Strong convergence for Gauss' law with edge elements

Patrick Ciarlet, Haijun Wu, Jun Zou
online access to recent Refs: http:/www.ensta.fr/~ciarlet

POEMS, ENSTA ParisTech, France

Outline

- Time-harmonic Maxwell equations and discretization

Outline

- Time-harmonic Maxwell equations and discretization
- Error estimates on the divergence of the fields

Outline

- Time-harmonic Maxwell equations and discretization
- Error estimates on the divergence of the fields
- Stationary/Static Maxwell equations and discretizations

Outline

- Time-harmonic Maxwell equations and discretization
- Error estimates on the divergence of the fields
- Stationary/Static Maxwell equations and discretizations
- Time-dependent Maxwell equations and discretization

Outline

- Time-harmonic Maxwell equations and discretization
- Error estimates on the divergence of the fields
- Stationary/Static Maxwell equations and discretizations
- Time-dependent Maxwell equations and discretization
- Numerical illustration

Time-harmonic problem

- Let Ω be a Lipschitz, polyhedral domain with connected boundary $\partial \Omega$.
- Given $k>0$ and source term $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-k^{2} \varepsilon \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=0 & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

NB. With coefficients $\varepsilon, \mu>0$ a.e. ; $\varepsilon, \varepsilon^{-1}, \mu, \mu^{-1} \in L^{\infty}(\Omega)$.

Time-harmonic problem

- Let Ω be a Lipschitz, polyhedral domain with connected boundary $\partial \Omega$.
- Given $k>0$ and source term $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-k^{2} \varepsilon \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}=0 & \text { in } \Omega \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- We assume that the problem is well-posed: $\|\boldsymbol{E}\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}$, where

$$
\boldsymbol{H}(\operatorname{curl} ; \Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \operatorname{curl} \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\} .
$$

Time-harmonic problem

- Let Ω be a Lipschitz, polyhedral domain with connected boundary $\partial \Omega$.
- Given $k>0$ and source term $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-k^{2} \varepsilon \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}=0 & \text { in } \Omega \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- We assume that the problem is well-posed.
- Let $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \operatorname{curl} \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \boldsymbol{v} \times \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.

Time-harmonic problem

- Let Ω be a Lipschitz, polyhedral domain with connected boundary $\partial \Omega$.
- Given $k>0$ and source term $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)-k^{2} \varepsilon \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=0 & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- We assume that the problem is well-posed.
- Let $\boldsymbol{H}_{0}(\boldsymbol{\operatorname { c u r l }} ; \Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \operatorname{curl} \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \boldsymbol{v} \times \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.
- An equivalent variational formulation is:
$(V F)\left\{\begin{array}{l}\text { Find } \boldsymbol{E} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { s.t. } \\ \forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \quad\left(\mu^{-1} \operatorname{curl} \boldsymbol{E} \mid \operatorname{curl} \boldsymbol{v}\right)-k^{2}(\varepsilon \boldsymbol{E} \mid \boldsymbol{v})=(\boldsymbol{f} \mid \boldsymbol{v}) .\end{array}\right.$
Above, $\left(\boldsymbol{v} \mid \boldsymbol{v}^{\prime}\right):=\int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{v}^{\prime} d \Omega$.

Regularity of the fields

- $\boldsymbol{E} \in \mathcal{X}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$.

Regularity of the fields

- $\boldsymbol{E} \in \mathcal{X}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$.
- $\mu^{-1} \operatorname{curl} \boldsymbol{E} \in \mathcal{X}_{T}(\Omega, \mu):=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mu \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \mu \boldsymbol{v} \cdot \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.

Regularity of the fields

- $\boldsymbol{E} \in \mathcal{X}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$.
- $\mu^{-1} \operatorname{curl} \boldsymbol{E} \in \mathcal{X}_{T}(\Omega, \mu):=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mu \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \mu \boldsymbol{v} \cdot \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.
- Theorem [Costabel-Dauge-Nicaise'99]: Assume that $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$. If Ω is convex then $\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{1}(\Omega)$ and $\mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{1}(\Omega)$.

Regularity of the fields

- $\boldsymbol{E} \in \mathcal{X}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$.
- $\mu^{-1} \operatorname{curl} \boldsymbol{E} \in \mathcal{X}_{T}(\Omega, \mu):=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mu \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \mu \boldsymbol{v} \cdot \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.
- Theorem [Costabel-Dauge-Nicaise'99]: Assume that $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

If Ω is convex then $\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{1}(\Omega)$ and $\mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{1}(\Omega)$.
If Ω is non-convex then $\left.\exists \delta_{\text {max }}^{D i r}, \delta_{\text {max }}^{N e u} \in\right] 1 / 2,1[$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{D i r}\left[\quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{N e u}[.\right.\right.\right.
$$

Regularity of the fields

- $\boldsymbol{E} \in \mathcal{X}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$.
- $\mu^{-1} \operatorname{curl} \boldsymbol{E} \in \mathcal{X}_{T}(\Omega, \mu):=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mu \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \mu \boldsymbol{v} \cdot \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.
- Theorem [Costabel-Dauge-Nicaise'99]: Assume that $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

If Ω is convex then $\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{1}(\Omega)$ and $\mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{1}(\Omega)$.
If Ω is non-convex then $\left.\exists \delta_{\text {max }}^{D i r}, \delta_{\text {max }}^{N e u} \in\right] 1 / 2,1[$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{D i r}\left[\quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{N e u}[.\right.\right.\right.
$$

- Assume that $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$ from now on.

Regularity of the fields

- $\boldsymbol{E} \in \mathcal{X}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$.
- $\mu^{-1} \operatorname{curl} \boldsymbol{E} \in \mathcal{X}_{T}(\Omega, \mu):=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mu \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \mu \boldsymbol{v} \cdot \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.
- Theorem [Costabel-Dauge-Nicaise'99]: Assume that $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

If Ω is convex then $\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{1}(\Omega)$ and $\mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{1}(\Omega)$.
If Ω is non-convex then $\left.\exists \delta_{\text {max }}^{D i r}, \delta_{\text {max }}^{N e u} \in\right] 1 / 2,1[$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{D i r}\left[\quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{N e u}[.\right.\right.\right.
$$

- Assume that $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$ from now on.

To fix ideas, consider that Ω is non-convex and define $\delta_{\max }:=\min \left(\delta_{\max }^{D i r}, \delta_{\max }^{N e u}\right)$.
Choose a regularity exponent $\delta \in] 1 / 2, \delta_{\max }[$.

Regularity of the fields

- $\boldsymbol{E} \in \mathcal{X}_{N}(\Omega, \varepsilon):=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega) \mid \operatorname{div} \varepsilon \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$.
- $\mu^{-1} \operatorname{curl} \boldsymbol{E} \in \mathcal{X}_{T}(\Omega, \mu):=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}, \Omega) \mid \operatorname{div} \mu \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega), \mu \boldsymbol{v} \cdot \boldsymbol{n}_{\mid \partial \Omega}=0\right\}$.
- Theorem [Costabel-Dauge-Nicaise'99]: Assume that $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

If Ω is convex then $\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{1}(\Omega)$ and $\mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{1}(\Omega)$.
If Ω is non-convex then $\left.\exists \delta_{\text {max }}^{D i r}, \delta_{\text {max }}^{N e u} \in\right] 1 / 2,1[$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{D i r}\left[\quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{N e u}[.\right.\right.\right.
$$

- Assume that $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$ from now on.

To fix ideas, consider that Ω is non-convex and define $\delta_{\max }:=\min \left(\delta_{\max }^{D i r}, \delta_{\max }^{N e u}\right)$.
Choose a regularity exponent $\delta \in] 1 / 2, \delta_{\max }[$.
NB. If Ω is convex, then $\delta=1$.

Edge element discretization

- Let $\left(\mathcal{T}_{h}\right)_{h}$ be a shape regular family of tetrahedral meshes of Ω.
- Define $\mathcal{X}_{h}:=\left\{\boldsymbol{v}_{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \boldsymbol{v}_{h \mid K}=\mathbf{a}_{K}+\mathbf{b}_{K} \times \mathbf{x}, \forall K \in \mathcal{T}_{h}\right\}$.

