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Introduction. Context

Wave-like phenomena occuring in large areas

(Aero)acoustics Electromagnetic Regional oceanic
compatibility modeling

Finite difference/finite volume/finite element numerical simulations
require a limited computational domain

Need for a domain truncation strategy
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Introduction. Domain truncation
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Original problem

Modified problem

Artificial boundary conditions

Radiation conditions
Sommerfeld, Silver-Muller,
Flather, Bayliss-Turkel, ...

Hierarchical conditions
Exact conditions



Introduction. Domain truncation

3

Original problem

Modified problem

Artificial boundary conditions

Radiation conditions
Sommerfeld, Silver-Muller,
Flather, Bayliss-Turkel, ...

Hierarchical conditions
Exact conditions

Artificial layers

Absorbing/Sponge layers
Perfectly matched layers (PMLs)

Interesting properties of PMLs:

→ dissipative medium
→ perfect matching
→ perfect absorption



Introduction. Bérenger’s PML for acoustics 20 years ago ...
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Original equations

∂t p + ρc2 (∂x u + ∂y v + ∂z w) = 0

∂t u + ρ−1 ∂x p = 0

∂t v + ρ−1 ∂y p = 0

∂t w + ρ−1 ∂z p = 0

Bérenger’s PML equations

∂t px + ρc2 ∂x u = −σx px

∂t py + ρc2 ∂y v = −σy py

∂t pz + ρc2 ∂z w = −σz pz

∂t u + ρ−1 ∂x p = −σx u

∂t v + ρ−1 ∂y p = −σy v

∂t w + ρ−1 ∂z p = −σz w

with p = px + py + pz

σx (x), σy (y) and σz (z)
Absorption functions
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Original equations

∂t p + ρc2 (∂x u + ∂y v + ∂z w) = 0

∂t u + ρ−1 ∂x p = 0

∂t v + ρ−1 ∂y p = 0

∂t w + ρ−1 ∂z p = 0

Bérenger’s PML equations

∂t p + ρc2 (∂x u + ∂y v + ∂z w) = − · · ·

∂t px + ρc2 ∂x w = −σx pz

∂t py + ρc2 ∂y v = −σy py

∂t u + ρ−1 ∂x p = −σx u

∂t v + ρ−1 ∂y p = −σy v

∂t w + ρ−1 ∂z p = −σz w

with px = p − py − pz

Original system
+ Source terms
+ 2 additionnal PDEs

σx (x), σy (y) and σz (z)
Absorption functions



Introduction. Some goals/requirements for novel PMLs

1. Mathematical/numerical features [adapted from Givoli, 2008]
• (strong) Well-posedness
• (strong) Stability
• Accuracy at both continuous and discrete levels

2. General geometry

• Cuboidal truncated domains
• Cylindrical or spherical truncated domains
• Convex truncated domains

3. Complicated physics

• Dispersive waves
• Heterogeneous and anisotropic media
• Multiple wave modes
• Nonlinear dynamics

4. Scheme compatibility / Ease of implementation / Computational efficiency
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In this talk:

− Optimization (accuracy) at the discrete level

− PMLs for generally-shaped truncated domains



Optimization in discrete contexts

Two PMLs for generally-shaped domains

Numerical simulations



Optimization. Plane-wave analysis in 1D at the continuous level

Consider a plane-wave solution with an incident (Ai ) and a reflected wave (Ar )

Ω Σ

σ(x)

0 δ

x

Ai

Ar

I The effectiveness of the layer is quantified with the reflection coefficient

r =

∣∣∣∣Ar

Ai

∣∣∣∣
with r = 0 for a perfectly absorbing boundary

r = 1 for a perfectly reflecting boundary (wall)

I The reflection coefficients are

rinterf = 0 (infinite PML)

rpml = exp
{
− 2

c

∫ δ
0 σ(x ′)dx ′

}
(finite PML of thickness δ)

