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The MHM Framework
Introduction

SETTING

LINEAR PDE
Find u satisfying

Lu = f , in Ω ⊂ Rd

Boundary conditions
Herein assume homogeneous essential boundary conditions.
Natural boundary conditions can also be considered.

Some applications
2nd-order Elliptic
Elasticity
Reaction-Advection-Diffusion



The MHM Framework
Introduction

SOLUTIONS AND THEIR APPROXIMATION

WEAK FORM

Find u ∈ V such that

a(u, v) = f (v), ∀ v ∈ V

FIGURE: Triangulation of the domain.



The MHM Framework
Introduction

SOLUTIONS AND THEIR APPROXIMATION

WEAK FORM

Find u ∈ W such that

a(u, v) = f (v), ∀ v ∈ W

FIGURE: Triangulation of the domain.



The MHM Framework
Development for Laplace

PROBLEM STATEMENT

LAPLACE PROBLEM

Find u satisfying

−∇·K∇u = f , in Ω ⊂ Rd

u = 0, on ∂Ω

WEAK FORM

Find u ∈ H1
0 (Ω) such that

(K∇u,∇v)Ω = (f , v)Ω ∀ v ∈ H1
0 (Ω)



The MHM Framework
Development for Laplace
Solutions and Their Approximation

HYBRID FORMULATION

WEAK FORM

Find u ∈ ΠKH1(K ) (and λ ∈ M) such that

∑
K
(K∇u,∇v)K + ∑

K
(λ, v)∂K = ∑

K
(f , v)K ∀ v ∈ ΠKH1(K )

∑
K
(µ, u)∂K = 0, ∀ µ ∈ M

FIGURE: Triangulation of the domain.
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Development for Laplace
Solutions and Their Approximation

PARTIAL APPROXIMATION

WEAK FORM

Find us ∈ Ws (and λ ∈ M) such that

∑
K
(K∇us ,∇v)K + ∑

K
(λ, v)∂K = ∑

K
(f , v)K ∀ v ∈ Ws

∑
K
(µ, u)∂K = 0, ∀ µ ∈ M

FIGURE: Linear space (left) and quadratic space (right).
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Development for Laplace
Solutions and Their Approximation

PARTIAL APPROXIMATION

WEAK FORM

Find us ∈ Ws (and λ ∈ M) such that

∑
K
(K∇us ,∇v)K + ∑

K
(λ, v)∂K = ∑

K
(f , v)K ∀ v ∈ Ws

∑
K
(µ, u)∂K = 0, ∀ µ ∈ M

FIGURE: Solution belongs to continuous spaces.
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Development for Laplace
Solutions and Their Approximation

FULL APPROXIMATION

WEAK FORM

Find us ∈ Ws (and λs ∈ Ms) such that

∑
K
(K∇us ,∇v)K + ∑

K
(λs , v)∂K = ∑

K
(f , v)K ∀ v ∈ Ws

∑
K
(µ, us )∂K = 0, ∀ µ ∈ Ms

FIGURE: Constant and linear spaces on the boundaries.
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Development for Laplace
Connection to RT0

ASSUMPTIONS

K are all triangles.
K is the identity.
f is piecewise constant.
Ws is piecewise quadratic.
Ms is piecewise constant.

WEAK FORM

Find u ∈ Ws (and λ ∈ Ms) such that

∑
K
(∇u,∇v)K + ∑

K
(λ, v)∂K = ∑

K
(f , v)K ∀ v ∈ Ws

∑
K
(µ, u)∂K = 0, ∀ µ ∈ Ms
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Development for Laplace
Connection to RT0

LOCALIZATION

LOCAL STATEMENT

Find us ∈ Ws (depending on f and λs ∈ Ms) such that

(∇us ,∇v)K = (f , v)K − (λs , v)∂K ∀ v ∈ Ws︸ ︷︷ ︸
ill posed in each K

FIGURE: Ws

FIGURE: W⊥
s

FIGURE: W0
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Development for Laplace
Connection to RT0

LOCALIZATION

LOCAL STATEMENT

Find u⊥ ∈ W⊥
s (depending on λs ∈ Ms) such that

(∇u⊥,∇v)K = −(λs , v)∂K ∀ v ∈ W⊥
s︸ ︷︷ ︸

well posed in each K

Nice properties
On each K , u⊥ is the solution to the infinite-dimensional problem

−4u⊥ = CK

∇u⊥· n = −λs

σu = ∇u⊥ expands using the lowest-order Raviart-Thomas basis!!!
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Development for Laplace
Connection to RT0

MIXED FORM

u ≈ us = u⊥s + u0.

