THE MHM FRAMEWORK

Christopher Harder

Metropolitan State University of Denver, U.S.A.

June 18, 2014

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Joint work with: Rodolfo Araya, Alexandre Madureira, Diego Paredes, Frédéric Valentin

SETTING

LINEAR PDE

Find u satisfying

$$\mathcal{L}u = f$$
, in $\Omega \subset \mathbb{R}^d$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Boundary conditions

- Herein assume homogeneous essential boundary conditions.
- Natural boundary conditions can also be considered.

Some applications

- 2nd-order Elliptic
- Elasticity
- Reaction-Advection-Diffusion

SOLUTIONS AND THEIR APPROXIMATION

WEAK FORM

Find $u \in V$ such that

$$a(u,v) = f(v), \quad \forall v \in V$$

FIGURE: Triangulation of the domain.

SOLUTIONS AND THEIR APPROXIMATION

WEAK FORM

Find $u \in W$ such that

$$a(u, v) = f(v), \quad \forall v \in W$$

FIGURE: Triangulation of the domain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PROBLEM STATEMENT

LAPLACE PROBLEM

Find *u* satisfying

$$-\nabla \cdot \mathcal{K} \nabla u = f, \quad \text{in } \Omega \subset \mathbb{R}^d$$
$$u = 0, \quad \text{on } \partial \Omega$$

WEAK FORM

Find $u \in H_0^1(\Omega)$ such that

 $(\mathcal{K}\nabla u, \nabla v)_{\Omega} = (f, v)_{\Omega} \quad \forall v \in H^{1}_{0}(\Omega)$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

HYBRID FORMULATION

WEAK FORM

Find $u \in \Pi_{\mathcal{K}} H^1(\mathcal{K})$ (and $\lambda \in M$) such that

$$\sum_{K} (\mathcal{K} \nabla u, \nabla v)_{K} + \sum_{K} (\lambda, v)_{\partial K} = \sum_{K} (f, v)_{K} \quad \forall v \in \Pi_{K} H^{1}(K)$$
$$\sum_{K} (\mu, u)_{\partial K} = 0, \quad \forall \mu \in M$$

FIGURE: Triangulation of the domain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PARTIAL APPROXIMATION

WEAK FORM

Find $u_s \in W_s$ (and $\lambda \in M$) such that

$$\sum_{K} (\mathcal{K} \nabla u_{s}, \nabla v)_{K} + \sum_{K} (\lambda, v)_{\partial K} = \sum_{K} (f, v)_{K} \quad \forall v \in W_{s}$$
$$\sum_{K} (\mu, u)_{\partial K} = 0, \quad \forall \mu \in M$$

FIGURE: Linear space (left) and quadratic space (right).

PARTIAL APPROXIMATION

WEAK FORM

Find $u_s \in W_s$ (and $\lambda \in M$) such that

$$\sum_{K} (\mathcal{K} \nabla u_{s}, \nabla v)_{K} + \sum_{K} (\lambda, v)_{\partial K} = \sum_{K} (f, v)_{K} \quad \forall v \in W_{s}$$
$$\sum_{K} (\mu, u)_{\partial K} = 0, \quad \forall \mu \in M$$

FIGURE: Solution belongs to continuous spaces.

FULL APPROXIMATION

WEAK FORM

Find $u_s \in W_s$ (and $\lambda_s \in M_s$) such that

$$\sum_{K} (\mathcal{K} \nabla u_{s}, \nabla v)_{K} + \sum_{K} (\lambda_{s}, v)_{\partial K} = \sum_{K} (f, v)_{K} \quad \forall v \in W_{s}$$
$$\sum_{K} (\mu, u_{s})_{\partial K} = 0, \quad \forall \mu \in M_{s}$$

FIGURE: Constant and linear spaces on the boundaries.

ASSUMPTIONS

- K are all triangles.
- $\bullet \ \mathcal{K}$ is the identity.
- f is piecewise constant.
- W_s is piecewise quadratic.
- *M_s* is piecewise constant.

