tilde{\varepsilon}=\frac{b h}{2}-\varepsilon=\varepsilon(P e-1)$.
(C) $\tilde{\varepsilon}=\frac{b h}{2}$.
(P) $\tilde{\varepsilon}=\frac{b h}{2}\left(\operatorname{coth} P e-\frac{1}{P e}\right)$.

Data: $b=f=1, N=16, \varepsilon=0.03$, i.e., we solve

$$
-0.03 u^{\prime \prime}+u^{\prime}=1 \quad \text { in }(0,1),
$$

and $u(0)=u(1)=0$.

Some numerics and the choice of $\tilde{\varepsilon}$

Figure 3: Comparison of the exact solution (green) and discrete solution with $\tilde{\varepsilon}$ from (F).

Some numerics and the choice of $\tilde{\varepsilon}$

Figure 4: Comparison of the exact solution (green) and discrete solution with $\tilde{\varepsilon}$ from (C).

Some numerics and the choice of $\tilde{\varepsilon}$

Figure 5: Comparison of the exact solution (green) and discrete solution with $\tilde{\varepsilon}$ from (P).

Bad news from the numerics

- Computations very sensitive to rounding errors.

Idea: replace the condition $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}$ by $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}-\tau$.

Bad news from the numerics

- Computations very sensitive to rounding errors.

Idea: replace the condition $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}$ by $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}-\tau$.

Bad news from the numerics

- Computations very sensitive to rounding errors.

Idea: replace the condition $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}$ by $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}-\tau$.

- Not a remedy!

Conclusion: The nonlinear problem is not solvable in general!

Bad news from the numerics

- Computations very sensitive to rounding errors.

Idea: replace the condition $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}$ by $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}-\tau$.

- Not a remedy!

Conclusion: The nonlinear problem is not solvable in general!

Example: $N=4, \varepsilon=0.03, b=1, f_{1}=6, f_{2}=-6, f_{3}=3, f_{4}=-2$, and $\tilde{\varepsilon}$ from

Bad news from the numerics

- Computations very sensitive to rounding errors.

Idea: replace the condition $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}$ by $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}-\tau$.

- Not a remedy!

Conclusion: The nonlinear problem is not solvable in general!

Example: $N=4, \varepsilon=0.03, b=1, f_{1}=6, f_{2}=-6, f_{3}=3, f_{4}=-2$, and $\tilde{\varepsilon}$ from (F).

Reminder of the problem:

Bad news from the numerics

- Computations very sensitive to rounding errors.

Idea: replace the condition $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}$ by $u_{i}<\min \left\{u_{i-1}, u_{i+1}\right\}-\tau$.

- Not a remedy!

Conclusion: The nonlinear problem is not solvable in general!

Example: $N=4, \varepsilon=0.03, b=1, f_{1}=6, f_{2}=-6, f_{3}=3, f_{4}=-2$, and $\tilde{\varepsilon}$ from (F).

Reminder of the problem:

$$
-\left(\varepsilon+\beta_{i}(\boldsymbol{u}) \tilde{\varepsilon}\right) \frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}}+b \frac{u_{i+1}-u_{i-1}}{2 h}=g_{i}
$$

Bad news from the numerics

$1101 \rightarrow 1111$

$0010 \rightarrow 1101$

$1111 \rightarrow 1110$

$0000 \rightarrow 1101$

Solvability of the linear subproblems

Theorem

For every choice of $\tilde{\varepsilon} \in\left[\frac{b h}{2}-\varepsilon, \frac{b h}{2}\right]$ and every possible $\beta_{i} \in[0,1]$, the problem

$$
-\left(\varepsilon+\beta_{i} \tilde{\varepsilon}\right) \frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}}+b \frac{u_{i+1}-u_{i-1}}{2 h}=g_{i},
$$

has a unique solution.

Solvability of the nonlinear problem

Main remark: The lack of solvability is due to the discontinuity of the coefficients β_{i}

Proof: Write the method as the fixed point equation
$\mathbb{M}(\boldsymbol{\beta}(u)) u=g$,
apply the fact that the determinant is a continuous function of the entries of a matrix, and Brouwer's fixed point Theorem. \square

Solvability of the nonlinear problem

Main remark: The lack of solvability is due to the discontinuity of the coefficients β_{i}

Theorem

Let us suppose that the functions $\beta_{i}: \mathbb{R}^{N+1} \rightarrow[0,1], i=1, \ldots, N-1$, are continuous, and let $\tilde{\varepsilon}$ be any of the previous choices. Then, the nonlinear FCT scheme has a solution.

