Dispersive and dissipative errors in the DPG method
with scaled norms for Helmholtz equation
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Overview

o Helmholtz equation on 2 c R"

A - w2 = f ~ A, ) = (@%B:ﬁv-%) - (?)

Assume that the wavenumber w is not a resonant frequency.

o When ¢ is a plane wave, the DPG method's approximation (&, ¢p)
satisfies
|G =Gl + - nl < Cw?h,

(Demkowicz, Gopalakrishnan, Muga, Zitelli).
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The e-DPG method
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The e-DPG method
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The e-DPG method
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Effect of ¢

Compare wavevectors k and kp, in propagation direction 6,
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k=wl| . and kh = Wh . .
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The boundary value problem

Helmholtz wave operator
A: H(div, 2) x HY(2) - L2 ()N x 12(2)

A(V,m) = (v + Vn,wn +V - V)
Let R = H(div, 2) x H}(£2) and consider the BVP:

Find (U, ¢) € R satisfying A(d,¢) = f

for a given f e L2(2)N x [2(02).
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The “broken” space

For a disjoint partition {2 = UKEQhR with 0K Lipschitz, let
V = H(div, £2,) x H(£2),
where

H(div, 2;) = {7 : 7|k € H(div, K), VK € 2;},
HY(024) = {v: vl € HY(K), VK € 12;,}.

Define A : V — L2(2)N x [2(02) by

An(V, )|k = (wV|k + Vnlk, fwn|k + V - V|k).
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Derivation of an ultraweak formulation

The equation A(U,¢) = f of the BVP can be expressed as

_<(D7¢)’Ah(vvn)>h + <<trh(a7¢)7 (Vﬂ])»h = (iu (Vﬂ?))h 7V(V?77) eV.

Notation:
<(W7w)7(v7n))h:K§h\/KW'V+wﬁ7
(). @da= 3 [ Gy [ o).

try : H(div, 2) x HY(Q) - I l"/_l/z(aK)F7 X Hl/Z(aK)
K

tr(W,¥) ok = (W - 1) lok, Y]ox) € H2(OK) A x HY?(9K).
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Derivation of an ultraweak formulation

The equation A(U,¢) = f of the BVP can be expressed as

_<(av¢)7Ah(Vv77)>h + <<trh(av¢)7 (V’n)»h = <£7 (Vﬂ?))h ,V(V,?]) eV.

—_—
Replace with an independent unknown (1, ¢) € Q = trp(R).
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Derivation of an ultraweak formulation

The equation A(U,¢) = f of the BVP can be expressed as

_<(av¢)7Ah(Vv77)>h + <<trh(av¢)7 (V’n)»h = <£7 (Vﬂ?))h ,V(V,?]) eV.

—_—

Replace with an independent unknown (@1, ) € Q = try(R).

Bilinear form:
b((av¢7 i, (g)v (9777)) = _<(a7¢)7Ah(0777)>h + <<(fl, &)7 (0777)>>h

Ultraweak formulation: Find u= (U, ¢, ﬁ,gZA)) in

U=L2(2)VNx2(2)x Q

satisfying
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The e-DPG method

Let Up c U be finite dimensional. Find u;, € U satisfying
b(l'_lh »yVh ): <£7Mh )h7

for all v in the space
Vi, =T Uy,

where T : U — V is defined by
(Tw,v)y=b(w,v), VveV,
and the V-inner product (-,-)y is generated by the norm
IV 1 = [Anv [ + &%y 2.
Define U-norm

[(wo o, , )G = [ (w, ) 12+ (0, ) [
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The e-DPG method

Let Up c U be finite dimensional. Find u," € Uy satisfying

b(ghrazhr) = <£7Mhr)h7

r

for all v" in the space

V" = T"Up,
where T": U — V' c V is defined by
(T'w,v)v=b(w,v),  VveV,
and the V-inner product (-,-)y is generated by the norm
IV 1 = [Anv [ +&%v 2.
Define U-norm

[(wo o, , D) = [ (w, ) |2 + (0, ) [
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Theorem
Suppose there exists C(w) such that

I, 0)] < C@IAGE ), ¥(7,) e R.
Then the DPG solution admits the quasioptimal error estimate

lu—uplu

infwey, [u-wlu

with ¢ = C(w) (C(w)e/2+\/T+ C(w)22]4).

This follows from

<l+ce,

b(w,v
Culy [ < sup 120l

<Glvfv,  VveV.
wev  [wlu

Working out the e-dependence of the norms, we conclude that the DPG

errors for fluxes and traces admit a better bound for smaller <.
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Numerical experiment

The theorem gives
lu-upllu
infweu, [u-wlu

<l+ce.