WEAK FORM

Find $u \in W_s$ (and $\lambda \in M_s$) such that

$$\sum_{K} (\nabla u, \nabla v)_{K} + \sum_{K} (\lambda, v)_{\partial K} = \sum_{K} (f, v)_{K} \quad \forall v \in W_{s}$$
$$\sum_{K} (\mu, u)_{\partial K} = 0, \quad \forall \mu \in M_{s}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

LOCALIZATION

LOCAL STATEMENT

Find $u_s \in W_s$ (depending on f and $\lambda_s \in M_s$) such that

$$(\nabla u_s, \nabla v)_K = (f, v)_K - (\lambda_s, v)_{\partial K} \quad \forall v \in W_s$$

ill posed in each K

FIGURE: Ws

LOCALIZATION

LOCAL STATEMENT

Find $u_{\perp} \in W_s^{\perp}$ (depending on $\lambda_s \in M_s$) such that

$$(\nabla u_{\perp}, \nabla v)_{\mathcal{K}} = -(\lambda_s, v)_{\partial \mathcal{K}} \quad \forall v \in W_s^{\perp}$$

well posed in each K

Nice properties

• On each K, u_{\perp} is the solution to the infinite-dimensional problem

$$-\triangle u_{\perp} = C_K$$
$$\nabla u_{\perp} \cdot \mathbf{n} = -\lambda_s$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

• $\sigma_u = \nabla u_{\perp}$ expands using the lowest-order Raviart-Thomas basis!!!

MIXED FORM

WEAK FORM

Find $u \in W_s$ (and $\lambda \in M_s$) such that

$$\sum_{K} (\nabla u_{s}, \nabla v)_{K} + \sum_{K} (\lambda_{s}, v)_{\partial K} = \sum_{K} (f, v)_{K} \quad \forall v \in W_{s}$$
$$\sum_{K} (\mu, u_{s})_{\partial K} = 0, \quad \forall \mu \in M_{s}$$

Reduced

Find $u_0 \in W_0$ (and $\lambda_s \in M_s$) such that

$$\sum_{K} (\lambda_{s}, v_{0})_{\partial K} = \sum_{K} (f, v)_{K} \quad \forall v \in W_{s}$$
$$\sum_{K} (\mu, u_{\perp})_{\partial K} + \sum_{K} (\mu, u_{0})_{\partial K} = 0, \quad \forall \mu \in M_{s}$$

MIXED FORM

WEAK FORM

Find $u_s \in W_s$ (and $\lambda_s \in M_s$) such that

$$\sum_{K} (\nabla u_{s}, \nabla v)_{K} + \sum_{K} (\lambda_{s}, v)_{\partial K} = \sum_{K} (f, v)_{K} \quad \forall v \in W_{s}$$
$$\sum_{K} (\mu, u_{s})_{\partial K} = 0, \quad \forall \mu \in M_{s}$$

REDUCED, IN MIXED FORM

Find $u_0 \in W_0$ (and $\lambda_s \in M_s$) such that

$$\sum_{K} (\nabla \cdot \sigma_{u}, v_{0})_{K} = \sum_{K} (f, v_{0})_{K} \quad \forall v \in W_{s}$$
$$\sum_{K} (\sigma_{u}, \sigma_{v})_{K} + \sum_{K} (\nabla \cdot \sigma_{v}, u_{0})_{K} = 0, \quad \forall \mu \in M_{s}$$

A POSTERIORI ESTIMATOR

Reduced

Find $u_0 \in W_0$ (and $\lambda \in M_s$) such that

$$\sum_{K} (\lambda, v_0)_{\partial K} = \sum_{K} (f, v)_K \quad \forall v \in W_s$$
$$\sum_{K} (\mu, u_\perp + u_0)_{\partial K} = 0, \quad \forall \mu \in M_s$$

Reduced

Find $u \in W_s$ (and $\lambda \in M_s$) such that

$$\sum_{F} (\lambda \mathbf{n}, \llbracket v_0 \rrbracket)_F = \sum_{K} (f, v)_K \quad \forall v \in W_s$$
$$\sum_{F} (\mu \mathbf{n}, \llbracket u_\perp + u_0 \rrbracket)_F = 0, \quad \forall \mu \in M_s$$