Edge element discretization

- Let $\left(\mathcal{T}_{h}\right)_{h}$ be a shape regular family of tetrahedral meshes of Ω.
- Define $\mathcal{X}_{h}:=\left\{\boldsymbol{v}_{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \boldsymbol{v}_{h \mid K}=\mathbf{a}_{K}+\mathbf{b}_{K} \times \mathbf{x}, \forall K \in \mathcal{T}_{h}\right\}$.
- The discrete variational formulation writes:
$(D V F)\left\{\begin{array}{l}\text { Find } \boldsymbol{E}_{h} \in \mathcal{X}_{h} \text { s.t. } \\ \forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad\left(\mu^{-1} \mathbf{c u r l} \boldsymbol{E}_{h} \mid \operatorname{curl} \boldsymbol{v}_{h}\right)-k^{2}\left(\varepsilon \boldsymbol{E}_{h} \mid \boldsymbol{v}_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right) .\end{array}\right.$

Edge element discretization

- Let $\left(\mathcal{T}_{h}\right)_{h}$ be a shape regular family of tetrahedral meshes of Ω.
- Define $\mathcal{X}_{h}:=\left\{\boldsymbol{v}_{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \boldsymbol{v}_{h \mid K}=\mathbf{a}_{K}+\mathbf{b}_{K} \times \mathbf{x}, \forall K \in \mathcal{T}_{h}\right\}$.
- The discrete variational formulation writes:

$$
(D V F)\left\{\begin{array}{l}
\text { Find } \boldsymbol{E}_{h} \in \mathcal{X}_{h} \text { s.t. } \\
\forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}_{h} \mid \operatorname{curl} \boldsymbol{v}_{h}\right)-k^{2}\left(\varepsilon \boldsymbol{E}_{h} \mid \boldsymbol{v}_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right) .
\end{array}\right.
$$

- Classically: $\exists h_{0}, \forall h<h_{0},\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim \inf _{\boldsymbol{v}_{h} \in \mathcal{X}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}$.

Edge element discretization

- Let $\left(\mathcal{T}_{h}\right)_{h}$ be a shape regular family of tetrahedral meshes of Ω.
- Define $\mathcal{X}_{h}:=\left\{\boldsymbol{v}_{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \boldsymbol{v}_{h \mid K}=\mathbf{a}_{K}+\mathbf{b}_{K} \times \mathbf{x}, \forall K \in \mathcal{T}_{h}\right\}$.
- The discrete variational formulation writes:

$$
(D V F)\left\{\begin{array}{l}
\text { Find } \boldsymbol{E}_{h} \in \mathcal{X}_{h} \text { s.t. } \\
\forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}_{h} \mid \operatorname{curl} \boldsymbol{v}_{h}\right)-k^{2}\left(\varepsilon \boldsymbol{E}_{h} \mid \boldsymbol{v}_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right) .
\end{array}\right.
$$

- Classically: $\exists h_{0}, \forall h<h_{0},\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim \inf _{\boldsymbol{v}_{h} \in \mathcal{X}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathrm{curl} ; \Omega)}$.
- Edge element interpolation ($\delta \in] 1 / 2, \delta_{\max }[$, cf. [Alonso-Valli'99], [Jr-Zou'99]:

$$
\forall h<h_{0},\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h^{\delta}\|\boldsymbol{f}\|_{L^{2}(\Omega)} .
$$

Edge element discretization

- Let $\left(\mathcal{T}_{h}\right)_{h}$ be a shape regular family of tetrahedral meshes of Ω.
- Define $\mathcal{X}_{h}:=\left\{\boldsymbol{v}_{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) \mid \boldsymbol{v}_{h \mid K}=\mathbf{a}_{K}+\mathbf{b}_{K} \times \mathbf{x}, \forall K \in \mathcal{T}_{h}\right\}$.
- The discrete variational formulation writes:

$$
(D V F)\left\{\begin{array}{l}
\text { Find } \boldsymbol{E}_{h} \in \mathcal{X}_{h} \text { s.t. } \\
\forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}_{h} \mid \operatorname{curl} \boldsymbol{v}_{h}\right)-k^{2}\left(\varepsilon \boldsymbol{E}_{h} \mid \boldsymbol{v}_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right) .
\end{array}\right.
$$

- Classically: $\exists h_{0}, \forall h<h_{0},\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim \inf _{\boldsymbol{v}_{h} \in \mathcal{X}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}$.
- Edge element interpolation ($\delta \in] 1 / 2, \delta_{\max }[$), cf. [Alonso-Valli'g9], [Jr-Zou'99]:

$$
\forall h<h_{0},\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h^{\delta}\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

- QUESTION: What of $\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|$?

On the divergence

- Using $\boldsymbol{v}=\nabla q$ for $q \in H_{0}^{1}(\Omega)$ in (VF) yields

$$
\langle\operatorname{div} \varepsilon \boldsymbol{E}, q\rangle=-(\varepsilon \boldsymbol{E} \mid \nabla q)=\frac{1}{k^{2}}(\boldsymbol{f} \mid \nabla q)=-\frac{1}{k^{2}}\langle\operatorname{div} \boldsymbol{f}, q\rangle=0 .
$$

It follows that $\operatorname{div} \varepsilon \boldsymbol{E}=0$.

On the divergence

- Using $\boldsymbol{v}=\nabla q$ for $q \in H_{0}^{1}(\Omega)$ in (VF) yields

$$
\langle\operatorname{div} \varepsilon \boldsymbol{E}, q\rangle=-(\varepsilon \boldsymbol{E} \mid \nabla q)=\frac{1}{k^{2}}(\boldsymbol{f} \mid \nabla q)=-\frac{1}{k^{2}}\langle\operatorname{div} \boldsymbol{f}, q\rangle=0 .
$$

It follows that $\operatorname{div} \varepsilon \boldsymbol{E}=0$.

- Define $Q_{h}:=\left\{q_{h} \in H_{0}^{1}(\Omega) \mid q_{h \mid K} \in P_{1}(K), \forall K \in \mathcal{T}_{h}\right\}$.

On the divergence

- Using $\boldsymbol{v}=\nabla q$ for $q \in H_{0}^{1}(\Omega)$ in (VF) yields

$$
\langle\operatorname{div} \varepsilon \boldsymbol{E}, q\rangle=-(\varepsilon \boldsymbol{E} \mid \nabla q)=\frac{1}{k^{2}}(\boldsymbol{f} \mid \nabla q)=-\frac{1}{k^{2}}\langle\operatorname{div} \boldsymbol{f}, q\rangle=0 .
$$

It follows that $\operatorname{div} \varepsilon \boldsymbol{E}=0$.

- Define $Q_{h}:=\left\{q_{h} \in H_{0}^{1}(\Omega) \mid q_{h \mid K} \in P_{1}(K), \forall K \in \mathcal{T}_{h}\right\}$.

For $q_{h} \in Q_{h}$, one can use $\boldsymbol{v}_{h}=\nabla q_{h} \in \mathcal{X}_{h}$ in (DVF), so

$$
-\left(\varepsilon \boldsymbol{E}_{h} \mid \nabla q_{h}\right)=\frac{1}{k^{2}}\left(\boldsymbol{f} \mid \nabla q_{h}\right)=-\frac{1}{k^{2}}\left\langle\operatorname{div} \boldsymbol{f}, q_{h}\right\rangle=0 .
$$

On the divergence

- Using $\boldsymbol{v}=\nabla q$ for $q \in H_{0}^{1}(\Omega)$ in (VF) yields

$$
\langle\operatorname{div} \varepsilon \boldsymbol{E}, q\rangle=-(\varepsilon \boldsymbol{E} \mid \nabla q)=\frac{1}{k^{2}}(\boldsymbol{f} \mid \nabla q)=-\frac{1}{k^{2}}\langle\operatorname{div} \boldsymbol{f}, q\rangle=0 .
$$

It follows that $\operatorname{div} \varepsilon \boldsymbol{E}=0$.

- Define $Q_{h}:=\left\{q_{h} \in H_{0}^{1}(\Omega) \mid q_{h \mid K} \in P_{1}(K), \forall K \in \mathcal{T}_{h}\right\}$. For $q_{h} \in Q_{h}$, one can use $\boldsymbol{v}_{h}=\nabla q_{h} \in \mathcal{X}_{h}$ in (DVF), so

$$
-\left(\varepsilon \boldsymbol{E}_{h} \mid \nabla q_{h}\right)=\frac{1}{k^{2}}\left(\boldsymbol{f} \mid \nabla q_{h}\right)=-\frac{1}{k^{2}}\left\langle\operatorname{div} \boldsymbol{f}, q_{h}\right\rangle=0 .
$$

Conclusion: $\boldsymbol{E}_{h} \in \mathcal{V}_{h}:=\left\{\boldsymbol{v}_{h} \in \mathcal{X}_{h} \mid\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$.

On the divergence

- Using $v=\nabla q$ for $q \in H_{0}^{1}(\Omega)$ in (VF) yields

$$
\langle\operatorname{div} \varepsilon \boldsymbol{E}, q\rangle=-(\varepsilon \boldsymbol{E} \mid \nabla q)=\frac{1}{k^{2}}(\boldsymbol{f} \mid \nabla q)=-\frac{1}{k^{2}}\langle\operatorname{div} \boldsymbol{f}, q\rangle=0 .
$$

It follows that $\operatorname{div} \varepsilon \boldsymbol{E}=0$.