We compute the ratio

( [ - a2+ |6 - &2 )”2

inf(.4.00)cu, 10 = W[+ o -2

and expect it to be closer to 1 for smaller €.
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Numerical experiment

o For a range of wavenumbers w, compute

- - r r 12
( o — G52 + |6 - 052 )/

inf(,0.0,0)eu, |0 = W[+ ¢ -2

o Data f = (0, f) such that ¢ = x(1 - x)y(1-y) on the unit square.

o Near resonant frequencies, C(w) blows up.

w=mVm?+n? | Excited?
77\/5 ~ 4.4 yes
77\/5 ~7.0 no
7T\/§ ~ 8.9 no
/13~ 11.3 no
/18 ~ 13.3 yes

o Compare ratio plots for various values of ¢ (with h=1/16, r = 3 fixed).
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Regularizing effect of e-DPG

1/2
o2 r|2
. u-—-u + —
The ratio & = | — A 4‘|¢4¢2”” 5 near a resonance.
a inf (,,0,0)euy, |0 -W[*+[d=1]
14
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Computing lowest order method

Local matrix
B,"j = b(ej, Tre,-),

where {e;} spans
{(w, ) : w and v constant functions on K}

x{(n?v,@) : W constant on each edge of 9K, 1) piece-

wise linear and continuous on each edge of K}
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Computing lowest order method

Local matrix
B,"j = b(ej, Tre,-),
where {e;} spans
{(w, ) : w and v constant functions on K}

x{(n?v,@) : W constant on each edge of 9K, 1) piece-

wise linear and continuous on each edge of K}

~r

Eliminate interior variables to obtain 8 x 8 condensed matrix.
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Dispersion analysis

o Goal is to compute the numerical wave vector for a discrete
approximation to a plane wave propagating over an infinite lattice.

o The discrete method may propagate faster or slower than the true
wave speed. We compare

p () p ()
o] a0

o The real and imaginary parts of wp —w measure numerical dispersion
and dissipation, respectively.

o Approach adapted from Deraemaeker, Babugka, and Brouillard.
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Fort=1,2,3:
o Consider the t'" stencil centered at the origin.

o Denote stencil nodes as U3_; {jh: j€ Js}, where Js c (Z/2)? locates

nodes of type s within the stencil.
o Apply the stencil to the solution values

Y15 = on(%) V%; € (hZ)?,
V25 = Un(X5) V; € (hZ+ h|2) x hZ,
V3,5 = Un(X5) V%; € hZ x (hZ + h/2).

3
Y. 2 Desjths;
s=1

€Js

Sy
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Fort=1,2,3:
o Consider the stencil centered at the origin.
o Denote stencil nodes as U3_; {jh: j€ Js}, where Js c (Z/2)? locates
nodes of type s within the stencil.
o Apply the stencil to the solution values

tth

wl,j = éh(;{j) = a]_eikh.;(j V}j € (hz)z’
Vo= (%)) = 2™ V% € (hZ+ hj2) x hZ,
V3,7 = Dy(%5) = age™% V% € hZ x (hZ+ hJ2).
o Suppose the DPG solution interpolates a plane wave
3
Z Z Dt757j¢575 = 0
s=1jeJs
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Dependence on ¢

DPG wavevectors for propagation angles 0 to 90 degrees

0.2H — Exact wave speed
- e=0.1
0.1{{ €=0.01
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Dependence on ¢

Wavevectors for DPG, least squares, and FEM

0.3f : SRR LIS S W
——exact wave speed -
0211~ - -DPG (e=1e-06) wave speed |

-~ bilinear FEM wave speed : L
0.1f biquadratic FEM wave speed AR
0 - least squares wave speed , : !
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Dependence on ¢ and r

Plots of maxg |Re(wp(0)) — w|

Case of 8 elements per wave Odd r zoomed in for small e Even r zoomed in for very small e
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Dependence on ¢ and r

Plots of 1 = maxg [Im(wp(6))|

Case of 8 elements per wave Odd r zoomed in for small e Even r zoomed in for very small e
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Dependence on w

Olivares (Portland State U.)

Convergence of o, h
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Dependence on w

Olivares (Portland State U.)

Comparison of three methods

- —e— bilinear FEM
: ——lowest order LS
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Real part

Im(u)h h)
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Imaginary part
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Conclusions

For the lowest order DPG method:

Qo

o

Both dispersive and dissipative errors exist.

Solutions have higher accuracy than an L%-based least-squares
method with a stencil of identical size.

Errors do not compare favorably with a standard (higher order) finite
element method having a stencil of the same size.

There is theoretical justification for considering the e-modified DPG
method.

Topics for further study include:

o

A theoretical explanation of the discrete effects that cause the errors
to continually decrease as € — 0 only for the case of odd enrichment
degree r.
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