A POSTERIORI ESTIMATOR

$$R_{F} := \begin{cases} -\frac{1}{2} \llbracket u_{\perp} + u_{0} \rrbracket, & F \text{ is an interior edge;} \\ (-u_{\perp} + u_{0}) \boldsymbol{n}_{\Omega}, & F \text{ is on the boundary.} \end{cases}$$

The a posteriori estimator is given by

$$\eta := [\sum_{K} \eta_{K}^{2}]^{1/2},$$
$$\eta_{K}^{2} := \sum_{F} \eta_{F}^{2},$$
$$\eta_{F} := \frac{C}{h_{F}^{1/2}} \|R_{F}\|_{0,F}^{2}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Under the assumptions:

- K are all triangles.
- $\bullet \ \mathcal{K}$ is the identity.
- f is piecewise constant.
- W_s is piecewise quadratic.
- *M_s* is piecewise constant.

Properties

- Localization with exact solution
- Approximation of variables for mixed form

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

• A posteriori estimator in terms of jumps

SUMMARY

Under the assumptions:

- K are all triangles.
- $\bullet \ \mathcal{K}$ is the identity.
- f is piecewise constant.
- W_s is piecewise quadratic.
- *M_s* is piecewise constant.

Properties

- Localization with exact solution
- Approximation of variables for mixed form

ション ふゆ く 山 マ チャット しょうくしゃ

• A posteriori estimator in terms of jumps

SUMMARY

Under the assumptions:

- K are all triangles.
- \mathcal{K} is the identity.
- f is piecewise constant.
- W_s is piecewise quadratic.
- *M_s* is piecewise constant.

Properties of the Multiscale Hybrid-Mixed Method

- Localization with exact solution
- Approximation of variables for mixed form

ション ふゆ く 山 マ チャット しょうくしゃ

• A posteriori estimator in terms of jumps

LOCALIZATION

LOCAL STATEMENT

Find u_{\perp} (depending on f and λ_s) such that

$$(\mathcal{K} \nabla u_{\perp}, \nabla v_{\perp})_{\mathcal{K}} = (f, v_{\perp})_{\mathcal{K}} - (\lambda_{s}, v_{\perp})_{\partial \mathcal{K}} \quad \forall v_{\perp}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Write $u_{\perp} = u_{\perp}^{\lambda} + u_{\perp}^{f}$

OSCILLATORY COEFFICIENT

- Unit square domain • $\mathcal{K} = \frac{2+1.8 \sin \frac{2\pi x}{\epsilon}}{2+1.8 \sin \frac{2\pi y}{\epsilon}} + \frac{2+1.8 \sin \frac{2\pi y}{\epsilon}}{2+1.8 \cos \frac{2\pi x}{\epsilon}}$, $\varepsilon = \frac{1}{16}$
- Homogeneous Neumann boundary conditions
- $f(x, y) = 2\pi^2 \cos(2\pi x) \cos(2\pi y)$
- Let M_s be M_0 or M_2 .

COMPARISON WITH LOWEST-ORDER RT

_

FIGURE: Comparing lowest-order Raviart-Thomas to lowest-order MHM.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

COMPARISON CONSTANT SOLUTION

FIGURE: Comparing u_0 for l = 0, 2

COMPARISON FULL SOLUTION

FIGURE: Comparing $u_0 + u_{\perp}^{\lambda_I} + u_{\perp}^f$ for I = 0, 2

PRIMAL HYBRID FORMULATION

WEAK FORM

Find $(u, \lambda) \in W \times M$ such that

$$\begin{aligned} \mathsf{a}(u,v) + \sum_{K} (\lambda,v)_{\partial K} &= f(v), \quad \forall v \in W\\ \sum_{K} (\mu,u)_{\partial K} &= 0, \quad \forall \mu \in M. \end{aligned}$$

FIGURE: Triangulation of the domain.

MHM FORMULATION

From the Primal Hybrid formulation:

- $W = W_0 \oplus W_{\perp}$.
- Rewrite the Primal Hybrid formulation as
 - locally-defined problems (using W_{\perp});
 - a globally-defined problem (using W_0).

