Perfectly Matched Layers for Wave-Like Time-Dependent Problems

Design, Discretization and Optimization

Axel MobavE

Postdoctoral researcher
University of Louvain (Belgium) —
Université

. catholique
June 3, 2014 de Louvain



Introduction. Co

(Aero)acoustics Electromagnetic Regional oceanic
compatibility modeling

Finite difference/finite volume/finite element numerical simulations
require a limited computational domain

Need for a domain truncation strategy J




Introduction. Domain truncation

Artificial boundary conditions

Original problem
Radiation conditions
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Introduction. Domain truncation

Artificial boundary conditions

Original problem
Radiation conditions

Sommerfeld, Silver-Muller,

) N ~\ Flather, Bayliss-Turkel, ...
o) > /\ Hierarchical conditions
L Exact conditions

Artificial layers

Absorbing/Sponge layers

Modified problem Perfectly matched layers (PMLs)

Interesting properties of PMLs:
— dissipative medium
— perfect matching
— perfect absorption




Introduction. Bérenger's PML for acoustics

20 years ago ...

Original equations

dtp + pc? (Bxu + dyv + 8, w) = 0
Oru + p*1 okp=0
Bv+pt oyp=0
Orw + ,071 o.p=0

Bérenger's PML equations

Bepx + pc? Bxt = —oxpx
dtpy + pc® dyv = —aypy,
dtpz + pc? B;w = —o.p;
Oru + p71 Oxp = —oxu
Ov+pt Oyp = —oyv
Orw + p_1 Ozp= —0ow
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with p = px + py + pz
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Bérenger's PML equations

Bep + pc? (Bxu+ v+ w) = — - -+
Bepx + pc? Bew = —oxps

Bepy + pc dyv = —aypy

deu+ p~t Bp = —oxu
dv+ptop=—oyv

ew +p~ L 8zp = —ozw

with Px =P — Py — Pz

Original system
+ Source terms
+ 2 additionnal PDEs

ox(x), 7y(y) and o2(z)
Absorption functions



Introduction. Some goals/requirements for novel PMLs

1. Mathematical /numerical features [adapted from Givoli, 2008]

e (strong) Well-posedness
e (strong) Stability
e Accuracy at both continuous and discrete levels

2. General geometry

e Cuboidal truncated domains
e Cylindrical or spherical truncated domains
e Convex truncated domains

3. Complicated physics

Dispersive waves

Heterogeneous and anisotropic media
Multiple wave modes

Nonlinear dynamics

4. Scheme compatibility / Ease of implementation / Computational efficiency

— Optimization (accuracy) at the discrete level
— PMLs for generally-shaped truncated domains




Optimization in discrete contexts



Optimization. Plane-wave analysis in 1D at the continuous level

Consider a plane-wave solution with an incident (A;) and a reflected wave (A;)

SRR ()

Ar <AAAV

Q 0 > é

> The effectiveness of the layer is quantified with the reflection coefficient

A,
A

r =

with | r =0 for a perfectly absorbing boundary
r =1 for a perfectly reflecting boundary (wall)

» The reflection coefficients are
Finterf = 0 (infinite PML)

Ipmi = €Xp {_% j;f a(x’)dx’} (finite PML of thickness &)

The interface domain/layer is perfectly matched
A finite layer is perfectly absorbing if the integral of o(x) is infinite



Optimization. Quantification of the effectiveness at a discrete level

n

P -~k
N
( o )
\ N — e e — -— 7

Original continuous problem Discrete problem
PML stretch Discretization
Modeling error Numerical error

Modlified continuous problem

Goal: The solution of the discrete problem must be close
to the solution of the original continuous problem

Two complementary viewpoints:
» Minimize the modeling error and the numerical error

» Minimize the reflection of discrete waves



Optimization. Plane-wave analysis in 1D at a discrete level (constant o)

Discretization of the problem with a finite difference scheme
Constant absorption function o

» The discrete harmonic plane-wave solution is

inQ:  elki—wt) with k = +-2 arcsin wAX)

Ax 2c
H . i(Bxj—wt) ; 42 : wAx _ ;olx
inX: ePX with 8 = + == arcsin ( ¥ 1552

where h is the spatial step.