WEAK FORM

Find u ∈ Ws (and λ ∈ Ms) such that

∑
K
(∇us ,∇v)K + ∑

K
(λs , v)∂K = ∑

K
(f , v)K ∀ v ∈ Ws

∑
K
(µ, us )∂K = 0, ∀ µ ∈ Ms

REDUCED

Find u0 ∈ W0 (and λs ∈ Ms) such that

∑
K
(λs , v0)∂K = ∑

K
(f , v)K ∀ v ∈ Ws

∑
K
(µ, u⊥)∂K + ∑

K
(µ, u0)∂K = 0, ∀ µ ∈ Ms
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Development for Laplace
Connection to RT0

MIXED FORM

WEAK FORM

Find us ∈ Ws (and λs ∈ Ms) such that

∑
K
(∇us ,∇v)K + ∑

K
(λs , v)∂K = ∑

K
(f , v)K ∀ v ∈ Ws

∑
K
(µ, us )∂K = 0, ∀ µ ∈ Ms

REDUCED, IN MIXED FORM

Find u0 ∈ W0 (and λs ∈ Ms) such that

∑
K
(∇· σu, v0)K = ∑

K
(f , v0)K ∀ v ∈ Ws

∑
K
(σu, σv )K + ∑

K
(∇· σv , u0)K = 0, ∀ µ ∈ Ms
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Development for Laplace
Connection to RT0

A POSTERIORI ESTIMATOR

REDUCED

Find u0 ∈ W0 (and λ ∈ Ms) such that

∑
K
(λ, v0)∂K = ∑

K
(f , v)K ∀ v ∈ Ws

∑
K
(µ, u⊥ + u0)∂K = 0, ∀ µ ∈ Ms

REDUCED

Find u ∈ Ws (and λ ∈ Ms) such that

∑
F
(λn, Jv0K)F = ∑

K
(f , v)K ∀ v ∈ Ws

∑
F
(µn, Ju⊥ + u0K)F = 0, ∀ µ ∈ Ms
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Development for Laplace
Connection to RT0

A POSTERIORI ESTIMATOR

RF :=

{
− 1

2Ju⊥ + u0K, F is an interior edge;
(−u⊥ + u0)nΩ, F is on the boundary.

The a posteriori estimator is given by

η := [∑
K

η2
K ]1/2,

η2
K := ∑

F
η2
F ,

ηF :=
C

h1/2
F

‖RF ‖20,F .
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Development for Laplace
Connection to RT0

SUMMARY

Under the assumptions:
K are all triangles.
K is the identity.
f is piecewise constant.
Ws is piecewise quadratic.
Ms is piecewise constant.

Properties
Localization with exact solution
Approximation of variables for mixed form
A posteriori estimator in terms of jumps
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SUMMARY

Under the assumptions:
K are all triangles.
K is the identity.
f is piecewise constant.

((((((((((((
Ws is piecewise quadratic.

(((((((((((
Ms is piecewise constant.

Properties

Localization(((((((((
with exact solution

Approximation of variables for mixed form
A posteriori estimator in terms of jumps



The MHM Framework
Development for Laplace
Connection to RT0

SUMMARY

Under the assumptions:

((((((((
K are all triangles.

((((((((K is the identity.

(((((((((((
f is piecewise constant.

((((((((((((
Ws is piecewise quadratic.

(((((((((((
Ms is piecewise constant.