Proof: Write the method as the fixed point equation

$$
\mathbb{M}(\boldsymbol{\beta}(\boldsymbol{u})) \boldsymbol{u}=\boldsymbol{g}
$$

apply the fact that the determinant is a continuous function of the entries of a matrix, and Brouwer's fixed point Theorem. \square

Graphical representation of the regularisation

The price to pay: A weak version of the DMP

Theorem

Let u_{0}, \ldots, u_{N+1} be a solution of the modified FCT scheme with any functions $\beta_{1}, \ldots, \beta_{N} \in[0,1]$ as described before. Then
$g_{i} \geq 0 \quad \Rightarrow \quad u_{i} \geq \min \left\{u_{i-1}, u_{i+1}\right\} \quad$ or $\quad u_{i} \geq \max \left\{u_{i-1}, u_{i+1}\right\}-\delta h$,
for $i=1, \ldots, N$.

Numerical evidence on the violation of the DMP

The problem : $-\varepsilon u^{\prime \prime}+u^{\prime}=0$ subject to $u(0)=1$ and $u(1)=0$. We measured

- MAX $:=u_{h}^{\max }-1$;
- RMAX:= $\max \left\{\left(u_{h}^{\max }-1\right) / h\right\}$;
- $P e_{R M A X}$ the value of $P e$ for which the maximum $R M A X$ is attained.

Table 1: Violation of the discrete maximum principle for the continuous β_{i}.

	$P e \in[1,20)$			$P e \in[20, \infty)$		
ε	$M A X$	$R M A X$	$P e_{R M A X}$	$M A X$	$R M A X$	$P e_{R M A X}$
10^{-1}	$6.62-3$	$2.65-2$	1.25	no $P e \geq 20$		
10^{-2}	$3.55-3$	$9.27-2$	1.85	no $P e \geq 20$		
10^{-3}	$7.14-4$	$1.28-1$	2.79	$4.88-15$	$4.88-14$	25.0
10^{-4}	$1.06-4$	$1.40-1$	3.77	$5.60-14$	$9.23-13$	21.6
10^{-5}	$1.41-5$	$1.47-1$	4.80	$4.81-13$	$5.59-10$	21.6
10^{-6}	$1.77-6$	$1.51-1$	5.84	$6.06-12$	$6.92-8$	22.9

Some preliminary numerics in 2D: The Hemker problem

Data: $\varepsilon=10^{-4}, \approx 12,000 \mathbb{Q}_{1}$ elements, discontinuous $\alpha_{i j}$ as before, continuous as follows

$$
R_{i}^{+}=R_{i}^{-}=\min \left\{1, \frac{\min \left\{Q_{i}^{+},-Q_{i}^{-}\right\}}{\max \left\{P_{i}^{+},-P_{i}^{-}, \tau\right\}}\right\} .
$$

Figure 6 : Discontinuous $\alpha_{i j}$, non-symmetric

Some preliminary numerics in 2D: The Hemker problem

Figure 7: Continuous $\alpha_{i j}$, non-symmetric

Conclusions and perspectives

(1) Some further insight on FCT schemes.
(2) Analysis of a wider class of schemes.
(3) Counter-examples of existence of solutions for the original method.
(1) A modification that is proved to possess solutions, but satisfies only a weak version of the DMP.

Future extensions:

- Deeper study of the symmetric version in higher dimensions.
- Maximum princinle on general meshes.
- (Order of) convergence.
- Time-dependent problems.
- Coumled nonlinear problems in chemical reactions.

Conclusions and perspectives

(1) Some further insight on FCT schemes.
(2) Analysis of a wider class of schemes.
(3) Counter-examples of existence of solutions for the original method.
(1) A modification that is proved to possess solutions, but satisfies only a weak version of the DMP.

Future extensions:

- Deeper study of the symmetric version in higher dimensions.
- Maximum principle on general meshes.
- (Order of) convergence.
- Time-dependent problems.
- Coupled nonlinear problems in chemical reactions.