- Define $Q_{h}:=\left\{q_{h} \in H_{0}^{1}(\Omega) \mid q_{h \mid K} \in P_{1}(K), \forall K \in \mathcal{T}_{h}\right\}$. For $q_{h} \in Q_{h}$, one can use $\boldsymbol{v}_{h}=\nabla q_{h} \in \mathcal{X}_{h}$ in (DVF), so

$$
-\left(\varepsilon \boldsymbol{E}_{h} \mid \nabla q_{h}\right)=\frac{1}{k^{2}}\left(\boldsymbol{f} \mid \nabla q_{h}\right)=-\frac{1}{k^{2}}\left\langle\operatorname{div} \boldsymbol{f}, q_{h}\right\rangle=0 .
$$

Conclusion: $\boldsymbol{E}_{h} \in \mathcal{V}_{h}:=\left\{\boldsymbol{v}_{h} \in \mathcal{X}_{h} \mid\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$.

- Theorem $\left[\mathcal{V}_{h}\right]$: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform. Let $\left.\left.s \in\right] 1 / 2,1\right]$, then

$$
\forall \boldsymbol{v}_{h} \in \mathcal{V}_{h}, \quad\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1}\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}
$$

On the divergence

- Using $\boldsymbol{v}=\nabla q$ for $q \in H_{0}^{1}(\Omega)$ in (VF) yields

$$
\langle\operatorname{div} \varepsilon \boldsymbol{E}, q\rangle=-(\varepsilon \boldsymbol{E} \mid \nabla q)=\frac{1}{k^{2}}(\boldsymbol{f} \mid \nabla q)=-\frac{1}{k^{2}}\langle\operatorname{div} \boldsymbol{f}, q\rangle=0 .
$$

It follows that $\operatorname{div} \varepsilon \boldsymbol{E}=0$.

- Define $Q_{h}:=\left\{q_{h} \in H_{0}^{1}(\Omega) \mid q_{h \mid K} \in P_{1}(K), \forall K \in \mathcal{T}_{h}\right\}$. For $q_{h} \in Q_{h}$, one can use $\boldsymbol{v}_{h}=\nabla q_{h} \in \mathcal{X}_{h}$ in (DVF), so

$$
-\left(\varepsilon \boldsymbol{E}_{h} \mid \nabla q_{h}\right)=\frac{1}{k^{2}}\left(\boldsymbol{f} \mid \nabla q_{h}\right)=-\frac{1}{k^{2}}\left\langle\operatorname{div} \boldsymbol{f}, q_{h}\right\rangle=0 .
$$

Conclusion: $\boldsymbol{E}_{h} \in \mathcal{V}_{h}:=\left\{\boldsymbol{v}_{h} \in \mathcal{X}_{h} \mid\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla q_{h}\right)=0, \forall q_{h} \in Q_{h}\right\}$.

- Theorem $\left[\mathcal{V}_{h}\right]$: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform. Let $\left.\left.s \in\right] 1 / 2,1\right]$, then

$$
\forall \boldsymbol{v}_{h} \in \mathcal{V}_{h}, \quad\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1}\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}
$$

- Corollary: $\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1}\|\boldsymbol{f}\|_{L^{2}(\Omega)}$.

On the divergence - Proof

Proof of the Theorem $\left[\mathcal{V}_{h}\right]$
S Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

On the divergence - Proof

Proof of the Theorem $\left[\mathcal{V}_{h}\right]$

- Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

$$
\left\langle\operatorname{div} \varepsilon \boldsymbol{v}_{h}, q\right\rangle=-\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla q\right)=-\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla\left(q-q_{h}\right)\right)=-\sum_{K} \int_{K} \varepsilon \boldsymbol{v}_{h} \cdot \nabla\left(q-q_{h}\right) d \Omega
$$

On the divergence - Proof

```
Proof of the Theorem [\mathcal{V}
```

- Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

$$
\begin{aligned}
\left\langle\operatorname{div} \varepsilon \boldsymbol{v}_{h}, q\right\rangle & = \\
\operatorname{ibp} \text { in } K \ldots & \lesssim\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla q\right)=-\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla\left(q-q_{h}\right)\right)=-\sum_{K} \int_{K} \varepsilon \boldsymbol{v}_{h} \cdot \nabla\left(q-q_{h}\right) d \Omega \\
& \quad+\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}
\end{aligned}
$$

where \mathcal{F}_{h} denotes the set of faces of \mathcal{T}_{h} and $[\cdot]$ the jump across the faces.

On the divergence - Proof

```
Proof of the Theorem [ [ }\mp@subsup{\mathcal{h}}{h}{}
```

- Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

$$
\begin{aligned}
\left\langle\operatorname{div} \varepsilon \boldsymbol{v}_{h}, q\right\rangle & \lesssim\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}\left\|q-q_{h}\right\|_{L^{2}(\Omega)} \\
& +\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

On the divergence - Proof

```
Proof of the Theorem [\mathcal{V}
```

- Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

$$
\begin{aligned}
\left\langle\operatorname{div} \varepsilon \boldsymbol{v}_{h}, q\right\rangle & \lesssim\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}\left\|q-q_{h}\right\|_{L^{2}(\Omega)} \\
& +\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}
\end{aligned}
$$

- Step 2: Evaluate $\left\|q-q_{h}\right\|_{L^{2}(\Omega)}$ and $\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$ wrt $\|q\|_{H^{s}(\Omega)}$. (for some appropriate choice of q_{h}).

On the divergence - Proof

```
Proof of the Theorem[ [\mathcal{V}
```

- Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

$$
\begin{aligned}
\left\langle\operatorname{div} \varepsilon \boldsymbol{v}_{h}, q\right\rangle & \lesssim\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}\left\|q-q_{h}\right\|_{L^{2}(\Omega)} \\
& \quad+\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

- Step 2: Evaluate $\left\|q-q_{h}\right\|_{L^{2}(\Omega)}$ and $\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$ wrt $\|q\|_{H^{s}(\Omega)}$. Inverse inequality:

$$
\forall K \in \mathcal{T}_{h}, \forall q \in H^{s}(K), \quad\|q\|_{L^{2}(\partial K)} \lesssim h_{K}^{-1 / 2}\|q\|_{L^{2}(K)}+h_{K}^{s-1 / 2}|q|_{H^{s}(K)}
$$

On the divergence - Proof

```
Proof of the Theorem[\mp@subsup{V}{h}{}]
```

- Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

$$
\begin{aligned}
\left\langle\operatorname{div} \varepsilon \boldsymbol{v}_{h}, q\right\rangle & \lesssim\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}\left\|q-q_{h}\right\|_{L^{2}(\Omega)} \\
& +\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

- Step 2: Evaluate $\left\|q-q_{h}\right\|_{L^{2}(\Omega)}$ and $\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$ wrt $\|q\|_{H^{s}(\Omega)}$. Inverse inequality:

$$
\forall K \in \mathcal{T}_{h}, \forall q \in H^{s}(K), \quad\|q\|_{L^{2}(\partial K)} \lesssim h_{K}^{-1 / 2}\|q\|_{L^{2}(K)}+h_{K}^{s-1 / 2}|q|_{H^{s}(K)}
$$

Let $\Pi_{h}: H_{0}^{s}(\Omega) \rightarrow Q_{h}$ be the Scott-Zhang interpolation operator, then (cf. [Jr'13])

$$
\forall q \in H_{0}^{s}(\Omega), \quad\left\|q-\Pi_{h} q\right\|_{H^{s}(\Omega)} \lesssim\|q\|_{H^{s}(\Omega)},\left\|q-\Pi_{h} q\right\|_{L^{2}(\Omega)} \lesssim h^{s}\|q\|_{H^{s}(\Omega)} .
$$

On the divergence - Proof

```
Proof of the Theorem[ [ }\mp@subsup{\mathcal{h}}{h}{}
```

- Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

$$
\begin{aligned}
\left\langle\operatorname{div} \varepsilon \boldsymbol{v}_{h}, q\right\rangle & \lesssim\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}\left\|q-q_{h}\right\|_{L^{2}(\Omega)} \\
& +\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

- Step 2: Evaluate $\left\|q-q_{h}\right\|_{L^{2}(\Omega)}$ and $\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$ wrt $\|q\|_{H^{s}(\Omega)}$. Inverse inequality:

$$
\forall K \in \mathcal{T}_{h}, \forall q \in H^{s}(K), \quad\|q\|_{L^{2}(\partial K)} \lesssim h_{K}^{-1 / 2}\|q\|_{L^{2}(K)}+h_{K}^{s-1 / 2}|q|_{H^{s}(K)}
$$

Let $\Pi_{h}: H_{0}^{s}(\Omega) \rightarrow Q_{h}$ be the Scott-Zhang interpolation operator, then (cf. [Jr'13])

$$
\forall q \in H_{0}^{s}(\Omega), \quad\left\|q-\Pi_{h} q\right\|_{H^{s}(\Omega)} \lesssim\|q\|_{H^{s}(\Omega)},\left\|q-\Pi_{h} q\right\|_{L^{2}(\Omega)} \lesssim h^{s}\|q\|_{H^{s}(\Omega)}
$$

Choose $q_{h}:=\Pi_{h} q:\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} \lesssim h^{s-1 / 2}\|q\|_{H^{s}(\Omega)}$.

