Dispersive and dissipative errors in the DPG method with scaled norms for Helmholtz equation

Jay Gopalakrishnan ${ }^{1}$ Ignacio Muga ${ }^{2}$ Nicole Olivares ${ }^{1}$
${ }^{1}$ Portland State University, Portland, Oregon
${ }^{2}$ Universidad de Valparaíso, Chile

17 July 2013

This work was partially supported by the NSF and by the AFOSR.
(1) Overview

(2) Details

- The DPG method
- Ultraweak formulation
- Introduction of ε
- Analysis
- Quasioptimal error estimate
- Numerical illustration
- Dispersion analysis
(3) Conclusions

Overview

- Helmholtz equation on $\Omega \subset \mathbb{R}^{n}$

$$
-\Delta \phi-\omega^{2} \phi=\hat{\imath} \omega f \quad \sim \quad A(\vec{u}, \phi)=\binom{\hat{\imath} \omega \vec{u}+\vec{\nabla} \phi}{\imath \imath \omega \phi+\vec{\nabla} \cdot \vec{u}}=\binom{\overrightarrow{0}}{f}
$$

Assume that the wavenumber ω is not a resonant frequency.

- When ϕ is a plane wave, the DPG method's approximation $\left(\vec{u}_{h}, \phi_{h}\right)$ satisfies

$$
\left\|\vec{u}-\vec{u}_{h}\right\|+\left\|\phi-\phi_{h}\right\| \leq C \omega^{2} h,
$$

(Demkowicz, Gopalakrishnan, Muga, Zitelli).

The ε-DPG method

The ε-DPG method

The ε-DPG method

Effect of ε

Compare wavevectors \vec{k} and \vec{k}_{h} in propagation direction θ,

$$
\vec{k}=\omega\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \text { and } \vec{k}_{h}=\omega_{h}\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] .
$$

(2) Details

- The DPG method
- Ultraweak formulation
- Introduction of ε
- Analysis
- Quasioptimal error estimate
- Numerical illustration
- Dispersion analysis

(3) Conclusions

The boundary value problem

Helmholtz wave operator

$$
\begin{gathered}
A: H(\operatorname{div}, \Omega) \times H^{1}(\Omega) \rightarrow L^{2}(\Omega)^{N} \times L^{2}(\Omega) \\
A(\vec{v}, \eta)=(\hat{\imath} \omega \vec{v}+\vec{\nabla} \eta, \hat{\imath} \omega \eta+\vec{\nabla} \cdot \vec{v})
\end{gathered}
$$

Let $R=H(\operatorname{div}, \Omega) \times H_{0}^{1}(\Omega)$ and consider the BVP:
Find $(\vec{u}, \phi) \in R$ satisfying $A(\vec{u}, \phi)=\underline{f}$
for a given $\underline{f} \in L^{2}(\Omega)^{N} \times L^{2}(\Omega)$.

The "broken" space

For a disjoint partition $\bar{\Omega}=\cup_{K \in \Omega_{h}} \bar{K}$ with ∂K Lipschitz, let

$$
V=H\left(\operatorname{div}, \Omega_{h}\right) \times H^{1}\left(\Omega_{h}\right),
$$

where

$$
\begin{aligned}
H\left(\operatorname{div}, \Omega_{h}\right) & =\left\{\vec{\tau}:\left.\vec{\tau}\right|_{K} \in H(\operatorname{div}, K), \forall K \in \Omega_{h}\right\}, \\
H^{1}\left(\Omega_{h}\right) & =\left\{v:\left.v\right|_{K} \in H^{1}(K), \forall K \in \Omega_{h}\right\} .
\end{aligned}
$$

Define $A_{h}: V \rightarrow L^{2}(\Omega)^{N} \times L^{2}(\Omega)$ by

$$
\left.A_{h}(\vec{v}, \eta)\right|_{K}=\left(\left.\hat{\imath} \omega \vec{v}\right|_{K}+\left.\vec{\nabla} \eta\right|_{K},\left.\hat{\imath} \omega \eta\right|_{K}+\left.\vec{\nabla} \cdot \vec{v}\right|_{K}\right) .
$$

Derivation of an ultraweak formulation

The equation $A(\vec{u}, \phi)=\underline{f}$ of the BVP can be expressed as

$$
-\left\langle(\vec{u}, \phi), A_{h}(\vec{v}, \eta)\right\rangle_{h}+\left\langle\left\langle\operatorname{tr}_{h}(\vec{u}, \phi),(\vec{v}, \eta)\right\rangle_{h}=\langle\underline{f},(\vec{v}, \eta)\rangle_{h} \quad, \forall(\vec{v}, \eta) \in V .\right.
$$

