THE MHM FRAMEWORK

Christopher Harder

Metropolitan State University of Denver, U.S.A.
June 18, 2014

Joint work with: Rodolfo Araya, Alexandre Madureira, Diego Paredes, Frédéric Valentin

SETTING

LINEAR PDE

Find u satisfying

$$
\mathcal{L} u=f, \quad \text { in } \Omega \subset \mathbb{R}^{d}
$$

Boundary conditions

- Herein assume homogeneous essential boundary conditions.
- Natural boundary conditions can also be considered.

Some applications

- 2nd-order Elliptic
- Elasticity
- Reaction-Advection-Diffusion

SOLUTIONS AND THEIR Approximation

WEAK Form

Find $u \in V$ such that

$$
a(u, v)=f(v), \quad \forall v \in V
$$

FIGURE: Triangulation of the domain.

SOLUTIONS AND THEIR Approximation

WEAK FORM

Find $u \in W$ such that

$$
a(u, v)=f(v), \quad \forall v \in W
$$

FIGURE: Triangulation of the domain.

PROBLEM STATEMENT

Laplace Problem

Find u satisfying

$$
\begin{aligned}
-\nabla \cdot \mathcal{K} \nabla u & =f, \\
& \quad \text { in } \Omega \subset \mathbb{R}^{d} \\
u & =0,
\end{aligned} \quad \text { on } \partial \Omega
$$

WEAK Form

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
(\mathcal{K} \nabla u, \nabla v)_{\Omega}=(f, v)_{\Omega} \quad \forall v \in H_{0}^{1}(\Omega)
$$

The MHM Framework

Development for Laplace
Solutions and Their Approximation

Hybrid Formulation

WEAK FORM

Find $u \in \Pi_{K} H^{1}(K)$ (and $\lambda \in M$) such that

$$
\begin{aligned}
\sum_{K}(\mathcal{K} \nabla u, \nabla v) K+ & \sum_{K}(\lambda, v)_{\partial K}=\sum_{K}(f, v) K \quad \forall v \in \Pi_{K} H^{1}(K) \\
& \sum_{K}(\mu, u)_{\partial K}=0, \quad \forall \mu \in M
\end{aligned}
$$

Figure: Triangulation of the domain.

PARTIAL APPROXIMATION

WEAK FORM

Find $u_{s} \in W_{s}($ and $\lambda \in M)$ such that

$$
\begin{aligned}
\sum_{K}\left(\mathcal{K} \nabla u_{s}, \nabla v\right)_{K}+\sum_{K}(\lambda, v)_{\partial K} & =\sum_{K}(f, v)_{K} \quad \forall v \in W_{s} \\
\sum_{K}(\mu, u)_{\partial K} & =0, \quad \forall \mu \in M
\end{aligned}
$$

FIGURE: Linear space (left) and quadratic space (right).

Partial Approximation

WEAK FORM

Find $u_{s} \in W_{s}($ and $\lambda \in M)$ such that

$$
\begin{aligned}
\sum_{K}\left(\mathcal{K} \nabla u_{s}, \nabla v\right)_{K}+\sum_{K}(\lambda, v)_{\partial K} & =\sum_{K}(f, v)_{K} \quad \forall v \in W_{s} \\
\sum_{K}(\mu, u)_{\partial K} & =0, \quad \forall \mu \in M
\end{aligned}
$$

FIGURE: Solution belongs to continuous spaces.

FULL APPROXIMATION

WEAK FORM

Find $u_{s} \in W_{s}\left(\right.$ and $\left.\lambda_{s} \in M_{s}\right)$ such that

$$
\begin{aligned}
\sum_{K}\left(\mathcal{K} \nabla u_{s}, \nabla v\right) K+ & \sum_{K}\left(\lambda_{s}, v\right)_{\partial K}=\sum_{K}(f, v) K \quad \forall v \in W_{s} \\
& \sum_{K}\left(\mu, u_{s}\right)_{\partial K}=0, \quad \forall \mu \in M_{s}
\end{aligned}
$$

Figure: Constant and linear spaces on the boundaries.

Assumptions

- K are all triangles.
- \mathcal{K} is the identity.
- f is piecewise constant.
- W_{s} is piecewise quadratic.
- M_{s} is piecewise constant.

