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The MHM Framework
Introduction

SETTING

Find u satisfying

Lu=Ff, inQcCRY

Boundary conditions
@ Herein assume homogeneous essential boundary conditions.
@ Natural boundary conditions can also be considered.
Some applications
@ 2nd-order Elliptic
o Elasticity
@ Reaction-Advection-Diffusion
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Introduction

SOLUTIONS AND THEIR APPROXIMATION

Find u € V such that

a(u,v)="f(v), VveV

FIGURE: Triangulation of the domain.



The MHM Framework
Introduction

SOLUTIONS AND THEIR APPROXIMATION

Find u € W such that

a(u,v)="Ff(v), VYveWw

FIGURE: Triangulation of the domain.



The MHM Framework
Development for Laplace

PROBLEM STATEMENT

LAPLACE PROBLEM

Find u satisfying

~V.-KVu=f, inQcRY
u=0, ondQ

v

WEAK FORM

Find u € H}(Q) such that

(KVu,Vv)q = (f,v)a VveH(Q)

\




The MHM Framework
Development for Laplace
Solutions and Their Approximation

HYBRID FORMULATION

WEAK FORM

Find u € TIxH(K) (and A € M) such that

Z(ICVU, Vv)k + ;()\ V)aK = Z(f V)k Vv ellxHY(K)

K K

Y (muak =0 VueM
K

FIGURE: Triangulation of the domain.
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Development for Laplace
Solutions and Their Approximation

PARTIAL APPROXIMATION

WEAK FORM

Find us € Ws (and A € M) such that

EUCVUS, VV)K =F ;(/\, V)aK = Z(f, V)K Vve Ws

K K

Y (muok =0, VueM
K

FIGURE: Linear space (left) and quadratic space (right).
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Development for Laplace
Solutions and Their Approximation

PARTIAL APPROXIMATION

WEAK FORM

Find us € Ws (and A € M) such that

Z(ICVUS, VV)K + Z()&, V)aK = Z(f, V)K Vve Ws
K

K K

Y (u)ak =0 YueM
K

FIGURE: Solution belongs to continuous spaces.
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Development for Laplace
Solutions and Their Approximation

FULL APPROXIMATION

WEAK FORM

Find us € Ws (and As € Ms) such that

Y (KVus, Vv)k + Y _(As,v)ak = Y (. v)k Vv E Ws
K

K K

Y (4 us)ak =0, VpeMs
K

= =)

FIGURE: Constant and linear spaces on the boundaries.
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Development for Laplace
Connection to RTO

ASSUMPTIONS

@ K are all triangles.

@ IC is the identity.

@ f is piecewise constant.

@ Ws is piecewise quadratic.
°

Ms is piecewise constant.

WEAK FORM

Find u € Ws (and A € Ms) such that

Z(VU,VV)K +E()\, V)aK = Z(f vk Vve W
K K K

Z(Vv “)BK =0, VV € Ms
K
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Development for Laplace
Connection to RTO

LOCALIZATION

LOCAL STATEMENT
Find us € Ws (depending on f and As € Ms) such that

(VUS, VV)K = (f, V)K = (As, V)aK Vve Ws

ill posed in each K

FIGURE: W;-

FIGURE: W &

FIGURE: W)
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Development for Laplace
Connection to RTO

LOCALIZATION

LOCAL STATEMENT
Find u; € W5 (depending on As € Ms) such that

(Vu, , Vv)k = —(As, v)ax Vv e Wt

well posed in each K

Nice properties
@ On each K, u, is the solution to the infinite-dimensional problem

—AUJ_ = CK
VUJ_'I'I: —)\5

@ 0, = Vu | expands using the lowest-order Raviart-Thomas basis!!!
1 exXp g
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Development for Laplace
Connection to RTO

MIXED FORM

WEAK FORM

Find u € Ws (and A € Ms) such that

Z(VUS, VV)K +2(/\5, V)E)K = Z(f, V)K Vve Ws
K

K K

Y (. us)ok =0, Ve Ms

K
REDUCED

Find ug € Wy (and As € Ms) such that

Y (As,vo)ok =Y (f.v)k VYveWs
K K

Y (moui)ok + ) (1 wo)ak =0, Vp e Ms
K K
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Development for Laplace
Connection to RTO

MIXED FORM

WEAK FORM

Find us € Ws (and As € Ms) such that

Z(VUS, VV)K +2(/\5, V)E)K = Z(f, V)K Vve Ws
K

K K

Z(V' US)BK =0, VV € Ms
K

A

REDUCED, IN MIXED FORM

Find ug € Wy (and As € Ms) such that

Z(V'Uu. VO)K = Z(f, VO)K Vve Ws
K K

Z(UU,UV)K +Z(V-J\,, u)k =0, Vue Ms
K K
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Development for Laplace
Connection to RTO

A POSTERIORI ESTIMATOR

REDUCED

Find uy € Wo (and A € Ms) such that

Y (A vo)ok =) (Fv)k VveWs
K K

Y (,ui +u)ak =0, Ve Ms

K
REDUCED

Find u € Ws (and A € Ms) such that

Y (An [vl)r =) (f.v)k VveWs

F K

Y (un, [ui + wl)F =0, Ve M
F
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Development for Laplace
Connection to RTO

A POSTERIORI ESTIMATOR

Re —%[[ui + uo], F is an interior edge;
F (—uy +up)nn, F is on the boundary.