Properties of the Multiscale Hybrid-Mixed Method

Localization(((((((((
with exact solution

Approximation of variables for mixed form
A posteriori estimator in terms of jumps
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Development for Laplace
Connection to RT0

LOCALIZATION

LOCAL STATEMENT

Find u⊥ (depending on f and λs) such that

(K∇u⊥,∇v⊥)K = (f , v⊥)K − (λs , v⊥)∂K ∀ v⊥

Write u⊥ = uλ
⊥ + uf

⊥
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Development for Laplace
Oscillatory Coefficient

OSCILLATORY COEFFICIENT

Unit square domain

K =
2+1.8 sin 2πx

ε

2+1.8 sin 2πy
ε

+
2+1.8 sin 2πy

ε

2+1.8 cos 2πx
ε

, ε = 1
16

Homogeneous Neumann boundary conditions
f (x , y) = 2π2 cos(2πx) cos(2πy)
Let Ms be M0 or M2.

Z
-0.0802 0.000125 0.0805 XY

FIGURE: “Exact” Solution
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Development for Laplace
Oscillatory Coefficient

COMPARISON WITH LOWEST-ORDER RT

Z

YX

MHM, l=0
0.09090.045-0.000945

RT0/P0
1.130.5630.000587

Exact
0.08050.04-0.000454

FIGURE: Comparing lowest-order Raviart-Thomas to lowest-order MHM.
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Development for Laplace
Oscillatory Coefficient

COMPARISON CONSTANT SOLUTION

-0.000945 0.045 0.0909

MHM, l=0
-0.000454 0.04 0.0805

Exact Z

YX

MHM, l=2
0.07840.03970.00108

FIGURE: Comparing u0 for l = 0, 2
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Development for Laplace
Oscillatory Coefficient

COMPARISON FULL SOLUTION

-0.00913 0.0426 0.0944

MHM, l=0
-0.000454 0.04 0.0805

Exact Z

YX

MHM, l=2
0.08160.0405-0.000636

FIGURE: Comparing u0 + uλl
⊥ + uf

⊥ for l = 0, 2



The MHM Framework
Abstract Formulation

PRIMAL HYBRID FORMULATION

WEAK FORM

Find (u,λ) ∈ W ×M such that

a(u, v) + ∑
K
(λ, v)∂K = f (v), ∀ v ∈ W

∑
K
(µ, u)∂K = 0, ∀ µ ∈ M.

FIGURE: Triangulation of the domain.
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MHM Formulation

MHM FORMULATION

From the Primal Hybrid formulation:
W = W0 ⊕W⊥.
Rewrite the Primal Hybrid formulation as

locally-defined problems (using W⊥);
a globally-defined problem (using W0).
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MHM FORMULATION

From the Primal Hybrid formulation:
W = W0 ⊕W⊥.
Rewrite the Primal Hybrid formulation as

locally-defined problems (using W⊥);
a globally-defined problem (using W0).



The MHM Framework
Abstract Formulation
MHM Formulation

DECOMPOSITION

Define W0 ⊂ W by the property

u0 ∈ W0 ⇐⇒ a(u0, v) = 0, ∀ v ∈ W .

Laplace: W0 consists of piecewise constants.
Elasticity: W0 consists of piecewise rigid-body modes.
Advection-Reaction-Diffusion: W0 = {0}

Define W⊥ the L2-orthogonal complement in W of W0.
W = W0 ⊕W⊥.
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MHM Formulation

MHM FORMULATION

From the Primal Hybrid formulation:
W = W0 ⊕W⊥.
Rewrite the Primal Hybrid formulation as

locally-defined problems (using W⊥);
a globally-defined problem (using W0).



The MHM Framework
Abstract Formulation
MHM Formulation

PRIMAL HYBRID REWRITTEN

Find (u0 + u⊥,λ) ∈ (W0 ⊕W⊥)×M such that

a(u⊥, v⊥) + ∑
K
(λ, v0 + v⊥)∂K = f (v0 + v⊥), ∀ v0 + v⊥ ∈ W0 ⊕W⊥

∑
K
(µ, u0 + u⊥)∂K = 0, ∀ µ ∈ M.

Find u⊥ ∈ W⊥ such that

a(u⊥, v⊥) + ∑
K
(λ, v⊥)∂K = f (v⊥), ∀ v⊥ ∈ W⊥.