On the divergence - Proof

```
Proof of the Theorem[ [ }\mp@subsup{\mathcal{h}}{h}{}
```

- Step 1: Let $\boldsymbol{v}_{h} \in \mathcal{V}_{h}, q \in H_{0}^{s}(\Omega)$, and $q_{h} \in Q_{h}$:

$$
\begin{aligned}
&\left\langle\operatorname{div} \varepsilon \boldsymbol{v}_{h}, q\right\rangle \lesssim\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}\left\|q-q_{h}\right\|_{L^{2}(\Omega)} \\
&+\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
\end{aligned}
$$

- Step 2: Evaluate $\left\|q-q_{h}\right\|_{L^{2}(\Omega)}$ and $\left(\sum_{f \in \mathcal{F}_{h}}\left\|q-q_{h}\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$ wrt $\|q\|_{H^{s}(\Omega)}$. Inverse inequality:

$$
\forall K \in \mathcal{T}_{h}, \forall q \in H^{s}(K), \quad\|q\|_{L^{2}(\partial K)} \lesssim h_{K}^{-1 / 2}\|q\|_{L^{2}(K)}+h_{K}^{s-1 / 2}|q|_{H^{s}(K)}
$$

Let $\Pi_{h}: H_{0}^{s}(\Omega) \rightarrow Q_{h}$ be the Scott-Zhang interpolation operator, then (cf. [Jr'13])

$$
\forall q \in H_{0}^{s}(\Omega), \quad\left\|q-\Pi_{h} q\right\|_{H^{s}(\Omega)} \lesssim\|q\|_{H^{s}(\Omega)},\left\|q-\Pi_{h} q\right\|_{L^{2}(\Omega)} \lesssim h^{s}\|q\|_{H^{s}(\Omega)}
$$

Hence, $\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$.

On the divergence - Proof

- Steps 1-2: For $\boldsymbol{v}_{h} \in \mathcal{V}_{h}$,

$$
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
$$

On the divergence - Proof

- Steps 1-2: For $\boldsymbol{v}_{h} \in \mathcal{V}_{h}$,

$$
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
$$

On the divergence - Proof

- Steps 1-2: For $\boldsymbol{v}_{h} \in \mathcal{V}_{h}$,

$$
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
$$

- Step 3: Evaluate $\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{\boldsymbol{h}} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$.

Proposition [Monk'03]: $\exists \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$ s.t. $\operatorname{curl} \boldsymbol{v}=\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}, \operatorname{div} \varepsilon \boldsymbol{v}=0$ in Ω,
$\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)} \lesssim\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}, \quad\left\|\boldsymbol{v}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)}+h\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}$.

On the divergence - Proof

- Steps 1-2: For $\boldsymbol{v}_{h} \in \mathcal{V}_{h}$,

$$
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
$$

- Step 3: Evaluate $\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$.

Proposition [Monk'03]: $\exists \boldsymbol{v} \in \boldsymbol{H}_{0}(\boldsymbol{\operatorname { c u r l }} ; \Omega)$ s.t. $\operatorname{curl} \boldsymbol{v}=\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}, \operatorname{div} \varepsilon \boldsymbol{v}=0$ in Ω,
$\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)} \lesssim\left\|\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}, \quad\left\|\boldsymbol{v}-\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)}+h\left\|\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}$.
By construction, $\left[\boldsymbol{\varepsilon} \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]=\left[\varepsilon\left(\boldsymbol{v}_{h}-\boldsymbol{v}\right) \cdot \boldsymbol{n}\right]$ across all faces.

On the divergence - Proof

- Steps 1-2: For $\boldsymbol{v}_{h} \in \mathcal{V}_{h}$,

$$
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} .
$$

- Step 3: Evaluate $\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$.

Proposition [Monk'03]: $\exists \boldsymbol{v} \in \boldsymbol{H}_{0}(\boldsymbol{\operatorname { c u r l }} ; \Omega)$ s.t. $\operatorname{curl} \boldsymbol{v}=\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}, \operatorname{div} \varepsilon \boldsymbol{v}=0$ in Ω,
$\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)} \lesssim\left\|\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}, \quad\left\|\boldsymbol{v}-\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)}+h\left\|\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}$.
By construction, $\left[\boldsymbol{\varepsilon} \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]=\left[\varepsilon\left(\boldsymbol{v}_{h}-\boldsymbol{v}\right) \cdot \boldsymbol{n}\right]$ across all faces.

+ inverse inequality: $\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} \lesssim h^{\delta-1 / 2}\left\|\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}$.

On the divergence - Proof

- Steps 1-2: For $\boldsymbol{v}_{h} \in \mathcal{V}_{h}$,

$$
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}
$$

- Step 3: Evaluate $\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$. Proposition [Monk'03]: $\exists \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$ s.t. $\operatorname{curl} \boldsymbol{v}=\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}, \operatorname{div} \varepsilon \boldsymbol{v}=0$ in Ω,
$\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)} \lesssim\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}, \quad\left\|\boldsymbol{v}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)}+h\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}$.
By construction, $\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]=\left[\varepsilon\left(\boldsymbol{v}_{h}-\boldsymbol{v}\right) \cdot \boldsymbol{n}\right]$ across all faces.
+ inverse inequality: $\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} \lesssim h^{\delta-1 / 2}\left\|\boldsymbol{c u r l} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}$.

It follows that $\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s+\delta-1}\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}$.

On the divergence - Proof

- Steps 1-2: For $\boldsymbol{v}_{h} \in \mathcal{V}_{h}$,

$$
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}
$$

- Step 3: Evaluate $\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$. Proposition [Monk'03]: $\exists \boldsymbol{v} \in \boldsymbol{H}_{0}(\boldsymbol{\operatorname { c u r l }} ; \Omega)$ s.t. $\operatorname{curl} \boldsymbol{v}=\boldsymbol{\operatorname { c u r l }} \boldsymbol{v}_{h}, \operatorname{div} \varepsilon \boldsymbol{v}=0$ in Ω,
$\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)} \lesssim\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}, \quad\left\|\boldsymbol{v}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{v}\|_{\boldsymbol{H}^{\delta}(\Omega)}+h\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}$.
By construction, $\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]=\left[\varepsilon\left(\boldsymbol{v}_{h}-\boldsymbol{v}\right) \cdot \boldsymbol{n}\right]$ across all faces.
+ inverse inequality: $\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{v}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} \lesssim h^{\delta-1 / 2}\left\|\boldsymbol{c u r l} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}$.

It follows that $\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}+h^{s+\delta-1}\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{L^{2}(\Omega)}$. With the help of the Proposition (and $\delta<1$), one concludes that

$$
\left\|\operatorname{div} \varepsilon \boldsymbol{v}_{h}\right\|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1}\left\|\operatorname{curl} \boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}
$$

Time-harmonic problem (summary)

- Assumptions:
e $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$;
- $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform.

Time-harmonic problem (summary)

- Assumptions:
- $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$;
- $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform.
- If Ω is convex: let $s \in] 1 / 2,1]$, then

$$
\forall h<h_{0}, h^{-1}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{-s}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

Time-harmonic problem (summary)

- Assumptions:
- $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$;
- $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform.
- If Ω is convex: let $s \in] 1 / 2,1]$, then

$$
\forall h<h_{0}, h^{-1}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{-s}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

- If Ω is non-convex: let $\delta \in] 1 / 2, \delta_{\max }[$ and $\left.s \in] 1 / 2,1\right]$, then

$$
\forall h<h_{0}, h^{-\delta}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

Stationary problem: mixed approach

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $g \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=g & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

NB. With coefficients $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

Stationary problem: mixed approach

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $g \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}=g & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- To take into account the condition on the divergence on the variational formulation, one uses classically an equivalent mixed formulation (with $p=0$):

$$
(M V F)\left\{\begin{array}{l}
\text { Find }(\boldsymbol{E}, p) \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \times H_{0}^{1}(\Omega) \text { s.t. } \\
\forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \quad\left(\mu^{-1} \operatorname{curl} \boldsymbol{E} \mid \operatorname{curl} \boldsymbol{v}\right)+(\varepsilon \boldsymbol{v} \mid \nabla p)=(\boldsymbol{f} \mid \boldsymbol{v}) \\
\forall q \in H_{0}^{1}(\Omega), \quad(\varepsilon \boldsymbol{E} \mid \nabla q)=-(g \mid q) .
\end{array}\right.
$$