The a posteriori estimator is given by
— 211/2
= [ ',
K
2 2
ik = Y 1F
F

C
nF = WHRFHg,F'
F
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Development for Laplace
Connection to RTO

SUMMARY

Under the assumptions:
@ K are all triangles.
@ /C is the identity.
@ f is piecewise constant.
@ Ws is piecewise quadratic.
@ Ms is piecewise constant.
Properties
@ Localization with exact solution
@ Approximation of variables for mixed form

@ A posteriori estimator in terms of jumps
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Connection to RTO

SUMMARY

Under the assumptions:
@ K are all triangles.
@ [ is the identity.

@ f is piecewise constant.

o Ws is pi tsequadratic.
OW

Properties

@ Localization W

@ Approximation of variables for mixed form

@ A posteriori estimator in terms of jumps
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Development for Laplace
Connection to RTO

SUMMARY

Under the assumptions:
° W
° W
o f is piecewiseConstant.

° W

Properties of the Multiscale Hybrid-Mixed Method
° Localizationm
@ Approximation of variables for mixed form

@ A posteriori estimator in terms of jumps
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Development for Laplace
Connection to RTO

LOCALIZATION

Find u, (depending on f and As) such that

(KVu, Vv )k =(fvi)k — (As,vi)ak Vvi

@ Write u) :uj\_—l—ui
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Development for Laplace
Oscillatory Coefficient

OSCILLATORY COEFFICIENT

Unit square domain
_ 2+1.8sin 2 2+41.8sin 2
~ 241.8sin Z”y + 2+1.8cos Z”X '
Homogeneous Neumann boundary conditions
f(x,y) = 272 cos(27x) cos(27ry)
Let Mg be My or M.

_ 1
€= 16

‘ J“"
‘tﬁ.’ ‘r
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Development for Laplace
Oscillatory Coefficient

COMPARISON WITH LOWEST-ORDER RT

MHM, I=0
R

Exact RTO/PO z
| |

FIGURE: Comparing lowest-order Raviart-Thomas to lowest-order MHM.
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Development for Laplace
Oscillatory Coefficient

COMPARISON CONSTANT SOLUTION

MHM, I=2
0.00108 0.0397 0.0784
Exact MHM, I=0
-0.000454 0.04 0.0805 -0.000945 0.045 0.0909

FIGURE: Comparing ug for / = 0,2
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Development for Laplace
Oscillatory Coefficient

COMPARISON FULL SOLUTION

-0.000636 0.0405 0.0816
Exact MHM, 1=0 z
-0.000454 0.04 0.0805 -0.00913 0.0426 0.0944 \L\(
I A |

FIGURE: Comparing ug + ui’ +ufl for 1=0,2



The MHM Framework
Abstract Formulation

PRIMAL HYBRID FORMULATION

WEAK FORM

Find (u,A) € W x M such that

a(uv)+Y (A v)ek =f(v), YveWw
K

Y (hu)ak =0, YueM.
K

FIGURE: Triangulation of the domain.
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Abstract Formulation
MHM Formulation

MHM FORMULATION

From the Primal Hybrid formulation:
o W=WypW,.
@ Rewrite the Primal Hybrid formulation as

o locally-defined problems (using W );
o a globally-defined problem (using Wp).
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Abstract Formulation
MHM Formulation

MHM FORMULATION

From the Primal Hybrid formulation:
oW=WydW,.
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Abstract Formulation
MHM Formulation

DECOMPOSITION

@ Define Wy C W by the property

upg € Wy <= a(uo,v)=0, VveWw.

o Laplace: W) consists of piecewise constants.
o Elasticity: Wj consists of piecewise rigid-body modes.
o Advection-Reaction-Diffusion: Wy = {0}

@ Define W, the L2-orthogonal complement in W of W.

o W= WO@WL-
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Abstract Formulation
MHM Formulation

MHM FORMULATION

From the Primal Hybrid formulation:

@ Rewrite the Primal Hybrid formulation as

o locally-defined problems (using W );
o a globally-defined problem (using Wp).