WEAK FORM

Find $u \in W_{s}$ (and $\lambda \in M_{s}$) such that

$$
\begin{aligned}
\sum_{K}(\nabla u, \nabla v)_{K}+\sum_{K}(\lambda, v)_{\partial K} & =\sum_{K}(f, v)_{K} \quad \forall v \in W_{s} \\
\sum_{K}(\mu, u)_{\partial K} & =0, \quad \forall \mu \in M_{s}
\end{aligned}
$$

LOCALIZATION

LOCAL STATEMENT

Find $u_{s} \in W_{s}$ (depending on f and $\lambda_{s} \in M_{s}$) such that

$$
\underbrace{\left(\nabla u_{s}, \nabla v\right)_{K}=(f, v)_{K}-\left(\lambda_{s}, v\right)_{\partial K} \quad \forall v \in W_{s}}_{\text {ill posed in each } K}
$$

Figure: W_{s}

Figure: W_{s}^{\perp}

Figure: W_{0}

LOCALIZATION

LOCAL STATEMENT

Find $u_{\perp} \in W_{s}^{\perp}$ (depending on $\lambda_{s} \in M_{s}$) such that

$$
\underbrace{\left(\nabla u_{\perp}, \nabla v\right)_{K}=-\left(\lambda_{s}, v\right)_{\partial K} \quad \forall v \in W_{s}^{\perp}}_{\text {well posed in each } K}
$$

Nice properties

- On each K, u_{\perp} is the solution to the infinite-dimensional problem

$$
\begin{aligned}
-\triangle u_{\perp} & =C_{K} \\
\nabla u_{\perp} \cdot \mathbf{n} & =-\lambda_{s}
\end{aligned}
$$

- $\sigma_{u}=\nabla u_{\perp}$ expands using the lowest-order Raviart-Thomas basis!!!

Mixed Form

WEAK Form

Find $u \in W_{s}$ (and $\lambda \in M_{s}$) such that

$$
\begin{aligned}
\sum_{K}\left(\nabla u_{s}, \nabla v\right)_{K}+\sum_{K}\left(\lambda_{s}, v\right)_{\partial K} & =\sum_{K}(f, v)_{K} \quad \forall v \in W_{s} \\
\sum_{K}\left(\mu, u_{s}\right)_{\partial K} & =0, \quad \forall \mu \in M_{s}
\end{aligned}
$$

Reduced

Find $u_{0} \in W_{0}$ (and $\lambda_{s} \in M_{s}$) such that

$$
\begin{aligned}
\sum_{K}\left(\lambda_{s}, v_{0}\right)_{\partial K} & =\sum_{K}(f, v)_{K} \quad \forall v \in W_{s} \\
\sum_{K}\left(\mu, u_{\perp}\right)_{\partial K}+\sum_{K}\left(\mu, u_{0}\right)_{\partial K} & =0, \quad \forall \mu \in M_{s}
\end{aligned}
$$

Connection to RTO

Mixed Form

WEAK Form

Find $u_{s} \in W_{s}$ (and $\lambda_{s} \in M_{s}$) such that

$$
\begin{aligned}
\sum_{K}\left(\nabla u_{s}, \nabla v\right)_{K}+\sum_{K}\left(\lambda_{s}, v\right)_{\partial K} & =\sum_{K}(f, v)_{K} \quad \forall v \in W_{s} \\
\sum_{K}\left(\mu, u_{s}\right)_{\partial K} & =0, \quad \forall \mu \in M_{s}
\end{aligned}
$$

Reduced, IN Mixed Form

Find $u_{0} \in W_{0}$ (and $\lambda_{s} \in M_{s}$) such that

$$
\begin{aligned}
\sum_{K}\left(\nabla \cdot \sigma_{u}, v_{0}\right)_{K} & =\sum_{K}\left(f, v_{0}\right)_{K} \quad \forall v \in W_{s} \\
\sum_{K}\left(\sigma_{u}, \sigma_{v}\right)_{K}+\sum_{K}\left(\nabla \cdot \sigma_{v}, u_{0}\right)_{K} & =0, \quad \forall \mu \in M_{s}
\end{aligned}
$$

