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Which Equation is the Helmholtz Equation?

(A+Kk2u=f or
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Which Equation is the Helmholtz Equation? NABC L
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Sweeping Preconditioner ABC, PML

Martin J. Gander

Enquist, Ying 2010: Sweeping Preconditioner for the
Helmholtz Equation

“The paper introduces the sweeping preconditioner, which is Sweeping
highly efficient for iterative solutions of the variable

coefficient Helmholtz equation including very high frequency
problems. The first central idea of this novel approach is to
construct an approximate factorization of the discretized

Helmholtz equation by sweeping the domain layer by layer,

starting from an absorbing layer or boundary condition.”

T2 L T2
zero Dirichlet zero Dirichlet
PML PML PML PML
0 > 0 -

O pmML 1 ® O pML I @



Numerical Experiment (Enquist, Ying 2010)

x 10 x 107
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4 3
4
2
Test 1 Test 2
w/(zﬂ—) qg N= n? Tsetup Niter Teolve Niter Taolve
5 8 393 4.80e+00 | 11  4.53e+00 | 11  4.63e+00
10 8 793 6.37e+01| 11  4.92e+01 | 11  4.93e4+01
20 8 1593 8.27e+02 | 12  5.53e+02 | 12 5.94e+02
o = = E = wace
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Source Transfer Domain Decomposition

Chen, Xiang 2012: A Source Transfer Domain
Decomposition Method for Helmholtz Equations in
Unbounded Domain

"The method is based on the decomposition of the domain
into non-overlapping layers and the idea of source transfer
which transfers the sources equivalently layer by layer so that
the solution in the final layer can be solved using a PML
method defined locally outside the last two layers.”

ALGORITHM 2.1. (SOURCE TRANSFER FOR PML PROBLEM IN R?)
1° Let fi = fi in R?; . )
2° Fori=1,2,--- . N =2, compute fir1 = fir1+ Wir1([fi), where

J_lv . (AV(.H;E_._J_’JH)) = kg (.H,,-Huz—) in Q'[+l-

\D-H-l(f'i) = { 0 in RQ\Qi—O—le

and w; is given by

wi() = ]2 Fiw)Cla,y)dy.

AILU, SP, DD,
ABC, PML

Martin J. Gander

Source Transfer
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Numerical Experiment (Chen, Xiang 2012) ABC, PIL

Martin J. Gander

k21 [ q | DOF | Nier | Tootoe

30 10 | 3002 |5 2.43

60 10 6002 o 9.77 Source Transfer
120 10 | 1200% | 6 44.58

240 10 | 24002 | 7 225.15

480 10 | 48007 | 8 1122.37

960 10 | 96007 | 12 8047.68

TABLE 4.1
Numerical results for different wave numbers k when g = 10, where Ny, is the number of
iterations of the preconditioned GMRES method and Ts,pye is the overall solution time in seconds.

J{J/Qﬂ‘ q NOF Niter Tsolve
30 20 | 6007 |3 8.11
60 20 | 12007 | 3 26.58
120 20 | 2400% | 4 127.94
240 20 | 48002 | 5 676.45

TaBLE 4.2
Numerical results for different wave numbers k when q = 20, where Nyjer is the number of
iterations of the preconditioned GMRES method and Ts,pye is the overall solution time in seconds.
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PML Domain Decomposition ABC, PML
Martin J. Gander

Stolk 2013: A rapidly converging domain decomposition

method for the Helmholtz equation

“A new domain decomposition method is introduced for the ST
heterogeneous 2-D and 3-D Helmholtz equations. e
Transmission conditions based on the perfectly matched layer

(PML) are derived that avoid artificial reflections and match

incoming and outgoing waves at the subdomain interfaces.”

“Our most remarkable finding concerns the situation where
the domain is split into many thin layers along one of the
axes, say J subdomains numbered from 1 to J. Following [3]
we will also call these quasi 2-D subdomains. Generally, an
increase in the number of subdomains leads to an increase in
the number of iterations required for convergence. Here we
propose and study a method where the number of iterations
is essentially independent of the number of subdomains.”