The interface domain/layer is perfectly matched
A finite layer is perfectly absorbing if the integral of σ(x) is infinite
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Optimization. Quantification of the effectiveness at a discrete level

Ω

R
n

Ω
Σ

Original continuous problem

Modified continuous problem

Discrete problem

PML stretch Discretization

Modeling error Numerical error

Goal: The solution of the discrete problem must be close
to the solution of the original continuous problem

Two complementary viewpoints:

I Minimize the modeling error and the numerical error

I Minimize the reflection of discrete waves
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Optimization. Plane-wave analysis in 1D at a discrete level (constant σ)

Discretization of the problem with a finite difference scheme
Constant absorption function σ
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I The discrete harmonic plane-wave solution is

in Ω: e i(kxi−ωt) with k = ± 2
∆x

arcsin
(
ω∆x

2c

)
in Σ: e i(βxi−ωt) with β = ± 2

∆x
arcsin

(
ω∆x

2c
− i σ∆x

2c

)
where h is the spatial step.

I The discrete reflection coefficients are

r?interf =

∣∣∣∣∣ e−ıβ∆x/2 − e−ık∆x/2

e−ıβ∆x/2 + eık∆x/2

∣∣∣∣∣ (infinite PML)

r?pml =

∣∣∣∣∣ ı cos(βδ + β∆x/2)− sin(βδ) e−ık∆x/2

ı cos(βδ + β∆x/2) + sin(βδ) eık∆x/2

∣∣∣∣∣ (finite PML)
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Optimization. Plane-wave analysis in 1D at a discrete level (constant σ)
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Continuous problem (infinite PML)
Continuous problem (finite PML)
Discrete problem (infinite PML)
Discrete problem (finite PML)

Small σ: Same behavior in continuous and discrete context
Large σ: Different behavior – Discrete PML are reflective
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Optimization. Plane-wave analysis in 1D at a discrete level (constant σ)

Interpretation

Snapshot of an elementary harmonic solution

Spatial coordinate x

P
la

ne
−

w
av

e 
so

lu
tio

n

Domain Ω Layer Σ

ε = c/σ

Too small σ: The outgoing waves are not enough damped in the PML (ε > δ).
The continuous reflection coefficient is recovered (modeling error)

Too large σ: The characteristic scale of the exponential decay ε is too small (ε < ∆x)
The discretization cannot represent the solution (numerical error)

∆x < ε < δ
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Optimization. Plane-wave analysis in 1D at a discrete level (constant σ)
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Continuous problem (infinite PML)
Continuous problem (finite PML)
Discrete problem (infinite PML)
Discrete problem (finite PML)

σ chosen
such that
ε=h

σ chosen
such that

ε=δ

c

δ
< σopti <

c

∆x
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Optimization. Numerical optimization in 1D (constant σ)

Description of the 1D time-dependent benchmark

A Gaussian-shaped pulse moves to the right
At the end of the simulation (t = tf ), if the layer is perfectly reflecting,
the pulse is back at its initial position

σ

Ω Σ−L 0 δ

x

Reflection (t = tf )

Incident pulse (t = 0)

The effectiveness of the layer is quantified with the relative error ξr

ξr =

√
E with pml

E with wall

where E =

∫ 0

−L

(
1

2a
|p|2 +

1

2b
|u|2
)

dΩ

with ξr = 0 for a perfectly absorbing boundary
ξr = 1 for a perfectly reflecting boundary (wall)
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Optimization. Numerical optimization in 1D (constant σ)

Numerical results

Finite difference scheme CG finite element scheme
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Relative error ξr close to Similar result:
reflection coefficient r c/δ < σopti < c/∆x
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Optimization. Numerical optimization in 1D (constant σ)

Numerical results

DG finite element scheme DG finite element scheme
with centered fluxes with upwind fluxes
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r
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FV
DG order 1
DG order 2

FV with ABC

DG order 1 with ABC

DG order 2 with ABC

Similar result: For large σ:
c/δ < σopti < c/∆x works like an ABC

(the radiation BC)
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Optimization. Spatially varying σ(x)