Notation:

$$
\begin{gathered}
\langle(\vec{w}, \psi),(\vec{v}, \eta)\rangle_{h}=\sum_{K \in \Omega_{h}} \int_{K} \vec{w} \cdot \overline{\vec{v}}+\psi \bar{\eta}, \\
\langle(\vec{w}, \psi),(\vec{v}, \eta)\rangle\rangle_{h}=\sum_{K \in \Omega_{h}} \int_{\partial K}(\vec{w} \cdot \vec{n}) \bar{\eta}+\int_{\partial K} \psi \overline{(\vec{v} \cdot \vec{n})} \\
\operatorname{tr}_{h}: H(\operatorname{div}, \Omega) \times H^{1}(\Omega) \rightarrow \prod_{K} H^{-1 / 2}(\partial K) \vec{n} \times H^{1 / 2}(\partial K) \\
\left.\operatorname{tr}_{h}(\vec{w}, \psi)\right|_{\partial K}=\left(\left.(\vec{w} \cdot \vec{n}) \vec{n}\right|_{\partial K},\left.\psi\right|_{\partial K}\right) \in H^{-1 / 2}(\partial K) \vec{n} \times H^{1 / 2}(\partial K) .
\end{gathered}
$$

Derivation of an ultraweak formulation

The equation $A(\vec{u}, \phi)=\underline{f}$ of the BVP can be expressed as

$$
-\left\langle(\vec{u}, \phi), A_{h}(\vec{v}, \eta)\right\rangle_{h}+\langle\underbrace{\operatorname{tr}_{h}(\vec{u}, \phi)},(\vec{v}, \eta)\rangle_{h}=\langle\underline{f},(\vec{v}, \eta)\rangle_{h} \quad, \forall(\vec{v}, \eta) \in V .
$$

Replace with an independent unknown $(\hat{u}, \hat{\phi}) \in Q=\operatorname{tr}_{h}(R)$.

Derivation of an ultraweak formulation

The equation $A(\vec{u}, \phi)=\underline{f}$ of the BVP can be expressed as

$$
-\left\langle(\vec{u}, \phi), A_{h}(\vec{v}, \eta)\right\rangle_{h}+\langle\underbrace{\operatorname{tr}_{h}(\vec{u}, \phi)},(\vec{v}, \eta)\rangle_{h}=\langle\underline{f},(\vec{v}, \eta)\rangle_{h} \quad, \forall(\vec{v}, \eta) \in V .
$$

Replace with an independent unknown $(\hat{u}, \hat{\phi}) \in Q=\operatorname{tr}_{h}(R)$.
Bilinear form:

$$
b((\vec{u}, \phi, \hat{u}, \hat{\phi}),(\vec{v}, \eta))=-\left\langle(\vec{u}, \phi), A_{h}(\vec{v}, \eta)\right\rangle_{h}+\left\langle\langle(\hat{u}, \hat{\phi}),(\vec{v}, \eta)\rangle_{h} .\right.
$$

Ultraweak formulation: Find $\underline{u}=(\vec{u}, \phi, \hat{u}, \hat{\phi})$ in

$$
U=L^{2}(\Omega)^{N} \times L^{2}(\Omega) \times Q
$$

satisfying

$$
b(\underline{u}, \underline{v})=\langle\underline{f}, \underline{v}\rangle_{h} \quad, \forall \underline{v}=(\vec{v}, \eta) \in V .
$$

The ε-DPG method

Let $U_{h} \subset U$ be finite dimensional. Find $\underline{u}_{h} \in U_{h}$ satisfying

$$
b\left(\underline{u}_{h}, \underline{v}_{h}\right)=\left\langle\underline{f}, \underline{v}_{h}\right\rangle_{h},
$$

for all \underline{v}_{h} in the space

$$
V_{h}=T U_{h},
$$

where $T: U \rightarrow V$ is defined by

$$
\langle T \underline{w}, \underline{v}\rangle_{V}=b(\underline{w}, \underline{v}), \quad \forall \underline{v} \in V,
$$

and the V-inner product $\langle\cdot, \cdot\rangle_{V}$ is generated by the norm

$$
\|\underline{v}\|_{V}^{2}=\left\|A_{h} \underline{v}\right\|^{2}+\varepsilon^{2}\|\underline{v}\|^{2} .
$$

Define U-norm

$$
\|(w, \psi, \hat{w}, \hat{\psi})\|_{U}^{2}=\|(w, \psi)\|^{2}+\|(\hat{w}, \hat{\psi})\|_{Q}^{2} .
$$