Connection to RTO

A Posteriori Estimator

Reduced

Find $u_{0} \in W_{0}$ (and $\lambda \in M_{s}$) such that

$$
\begin{aligned}
\sum_{K}\left(\lambda, v_{0}\right)_{\partial K} & =\sum_{K}(f, v)_{K} \quad \forall v \in W_{s} \\
\sum_{K}\left(\mu, u_{\perp}+u_{0}\right)_{\partial K} & =0, \quad \forall \mu \in M_{s}
\end{aligned}
$$

Reduced

Find $u \in W_{s}$ (and $\lambda \in M_{s}$) such that

$$
\begin{aligned}
\sum_{F}\left(\lambda \mathbf{n}, \llbracket v_{0} \rrbracket\right)_{F} & =\sum_{K}(f, v)_{K} \quad \forall v \in W_{s} \\
\sum_{F}\left(\mu \mathbf{n}, \llbracket u_{\perp}+u_{0} \rrbracket\right)_{F} & =0, \quad \forall \mu \in M_{s}
\end{aligned}
$$

A Posteriori Estimator

$$
R_{F}:= \begin{cases}-\frac{1}{2} \llbracket u_{\perp}+u_{0} \rrbracket, & F \text { is an interior edge } \\ \left(-u_{\perp}+u_{0}\right) \boldsymbol{n}_{\Omega}, & F \text { is on the boundary. }\end{cases}
$$

The a posteriori estimator is given by

$$
\begin{gathered}
\eta:=\left[\sum_{K} \eta_{K}^{2}\right]^{1 / 2}, \\
\eta_{K}^{2}:=\sum_{F} \eta_{F}^{2}, \\
\eta_{F}:=\frac{C}{h_{F}^{1 / 2}}\left\|R_{F}\right\|_{0, F}^{2} .
\end{gathered}
$$

SUMMARY

Under the assumptions:

- K are all triangles.
- \mathcal{K} is the identity.
- f is piecewise constant.
- W_{s} is piecewise quadratic.
- M_{s} is piecewise constant.

Properties

- Localization with exact solution
- Approximation of variables for mixed form
- A posteriori estimator in terms of jumps

SUMMARY

Under the assumptions:

- K are all triangles.
- \mathcal{K} is the identity.
- f is piecewise constant.
- W_{s} is piecenise quadratic.
- M_{s} is piecewise constant.

Properties

- Localization with exaet solution
- Approximation of variables for mixed form
- A posteriori estimator in terms of jumps

SUMMARY

Under the assumptions:

- K are all triangles.
- \mathcal{K} is the identity.
- f is piecewise constant.
- W_{s} is piecenise quadratic.
- M_{s} is piecewise constant.

Properties of the Multiscale Hybrid-Mixed Method

- Localization with exact solution
- Approximation of variables for mixed form
- A posteriori estimator in terms of jumps

Connection to RTO

LOCALIZATION

LOCAL STATEMENT

Find u_{\perp} (depending on f and λ_{s}) such that

$$
\left(\mathcal{K} \nabla u_{\perp}, \nabla v_{\perp}\right)_{K}=\left(f, v_{\perp}\right)_{K}-\left(\lambda_{s}, v_{\perp}\right)_{\partial K} \quad \forall v_{\perp}
$$

- Write $u_{\perp}=u_{\perp}^{\lambda}+u_{\perp}^{f}$

The MHM Framework
Development for Laplace
Oscillatory Coefficient

Oscillatory Coefficient

- Unit square domain
- $\mathcal{K}=\frac{2+1.8 \sin \frac{2 \pi x}{\varepsilon}}{2+1.8 \sin \frac{2 \pi y}{\varepsilon}}+\frac{2+1.8 \sin \frac{2 \pi y}{\varepsilon}}{2+1.8 \cos \frac{2 \pi x}{\varepsilon}}, \varepsilon=\frac{1}{16}$
- Homogeneous Neumann boundary conditions
- $f(x, y)=2 \pi^{2} \cos (2 \pi x) \cos (2 \pi y)$
- Let M_{s} be M_{0} or M_{2}.

The MHM Framework
Development for Laplace
Oscillatory Coefficient

COMPARISON WITH LOWEST-ORDER RT

Figure: Comparing lowest-order Raviart-Thomas to lowest-order MHM.