The MHM Framework
Abstract Formulation
MHM Formulation

PRIMAL HYBRID REWRITTEN

Find (up +uy,A) € (Wo @® W) X M such that
a(ug,vi)+Y (Avo+vi)ok =f(w+vi), Vw+v. €W W,
K

Y (muotu)ok =0 VpeM.
K
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MHM Formulation

PRIMAL HYBRID REWRITTEN

Find (up +uy,A) € (Wo @® W) X M such that
a(up,vi)+Y (Avo+vi)ek =Ff(w+v), Yw+v, € Wod W,
K

Y (muotu)ok =0 VpeM.
K

o Find u; € W, such that

a(up,vi)+Y (A vi)ak =f(vi), Vv e W,
K
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MHM Formulation

PRIMAL HYBRID REWRITTEN

Find (up +uy,A) € (Wo @® W) X M such that
a(ug,vi)+Y (A vo+vi)ak =f(w+vi), Vw+v. e W W,
K

Y (muw+u)ok =0 VpeM.
K

o Find u; € W, such that

a(up,vi)+Y (A vi)ak =f(vi), Vv e W,
K

@ Find (up,A) € Wy x M such that

Y (A vo)ak = f(v), Ywe W
K

Z(Vv ug)ak +Z(Pl, u ok =0, YueM.
K K
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Abstract Formulation
MHM Formulation

LOCAL PROBLEMS

Find u; € W, such that

a(up,vy)+) (A vi)ok =f(vy), Vv eW,.
K
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Abstract Formulation
MHM Formulation

LOCAL PROBLEMS

Find u; € W, such that

a(up,vy)+) (A vi)ok =f(vy), Vv eW,.
K

@ Eliminate u, in terms of f and the solution A.
o u; = uﬁ + ui
@ Well posed
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MHM Formulation

GLOBAL PROBLEM

Find (up, A) € Vo X M such that

Y (A vo)ak = f(w), YweW
K

Z(ﬂ: up)ak + E(V u gk =0, YueM
K K
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MHM Formulation

GLOBAL PROBLEM

Find (up, A) € Vo X M such that

Y (A w)ak = f(w), YweW
K

Y (ouo)ok + ) (f.ui)ok =0, VueM
K K

@ Substitute u; = uj\_ + ui:

Find (up, A) € Vo x M such that

Y (A v)ak = f(wo), Vv € Vo
K

Y (#ouo)ak + Y (1 v o = Y (. uf ok, Vi e M.
K K K
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Abstract Formulation
MHM Methods

MHM METHODS

MHM Formulation

Find (ug, A) € Vo X M such that
Y (vo, 1) € Vo x M,

Y (A vo)ak = f(w)

K
Yo (1 u0)ak + (1 1) ok = Y, uf) ok
K K K

V.

where Vv, € W,

a(ul,vi) =Y (A vi)ox
K

a(ufl,vi)+ ;(/\, vi)ak = f(vy).

4
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MHM Methods

MHM METHODS

MHM Method

Find (u§, As) € Vo x Ms such that
V(vo, 1) € Vo x Ms,

Y (As. v0)ak = f(wo)

K

Y (. ud)a + Y (1 0} Mok = Yo(u uf k.
K K K

v

where Vv, € W,

a(u},vy) = ;(7\, V1)ak:

a(uf,vy) +;(/\, vi)ak = f(vy).
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Abstract Formulation
MHM Methods

PROPERTIES

Must choose Ms (and possibly spaces for two-level approximation);
o Ms =~ M,
e Ms D Mp;

o Mp guarantees invertibility.
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Application to Reaction-Advection-Diffusion

REACTION-ADVECTION-DIFFUSION

o Let
L=V (—KVu+au)+ou

@ Possible Mg
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Application to Reaction-Advection-Diffusion

SOLUTIONS TO LOCAL PROBLEMS
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SOLUTIONS TO LOCAL PROBLEMS
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Application to Reaction-Advection-Diffusion

SAMPLE PROBLEM STATEMENT

Find u such that

—eAu+a-Vut+ou=Ff inQ

u=g onodQ)
| =1, and f =0
u=1
u=1 u =0
u=0

FIGURE: Setup of the problem.



CLASSICAL GALERKIN VS. MHM

€e=1le—4ANDoc =0
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Application to Reaction-Advection-Diffusion

€=1e—4AND0o =0
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Application to Reaction-Advection-Diffusion

A POSTERIORI ESTIMATOR

Recall the a posteriori estimator depends on _%[[UJ_ + up]
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A POSTERIORI ESTIMATOR

€e=1le—4ANDoc =0
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Application to Reaction-Advection-Diffusion

A POSTERIORI ESTIMATOR

€e=1le—4ANDoc =1
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Application to Reaction-Advection-Diffusion
€

The MHM Framework
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A POSTERIORI ESTIMATOR

€ =1le—4 AND o = 100
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Application to Reaction-Advection-Diffusion

FLOW IN A HETEROGENEOUS MEDIUM
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Application to Reaction-Advection-Diffusion

FLOW IN A HETEROGENEOUS MEDIUM
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Conclusion

CONCLUSION

@ The MHM framework builds on Hybrid formulation of problems.
@ The MHM methods consist of local solves and a global solve.

o The local solves are easily parallelized;
o Local solves capture local information.

@ Dual variables may be approximated.

@ An edge-based a posteriori estimator;
o refine on edges of a given mesh.



THANK YOU SLIDE

Merci Beaucoup!