Stationary problem: mixed approach

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $g \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=g & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- The discrete mixed variational formulation uses edge elements for the field and P_{1} elements for the multiplier (with $p_{h}=0$):

$$
(D M V F)\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{E}_{h}, p_{h}\right) \in \mathcal{X}_{h} \times Q_{h} \text { s.t. } \\
\forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad\left(\mu^{-1} \mathbf{c u r l} \boldsymbol{E}_{h} \mid \mathbf{c u r l} \boldsymbol{v}_{h}\right)+\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla p_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right) \\
\forall q \in Q_{h}, \quad\left(\varepsilon \boldsymbol{E}_{h} \mid \nabla q_{h}\right)=-\left(g \mid q_{h}\right)
\end{array}\right.
$$

Stationary problem: mixed approach

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)$ (div $\left.\boldsymbol{f}=0\right)$ and $g \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=g & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- The discrete mixed variational formulation uses edge elements for the field and P_{1} elements for the multiplier (with $p_{h}=0$):

$$
(D M V F)\left\{\begin{array}{l}
\text { Find }\left(\boldsymbol{E}_{h}, p_{h}\right) \in \mathcal{X}_{h} \times Q_{h} \text { s.t. } \\
\forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad\left(\mu^{-1} \mathbf{c u r l} \boldsymbol{E}_{h} \mid \mathbf{c u r l} \boldsymbol{v}_{h}\right)+\left(\varepsilon \boldsymbol{v}_{h} \mid \nabla p_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right) \\
\forall q \in Q_{h}, \quad\left(\varepsilon \boldsymbol{E}_{h} \mid \nabla q_{h}\right)=-\left(g \mid q_{h}\right) .
\end{array}\right.
$$

- For $\delta \in] 1 / 2, \delta_{\max }[$, one obtains, cf. [Chen-Du-Zou'00]:

$$
\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h^{\delta}\left\{\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\right\}
$$

Stationary problem

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $g \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}=g & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

NB. With coefficients $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

Stationary problem

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $g \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=g & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- To take into account the condition on the divergence on the variational formulation, we choose to add some small perturbation (below $\gamma(h)>0$ is "small"), by introducing

$$
a_{h}\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right):=\left(\mu^{-1} \operatorname{curl} \boldsymbol{v} \mid \operatorname{curl} \boldsymbol{v}^{\prime}\right)+\gamma(h)\left(\varepsilon \boldsymbol{v} \mid \boldsymbol{v}^{\prime}\right) \text { for } \boldsymbol{v}, \boldsymbol{v}^{\prime} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) .
$$

Stationary problem

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $g \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega \\ \operatorname{div} \varepsilon \boldsymbol{E}=g & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- To take into account the condition on the divergence on the variational formulation, we choose to add some small perturbation (below $\gamma(h)>0$ is "small"), by introducing

$$
a_{h}\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right):=\left(\mu^{-1} \operatorname{curl} \boldsymbol{v} \mid \operatorname{curl} \boldsymbol{v}^{\prime}\right)+\gamma(h)\left(\varepsilon \boldsymbol{v} \mid \boldsymbol{v}^{\prime}\right) \text { for } \boldsymbol{v}, \boldsymbol{v}^{\prime} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) .
$$

- If $g=0$, we solve the discrete variational formulation

Find $\boldsymbol{E}_{h} \in \mathcal{X}_{h}$ s.t. $\forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad a_{h}\left(\boldsymbol{E}_{h}, \boldsymbol{v}_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right)$.
By construction, $\boldsymbol{E}_{h} \in \mathcal{V}_{h}$.

Stationary problem

- Given source terms $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)(\operatorname{div} \boldsymbol{f}=0)$ and $g \in L^{2}(\Omega)$, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { with } \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f} & \text { in } \Omega ; \\ \operatorname{div} \varepsilon \boldsymbol{E}=g & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega .\end{cases}
$$

- To take into account the condition on the divergence on the variational formulation, we choose to add some small perturbation (below $\gamma(h)>0$ is "small"), by introducing

$$
a_{h}\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right):=\left(\mu^{-1} \operatorname{curl} \boldsymbol{v} \mid \operatorname{curl} \boldsymbol{v}^{\prime}\right)+\gamma(h)\left(\varepsilon \boldsymbol{v} \mid \boldsymbol{v}^{\prime}\right) \text { for } \boldsymbol{v}, \boldsymbol{v}^{\prime} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) .
$$

- If $g \neq 0$, we solve two discrete variational formulations

$$
\begin{aligned}
& \text { 1. Find } \phi_{h} \in Q_{h} \text { s.t. } \forall q_{h} \in Q_{h}, \quad\left(\varepsilon \nabla \phi_{h} \mid \nabla q_{h}\right)=-\left(\varepsilon g \mid q_{h}\right) . \\
& \text { 2. Find } \boldsymbol{E}_{h} \in \mathcal{X}_{h} \text { s.t. } \forall \boldsymbol{v}_{h} \in \mathcal{X}_{h}, \quad a_{h}\left(\boldsymbol{E}_{h}, \boldsymbol{v}_{h}\right)=\left(\boldsymbol{f} \mid \boldsymbol{v}_{h}\right)+\gamma(h)\left(\varepsilon \nabla \phi_{h} \mid \boldsymbol{v}_{h}\right) .
\end{aligned}
$$

By construction, $\boldsymbol{E}_{h}-\nabla \phi_{h} \in \mathcal{V}_{h}$.

Stationary problem: convergence

- Theorem: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform, $0<\gamma(h) \lesssim h^{2}$. Let $\left.\left.s \in\right] 1 / 2,1\right]$, then

$$
h^{-\delta}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)} .
$$

Stationary problem: convergence

- Theorem: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform, $0<\gamma(h) \lesssim h^{2}$. Let $\left.s \in\right] 1 / 2$, 1], then

$$
\begin{aligned}
& h^{-\delta}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)} . \\
& \text { Proof of the Theorem }[\text { case } g=0]
\end{aligned}
$$

Stationary problem: convergence

- Theorem: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform, $0<\gamma(h) \lesssim h^{2}$. Let $\left.\left.s \in\right] 1 / 2,1\right]$, then

$$
\begin{aligned}
& h^{-\delta}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)} . \\
& \text { Proof of the Theorem }[\text { case } g=0]
\end{aligned}
$$

- Step 1: use Cauchy-Schwarz' and Young's inequalities to find
$\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{a_{h}} \lesssim \inf _{\boldsymbol{v}_{h} \in \mathcal{X}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{a_{h}}+(\gamma(h))^{1 / 2}\|\boldsymbol{E}\|_{\boldsymbol{L}^{2}(\Omega)}$, where $\|\cdot\|_{a_{h}}:=\left(a_{h}(\cdot, \cdot)\right)^{1 / 2}$.

Stationary problem: convergence

- Theorem: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform, $0<\gamma(h) \lesssim h^{2}$. Let $\left.s \in\right] 1 / 2$, 1], then $h^{-\delta}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}$. Proof of the Theorem [case $g=0$]
- Step 1: use Cauchy-Schwarz' and Young's inequalities to find
$\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{a_{h}} \lesssim \inf _{\boldsymbol{v}_{h} \in \mathcal{X}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{a_{h}}+(\gamma(h))^{1 / 2}\|\boldsymbol{E}\|_{\boldsymbol{L}^{2}(\Omega)}$, where $\|\cdot\|_{a_{h}}:=\left(a_{h}(\cdot, \cdot)\right)^{1 / 2}$.
As $0<\gamma(h) \lesssim h^{2}$, one obtains with edge element interpolation

$$
\left\|\operatorname{curl}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim\left(h^{\delta}+(\gamma(h))^{1 / 2}\right)\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

Stationary problem: convergence

- Theorem: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform, $0<\gamma(h) \lesssim h^{2}$. Let $\left.s \in\right] 1 / 2$, 1], then $h^{-\delta}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}$. Proof of the Theorem [case $g=0$]
- Step 1: use Cauchy-Schwarz' and Young's inequalities to find
$\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{a_{h}} \lesssim \inf _{\boldsymbol{v}_{h} \in \mathcal{X}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{a_{h}}+(\gamma(h))^{1 / 2}\|\boldsymbol{E}\|_{\boldsymbol{L}^{2}(\Omega)}$, where $\|\cdot\|_{a_{h}}:=\left(a_{h}(\cdot, \cdot)\right)^{1 / 2}$.
As $0<\gamma(h) \lesssim h^{2}$, one obtains with edge element interpolation

$$
\left\|\operatorname{curl}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim\left(h^{\delta}+(\gamma(h))^{1 / 2}\right)\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

$\boldsymbol{E}_{h} \in \mathcal{V}_{h}$, so the Theorem [\mathcal{V}_{h}] yields

$$
\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s+\delta-1}\|\boldsymbol{f}\|_{L^{2}(\Omega)}
$$

Stationary problem: convergence

- Step 1: $h^{-\delta}\left\|\operatorname{curl}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{L^{2}(\Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{L^{2}(\Omega)}$.