MHM FORMULATION

From the Primal Hybrid formulation:

- $W = W_0 \oplus W_{\perp}$.
- Rewrite the Primal Hybrid formulation as
 - locally-defined problems (using W_{\perp});
 - a globally-defined problem (using W_0).

DECOMPOSITION

• Define $W_0 \subset W$ by the property

$$u_0 \in W_0 \iff a(u_0, v) = 0, \quad \forall v \in W.$$

- Laplace: W_0 consists of piecewise constants.
- Elasticity: W_0 consists of piecewise rigid-body modes.
- Advection-Reaction-Diffusion: $W_0 = \{0\}$
- Define W_{\perp} the L^2 -orthogonal complement in W of W_0 .

•
$$W = W_0 \oplus W_{\perp}$$
.

MHM FORMULATION

From the Primal Hybrid formulation:

• $W = W_0 \oplus W_{\perp}$.

• Rewrite the Primal Hybrid formulation as

- locally-defined problems (using W_{\perp});
- a globally-defined problem (using W_0).

PRIMAL HYBRID REWRITTEN

Find
$$(u_0 + u_{\perp}, \lambda) \in (W_0 \oplus W_{\perp}) \times M$$
 such that
 $a(u_{\perp}, v_{\perp}) + \sum_{K} (\lambda, v_0 + v_{\perp})_{\partial K} = f(v_0 + v_{\perp}), \quad \forall v_0 + v_{\perp} \in W_0 \oplus W_{\perp}$
 $\sum_{K} (\mu, u_0 + u_{\perp})_{\partial K} = 0, \qquad \forall \mu \in M.$

• Find $u_{\perp} \in W_{\perp}$ such that

$$a(u_{\perp}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp}), \quad \forall v_{\perp} \in W_{\perp}.$$

• Find $(u_0, \lambda) \in W_0 \times M$ such that

$$\sum_{K} (\lambda, v_0)_{\partial K} = f(v_0), \quad \forall v_0 \in W_0$$
$$\sum_{K} (\mu, u_0)_{\partial K} + \sum_{K} (\mu, u_\perp)_{\partial K} = 0, \quad \forall \mu \in M.$$

PRIMAL HYBRID REWRITTEN

Find
$$(u_0 + u_{\perp}, \lambda) \in (W_0 \oplus W_{\perp}) \times M$$
 such that
 $a(u_{\perp}, \mathbf{v}_{\perp}) + \sum_{K} (\lambda, v_0 + \mathbf{v}_{\perp})_{\partial K} = f(v_0 + \mathbf{v}_{\perp}), \quad \forall v_0 + \mathbf{v}_{\perp} \in W_0 \oplus W_{\perp}$
 $\sum_{K} (\mu, u_0 + u_{\perp})_{\partial K} = 0, \qquad \forall \mu \in M.$

• Find $u_{\perp} \in W_{\perp}$ such that

$$a(u_{\perp}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp}), \quad \forall v_{\perp} \in W_{\perp}$$

• Find $(u_0, \lambda) \in W_0 \times M$ such that

$$\sum_{K} (\lambda, v_0)_{\partial K} = f(v_0), \quad \forall v_0 \in W_0$$
$$\sum_{K} (\mu, u_0)_{\partial K} + \sum_{K} (\mu, u_\perp)_{\partial K} = 0, \quad \forall \mu \in M.$$

PRIMAL HYBRID REWRITTEN

Find
$$(u_0 + u_{\perp}, \lambda) \in (W_0 \oplus W_{\perp}) \times M$$
 such that
 $a(u_{\perp}, v_{\perp}) + \sum_{K} (\lambda, v_0 + v_{\perp})_{\partial K} = f(v_0 + v_{\perp}), \quad \forall v_0 + v_{\perp} \in W_0 \oplus W_{\perp}$
 $\sum_{K} (\mu, u_0 + u_{\perp})_{\partial K} = 0, \qquad \forall \mu \in M.$

• Find $u_{\perp} \in W_{\perp}$ such that

$$a(u_{\perp}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp}), \quad \forall v_{\perp} \in W_{\perp}$$