Exponential decay of the solution
σ(x) such that progressive decay of the solution

Polynomial functions Hyperbolic functions

σ2(x) = α

( x

δ

)2

σ3(x) = α

( x

δ

)3

σh(x) =
α

δ − x

σsh(x) =
α

δ − x
−

α

δ
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Discrete optimum
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Bermúdez et al., 2007

Modave et al., 2010



Optimization. Numerical optimization in 1D (spatially varying σ)

Numerical results

With polynomial functions With hyperbolic functions
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(figures for CG scheme – similar figures for other schemes)

Comparison
I Optimum value of α

σ2 and σ3: ?
σh and σsh: approx. propagation velocity c

I Best absorption function
FD scheme: optimized σ2 and σ3 better than σsh,

optimized σh the worst
CG and DG schemes: optimized σh equivalent or slightly better than others
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Optimization. Interpretation

σh with α = c σsh with α = c

Spatial coordinate x

P
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ne
−

w
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e 
so
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tio

n

Domain Ω Layer Σ
Spatial coordinate x

P
la

ne
−

w
av

e 
so

lu
tio

n

Layer ΣDomain Ω

Linear decay Exponential-linear decay
Discontinuous derivative at the interface Continuous derivative at the interface

OK with finite element schemes OK with all schemes

NO with finite difference schemes

For oblique plane-wave solution (2D/3D), the shape of decay changes!
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[Modave et al., ODyn, 2010]



Optimization. Numerical optimization in 2D (spatially varying σ)

Description of the 2D time-dependent benchmark

Reference numerical solution Solution with the PML
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The effectiveness of the layer is now quantified with the relative error

ξr =

√
E error with pml(tf )

E error with wall(tf )

where Eerror =

∫
Ω

(
|p − pref |2 + |u− uref |2

)
dΩ

with ξr = 0 for a perfectly absorbing boundary
ξr = 1 for a perfectly reflecting boundary (wall) 18



Optimization. Numerical optimization in 2D (spatially varying σ)

Numerical results

with DG and centered fluxes with DG and upwind fluxes
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With all the considered schemes:
Optimized σ2, σ3 and σsh are nearly equivalent, far better than σh

The optimum α remains close to c for σsh

The absorption function σsh with α = c is the most convenient choice

[Modave et al., IJNME, 201X]
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Optimization in discrete contexts

Two PMLs for generally-shaped domains

Numerical simulations



Design. Definition of the problem

Original domain Rd

Ω

Υ

20

Scalar wave problem

Find p(t, x) and u(t, x) such that:
∂p

∂t
+ ρc2∇ · u = 0, ∀ x ∈ Rd , t > 0

∂u

∂t
+

1

ρ
∇p = 0, ∀ x ∈ Rd , t > 0

with initial conditions on p and u at t = 0

p and u have initially a compact support in Ω



Design. Definition of the problem

Convex truncated domain Ω with regular boundary
surrounded with a PML Σ

Ω
Σ

Υ

Γ

21

The PML thickness
δ = dist(Υ, Γ)

is constant

(Conformal PML)

Scalar wave problem with PML

Find p(t, x) and u(t, x) such that:
∂p

∂t
+ ρc2∇ · u = 0, ∀ x ∈ Ω, t > 0

∂u

∂t
+

1

ρ
∇p = 0, ∀ x ∈ Ω, t > 0

with initial conditions on p and u at t = 0

Equations in Σ? Conditions at Υ and Γ?