» The discrete reflection coefficients are

. e—BAX/2 _ g—1kDx/2 o
Fipterf = e BBx/2 ; ctkBR/2 (infinite PML)
. 1cos(B6 + BAX/2) — sin(B5) e~ tkAx/2 (finite PML)
e = nite
pmi 1cos(36 + BAX/2) + sin(B5) etkAx/2 n




Optimization. Plane-wave analysis in 1D at a discrete level (constant o)
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4 Continuous problem (infinite PML)

Continuous problem (finite PML)

Discrete problem (infinite PML)

= = = Discrete problem (finite PML)
0 = = " 2 0
10 10 10 10

Constant absorption function o

Small o: Same behavior in continuous and discrete context
Large o: Different behavior — Discrete PML are reflective



Optimization. Plane-wave analysis in 1D at a discrete level (constant o)

Interpretation

Snapshot of an elementary harmonic solution

Plane-wave solution

Domain Q .

e=clo

Layer %

Spatial coordinate x

Too small o: The outgoing waves are not enough damped in the PML (g > §).
The continuous reflection coefficient is recovered (modeling error)

Too large o: The characteristic scale of the exponential decay ¢ is too small (¢ < Ax)
The discretization cannot represent the solution (numerical error)

Ax < g < 6
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Optimization. Plane-wave analysis in 1D at a discrete level (constant o)

o chosen o chosen o
such that suchthat 7
s/
=0 e=h /
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@ Continuous problem (infinite PML)
Continuous problem (finite PML)
Discrete problem (infinite PML)
= = = Discrete problem (finite PML)
0 6 ‘74 -2 0
10 10 10 10

Constant absorption function o

< Oopti <

>0
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Optimization. Numerical optimization in 1D (constant o)

Description of the 1D time-dependent benchmark

A Gaussian-shaped pulse moves to the right
At the end of the simulation (t = tf), if the layer is perfectly reflecting,
the pulse is back at its initial position

Incident pulse (t = 0) _jAQ

Reflection (t = tr) P~ —

—L Q 0 > 8

The effectiveness of the layer is quantified with the relative error &,

Ewith pml

&=

E with wall

" E/O L o2+ = (u?) de
where = —_— — |y
L 2ap 2b

with | & = 0 for a perfectly absorbing boundary
& =1 for a perfectly reflecting boundary (wall)
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Optimization. Numerical optimization in 1D (constant o)

Numerical results

Finite difference scheme CG finite element scheme

L 5| |cinx 1 os|  |eiax
0.8 08
W W
S 06 . S o6 r
5 pm 5 — o
© J_— pm Q —e—CG order 1
= —— = ——
8 04 FD B 04 CG order 2
[0} [}
o 4
0.2 0.2
0 0
10° 10 107 10° 10° 10" 107 10°

Constant absorption function o Constant absorption function o

Similar result:

Relative error &, close to
c/d < oopti < ¢/Ax

reflection coefficient r
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Optimization. Numerical optimization in 1D (constant o)

Numerical results
DG finite element scheme
with upwind fluxes

DG finite element scheme
with centered fluxes

1e 10" 4
e rprn\
——FV
0.8 —e—DG order 1
—4—DG order 2
-5
s w10
5 o e 5 |poomerzuinsec
E ——FV E DG order 1 with ABC
£ —e—DG order 1 2
% 04 —4— DG order 2 © 1070
Q [0
14 24
02 SRTLYC I
107°
0
107 10" 107 10° 10° 107 107 10°

Constant absorption function o Constant absorption function o

For large o:
works like an ABC
(the radiation BC)

Similar result:
c/6 < oopti < ¢/ Ax
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Optimization. Spatially varying o(x)

o(x) such that progressive decay of the solution

Polynomial functions Hyperbolic functions

o2) = a (X) oh(x) = —

2.5

6 6 —x
X\ 3 o o
a3(X):(1<g> osn(x) = S—x o
x10°
Parabolic function g,
Cubic function o,
Hyperbolic function g,
i Shifted hyperbolic function g,
—e— Discrete optimum

Absorption function a(x)

15

: . . Bermidez et al., 2007
1000 2000 3000 4000
Spatial coordinate x Modave et al., 2010
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Optimization. Numerical optimization in 1D (spatially varying o)

Numerical results

With polynomial functions With hyperbolic functions
10° 10°
w107 w107
S S
o 2 T . -
o 10 o 107
= =
k& k&
[0] _3 [5) -3
@ 10 5, ¢ 10 o,
4 —*—"3 . ——0g
10° 10"
10" 107 10° 10? 10" 107 10° 10°

Parameter o Parameter o

Comparison
» Optimum value of «
oy and o3: 7
op and o, approx. propagation velocity ¢
> Best absorption function
FD scheme: optimized o3 and o3 better than o,
optimized o, the worst

CG and DG schemes: optimized o), equivalent or slightly better than others
16



Optimization. Interpretation

Plane-wave solution

op witha = ¢

, ,\/VV

Layer

"
1
1
\
Domain Q .