Numerical

Experiments (Stolk 2013)
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(a) o 5500
5000
4500
4000
3500
3000
2500
2000
L . | . . i i i 1500
(] 1000 2000 3000 4000 5000 6000 7000 8000 9000
x (m)
wavefield for Mamousi (om/{2r) = 50)
(b) o . . : . . . —
500 =
1000 ¥ 4
E 1500 -
>
2000 by ¥l b L
2500 —
3000 . . . . . . n . i
1000 2000 3000 4000 5000 6000 7000 8000 9000

X (m)

AILU, SP, DD,
ABC, PML

Martin J. Gander

PML Domain
Decomposition



AILU, SP, DD,

Numerical Experiments (Stolk 2013) ABC, L

Martin J. Gander

Table 2
Convergence results for Example 1. Displayed is the number of iterations for reduction of the residual by 10 ® as a function of the size of the domain and the

number of subdomains.

Ny Ny h (m) 2 (Hz) Number of x-subdomains
3 10 30 100 300 Swee
weeping
600 =212 16 125 4 5 G Source Transfer
1175 = 400 8 25 5 G 7 PML Domain
2325 % 775 4 50 6 6 7 9 Decomposition
4625 « 1525 2 100 6 6 7 8
9225 x 3025 1 200 7 8 9 13(8) (+)

= = Block Factorization
(] 13 was obtained for wyny = 5.8 for wym = 6. TBCs

Table 5 Optimal Schwarz
Comparison of convergence between Robin and PML-based transmission conditions for a constant medium.

Ny = Ny h = ] PML Robin
100 « 100 0.01 10 10 3 g Continuous
200 = 200 0.005 20 20 4 13 Discrete
400 = 400 0.0025 40 40 4 20
800 « 80D 0.00125 80 80 5 42
1600 » 1600 0.000625 160 160 7 103 AILU
Optimized Schwarz
Table 6
Comparison of convergence between Robin and PML-based transmission conditions for the random medium displayed in Fig. 3.
Nex N, h 2 J PML Robin
100 = 100 0.01 7.14 10 7 11
200 = 200 0.005 1429 20 6 14
400 = 400 0.0025 2857 40 6 20
800 =« 800 0.00125 57.14 B0 7 34
1600 = 1600 0.000625 1143 160 8 74
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What are these new Methods ? ABC. PML

Martin J. Gander

(A+KkHu=Ff inQ=(0,1) x (0,7)

y
U ® [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ® A\ Umm
= Block Factorization
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
i
[ ] [ [ ] [ ] [ ] [ ] [ ] [ ] [ [ ]
I
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
i
U1, ® [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ® | im
i
X
Dy Lip u; f,

Au ’ _ =
- o Lptn : .
Ln,n—l Dy Un fr
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Block Factorization ABC. PML

Martin J. Gander

Dy Lip
Ly D> L3
A = . .
Ln,n—l Dn
Tl / Tl_l L1’2 Block Factorization
| La T2 / T, o3
Ln,n—l 7_n /

T D= Lo T Lisy 1<i<on



Block Factorization

A=

)

D1 Lip
Ly D> L3

Ln,n—l Dn

Tt Tilio
Tt T
. -
P=1,

— LT Loy 1<i<n.

AILU, SP, DD,
ABC, PML

Martin J. Gander

Block Factorization

~

“~Lpn—1,n



Block Factorization

D1 Lip
Ly Dy Los
A = . .
Ln,n—l Dn
T1 Tt Tilip
(LT Tt T, "
. . - - . . . 1 Ln_17n
Ln,n—l Th Tn_ T,
"T U Di— LT Ly 1<i<on