• Find $(u_0, \lambda) \in W_0 \times M$ such that

$$\sum_{K} (\lambda, v_0)_{\partial K} = f(v_0), \quad \forall v_0 \in W_0$$
$$\sum_{K} (\mu, u_0)_{\partial K} + \sum_{K} (\mu, u_\perp)_{\partial K} = 0, \quad \forall \mu \in M.$$

LOCAL PROBLEMS

Find $u_{\perp} \in W_{\perp}$ such that $a(u_{\perp}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp}), \quad \forall v_{\perp} \in W_{\perp}.$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Eliminate u_⊥ in terms of f and the solution λ.
 u_⊥ = u_⊥^λ + u_⊥^f
 Well posed

LOCAL PROBLEMS

Find $u_{\perp} \in W_{\perp}$ such that $a(u_{\perp}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp}), \quad \forall v_{\perp} \in W_{\perp}.$

- Eliminate u_⊥ in terms of f and the solution λ.
 u_⊥ = u_⊥^λ + u_⊥^f
- Well posed

GLOBAL PROBLEM

Find $(u_0, \lambda) \in V_0 \times M$ such that

$$\sum_{K} (\lambda, v_0)_{\partial K} = f(v_0), \quad \forall v_0 \in V_0$$
$$\sum_{K} (\mu, u_0)_{\partial K} + \sum_{K} (\mu, u_\perp)_{\partial K} = 0, \quad \forall \mu \in M$$

• Substitute $u_{\perp} = u_{\perp}^{\lambda} + u_{\perp}^{f}$:

Find $(u_0, \lambda) \in V_0 \times M$ such that

$$\sum_{K} (\lambda, v_0)_{\partial K} = f(v_0), \qquad \forall v_0 \in V_0$$
$$\sum_{K} (\mu, u_0)_{\partial K} + \sum_{K} (\mu, u_{\perp}^{\lambda})_{\partial K} = \sum_{K} (\mu, u_{\perp}^{f})_{\partial K}, \quad \forall \mu \in M.$$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

Global Problem

Find $(u_0, \lambda) \in V_0 \times M$ such that

$$\sum_{K} (\lambda, v_0)_{\partial K} = f(v_0), \quad \forall v_0 \in V_0$$
$$\sum_{K} (\mu, u_0)_{\partial K} + \sum_{K} (\mu, u_\perp)_{\partial K} = 0, \quad \forall \mu \in M$$

• Substitute $u_{\perp} = u_{\perp}^{\lambda} + u_{\perp}^{f}$:

Find $(u_0, \lambda) \in V_0 \times M$ such that

$$\begin{split} \sum_{K} (\lambda, v_0)_{\partial K} &= f(v_0), \qquad \forall v_0 \in V_0 \\ \sum_{K} (\mu, u_0)_{\partial K} &+ \sum_{K} (\mu, u_{\perp}^{\lambda})_{\partial K} = \sum_{K} (\mu, u_{\perp}^{f})_{\partial K}, \quad \forall \mu \in M. \end{split}$$

The MHM Framework Abstract Formulation MHM Methods

MHM METHODS

MHM Formulation

$\begin{aligned} & \text{Find } (u_0, \lambda) \in V_0 \times M \text{ such that} \\ & \forall (v_0, \mu) \in V_0 \times M, \end{aligned} \\ & \sum_{K} (\lambda, v_0)_{\partial K} = f(v_0) \\ & \sum_{K} (\mu, u_0)_{\partial K} + \sum_{K} (\mu, u_{\perp}^{\lambda})_{\partial K} = \sum_{K} (\mu, u_{\perp}^{f})_{\partial K} \underset{K}{=} \sum_{K} (\mu, u_0^{f})_{\partial K} + \sum_{K} (\mu, u_{\perp}^{\lambda_h})_{\partial K} = \sum_{K} (\mu, u_{\perp}^{f})_{\partial K}. \end{aligned}$

where $\forall v_{\perp} \in W_{\perp}$, $a(u_{\perp}^{\lambda}, v_{\perp}) = \sum_{K} (\lambda, v_{\perp})_{\partial K}$ $a(u_{\perp}^{f}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp}).$ where $\forall v_{\perp} \in W_{\perp}$, $a(u_{\perp}^{\lambda}, v_{\perp}) = \sum_{K} (\lambda, v_{\perp})_{\partial K}$, $a(u_{\perp}^{f}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The MHM Framework Abstract Formulation MHM Methods