Spatial coordinate x

Linear decay

Discontinuous derivative at the interface

OK with finite element schemes
NO with finite difference schemes

For oblique plane-wave solution (2D/

Plane-wave solution

Osh With oo = ¢

Domain Q Layer

L
Spatial coordinate x

Exponential-linear decay

Continuous derivative at the interface

OK with all schemes

3D), the shape of decay changes!

odave et al., yn, 2
Mod. 1., ODy 2010,
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Optimization. Numerical optimization in 2D (spatially varying o)

Description of the 2D time-dependent benchmark

Reference numerical solution Solution with the PML

The effectiveness of the layer is now quantified with the relative error

with

f _ Eerror with pml(tf)
— Ll AL AL S

Eerror with wall ( tr

where Euror = [ (1o~ purl? +1u = e ) a2
Q

&r = 0 for a perfectly absorbing boundary
& =1 for a perfectly reflecting boundary (wall)

18



Optimization. Numerical optimization in 2D (spatially varying o)

Numerical results

with DG and centered fluxes with DG and upwind fluxes
10°
WL M\l'h
5 S 107
5] 5
[} Q
2 2
3 -4 _. G IS -
< 10 3 < 10"
4 .o, 4
6 *Ush 6
10 10
107" 107 10° 10° 10 107 10° 10°

Parameter o Parameter a

With all the considered schemes:
Optimized 07, 03 and oy, are nearly equivalent, far better than oy,

The optimum « remains close to ¢ for o
The absorption function oy, with o = ¢ is the most convenient choice

[Modave et al., IINME, 201X]
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Two PMLs for generally-shaped domains



Design. Definition of the problem

Original domain R

—=> T
7
—_—— T TN T T . -
s \\
J ]
\ Q
\\\ ///

Scalar wave problem

Find p(t,x) and u(t,x) such that:

o)
a—p-i—pcv u=0, VxeR9t>0
0

6—‘:+ 2vp=0, VxeR%t>0

with initial conditions on panduat t =0

p and u have initially a compact support in Q

20



Design. Definition of the problem

Convex truncated domain Q with regular boundary
surrounded with a PML X

- T

The PML thickness
6 =dist(T,T)
is constant

(Conformal PML)

Scalar wave problem with PML

Find p(t,x) and u(t,x) such that:

8

a—’t’+pc2vu:o, VxeQt>0
u 1
M 2Vp=0, VxeQ,t>0
at  p

with initial conditions on panduat t =0

Equations in X7 Conditions at T and I'?
21



Design. Procedure with a convex truncated domain (coordinate stretch)

Consider the time-harmonic equations
—wp + pc2V -u=0

1
—wu+ —-Vp=0
p

Lassas & Somersalo, 1999
Teixeira & Chew, 2000
es Mouysset, 2006

S
x — X(x)=x- w o(s") ds’ Laurens, 2010

Use the complex substitution

where | x €U Cc C?
€s is the stretching direction
s is the curvilinear coordinate in the direction es
o(s) is the (positive) absorption function

As a consequence, the elementary time-harmonic plane-wave solution changes:
k-es rs ’ ’
ez(k~x—wt) N ez(k~x—wt) eiTs Jg o(s") ds

22
Propagation Damping



Design. Procedure with a convex truncated domain (coordinate stretch)

Local orthogonal coordinates (s, ¢, 0)
Local orthonormal frame (es,e,,e9) Darboux’s frame

The original system reads

7] 1 0 1 9
—wp + pc? ( - =L ﬁ) =0
0s 14 keps Op 14 Kkgs 00
1
—will + — (es p ¢ Op g0 %> =0
o 0s 14+ kesOp 1+ kgs 00

After the complex substitution and the parametrization
~ 1 s / /
s — 3s)=s—— o(s’)ds
w Jo

the system becomes

0

N 5 w  Ous 1 Ouy, 1 Oug
—wp + pc + -t =
w—0 0s  1+ke5 0p 1+ KkeS 00
l(zwe5@+ e, Op ey 6p>:0

—wwi + — - — - —
p\uw—00s 14k,50p 1+ ke500

where K, and kg are the main curvatures of the interface T at its point closest to x

23



Design. Procedure with a convex truncated domain (15t method)

The time-harmonic PML equations can be written
—wwp + pc2@ -u=0

1.
—wu+ —-Vp=0
p

with the differential operator V

festes V) = —27—[ep(ep - V)] - —2

o — iw Rpl — iw koo —

V=V -

—leo(eo - V)]
where Ry = (k5! +5)71, kg = (ky'+s)"land G = Jo o(s")dx{

S

PML's equations (PML "with PDEs")