For symmetric PDEs, this factorization is called the block
LDLT factorization

AILU, SP, DD,
ABC, PML

Martin J. Gander

Sweeping
Source Transfer

PML Domain

Decomposition

Block Factorization
TBCs

Optimal Schwarz
Discrete TBCs
Continuous
Discrete

AILU

Optimized Schwarz



AILU, SP, DD,

Forward and Backward Substitution ABC. PML

Martin J. Gander
Au=LDLTu=F — lv=Ff, LTu=D71v

Forward substitution:

Tl VAl f 1 Block Factorization
L2’1 T2 V2 f2
Ln,n— 1 Tn vV, fn
V1= Tl_ lf]_

vo=Ty Y (f2 — Lagvi) =T, *(fa — Loy Tl_lfl) = Tg_lfz
V3 = T?)_l(f3 — L372V2) = T_l(f3 — L372 T2_1f2) = T3_1f3

Source transfer: f; =f; — L; ;1 Tj__llfj_l and v, = u,




Transparent Boundary Conditions NABC L
For the model problem Martin J. Gander
m—ADAu = f in Q = (0,00) x (0,7)
u(x,0) =u(x,m) = 0
u0,y) = 0

with £ compactly supported in Qj,: = (0,1) x (0,7), and u
bounded at infinity.

y

TBCs

™

support
of f

0 1

In order to solve this problem on a computer, the
computational domain needs to be truncated at x = 1, and
an artificial boundary condition needs to be imposed.



Construction of Transparent Boundary Conditions
Based on the decomposition of Q = Q;, UTUQT

y
7r
Qint r Q+
X
0 1
and the equivalent coupled problems
(n—Ayw = f in Qine
Ov = 0wt onTl
v = v onTl
(n—A)wT =0 in QF

with homogeneous conditions at y =0 and y = 7.

AILU, SP, DD,
ABC, PML

Martin J. Gander

TBCs
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Equivalent Solution on Q;,; ABC, PAML
The problem on QT is independent of the source f. For any Wikxidin 4l @amdar
Dirichlet data g on ', we can solve it to obtain v (x,y,g).

Taking a normal derivative on ' we obtain

DtN(g) := 8Xv+(1,y,g).
We can thus solve only on €;,; the problem
TBCs

(U_A)V = f in Qint
Oxv = DtN(v) onTl

since this v is identical to the solution v of the coupled

problem
m—Ayw = f in Qine
Oxv = Ot onTl
v = v onTl
(n—A)wT = 0 in QF

DtN is called the Dirichlet to Neumann operator, and
Oxv — DtN(v) = 0 transparent boundary condition (TBC)
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An Optimal Schwarz Algorithm ABC, PML

Martin J. Gander

Based on the decomposition of 2 = Q; UT UQ,

y
™
Ql r Qg
0 1 2 X Optimal Schwarz
The optimal Schwarz algorithm is
(n—~Awf = f in Q4
Oxuf —DtNa(uf) = Ocuy ' —DtNy(ud™') onT
(n— A)Ug = f in 5

dxuf —DtNy(v§) = Oul ' —DtNy(u]™) onT

Result: This algorithm converges in two iterations,
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An Optimal Schwarz Algorithm ABC, PML
Based on the decomposition of Q = Q; UT U, Martin J. Gander

y

™

Mo |23 M3 |Ias
Q| QD Q3 Q| Qs

0 2 X Optimal Schwarz
The optimal Schwarz algorithm is
(n—A~A)uy = f in Q3
dxuf —DtNa(uf) = Oyub™' —DtNy(uj™t) onT
M=~ = f in Q5

dxuf —DtNy(v§) = Oul ' —DtNy(uf™) onT

Result: This algorithm converges in two iterations, and with
N subdomains in N iterations,
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An Optimal Schwarz Algorithm ABC, PML

Martin J. Gander

Based on the decomposition of 2 = Q; UT UQ,

y
s

Mo |23 M3 |Ias
Q| QD Q3 Q| Qs

0 2 X Optimal Schwarz
The optimal Schwarz algorithm is
(n—A~A)uy = f in Q3
dxuf —DtNa(uf) = Oyub™' —DtNy(uj™t) onT
M=~ = f in Q5

dxuf —DtNy(v§) = Oul ' —DtNy(uf™) onT

Result: This algorithm converges in two iterations, and with
N subdomains in N iterations, or in two when sweeping back
and forth once, independently of N.
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An Optimal Schwarz Algorithm ABC, PML