N4gtiongry 0romieni: converoence

- Step 1: $h^{-\delta}\left\|\operatorname{curl}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}$.
- Step 2: Introduce the Helmholtz decomposition of $\boldsymbol{E}-\boldsymbol{E}_{h}$ wrt $(\cdot \mid \cdot)$:

$$
\boldsymbol{E}-\boldsymbol{E}_{h}=\boldsymbol{e}+\nabla \phi, \boldsymbol{e} \in \boldsymbol{L}^{2}(\Omega), \phi \in H_{0}^{1}(\Omega) \text { s.t. } \Delta \phi=\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right) .
$$

N4gtiongry 0romieni: converoence

- Step 1: $h^{-\delta}\left\|\boldsymbol{\operatorname { c u r l }}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}$.
- Step 2: Introduce the Helmholtz decomposition of $\boldsymbol{E}-\boldsymbol{E}_{h}$ wrt $(\cdot \mid \cdot)$:

$$
\boldsymbol{E}-\boldsymbol{E}_{h}=\boldsymbol{e}+\nabla \phi, \boldsymbol{e} \in \boldsymbol{L}^{2}(\Omega), \phi \in H_{0}^{1}(\Omega) \text { s.t. } \Delta \phi=\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right) .
$$

One finds by direct computations $\left(\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}^{2}=\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)}^{2}+\|\nabla \phi\|_{\boldsymbol{L}^{2}(\Omega)}^{2}\right)$

$$
\left\|\varepsilon^{1 / 2}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-1}(\Omega)} .
$$

Stationary problem: convergence

- Step 1: $h^{-\delta}\left\|\operatorname{curl}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{L^{2}(\Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{L^{2}(\Omega)}$.
- Step 2: Introduce the Helmholtz decomposition of $\boldsymbol{E}-\boldsymbol{E}_{h}$ wrt ($\left.\cdot \cdot\right)$:

$$
\boldsymbol{E}-\boldsymbol{E}_{h}=\boldsymbol{e}+\nabla \phi, \boldsymbol{e} \in \boldsymbol{L}^{2}(\Omega), \phi \in H_{0}^{1}(\Omega) \text { s.t. } \Delta \phi=\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right) .
$$

One finds by direct computations $\left(\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{L^{2}(\Omega)}^{2}=\|e\|_{L^{2}(\Omega)}^{2}+\|\nabla \phi\|_{L^{2}(\Omega)}^{2}\right)$

$$
\left\|\varepsilon^{1 / 2}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{L^{2}(\Omega)} \lesssim\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-1}(\Omega)} .
$$

Using an auxiliary problem, one can estimate $\|e\|_{L^{2}(\Omega)}$:

$$
\begin{cases}\text { Find } \boldsymbol{z} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { s.t. } & \\ \operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{z}\right)=\boldsymbol{e} & \text { in } \Omega ; \\ \operatorname{div} \boldsymbol{z}=0 & \text { in } \Omega .\end{cases}
$$

N4gtiongry 0romieni: converoence

- Step 1: $h^{-\delta}\left\|\boldsymbol{\operatorname { c u r l }}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}$.
- Step 2: Introduce the Helmholtz decomposition of $\boldsymbol{E}-\boldsymbol{E}_{h}$ wrt $(\cdot \mid)$:

$$
\boldsymbol{E}-\boldsymbol{E}_{h}=\boldsymbol{e}+\nabla \phi, \boldsymbol{e} \in \boldsymbol{L}^{2}(\Omega), \phi \in H_{0}^{1}(\Omega) \text { s.t. } \Delta \phi=\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right) .
$$

One finds by direct computations $\left(\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}^{2}=\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)}^{2}+\|\nabla \phi\|_{\boldsymbol{L}^{2}(\Omega)}^{2}\right)$

$$
\left\|\varepsilon^{1 / 2}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-1}(\Omega)}
$$

Using an auxiliary problem, one can estimate $\|e\|_{L^{2}(\Omega)}$:

$$
\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim\left(h^{\delta}+(\gamma(h))^{1 / 2}\right)\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{a_{h}}+(\gamma(h))^{1 / 2}\|\boldsymbol{E}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

- Step 1: $h^{-\delta}\left\|\boldsymbol{\operatorname { c u r l }}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}$.
- Step 2: Introduce the Helmholtz decomposition of $\boldsymbol{E}-\boldsymbol{E}_{h}$ wrt $(\cdot \mid)$:

$$
\boldsymbol{E}-\boldsymbol{E}_{h}=\boldsymbol{e}+\nabla \phi, \boldsymbol{e} \in \boldsymbol{L}^{2}(\Omega), \phi \in H_{0}^{1}(\Omega) \text { s.t. } \Delta \phi=\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right) .
$$

One finds by direct computations $\left(\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}^{2}=\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)}^{2}+\|\nabla \phi\|_{\boldsymbol{L}^{2}(\Omega)}^{2}\right)$

$$
\left\|\varepsilon^{1 / 2}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-1}(\Omega)}
$$

Using an auxiliary problem, one can estimate $\|\boldsymbol{e}\|_{L^{2}(\Omega)}$:

$$
\|\boldsymbol{e}\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim\left(h^{\delta}+(\gamma(h))^{1 / 2}\right)\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{a_{h}}+(\gamma(h))^{1 / 2}\|\boldsymbol{E}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

We conclude that

$$
\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)} \lesssim h^{\delta}\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)} .
$$

Stationary problem (summary)

- Assumptions:
- $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$;
- $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform.

Stationary problem (summary)

- Assumptions:
- $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$;
- $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform.
- If Ω is convex: let $s \in] 1 / 2,1]$, then

$$
h^{-1}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{-s}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)} .
$$

Stationary problem (summary)

- Assumptions:
- $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$;
- $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform.
- If Ω is convex: let $s \in] 1 / 2,1]$, then

$$
h^{-1}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{-s}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)} .
$$

- If Ω is non-convex: let $\delta \in] 1 / 2, \delta_{\max }[$ and $\left.s \in] 1 / 2,1\right]$, then
$h^{-\delta}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)}+h^{1-s-\delta}\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}$.

Time-dependent problem

- Given source terms \boldsymbol{J} and ρ (charge conservation eq. $\rho_{t}+\operatorname{div} \boldsymbol{J}=0$), solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \text { s.t. } & \\ \varepsilon \boldsymbol{E}_{t t}+\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=-\boldsymbol{J}_{t} & \text { in } \Omega \times] 0, T[; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\rho & \text { in } \Omega \times] 0, T[; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega \times] 0, T \\ \boldsymbol{E}(0)=\boldsymbol{E}^{0} \text { and } \boldsymbol{E}_{t}(0)=\varepsilon^{-1}\left(-\boldsymbol{J}(0)+\operatorname{curl} \boldsymbol{H}^{0}\right) & \text { in } \Omega .\end{cases}
$$

NB. With coefficients $\varepsilon, \mu^{-1} \in W^{1, \infty}(\Omega)$.

Time-dependent problem

- Given source terms \boldsymbol{J} and ρ (charge conservation eq. $\rho_{t}+\operatorname{div} \boldsymbol{J}=0$), solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \text { s.t. } & \\ \varepsilon \boldsymbol{E}_{t t}+\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=-\boldsymbol{J}_{t} & \text { in } \Omega \times] 0, T[; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\rho & \text { in } \Omega \times] 0, T[; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega \times] 0, T \\ \boldsymbol{E}(0)=\boldsymbol{E}^{0} \text { and } \boldsymbol{E}_{t}(0)=\varepsilon^{-1}\left(-\boldsymbol{J}(0)+\operatorname{curl} \boldsymbol{H}^{0}\right) & \text { in } \Omega .\end{cases}
$$

- Use edge elements in space, and second order backward finite differences in time (time-step $\left.\tau, \partial_{\tau} u^{n}=\frac{u^{n}-u^{n-1}}{\tau}, \partial_{\tau}^{2} u^{n}=\frac{\partial_{\tau} u^{n}-\partial_{\tau} u^{n-1}}{\tau}\right):\left(\boldsymbol{E}_{h}^{n}\right)_{n=0,1, \ldots}$,

Time-dependent problem

- Given source terms \boldsymbol{J} and ρ (charge conservation eq. $\rho_{t}+\operatorname{div} \boldsymbol{J}=0$), solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \text { s.t. } & \\ \varepsilon \boldsymbol{E}_{t t}+\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=-\boldsymbol{J}_{t} & \text { in } \Omega \times] 0, T[; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\rho & \text { in } \Omega \times] 0, T[; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega \times] 0, T \\ \boldsymbol{E}(0)=\boldsymbol{E}^{0} \text { and } \boldsymbol{E}_{t}(0)=\varepsilon^{-1}\left(-\boldsymbol{J}(0)+\operatorname{curl} \boldsymbol{H}^{0}\right) & \text { in } \Omega .\end{cases}
$$

- Use edge elements in space, and second order backward finite differences in time (time-step $\left.\tau, \partial_{\tau} u^{n}=\frac{u^{n}-u^{n-1}}{\tau}, \partial_{\tau}^{2} u^{n}=\frac{\partial_{\tau} u^{n}-\partial_{\tau} u^{n-1}}{\tau}\right):\left(\boldsymbol{E}_{h}^{n}\right)_{n=0,1, \ldots}$
- Approximate the initial conditions with the help of two-step stationary problems.