The MHM Framework
Development for Laplace
Oscillatory Coefficient

Comparison Constant Solution

Figure: Comparing u_{0} for $I=0,2$

The MHM Framework
Development for Laplace
Oscillatory Coefficient

COMPARISON FULL SOLUTION

FIgure: Comparing $u_{0}+u_{\perp}^{\lambda_{I}}+u_{\perp}^{f}$ for $I=0,2$

Primal Hybrid Formulation

WEAK FORM

Find $(u, \lambda) \in W \times M$ such that

$$
\begin{aligned}
a(u, v)+\sum_{K}(\lambda, v)_{\partial K} & =f(v), \quad \forall v \in W \\
\sum_{K}(\mu, u)_{\partial K} & =0, \quad \forall \mu \in M
\end{aligned}
$$

FIGURE: Triangulation of the domain.

MHM FORMULATION

From the Primal Hybrid formulation:

- $W=W_{0} \oplus W_{\perp}$.
- Rewrite the Primal Hybrid formulation as
- locally-defined problems (using W_{\perp});
- a globally-defined problem (using W_{0}).

MHM FORMULATION

From the Primal Hybrid formulation:

- $W=W_{0} \oplus W_{\perp}$.
- Rewrite the Primal Hybrid formulation as
- locally-defined problems (using W_{\perp});
- a globally-defined problem (using W_{0}).

DECOMPOSITION

- Define $W_{0} \subset W$ by the property

$$
u_{0} \in W_{0} \Longleftrightarrow a\left(u_{0}, v\right)=0, \quad \forall v \in W
$$

- Laplace: W_{0} consists of piecewise constants.
- Elasticity: W_{0} consists of piecewise rigid-body modes.
- Advection-Reaction-Diffusion: $W_{0}=\{0\}$
- Define W_{\perp} the L^{2}-orthogonal complement in W of W_{0}.
- $W=W_{0} \oplus W_{\perp}$.

MHM FORMULATION

From the Primal Hybrid formulation:

- $W=W_{0} \oplus W_{\perp}$
- Rewrite the Primal Hybrid formulation as
- locally-defined problems (using W_{\perp});
- a globally-defined problem (using W_{0}).

Primal Hybrid Rewritten

Find $\left(u_{0}+u_{\perp}, \lambda\right) \in\left(W_{0} \oplus W_{\perp}\right) \times M$ such that

$$
\begin{gathered}
a\left(u_{\perp}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{0}+v_{\perp}\right) \partial K=f\left(v_{0}+v_{\perp}\right), \quad \forall v_{0}+v_{\perp} \in W_{0} \oplus W_{\perp} \\
\sum_{K}\left(\mu, u_{0}+u_{\perp}\right)_{\partial K}=0, \quad \forall \mu \in M .
\end{gathered}
$$

- Find $u_{\perp} \in W_{\perp}$ such that

- Find $\left(u_{0}, \lambda\right) \in W_{0} \times M$ such that

Primal Hybrid Rewritten

Find $\left(u_{0}+u_{\perp}, \lambda\right) \in\left(W_{0} \oplus W_{\perp}\right) \times M$ such that

$$
\begin{aligned}
a\left(u_{\perp}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{0}+v_{\perp}\right) \partial K & =f\left(v_{0}+v_{\perp}\right), \quad \forall v_{0}+v_{\perp} \in W_{0} \oplus W_{\perp} \\
\sum_{K}\left(\mu, u_{0}+u_{\perp}\right) \partial K & =0, \quad \forall \mu \in M .
\end{aligned}
$$

- Find $u_{\perp} \in W_{\perp}$ such that

$$
a\left(u_{\perp}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{\perp}\right)_{\partial K}=f\left(v_{\perp}\right), \quad \forall v_{\perp} \in W_{\perp} .
$$

- Find $\left(u_{0}, \lambda\right) \in W_{0} \times M$ such that

Primal Hybrid Rewritten

Find $\left(u_{0}+u_{\perp}, \lambda\right) \in\left(W_{0} \oplus W_{\perp}\right) \times M$ such that

$$
\begin{aligned}
a\left(u_{\perp}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{0}+v_{\perp}\right) \partial K & =f\left(v_{0}+v_{\perp}\right), \quad \forall v_{0}+v_{\perp} \in W_{0} \oplus W_{\perp} \\
\sum_{K}\left(\mu, u_{0}+u_{\perp}\right)_{\partial K} & =0, \quad \forall \mu \in M .
\end{aligned}
$$