In the layer ¥, the fields p and u and two additional fields ps and p, are governed by

op _ _
*+P‘:2V U= —0ps — RKpTpy — Ked(p — Ps — Py)

ot
Ou o _
Bt 4+ = Vp = —oes(es - u) — Rpoe,(e, - u) — Rgaeg(eg - u)
9]
S+ pcles(es - V)] -u = —ops
5}
;: +plep(ep - V)] - u= —Ry5py,

Cartesian case — Bérenger's PML system [Modave et al., WAVES, 2012] 24



Design. Well-posedness and stability

Well-posedness [Kreiss and Lorenz, 1989]

The Cauchy problem is weakly/strongly well-posed if there exists K > 0 and o € R
such that the solution U(t) satisfies an estimate on the type

UG, D)l < Ke®t JUC,0)|lys  with s >0 (weak)
UG DIz < Ke®* [JU(.,0)]l,2 (strong)

Stability [Bécache and Joly, 2002]

A system that is a 0tM-order perturbation of a 15t-order hyperbolic system
is weakly/strongly stable if there exists K > 0 and A € R such that the solution U(t)
satisfies an estimate on the type
UG, )2 < K14 At)° |[U(.,0)||ys with s >0 (weak)
UGBl < K UG, 0)ll 2 (strong)

25



Numerical simulations



Benchmark. 2D acoustic case

Description of the 2D time-dependent benchmark

Initial pulse — Elliptical truncated domain
DG finite element scheme with piecewise linear basis functions (p = 1)
About 230/310.000 discrete unknowns (~ 17 — 25% in the PML for § = 5¢)

Pressure at t = 0
Colorbar [0, 1]



Benchmark. 2D acoustic case

Wall BC case

Pressure at t = tg,



Benchmark. 2D acoustic case

Absorbing BC case

Pressure at t = tg,
Colorbar [—0.1,0.1]



Benchmark. 2D acoustic case

PML with PDEs and § = 1h

Pressure at t = tg,
Colorbar [—0.1,0.1]



Benchmark. 2D acoustic case

PML with ODEs and § = 1h

Pressure at t = tg,
Colorbar [—0.1,0.1]



Benchmark. 2D acoustic case

PML with PDEs and § = 3h

Pressure at t = tg,
Colorbar [—0.1,0.1]
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Benchmark. 2D acoustic case

PML with ODEs and § = 3h

Pressure at t = tg,
Colorbar [—0.1,0.1]
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Benchmark. 2D acoustic case

PML with PDEs and § = 5h

Pressure at t = tg,
Colorbar [—0.1,0.1]
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Benchmark. 2D acoustic case

PML with ODEs and § = 5h

Pressure at t = tg,
Colorbar [—0.1,0.1]
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Benchmark. 3D acoustic case

Description of the 3D time-dependent benchmark

Initial pulse in the front of a submarine — Ellipsoidal truncated domain
DG finite element scheme with piecewise linear basis functions (p = 1)
About 17.8 millions discrete unknowns (~ 50% in the PML for § = 5/)

Iso-surfaces of the pressure at t = 0.

28



Benchmark. 3D acoustic case

PML with PDEs terminated with a 'wall’ PML with PDEs terminated with an ABC

Thin layer Thick layer Thin layer Thick layer

An ABC termination improves a poorly efficient PML
[see also Petropoulos, 1998]
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Benchmark. Case with an incident signal

Shielding effectiveness of a cavity

Etrans

SEgs = 20 logy, ‘ £ne

Domain

where E"® and E"C are the wave amplitudes
PEC condiion at the center of the cavity.
Time-domain simulation with the modulated
transverse-magnetic incident field.

Eincident

E*%! (in the domain)
E=<attered (in the layer) 30



Benchmark. Case with an incident signal

Shielding effectiveness of a cavity

SEgp = 20logyo | £

Domain
PEC condition

where E"® and E"C are the wave amplitudes
at the center of the cavity.

Time-domain simulation with the modulated
transverse-magnetic incident field.

Resonant frequencies:
466, 632, 835, 888 MHz

[Ojeda & Pichon 2005]

Shielding Effectiveness [dB]

_30 L L L L L ,
800 900 1000

700
Frequency [MHz]
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Benchmark. PML for other wave-like systems (preliminary results)

PML for elastic waves

Velocity at the beginning of the simulation

32
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Optimization in discrete contexts
Two PMLs for generally-shaped domains

Numerical simulations



Conclusion.

PML — An efficient way for domain truncation )

Choice of the parameters in discrete context

Effectiveness of the shifted hyperbolic function o,
— Does not require a costly optimization procedure
> Interpretation of the optimum value of the free parameter

Improving the effectiveness by increasing the layer thickness §

Design of PML time-dependent formulations

Valid for convex truncated domains with regular boundary
Easy to implement in existing codes

Good framework for further developments
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