Find (u0,λ) ∈ W0 ×M such that

∑
K
(λ, v0)∂K = f (v0), ∀ v0 ∈ W0

∑
K
(µ, u0)∂K + ∑

K
(µ, u⊥)∂K = 0, ∀ µ ∈ M.
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PRIMAL HYBRID REWRITTEN

Find (u0 + u⊥,λ) ∈ (W0 ⊕W⊥)×M such that

a(u⊥, v⊥) + ∑
K
(λ, v0 + v⊥)∂K = f (v0 + v⊥), ∀ v0 + v⊥ ∈ W0 ⊕W⊥

∑
K
(µ, u0 + u⊥)∂K = 0, ∀ µ ∈ M.

Find u⊥ ∈ W⊥ such that
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K
(λ, v⊥)∂K = f (v⊥), ∀ v⊥ ∈ W⊥.

Find (u0,λ) ∈ W0 ×M such that

∑
K
(λ, v0)∂K = f (v0), ∀ v0 ∈ W0

∑
K
(µ, u0)∂K + ∑

K
(µ, u⊥)∂K = 0, ∀ µ ∈ M.
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PRIMAL HYBRID REWRITTEN

Find (u0 + u⊥,λ) ∈ (W0 ⊕W⊥)×M such that

a(u⊥, v⊥) + ∑
K
(λ, v0 + v⊥)∂K = f (v0 + v⊥), ∀ v0 + v⊥ ∈ W0 ⊕W⊥

∑
K
(µ, u0 + u⊥)∂K = 0, ∀ µ ∈ M.

Find u⊥ ∈ W⊥ such that

a(u⊥, v⊥) + ∑
K
(λ, v⊥)∂K = f (v⊥), ∀ v⊥ ∈ W⊥.

Find (u0,λ) ∈ W0 ×M such that

∑
K
(λ, v0)∂K = f (v0), ∀ v0 ∈ W0

∑
K
(µ, u0)∂K + ∑

K
(µ, u⊥)∂K = 0, ∀ µ ∈ M.
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MHM Formulation

LOCAL PROBLEMS

Eliminate u⊥ in terms of f and the solution λ.
u⊥ = uλ

⊥ + uf
⊥

Well posed

Find u⊥ ∈ W⊥ such that

a(u⊥, v⊥) + ∑
K
(λ, v⊥)∂K = f (v⊥), ∀ v⊥ ∈ W⊥.
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LOCAL PROBLEMS

Eliminate u⊥ in terms of f and the solution λ.
u⊥ = uλ

⊥ + uf
⊥

Well posed

Find u⊥ ∈ W⊥ such that

a(u⊥, v⊥) + ∑
K
(λ, v⊥)∂K = f (v⊥), ∀ v⊥ ∈ W⊥.
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GLOBAL PROBLEM

Substitute u⊥ = uλ
⊥ + uf

⊥:

Find (u0,λ) ∈ V0 ×M such that

∑
K
(λ, v0)∂K = f (v0), ∀ v0 ∈ V0

∑
K
(µ, u0)∂K + ∑

K
(µ, uλ

⊥)∂K = ∑
K
(µ, uf

⊥)∂K , ∀ µ ∈ M.

Find (u0,λ) ∈ V0 ×M such that

∑
K
(λ, v0)∂K = f (v0), ∀ v0 ∈ V0

∑
K
(µ, u0)∂K + ∑

K
(µ, u⊥)∂K = 0, ∀ µ ∈ M
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GLOBAL PROBLEM

Substitute u⊥ = uλ
⊥ + uf

⊥:

Find (u0,λ) ∈ V0 ×M such that

∑
K
(λ, v0)∂K = f (v0), ∀ v0 ∈ V0

∑
K
(µ, u0)∂K + ∑

K
(µ, uλ

⊥)∂K = ∑
K
(µ, uf

⊥)∂K , ∀ µ ∈ M.