MHM METHODS

MHM Formulation

Find $(u_0, \lambda) \in V_0 \times M$ such that $\forall (v_0, \mu) \in V_0 \times M$, $\sum_{K} (\lambda, v_0)_{\partial K} = f(v_0)$ $\sum_{K} (\mu, u_0)_{\partial K} + \sum_{K} (\mu, u_{\perp}^{\lambda})_{\partial K} = \sum_{K} (\mu, u_{\perp}^{f})_{\partial K}$ Find $(u_0^s, \lambda_s) \in V_0 \times M_s$ such that $\forall (v_0, \mu) \in V_0 \times M_s$, $\sum_{K} (\lambda_s, v_0)_{\partial K} = f(v_0)$ $\sum_{K} (\mu, u_0^s)_{\partial K} + \sum_{K} (\mu, u_{\perp}^{\lambda_h})_{\partial K} = \sum_{K} (\mu, u_{\perp}^f)_{\partial K}$

MHM Method

where $\forall v_{\perp} \in W_{\perp}$, $a(u_{\perp}^{\lambda}, v_{\perp}) = \sum_{K} (\lambda, v_{\perp})_{\partial K}$ $a(u_{\perp}^{f}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp}).$ where $\forall v_{\perp} \in W_{\perp}$, $a(u_{\perp}^{\lambda}, v_{\perp}) = \sum_{K} (\lambda, v_{\perp})_{\partial K}$, $a(u_{\perp}^{f}, v_{\perp}) + \sum_{K} (\lambda, v_{\perp})_{\partial K} = f(v_{\perp})$. The MHM Framework Abstract Formulation MHM Methods

Must choose M_s (and possibly spaces for two-level approximation);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

- $M_s \approx M$;
- $M_s \supset M_0$;
 - M₀ guarantees invertibility.

REACTION-ADVECTION-DIFFUSION

Let

$$\mathcal{L} = \nabla \cdot \left(-\mathcal{K} \nabla u + \alpha u \right) + \sigma u$$

• Possible Ms

SOLUTIONS TO LOCAL PROBLEMS

SOLUTIONS TO LOCAL PROBLEMS

SAMPLE PROBLEM STATEMENT

Find *u* such that

$$-\epsilon \triangle u + \alpha \cdot \nabla u + \sigma u = f \quad \text{in } \Omega$$
$$u = g \quad \text{on } \partial \Omega$$

 $|\alpha| = 1$, and f = 0

FIGURE: Setup of the problem.

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

CLASSICAL GALERKIN VS. MHM $<math>\epsilon = 1e - 4 \text{ and } \sigma = 0$

SUPG VS. MHM $\epsilon = 1e - 4$ AND $\sigma = 0$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● ○ ○ ○ ○ ○

A POSTERIORI ESTIMATOR

Recall the a posteriori estimator depends on $-\frac{1}{2} \llbracket u_{\perp} + u_0 \rrbracket$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A POSTERIORI ESTIMATOR $\epsilon = 1e - 4$ and $\sigma = 0$

・ロト ・個ト ・ヨト ・ヨト

э

A POSTERIORI ESTIMATOR $\epsilon = 1e - 4$ and $\sigma = 1$

A POSTERIORI ESTIMATOR $\epsilon = 1e - 4$ and $\sigma = 10$

A POSTERIORI ESTIMATOR $\epsilon = 1e - 4$ and $\sigma = 100$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

FLOW IN A HETEROGENEOUS MEDIUM

FLOW IN A HETEROGENEOUS MEDIUM

CONCLUSION

• The MHM framework builds on Hybrid formulation of problems.

ション ふゆ く 山 マ チャット しょうくしゃ

- The MHM methods consist of local solves and a global solve.
 - The local solves are easily parallelized;
 - Local solves capture local information.
- Dual variables may be approximated.
- An edge-based a posteriori estimator;
 - refine on edges of a given mesh.

The MHM Framework Conclusion

Merci Beaucoup!