Design. Procedure with a convex truncated domain (coordinate stretch)

es
Ω

Σ

Υ

Γ

σ(s)

Consider the time-harmonic equations
−ıωp + ρc2∇ · u = 0

−ıωu +
1

ρ
∇p = 0

Use the complex substitution

x → x̃(x) = x−
es

ıω

∫ s

0
σ(s′) ds′

where x̃ ∈ U ⊂ Cd

es is the stretching direction
s is the curvilinear coordinate in the direction es

σ(s) is the (positive) absorption function

As a consequence, the elementary time-harmonic plane-wave solution changes:

eı(k·x−ωt) → eı(k·x−ωt) e−
k·es
ω

∫ s
0 σ(s′) ds′

Propagation Damping
22

Lassas & Somersalo, 1999
Teixeira & Chew, 2000

Mouysset, 2006
Laurens, 2010



Design. Procedure with a convex truncated domain (coordinate stretch)

Local orthogonal coordinates (s, ϕ, θ)
Local orthonormal frame (es , eϕ, eθ) Darboux’s frame

The original system reads
−ıωp̂ + ρc2

(
∂us

∂s
+

1

1 + κϕs

∂uϕ

∂ϕ
+

1

1 + κθs

∂uθ

∂θ

)
= 0

−ıωû +
1

ρ

(
es
∂p

∂s
+

eϕ

1 + κϕs

∂p

∂ϕ
+

eθ
1 + κθs

∂p

∂θ

)
= 0

After the complex substitution and the parametrization

s → s̃(s) = s −
1

ıω

∫ s

0
σ(s′) ds′

the system becomes
−ıωp̂ + ρc2

(
ıω

ıω − σ
∂us

∂s
+

1

1 + κϕ s̃

∂uϕ

∂ϕ
+

1

1 + κθ s̃

∂uθ

∂θ

)
= 0

−ıωû +
1

ρ

(
ıω es

ıω − σ
∂p

∂s
+

eϕ

1 + κϕ s̃

∂p

∂ϕ
+

eθ
1 + κθ s̃

∂p

∂θ

)
= 0

where κϕ and κθ are the main curvatures of the interface Υ at its point closest to x
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Design. Procedure with a convex truncated domain (1st method)

The time-harmonic PML equations can be written
−ıωp + ρc2∇̃ · u = 0

−ıωu +
1

ρ
∇̃p = 0

with the differential operator ∇̃

∇̃ = ∇ −
σ

σ − iω
[es (es · ∇)] −

κ̄ϕσ̄

κ̄ϕσ̄ − iω
[eϕ(eϕ · ∇)] −

κ̄θσ̄

κ̄θσ̄ − iω
[eθ(eθ · ∇)]

where κ̄ϕ = (κ−1
ϕ + s)−1, κ̄θ = (κ−1

θ + s)−1 and σ̄ =
∫ s

0 σ(s′)dx ′s

PML’s equations (PML ”with PDEs”)

In the layer Σ, the fields p and u and two additional fields ps and pϕ are governed by

∂p

∂t
+ ρc2∇ · u = −σps − κ̄ϕσ̄pϕ − κ̄θσ̄(p − ps − pϕ)

∂u

∂t
+

1

ρ
∇p = −σes (es · u)− κ̄ϕσ̄eϕ(eϕ · u)− κ̄θσ̄eθ(eθ · u)

∂ps

∂t
+ ρc2[es (es · ∇)] · u = −σps

∂pϕ

∂t
+ ρc2[eϕ(eϕ · ∇)] · u = −κ̄ϕσ̄pϕ

Cartesian case → Bérenger’s PML system [Modave et al., WAVES, 2012] 24



Design. Well-posedness and stability

Well-posedness [Kreiss and Lorenz, 1989]

The Cauchy problem is weakly/strongly well-posed if there exists K > 0 and α ∈ R
such that the solution U(t) satisfies an estimate on the type

‖U(., t)‖L2 ≤ Keαt ‖U(., 0)‖Hs with s > 0 (weak)

‖U(., t)‖L2 ≤ Keαt ‖U(., 0)‖L2 (strong)

Stability [Bécache and Joly, 2002]

A system that is a 0th-order perturbation of a 1st-order hyperbolic system
is weakly/strongly stable if there exists K > 0 and A ∈ R such that the solution U(t)
satisfies an estimate on the type