The ε-DPG method

Let $U_{h} \subset U$ be finite dimensional. Find $\underline{\underline{u}}_{h}{ }^{r} \in U_{h}$ satisfying

$$
b\left(\underline{u}_{h}^{r}, \underline{v}_{h}^{r}\right)=\left\langle\underline{f}, \underline{v}_{h}^{r}\right\rangle_{h},
$$

for all $\underline{v}_{h}{ }^{r}$ in the space

$$
V_{h}^{r}=T^{r} U_{h},
$$

where $T^{r}: U \rightarrow V^{r} \subset V$ is defined by

$$
\left\langle T^{r} \underline{w}, \underline{v}\right\rangle_{V}=b(\underline{w}, \underline{v}), \quad \forall \underline{v} \in V^{r},
$$

and the V-inner product $\langle\cdot, \cdot\rangle_{V}$ is generated by the norm

$$
\|\underline{v}\|_{V}^{2}=\left\|A_{h} \underline{v}\right\|^{2}+\varepsilon^{2}\|\underline{v}\|^{2} .
$$

Define U-norm

$$
\|(w, \psi, \hat{w}, \hat{\psi})\|_{U}^{2}=\|(w, \psi)\|^{2}+\|(\hat{w}, \hat{\psi})\|_{Q}^{2} .
$$

Theorem

Suppose there exists $C(\omega)$ such that

$$
\|(\vec{r}, \psi)\| \leq C(\omega)\|A(\vec{r}, \psi)\|, \quad \forall(\vec{r}, \psi) \in R
$$

Then the DPG solution admits the quasioptimal error estimate

$$
\frac{\left\|\underline{u}-\underline{u}_{h}\right\|_{U}}{\inf _{\underline{w} \in U_{h}}\|\underline{u}-\underline{w}\|_{U}} \leq 1+c \varepsilon,
$$

with $c=C(\omega)\left(C(\omega) \varepsilon / 2+\sqrt{1+C(\omega)^{2} \varepsilon^{2} / 4}\right)$.
This follows from

$$
C_{1}\|\underline{v}\| v \leq \sup _{\underline{w} \in U} \frac{|b(\underline{w}, \underline{v})|}{\|\underline{w}\|_{U}} \leq C_{2}\|\underline{v}\| v, \quad \forall \underline{v} \in V .
$$

Working out the ε-dependence of the norms, we conclude that the DPG errors for fluxes and traces admit a better bound for smaller ε.

Numerical experiment

The theorem gives

$$
\frac{\left\|\underline{u}-\underline{u}_{h}\right\|_{U}}{\inf _{\underline{w} \in U_{h}}\|\underline{u}-\underline{w}\|_{U}} \leq 1+c \varepsilon .
$$

We compute the ratio

$$
\left(\frac{\left\|\vec{u}-\vec{u}_{h}^{r}\right\|^{2}+\left\|\phi-\phi_{h}^{r}\right\|^{2}}{\inf _{(\vec{w}, \psi, 0,0) \in U_{h}}\|\vec{u}-\vec{w}\|^{2}+\|\phi-\psi\|^{2}}\right)^{1 / 2}
$$

and expect it to be closer to 1 for smaller ε.

Numerical experiment

- For a range of wavenumbers ω, compute

$$
\left(\frac{\left\|\vec{u}-\vec{u}_{h}^{r}\right\|^{2}+\left\|\phi-\phi_{h}^{r}\right\|^{2}}{\inf _{(\vec{w}, \psi, 0,0) \in U_{h}}\|\vec{u}-\vec{w}\|^{2}+\|\phi-\psi\|^{2}}\right)^{1 / 2}
$$

- Data $\underline{f}=(\overrightarrow{0}, f)$ such that $\phi=x(1-x) y(1-y)$ on the unit square.
- Near resonant frequencies, $C(\omega)$ blows up.

$\omega=\pi \sqrt{m^{2}+n^{2}}$	Excited?
$\pi \sqrt{2} \approx 4.4$	yes
$\pi \sqrt{5} \approx 7.0$	no
$\pi \sqrt{8} \approx 8.9$	no
$\pi \sqrt{13} \approx 11.3$	no
$\pi \sqrt{18} \approx 13.3$	yes

- Compare ratio plots for various values of ε (with $h=1 / 16, r=3$ fixed).

Regularizing effect of ε-DPG

Computing lowest order method

Local matrix

$$
B_{i, j}=b\left(e_{j}, T^{r} e_{i}\right),
$$

where $\left\{e_{i}\right\}$ spans
$\{(\vec{w}, \psi): \vec{w}$ and ψ constant functions on $K\}$
$\times\{(\hat{w}, \hat{\psi}): \hat{w}$ constant on each edge of $\partial K, \hat{\psi}$ piecewise linear and continuous on each edge of $\partial K\}$

Computing lowest order method

Local matrix

$$
B_{i, j}=b\left(e_{j}, T^{r} e_{i}\right),
$$

where $\left\{e_{i}\right\}$ spans
$\{(\vec{w}, \psi): \vec{w}$ and ψ constant functions on $K\}$
$\times\{(\hat{w}, \hat{\psi}): \hat{w}$ constant on each edge of $\partial K, \hat{\psi}$ piecewise linear and continuous on each edge of $\partial K\}$

Eliminate interior variables to obtain 8×8 condensed matrix.