- Find $u_{\perp} \in W_{\perp}$ such that

$$
a\left(u_{\perp}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{\perp}\right)_{\partial K}=f\left(v_{\perp}\right), \quad \forall v_{\perp} \in W_{\perp} .
$$

- Find $\left(u_{0}, \lambda\right) \in W_{0} \times M$ such that

$$
\begin{aligned}
\sum_{K}\left(\lambda, v_{0}\right)_{\partial K} & =f\left(v_{0}\right), \quad \forall v_{0} \in W_{0} \\
\sum_{K}\left(\mu, u_{0}\right)_{\partial K}+\sum_{K}\left(\mu, u_{\perp}\right)_{\partial K} & =0, \quad \forall \mu \in M .
\end{aligned}
$$

LOCAL PROBLEMS

Find $u_{\perp} \in W_{\perp}$ such that

$$
a\left(u_{\perp}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{\perp}\right)_{\partial K}=f\left(v_{\perp}\right), \quad \forall v_{\perp} \in W_{\perp} .
$$

- Eliminate u_{\perp} in terms of f and the solution λ.
- Well posed

LOCAL PROBLEMS

Find $u_{\perp} \in W_{\perp}$ such that

$$
a\left(u_{\perp}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{\perp}\right)_{\partial K}=f\left(v_{\perp}\right), \quad \forall v_{\perp} \in W_{\perp} .
$$

- Eliminate u_{\perp} in terms of f and the solution λ.
- $u_{\perp}=u_{\perp}^{\lambda}+u_{\perp}^{f}$
- Well posed

Global Problem

Find $\left(u_{0}, \lambda\right) \in V_{0} \times M$ such that

$$
\begin{aligned}
\sum_{K}\left(\lambda, v_{0}\right)_{\partial K} & =f\left(v_{0}\right), \quad \forall v_{0} \in V_{0} \\
\sum_{K}\left(\mu, u_{0}\right)_{\partial K}+\sum_{K}\left(\mu, u_{\perp}\right)_{\partial K} & =0, \quad \forall \mu \in M
\end{aligned}
$$

Find $\left(u_{0}, \lambda\right) \in V_{0} \times M$ such that

GLOBAL PROBLEM

Find $\left(u_{0}, \lambda\right) \in V_{0} \times M$ such that

$$
\begin{aligned}
\sum_{K}\left(\lambda, v_{0}\right)_{\partial K} & =f\left(v_{0}\right), \quad \forall v_{0} \in V_{0} \\
\sum_{K}\left(\mu, u_{0}\right)_{\partial K}+\sum_{K}\left(\mu, u_{\perp}\right)_{\partial K} & =0, \quad \forall \mu \in M
\end{aligned}
$$

- Substitute $u_{\perp}=u_{\perp}^{\lambda}+u_{\perp}^{f}$:

Find $\left(u_{0}, \lambda\right) \in V_{0} \times M$ such that

$$
\begin{array}{rlrl}
\sum_{K}\left(\lambda, v_{0}\right)_{\partial K} & =f\left(v_{0}\right), & \forall v_{0} \in V_{0} \\
\sum_{K}\left(\mu, u_{0}\right)_{\partial K}+\sum_{K}\left(\mu, u_{\perp}^{\lambda}\right)_{\partial K}=\sum_{K}\left(\mu, u_{\perp}^{f}\right)_{\partial K}, & \forall \mu \in M .
\end{array}
$$

MHM METHODS

MHM Formulation

MHM Method

Find $\left(u_{0}, \lambda\right) \in V_{0} \times M$ such that $\forall\left(v_{0}, \mu\right) \in V_{0} \times M$,

$$
\begin{align*}
\sum_{K}\left(\lambda, v_{0}\right)_{\partial K} & =f\left(v_{0}\right) \\
\sum_{K}\left(\mu, u_{0}\right)_{\partial K}+\sum_{K}\left(\mu, u_{\perp}^{\lambda}\right)_{\partial K} & =\sum_{K}\left(\mu, u_{\perp}^{f}\right)_{\partial K} \tag{K}
\end{align*}
$$

where $\forall v_{\perp} \in W_{\perp}$,

$$
\text { where } \forall v_{\perp} \in W_{\perp}
$$

$$
a\left(u_{\perp}^{f}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{\perp}\right)_{\partial K}=f\left(v_{\perp}\right) .
$$