Time-dependent problem

- Given source terms \boldsymbol{J} and ρ (charge conservation eq. $\rho_{t}+\operatorname{div} \boldsymbol{J}=0$), solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \text { s.t. } & \\ \varepsilon \boldsymbol{E}_{t t}+\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=-\boldsymbol{J}_{t} & \text { in } \Omega \times] 0, T[; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\rho & \text { in } \Omega \times] 0, T[; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega \times] 0, T[; \\ \boldsymbol{E}(0)=\boldsymbol{E}^{0} \text { and } \boldsymbol{E}_{t}(0)=\varepsilon^{-1}\left(-\boldsymbol{J}(0)+\mathbf{c u r l} \boldsymbol{H}^{0}\right) & \text { in } \Omega .\end{cases}
$$

- Use edge elements in space, and second order backward finite differences in time (time-step $\left.\tau, \partial_{\tau} u^{n}=\frac{u^{n}-u^{n-1}}{\tau}, \partial_{\tau}^{2} u^{n}=\frac{\partial_{\tau} u^{n}-\partial_{\tau} u^{n-1}}{\tau}\right):\left(\boldsymbol{E}_{h}^{n}\right)_{n=0,1, \ldots}$,
- Approximate the initial conditions with the help of two-step stationary problems.
- Theorem: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform, $0<\gamma(h) \lesssim h^{2}$. Assume that $\boldsymbol{J}, \rho, \boldsymbol{E}$ are "sufficiently smooth".

Time-dependent problem

- Given source terms \boldsymbol{J} and ρ (charge conservation eq. $\rho_{t}+\operatorname{div} \boldsymbol{J}=0$), solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \text { s.t. } & \\ \varepsilon \boldsymbol{E}_{t t}+\operatorname{curl}\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}\right)=-\boldsymbol{J}_{t} & \text { in } \Omega \times] 0, T[; \\ \operatorname{div} \varepsilon \boldsymbol{E}=\rho & \text { in } \Omega \times] 0, T[; \\ \boldsymbol{E} \times \boldsymbol{n}=0 & \text { on } \partial \Omega \times] 0, T[; \\ \boldsymbol{E}(0)=\boldsymbol{E}^{0} \text { and } \boldsymbol{E}_{t}(0)=\varepsilon^{-1}\left(-\boldsymbol{J}(0)+\operatorname{curl} \boldsymbol{H}^{0}\right) & \text { in } \Omega .\end{cases}
$$

- Use edge elements in space, and second order backward finite differences in time (time-step $\left.\tau, \partial_{\tau} u^{n}=\frac{u^{n}-u^{n-1}}{\tau}, \partial_{\tau}^{2} u^{n}=\frac{\partial_{\tau} u^{n}-\partial_{\tau} u^{n-1}}{\tau}\right):\left(\boldsymbol{E}_{h}^{n}\right)_{n=0,1, \ldots}$,
- Approximate the initial conditions with the help of two-step stationary problems.
- Theorem: Assume that $\left(\mathcal{T}_{h}\right)_{h}$ is quasi-uniform, $0<\gamma(h) \lesssim h^{2}$.

Assume that $\boldsymbol{J}, \rho, \boldsymbol{E}$ are "sufficiently smooth". Let $\delta \in] 1 / 2, \delta_{\max }[$ and $\left.s \in] 1 / 2,1\right]$, then

$$
\begin{aligned}
& \max _{n}\left(\left\|\partial_{\tau} \boldsymbol{E}_{h}^{n}-\boldsymbol{E}_{t}(n \tau)\right\|_{\boldsymbol{L}^{2}(\Omega)}^{2}+\left\|\operatorname{curl}\left(\boldsymbol{E}_{h}^{n}-\boldsymbol{E}(n \tau)\right)\right\|_{\boldsymbol{L}^{2}(\Omega)}^{2}\right) \lesssim\left(\tau^{2}+\tau^{2} h^{2(\delta-1)}+h^{2 \delta}\right) ; \\
& \max _{n}\left(\left\|\operatorname{div} \varepsilon\left(\boldsymbol{E}_{h}^{n}-\boldsymbol{E}(n \tau)\right)\right\|_{H^{-s}(\Omega)}\right) \lesssim \tau+h^{s+\delta-1} .
\end{aligned}
$$

Other configurations

- In the models, the coefficients ε and μ can be discontinuous.

Other configurations

- In the models, the coefficients ε and μ can be discontinuous.

Consider that they are piecewise constant: there exists a partition $\mathcal{P}:=\left\{\Omega_{j}\right\}_{j=1}^{J}$ of Ω into J polyhedral subdomains s.t. $\varepsilon_{j}:=\varepsilon_{\mid \Omega_{j}}, \mu_{j}:=\mu_{\mid \Omega_{j}}$ are constants for $j=1, J$. Define for $r>0: \boldsymbol{P} \boldsymbol{H}^{r}(\Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \boldsymbol{v}_{\mid \Omega_{j}} \in \boldsymbol{H}^{r}\left(\Omega_{j}\right), j=1, \cdots, J\right\}$.

Other configurations

- In the models, the coefficients ε and μ can be discontinuous.

Consider that they are piecewise constant: there exists a partition $\mathcal{P}:=\left\{\Omega_{j}\right\}_{j=1}^{J}$ of Ω into J polyhedral subdomains s.t. $\varepsilon_{j}:=\varepsilon_{\mid \Omega_{j}}, \mu_{j}:=\mu_{\mid \Omega_{j}}$ are constants for $j=1, J$. Define for $r>0: \boldsymbol{P} \boldsymbol{H}^{r}(\Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \boldsymbol{v}_{\mid \Omega_{j}} \in \boldsymbol{H}^{r}\left(\Omega_{j}\right), j=1, \cdots, J\right\}$.

- Theorem [Costabel-Dauge-Nicaise'99]: Assume that ε, μ are piecewise constant. $\left.\left.\exists \delta_{\max }^{D i r}, \delta_{\max }^{N e u} \in\right] 0,1\right]$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{P H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{\text {Dir }}\left[\quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{P H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\text {max }}^{N e u}[.\right.\right.\right.
$$

Other configurations

- In the models, the coefficients ε and μ can be discontinuous.

Consider that they are piecewise constant: there exists a partition $\mathcal{P}:=\left\{\Omega_{j}\right\}_{j=1}^{J}$ of Ω into J polyhedral subdomains s.t. $\varepsilon_{j}:=\varepsilon_{\mid \Omega_{j}}, \mu_{j}:=\mu_{\mid \Omega_{j}}$ are constants for $j=1, J$. Define for $r>0: \boldsymbol{P} \boldsymbol{H}^{r}(\Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \boldsymbol{v}_{\mid \Omega_{j}} \in \boldsymbol{H}^{r}\left(\Omega_{j}\right), j=1, \cdots, J\right\}$.

- Theorem [Costabel-Dauge-Nicaise'99]: Assume that ε, μ are piecewise constant. $\left.\left.\exists \delta_{\max }^{D i r}, \delta_{\max }^{N e u} \in\right] 0,1\right]$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{P H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{\text {Dir }}\left[\quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{P H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\text {max }}^{N e u}[.\right.\right.\right.
$$

- If $\delta_{\max }:=\min \left(\delta_{\max }^{D i r}, \delta_{\max }^{N e u}\right)>1 / 2$ then one can use the previous results, since the edge element interpolation results hold element-by-element.

Other configurations

- In the models, the coefficients ε and μ can be discontinuous.

Consider that they are piecewise constant: there exists a partition $\mathcal{P}:=\left\{\Omega_{j}\right\}_{j=1}^{J}$ of Ω into J polyhedral subdomains s.t. $\varepsilon_{j}:=\varepsilon_{\mid \Omega_{j}}, \mu_{j}:=\mu_{\mid \Omega_{j}}$ are constants for $j=1, J$. Define for $r>0: \boldsymbol{P} \boldsymbol{H}^{r}(\Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \boldsymbol{v}_{\mid \Omega_{j}} \in \boldsymbol{H}^{r}\left(\Omega_{j}\right), j=1, \cdots, J\right\}$.