Dispersion analysis

- Goal is to compute the numerical wave vector for a discrete approximation to a plane wave propagating over an infinite lattice.
- The discrete method may propagate faster or slower than the true wave speed. We compare

$$
\vec{k}=\omega\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \quad \text { and } \quad \vec{k}_{h}=\omega_{h}\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] .
$$

- The real and imaginary parts of $\omega_{h}-\omega$ measure numerical dispersion and dissipation, respectively.
- Approach adapted from Deraemaeker, Babuška, and Brouillard.

For $t=1,2,3$:

- Consider the $t^{\text {th }}$ stencil centered at the origin.
- Denote stencil nodes as $\bigcup_{s=1}^{3}\left\{\vec{\jmath} h: \vec{\jmath} \in J_{s}\right\}$, where $J_{s} \subset(\mathbb{Z} / 2)^{2}$ locates nodes of type s within the stencil.
- Apply the stencil to the solution values

$$
\begin{array}{lc}
\psi_{1, \vec{\jmath}}=\hat{\phi}_{h}\left(\vec{x}_{\vec{\jmath}}\right) & \forall \vec{x}_{\vec{\jmath}} \in(h \mathbb{Z})^{2} \\
\psi_{2, \vec{\jmath}}=\hat{u}_{h}\left(\vec{x}_{\vec{\jmath}}\right) & \forall \vec{x}_{\vec{\jmath}} \in(h \mathbb{Z}+h / 2) \times h \mathbb{Z}, \\
\psi_{3, \vec{\jmath}}=\hat{u}_{h}\left(\vec{x}_{\vec{\jmath}}\right) & \forall \vec{x}_{\vec{\jmath}} \in h \mathbb{Z} \times(h \mathbb{Z}+h / 2) \\
\sum_{s=1}^{3} \sum_{\vec{\jmath} \in J_{s}} D_{t, s, \vec{\jmath}} \psi_{s, \vec{\jmath}}
\end{array}
$$

For $t=1,2,3$:

- Consider the $t^{\text {th }}$ stencil centered at the origin.
- Denote stencil nodes as $\bigcup_{s=1}^{3}\left\{\vec{\jmath} h: \vec{\jmath} \in J_{s}\right\}$, where $J_{s} \subset(\mathbb{Z} / 2)^{2}$ locates nodes of type s within the stencil.
- Apply the stencil to the solution values

$$
\begin{array}{ll}
\psi_{1, \vec{j}}=\hat{\phi}_{h}\left(\vec{x}_{\vec{j}}\right)=a_{1} e^{i \vec{\imath}_{h} \cdot \vec{x}_{j}} & \forall \vec{x}_{\vec{j}} \in(h \mathbb{Z})^{2}, \\
\psi_{2, \vec{j}}=\hat{u}_{h}\left(\vec{x}_{j}\right)=a_{2} e^{i \vec{k}_{h} \cdot \vec{x}_{j}} & \forall \vec{x}_{\vec{j}} \in(h \mathbb{Z}+h / 2) \times h \mathbb{Z}, \\
\psi_{3, \vec{j}}=\hat{u}_{h}\left(\vec{x}_{\vec{j}}\right)=a_{3} e^{i \vec{k}_{h} \cdot \vec{x}_{j}} & \forall \vec{x}_{j} \in h \mathbb{Z} \times(h \mathbb{Z}+h / 2) .
\end{array}
$$

- Suppose the DPG solution interpolates a plane wave

$$
\sum_{s=1}^{3} \sum_{\vec{j} \in J_{s}} D_{t, s, \vec{j}} \psi_{s, \vec{j}}=0
$$

Dependence on θ

DPG wavevectors for propagation angles 0 to 90 degrees

Dependence on θ

Dependence on ε and r

Plots of $\max _{\theta}\left|\operatorname{Re}\left(\omega_{h}(\theta)\right)-\omega\right|$

Dependence on ε and r

Plots of $\eta=\max _{\theta}\left|\operatorname{Im}\left(\omega_{h}(\theta)\right)\right|$

Odd r zoomed in for small ε

Even r zoomed in for very small ε

Dependence on ω

Dependence on ω

Comparison of three methods

Conclusions

For the lowest order DPG method:

- Both dispersive and dissipative errors exist.
- Solutions have higher accuracy than an L^{2}-based least-squares method with a stencil of identical size.
- Errors do not compare favorably with a standard (higher order) finite element method having a stencil of the same size.
- There is theoretical justification for considering the ε-modified DPG method.
Topics for further study include:
- A theoretical explanation of the discrete effects that cause the errors to continually decrease as $\varepsilon \rightarrow 0$ only for the case of odd enrichment degree r.