Martin J. Gander

Based on the decomposition of 2 = Q; UT UQ,

y
™
Q
Q3 r34
Q P!
(o2} M2
0 2 X Optimal Schwarz
The optimal Schwarz algorithm is
(n—A)uy = f in Q
Oxuf —DtNa(uf) = Oyub™' —DtNa(uj™t) onT
M=~y = f in Q

Oxuf —DtNy(v§) = Oul ' —DtNy(uf™) onT

Result: This algorithm converges in two iterations, and with
N subdomains in N iterations, or in two when sweeping back
and forth once, independently of N.
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Discrete Transparent Boundary Conditions ABC, ML

Au

(n—~A)u

Martin J. Gander

= f in Q = (0,00) x (0,7)

Discrete TBCs

Lp—1,p up-1 | = | fp1

. u
- p
Lp,p—l Dp,p : )
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Elimination of the Outer Variables ABC. PML

Martin J. Gander

Dy Lip
Ly
Dn—l Ln—l,n Up—1 0

Ln,n—l Dn up 0

Eliminate variables from the end using Schur complements:

Discrete TBCs

Dy Li>
Ly

Dn72 Ln72,n71
-1
Ln—l,n—2 Dn—l - Ln—l,nDn Ln,n—l
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Elimination of the Outer Variables ABC. PML

Martin J. Gander

Dy Lip
Ly
Dn—l Ln—l,n Up—1 0

Ln,n—l Dn up 0

Eliminate variables from the end using Schur complements:

Discrete TBCs

Dy Lip
L1

Dn72 Ln72,n71
Ln—l,n—2 7—n—l
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Elimination of the Outer Variables ABC. PML

Martin J. Gander

Dy Lip
Lryp

Dn—l Ln—l,n Up—1 0
Ln,n—l D, up 0

Eliminate variables from the end using Schur complements:

Discrete TBCs

Dy Lip
L1

)

Dn72 Ln72,n71
Ln—l,n—2 7—n—l

The same recurrence relation as in block ILU

T;:{Dn i=n,

1 .
D,' — L,‘7,'+1 TI-+1L,'+17,' I =n— ].7 n — 2, .
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Discrete Transparent Boundary Condition ABC, ML

Martin J. Gander

To truncate the domain at block p:

D1 Lip
L1 D>
A=
Discrete TBCs
Dp—1p-1 Lp-1,p
| Lp p—1 Tp i
where
T D, i = n,
i = -1 .
Di—LiitaT; qLiv1i i=n—1,n=2...,p

What happens if the outer domain is infinite ?



Discrete TBC for Infinite Domain T

Assume the outer problem has constant coefficients Weiio J. Gerdtar
[ D1 Lio i
L1 Do
A— - Ly
Lop-1 Dpp L
L D - . Discrete TBCs

Then the recurrence relation for T; is

I D i = n very large,
"TUD-LTAL i=n—1,n—2,...,p
and in the limit, when n goes to infinity 7, = T, where T,
satisfies

Too=D— LT 'L
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Equivalence Between Discrete and Continuous ABC, PVIL

Martin J. Gander
Result: The equivalent of the continuous problem

n—~Dyu = f in Qjpe
Oxu—DtN(u) = 0 onl

is at the algebraic level

Discrete TBCs

Dy Lip uy f1
/z\u = L2’1 D2 B : e
- ' Lp—1,p Up-1 fp—1
Lpp1 Too up fp
where

Too=D—LT'L



Approximations at the Continuous Level Nasc
For the model problem Martin J. Gander
n—~DAyu = f in Qine
Oxu—DtN(u) = 0 onTl

one can show that the Fourier transform along the interface
of the DtN operator is

DtN(u) = —/n + k2

Approximations are B

» the so called absorbing boundary conditions (ABCs)

Vn+ k2~ p+ qgk®.