‖U(., t)‖L2 ≤ K(1 + At)s ‖U(., 0)‖Hs with s > 0 (weak)

‖U(., t)‖L2 ≤ K ‖U(., 0)‖L2 (strong)
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Optimization in discrete contexts

Two PMLs for generally-shaped domains

Numerical simulations



Benchmark. 2D acoustic case

Description of the 2D time-dependent benchmark

Initial pulse — Elliptical truncated domain
DG finite element scheme with piecewise linear basis functions (p = 1)
About 230/310.000 discrete unknowns (∼ 17 − 25% in the PML for δ = 5`)

Pressure at t = 0

Colorbar [0, 1]
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Benchmark. 2D acoustic case

Wall BC case

Pressure at t = tfin

Colorbar [−0.35, 0.35]
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Benchmark. 2D acoustic case

Absorbing BC case

Pressure at t = tfin

Colorbar [−0.1, 0.1]
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Benchmark. 2D acoustic case

PML with PDEs and δ = 1h

Pressure at t = tfin

Colorbar [−0.1, 0.1]
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Benchmark. 2D acoustic case

PML with ODEs and δ = 1h

Pressure at t = tfin

Colorbar [−0.1, 0.1]
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Benchmark. 2D acoustic case

PML with PDEs and δ = 3h

Pressure at t = tfin

Colorbar [−0.1, 0.1]
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Benchmark. 2D acoustic case

PML with ODEs and δ = 3h

Pressure at t = tfin

Colorbar [−0.1, 0.1]
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Benchmark. 2D acoustic case

PML with PDEs and δ = 5h

Pressure at t = tfin

Colorbar [−0.1, 0.1]
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Benchmark. 2D acoustic case

PML with ODEs and δ = 5h

Pressure at t = tfin

Colorbar [−0.1, 0.1]
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Benchmark. 3D acoustic case

Description of the 3D time-dependent benchmark

Initial pulse in the front of a submarine — Ellipsoidal truncated domain
DG finite element scheme with piecewise linear basis functions (p = 1)
About 17.8 millions discrete unknowns (∼ 50% in the PML for δ = 5`)

Iso-surfaces of the pressure at t = 0.
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Benchmark. 3D acoustic case

PML with PDEs terminated with a ’wall’ PML with PDEs terminated with an ABC

Thin layer Thick layer Thin layer Thick layer

An ABC termination improves a poorly efficient PML
[see also Petropoulos, 1998 ]
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Benchmark. Case with an incident signal

-0.003 0 0.003-0.003 0 0.003 0-0.003 0 0.0030.003-0.003

E incident E total (in the domain)

E scattered (in the layer) 30

Shielding effectiveness of a cavity

SEdB = 20 log10

∣∣∣ E inc

E trans

∣∣∣
where E inc and E inc are the wave amplitudes
at the center of the cavity.

Time-domain simulation with the modulated
transverse-magnetic incident field.



Benchmark. Case with an incident signal
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[Ojeda & Pichon 2005]
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Shielding effectiveness of a cavity

SEdB = 20 log10

∣∣∣ E inc

E trans

∣∣∣
where E inc and E inc are the wave amplitudes
at the center of the cavity.

Time-domain simulation with the modulated
transverse-magnetic incident field.



Benchmark. PML for other wave-like systems (preliminary results)

PML for elastic waves

Velocity at the beginning of the simulation
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Benchmark. PML for other wave-like systems (preliminary results)

PML for elastic waves

Velocity ... later ...
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Optimization in discrete contexts

Two PMLs for generally-shaped domains

Numerical simulations



Conclusion.

PML → An efficient way for domain truncation

Choice of the parameters in discrete context

Effectiveness of the shifted hyperbolic function σsh

→ Does not require a costly optimization procedure
→ Interpretation of the optimum value of the free parameter

Improving the effectiveness by increasing the layer thickness δ

Design of PML time-dependent formulations

Valid for convex truncated domains with regular boundary

Easy to implement in existing codes

Good framework for further developments
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