Find (u0,λ) ∈ V0 ×M such that

∑
K
(λ, v0)∂K = f (v0), ∀ v0 ∈ V0

∑
K
(µ, u0)∂K + ∑

K
(µ, u⊥)∂K = 0, ∀ µ ∈ M
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MHM METHODS

MHM Formulation

Find (u0,λ) ∈ V0 ×M such that
∀ (v0, µ) ∈ V0 ×M,

∑
K
(λ, v0)∂K = f (v0)

∑
K
(µ, u0)∂K + ∑

K
(µ, uλ

⊥)∂K = ∑
K
(µ, uf

⊥)∂K .

where ∀ v⊥ ∈ W⊥,

a(uλ
⊥, v⊥) = ∑

K
(λ, v⊥)∂K

a(uf
⊥, v⊥) + ∑

K
(λ, v⊥)∂K = f (v⊥).

MHM Method

Find (us
0,λs ) ∈ V0 ×Ms such that

∀ (v0, µ) ∈ V0 ×Ms ,

∑
K
(λs , v0)∂K = f (v0)

∑
K
(µ, us

0)∂K + ∑
K
(µ, uλh

⊥ )∂K = ∑
K
(µ, uf

⊥)∂K .

where ∀ v⊥ ∈ W⊥,

a(uλ
⊥, v⊥) = ∑

K
(λ, v⊥)∂K ,

a(uf
⊥, v⊥) + ∑

K
(λ, v⊥)∂K = f (v⊥).
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MHM METHODS

MHM Formulation

Find (u0,λ) ∈ V0 ×M such that
∀ (v0, µ) ∈ V0 ×M,

∑
K
(λ, v0)∂K = f (v0)

∑
K
(µ, u0)∂K + ∑

K
(µ, uλ

⊥)∂K = ∑
K
(µ, uf

⊥)∂K .

where ∀ v⊥ ∈ W⊥,

a(uλ
⊥, v⊥) = ∑

K
(λ, v⊥)∂K

a(uf
⊥, v⊥) + ∑

K
(λ, v⊥)∂K = f (v⊥).

MHM Method

Find (us
0,λs ) ∈ V0 ×Ms such that

∀ (v0, µ) ∈ V0 ×Ms ,

∑
K
(λs , v0)∂K = f (v0)

∑
K
(µ, us

0)∂K + ∑
K
(µ, uλh

⊥ )∂K = ∑
K
(µ, uf

⊥)∂K .

where ∀ v⊥ ∈ W⊥,

a(uλ
⊥, v⊥) = ∑

K
(λ, v⊥)∂K ,

a(uf
⊥, v⊥) + ∑

K
(λ, v⊥)∂K = f (v⊥).
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PROPERTIES

Must choose Ms (and possibly spaces for two-level approximation);
Ms ≈ M;
Ms ⊃ M0;

M0 guarantees invertibility.
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REACTION-ADVECTION-DIFFUSION

Let

L = ∇· (−K∇u + αu) + σu

Possible Ms
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SOLUTIONS TO LOCAL PROBLEMS
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SOLUTIONS TO LOCAL PROBLEMS
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SAMPLE PROBLEM STATEMENT

Find u such that

−ε4u + α· ∇u + σu = f in Ω
u = g on ∂Ω

|α| = 1, and f = 0

FIGURE: Setup of the problem.
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CLASSICAL GALERKIN VS. MHM
ε = 1e − 4 AND σ = 0
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SUPG VS. MHM
ε = 1e − 4 AND σ = 0
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A POSTERIORI ESTIMATOR

Recall the a posteriori estimator depends on − 1
2Ju⊥ + u0K
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A POSTERIORI ESTIMATOR
ε = 1e − 4 AND σ = 0
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A POSTERIORI ESTIMATOR
ε = 1e − 4 AND σ = 1
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A POSTERIORI ESTIMATOR
ε = 1e − 4 AND σ = 10
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A POSTERIORI ESTIMATOR
ε = 1e − 4 AND σ = 100
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FLOW IN A HETEROGENEOUS MEDIUM
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FLOW IN A HETEROGENEOUS MEDIUM
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Conclusion

CONCLUSION

The MHM framework builds on Hybrid formulation of problems.
The MHM methods consist of local solves and a global solve.

The local solves are easily parallelized;
Local solves capture local information.

Dual variables may be approximated.
An edge-based a posteriori estimator;

refine on edges of a given mesh.
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THANK YOU SLIDE

Merci Beaucoup!