» and the perfectly matched layers (PMLs)

NET Ay

(k

~—



Approximations at the Discrete Level

Have to approximate the dense matrices T; in

D i
Ti _{ D—LT AL i

n very large,

by sparse matrices.

n—1,n—-2,...

AILU, SP, DD,
ABC, PML

Martin J. Gander

Can use the same techniques as at the continuous

level!

Discrete

» approximation by a tridiagonal matrix (ABCs),

— /n+ k2~ p+ gk

> approximation using the PML

> approximation using H-matrix techniques



Algorithms Based on Block Factorization

Analytic Incomplete LU, AILU (G, Nataf 1998,2002,2005) is
an approximate LDLT factorization based on approximating

Ti~ Too = V1 + k2 = p+ gk® ~ Tridiag

QMR ILU('0") ILU(1e-2) | AILU('0")
k it| Mflops it| Mflops it| Mflops| it| Mflops
10| 737| 1858.2| 370| 1489.3| 80| 421.4| 36| 176.2
15|1775(10185.2{2000(18133.2| 220| 2615.1| 43| 475.9

20({2000{20335.1| — —[2000(42320.1| 64| 1260.2
30 - - - - - —| 90| 3984.1
50 - - - - - —|285|24000.4

Theorem (G, Nataf 2000:)

Frequency Filtering (Wittum 1991) is an AILU with discrete
tridiagonal approximation of T;, exact for 2 frequencies
Theorem (G, Zhang 2012:)

The Sweeping Preconditioner (Enquist, Ying (2010,...) is
an AILU approximating T; by PML or H-matrices

AILU, SP, DD,
ABC, PML

Martin J. Gander

AILU
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Algorithms Based on Domain Decomposition ABC, ML

. . Martin J. Gander
Optimal Schwarz methods use the DtN as transmission

conditions (Nataf, Rogier, de Sturler 1994, G, Kwok 2010)

Optimized Schwarz methods use approximations of the DtN
in the transmission condition (G, Halpern, Nataf 2000)

Theorem (G, Zhang 2013:)

The source transfer domain decomposition method (Chen,
Xiang 2012) is an optimized Schwarz method using a PML
approximation of the DtN in the transmission condition on
one side of the subdomains, and Dirichlet on the other.

Optimized Schwarz

Theorem (G, Zhang 2013:)

The PML domain decomposition method (Stolk 2013) is an
optimized Schwarz method based on one forward and one
backward sweep using a PML approximation of the DtN in
the transmission condition.
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Conclusions ABC, PML

Martin J. Gander

» The Dirichlet to Neumann operator (DtN) and its
discrete equivalent T; appear naturally both in strip
domain decomposition methods and block
factorizations

» Any approximation of the DtN or its discrete

equivalent T; can be used to obtain AlLU
preconditioners or optimized Schwarz methods

Conclusions
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COﬂCIUSiOﬂS ABC, PML

Martin J. Gander

» The Dirichlet to Neumann operator (DtN) and its
discrete equivalent T; appear naturally both in strip
domain decomposition methods and block
factorizations

» Any approximation of the DtN or its discrete
equivalent T; can be used to obtain AlLU
preconditioners or optimized Schwarz methods

» Optimized Schwarz and AILU are very much related,
just use strip domains instead of single layers !

Conclusions
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COﬁCIUSiOﬁS ABC, PML

Martin J. Gander

» The Dirichlet to Neumann operator (DtN) and its
discrete equivalent T; appear naturally both in strip
domain decomposition methods and block
factorizations

» Any approximation of the DtN or its discrete
equivalent T; can be used to obtain AlLU
preconditioners or optimized Schwarz methods

» Optimized Schwarz and AILU are very much related,
just use strip domains instead of single layers !

Conclusions

Preprints are available at www.unige.ch/~gander
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