- Theorem [Costabel-Dauge-Nicaise'99]: Assume that ε, μ are piecewise constant. $\left.\left.\exists \delta_{\max }^{D i r}, \delta_{\max }^{N e u} \in\right] 0,1\right]$ s.t.

$$
\mathcal{X}_{N}(\Omega, \varepsilon) \subset \boldsymbol{P H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{\text {Dir }}\left[\quad \text { and } \quad \mathcal{X}_{T}(\Omega, \mu) \subset \boldsymbol{P H}^{\delta}(\Omega), \forall \delta \in\left[0, \delta_{\max }^{N e u}[.\right.\right.\right.
$$

- If $\delta_{\max }:=\min \left(\delta_{\max }^{D i r}, \delta_{\max }^{N e u}\right)>1 / 2$ then one can use the previous results, since the edge element interpolation results hold element-by-element.
For instance:
- Ω is convex, and the maximal number of adjacent subdomains is equal to two ;
- case of separated inclusions: $\exists j$ s.t. $\partial \Omega \subset \partial \Omega_{j}$, and the maximal number of adjacent subdomains is equal to two.

Numerics

- Numerical example: stationary problem.
$\varepsilon=\mu=1$ in the unit cube Ω, with smooth solution $(\boldsymbol{f} \neq 0, g \neq 0)$:

$$
\boldsymbol{E}_{e x}=\left(\begin{array}{l}
x_{1} x_{2} x_{3}\left(1-x_{2}\right)\left(1-x_{3}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{3}\right)\left(1-x_{1}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{1}\right)\left(1-x_{2}\right)
\end{array}\right)
$$

Numerics

- Numerical example: stationary problem.
$\varepsilon=\mu=1$ in the unit cube Ω, with smooth solution $(\boldsymbol{f} \neq 0, g \neq 0)$:

$$
\boldsymbol{E}_{e x}=\left(\begin{array}{l}
x_{1} x_{2} x_{3}\left(1-x_{2}\right)\left(1-x_{3}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{3}\right)\left(1-x_{1}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{1}\right)\left(1-x_{2}\right)
\end{array}\right)
$$

- $\left(\mathcal{T}_{h}\right)_{h}$ based on an initial mesh refined uniformly (5 levels: 1,516 dof to 7,266,496 dof).

Numerics

- Numerical example: stationary problem.
$\varepsilon=\mu=1$ in the unit cube Ω, with smooth solution $(\boldsymbol{f} \neq 0, g \neq 0)$:

$$
\boldsymbol{E}_{e x}=\left(\begin{array}{l}
x_{1} x_{2} x_{3}\left(1-x_{2}\right)\left(1-x_{3}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{3}\right)\left(1-x_{1}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{1}\right)\left(1-x_{2}\right)
\end{array}\right)
$$

- $\left(\mathcal{T}_{h}\right)_{h}$ based on an initial mesh refined uniformly (5 levels: 1,516 dof to 7,266,496 dof).
- One has to solve two direct problems (one in Q_{h}, one in \mathcal{V}_{h}) instead of a mixed one.

Numerics

- Numerical example: stationary problem.
$\varepsilon=\mu=1$ in the unit cube Ω, with smooth solution $(\boldsymbol{f} \neq 0, g \neq 0)$:

$$
\boldsymbol{E}_{e x}=\left(\begin{array}{l}
x_{1} x_{2} x_{3}\left(1-x_{2}\right)\left(1-x_{3}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{3}\right)\left(1-x_{1}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{1}\right)\left(1-x_{2}\right)
\end{array}\right)
$$

- $\left(\mathcal{T}_{h}\right)_{h}$ based on an initial mesh refined uniformly (5 levels: 1,516 dof to 7,266,496 dof).
- One has to solve two direct problems (one in Q_{h}, one in \mathcal{V}_{h}) instead of a mixed one.
- Pb in \mathcal{V}_{h} is solved iteratively (bi-CGSTAB), with the [Hiptmair-Xu'07] preconditioner.

Numerics

- Numerical example: stationary problem.
$\varepsilon=\mu=1$ in the unit cube Ω, with smooth solution $(f \neq 0, g \neq 0)$:

$$
\boldsymbol{E}_{e x}=\left(\begin{array}{l}
x_{1} x_{2} x_{3}\left(1-x_{2}\right)\left(1-x_{3}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{3}\right)\left(1-x_{1}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{1}\right)\left(1-x_{2}\right)
\end{array}\right)
$$

- $\left(\mathcal{T}_{h}\right)_{h}$ based on an initial mesh refined uniformly (5 levels: 1,516 dof to 7,266,496 dof).
- One has to solve two direct problems (one in Q_{h}, one in \mathcal{V}_{h}) instead of a mixed one.
- Pb in \mathcal{V}_{h} is solved iteratively (bi-CGSTAB), with the [Hiptmair-Xu'07] preconditioner.
- Computations have been carried out with the COMSOL Multiphysics.

Numerics

- Numerical example: stationary problem.
$\varepsilon=\mu=1$ in the unit cube Ω, with smooth solution $(\boldsymbol{f} \neq 0, g \neq 0)$:

$$
\boldsymbol{E}_{e x}=\left(\begin{array}{l}
x_{1} x_{2} x_{3}\left(1-x_{2}\right)\left(1-x_{3}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{3}\right)\left(1-x_{1}\right) \\
x_{1} x_{2} x_{3}\left(1-x_{1}\right)\left(1-x_{2}\right)
\end{array}\right)
$$

- $\left(\mathcal{T}_{h}\right)_{h}$ based on an initial mesh refined uniformly (5 levels: 1,516 dof to 7,266,496 dof).
- One has to solve two direct problems (one in Q_{h}, one in \mathcal{V}_{h}) instead of a mixed one.
- Pb in \mathcal{V}_{h} is solved iteratively (bi-CGSTAB), with the [Hiptmair-Xu'07] preconditioner.
- Computations have been carried out with the COMSOL Multiphysics.
- One can choose $\delta=1$ for the convergence rates. So, one expects

$$
\begin{aligned}
& \left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h \\
& \left.\left.\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s} \text { for } s \in\right] 1 / 2,1\right] .
\end{aligned}
$$

Numerics - results

- For the $\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}$ error:

dashed line: $\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{L}^{2}(\Omega)}$; solid line: $\left\|\operatorname{curl}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{L^{2}(\Omega)}$; dotted lines: slope -1 .

Numerics - results

- $\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h$ is observed.
- For the $\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)}$ error, we recall that:
$\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left(\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\right)+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{E}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$.

Numerics - results

- $\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h$ is observed.
- For the $\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)}$ error, we recall that:
$\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left(\|\boldsymbol{f}\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\right)+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{E}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$.
So, one has to observe that $\eta_{h}:=\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{E}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} \lesssim h^{1 / 2}$.

Numerics - results

- $\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h$ is observed.
- For the $\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)}$ error, we recall that:
$\left\|\operatorname{div}\left(\boldsymbol{E}-\boldsymbol{E}_{h}\right)\right\|_{H^{-s}(\Omega)} \lesssim h^{s}\left(\|\boldsymbol{f}\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\right)+h^{s-1 / 2}\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{E}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2}$.
So, one has to observe that $\eta_{h}:=\left(\sum_{f \in \mathcal{F}_{h}}\left\|\left[\varepsilon \boldsymbol{E}_{h} \cdot \boldsymbol{n}\right]\right\|_{L^{2}(f)}^{2}\right)^{1 / 2} \lesssim h^{1 / 2}$.

solid line: η_{h};
dotted line: slope $-1 / 2$.

Conclusions

- Discrete ε-divergence free elements have "small" || $\left.\left.\operatorname{div} \varepsilon \cdot \|_{H^{-s}(\Omega)}(s \in] 1 / 2,1\right]\right)$.

Conclusions

- Discrete ε-divergence free elements have "small" ||div $\left.\left.\varepsilon \cdot \|_{H^{-s}(\Omega)}(s \in] 1 / 2,1\right]\right)$.
- The time-harmonic, stationary/static and time-dependent Maxwell problems can be analyzed for "smooth", positive coefficients ε, μ^{-1}.

Conclusions

- Discrete ε-divergence free elements have "small" \| $\left.\left.\|\operatorname{div} \varepsilon \cdot\|_{H^{-s}(\Omega)}(s \in] 1 / 2,1\right]\right)$.
- The time-harmonic, stationary/static and time-dependent Maxwell problems can be analyzed for "smooth", positive coefficients ε, μ^{-1}.
- For the stationary/static problem, there is no need to solve a mixed problem.

Conclusions

- Discrete ε-divergence free elements have "small" ||div $\left.\left.\varepsilon \cdot \|_{H^{-s}(\Omega)}(s \in] 1 / 2,1\right]\right)$.
- The time-harmonic, stationary/static and time-dependent Maxwell problems can be analyzed for "smooth", positive coefficients ε, μ^{-1}.
- For the stationary/static problem, there is no need to solve a mixed problem.
- The same results can be obtained in some configurations when the coefficients ε, μ are piecewise constant: in particular, the case of separated inclusions is covered.