MHM Methods

MHM Formulation

Find $\left(u_{0}, \lambda\right) \in V_{0} \times M$ such that
$\forall\left(v_{0}, \mu\right) \in V_{0} \times M$,

where $\forall v_{\perp} \in W_{\perp}$

MHM Method

Find $\left(u_{0}^{s}, \lambda_{s}\right) \in V_{0} \times M_{s}$ such that $\forall\left(v_{0}, \mu\right) \in V_{0} \times M_{s}$,

$$
\begin{aligned}
\sum_{K}\left(\lambda_{s}, v_{0}\right)_{\partial K} & =f\left(v_{0}\right) \\
\sum_{K}\left(\mu, u_{0}^{s}\right)_{\partial K}+\sum_{K}\left(\mu, u_{\perp}^{\lambda_{h}}\right)_{\partial K} & =\sum_{K}\left(\mu, u_{\perp}^{f}\right)_{\partial K} .
\end{aligned}
$$

where $\forall v_{\perp} \in W_{\perp}$,

$$
\begin{gathered}
a\left(u_{\perp}^{\lambda}, v_{\perp}\right)=\sum_{K}\left(\lambda, v_{\perp}\right)_{\partial K}, \\
a\left(u_{\perp}^{f}, v_{\perp}\right)+\sum_{K}\left(\lambda, v_{\perp}\right)_{\partial K}=f\left(v_{\perp}\right) .
\end{gathered}
$$

PROPERTIES

Must choose M_{s} (and possibly spaces for two-level approximation);

- $M_{s} \approx M$;
- $M_{s} \supset M_{0}$;
- M_{0} guarantees invertibility.

REACTION-ADVECTION-DIFFUSION

- Let

$$
\mathcal{L}=\nabla \cdot(-\mathcal{K} \nabla u+\alpha u)+\sigma u
$$

- Possible M_{s}

The MHM Framework
Application to Reaction-Advection-Diffusion

SOLUTIONS TO LOCAL PROBLEMS

The MHM Framework
Application to Reaction-Advection-Diffusion

SOLUTIONS TO LOCAL PROBLEMS

SAMPLE PROBLEM STATEMENT

Find u such that

$$
\begin{aligned}
-\epsilon \triangle u+\alpha \cdot \nabla u+\sigma u & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

$|\alpha|=1$, and $f=0$

Figure: Setup of the problem.

The MHM Framework
Application to Reaction-Advection-Diffusion

CLASSICAL GALERKIN VS. MHM
 $\epsilon=1 e-4$ AND $\sigma=0$

The MHM Framework
Application to Reaction-Advection-Diffusion

SUPG vs. MHM
 $\epsilon=1 e-4$ AND $\sigma=0$

A POSTERIORI ESTIMATOR

Recall the a posteriori estimator depends on $-\frac{1}{2} \llbracket u_{\perp}+u_{0} \rrbracket$

The MHM Framework

Application to Reaction-Advection-Diffusion

A Posteriori Estimator
 $\epsilon=1 e-4$ AND $\sigma=0$

A Posteriori Estimator
 $\epsilon=1 e-4$ AND $\sigma=1$

The MHM Framework
Application to Reaction-Advection-Diffusion

A POSTERIORI ESTIMATOR
 $\epsilon=1 e-4$ AND $\sigma=10$

The MHM Framework
Application to Reaction-Advection-Diffusion

A Posteriori Estimator
 $\epsilon=1 e-4$ AND $\sigma=100$

The MHM Framework
Application to Reaction-Advection-Diffusion

Flow in a Heterogeneous Medium

The MHM Framework
Application to Reaction-Advection-Diffusion

Flow in a Heterogeneous Medium

CONCLUSION

- The MHM framework builds on Hybrid formulation of problems.
- The MHM methods consist of local solves and a global solve.
- The local solves are easily parallelized;
- Local solves capture local information.
- Dual variables may be approximated.
- An edge-based a posteriori estimator;
- refine on edges of a given mesh.

The MHM Framework
Conclusion

THANK You SLIDE

Merci Beaucoup!

