
Dispersive Materials in Time Domain
Modelling, Stability and Numerical Results

Luis Manuel Diaz Angulo - lm@diazangulo.com

Salvador Gonzalez Garcia - salva@ugr.es

Jesus Alvarez - jesus@ieee.org

INRIA - Sophia Antipolis - October - 2012

mailto:lm@diazangulo.com
mailto:salva@ugr.es
mailto:jesus@ieee.org
http://fciencias.ugr.es
http://www.ugr.es
http://maxwell.ugr.es


Outline

1 Aims

2 Method
ADE Formulation
Obtaining CCPR pairs
Time integration stability

3 Results
PEC backed Debye material
Silver slab

4 Conclusions
Summary
Future work
Bibliography
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Aims

Model the electric behaviour of arbitrarily dispersive materials
starting from a collection of data points.

Incorporate the model into a Time Domain scheme. In our
case, DGTD.
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ADE Formulation

Faraday’s source–free curl equations for dispersive media

jωε~E = ∇× ~H, ε = ε(ω) (1)

Electric Permittivity model

We will use the complex-conjugated pole-residual (CCPR) pairs
described in [Han et al., 2006]

ε(ω) = ε0ε∞ + ε0

R∑
r=1

[
χr (ω) + χ′r (ω)

]
(2)

with

χr (ω) =
cr

jω − ar
and χ′r (ω) =

c∗r
jω − a∗r

(3)

and (cr , ar ∈ C). We also require <e{ar} < 0 for stability.
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ADE Formulation

Polarization currents

In previous model we can identify ~Pr and ~P ′r as polarization
currents with,

~Pr = ε0χr
~E and ~P ′r = ε0χ

′
r
~E (4)

In time domain we will always have ~P ′r = ~P∗r , because ~E ∈ R3

CCPR Faraday’s Law in Time Domain

We can pass the previous equations into the time domain
obtaining,

ε0ε∞∂t~E = ∇× ~H −
R∑

r=1

(
∂t~Pr + ∂t~P

∗
r

)
(5)
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ADE Formulation

ADE System of coupled equations

After applying the ADE formalism we can rewrite (5) as a system
of coupled PDEs.

∂t~E =
1

ε0ε∞

[
∇× ~H − 2

R∑
r=1

<e{∂t~Pr}

]
∂t~Pr = ar ~Pr + ε0cr ~E ∀r = 1, . . . ,R (6)
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Obtaining CCPR pairs

Analytically

We can note that some of the most commonly used media are
particular cases of the model (2).

1 Poles of a Debye’s model are obtained when cr = ∆εr/(2τr )
and ar = −1/τr .

2 Similarly for Lorentz’s media we have
cr = j∆εrω

2
r /(2

√
ω2
r − δ2r ) and ar = −δr − j

√
ω2
r − δ2r .

3 Conductive media can be modeled adding a pole-residue with
a0 = 0 and c0 = σ/(2ε0).
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Obtaining CCPR pairs

Vector Fitting (VF)

In many situations, simulations need to start from a collection of
data points for the permittivity. A common process of converting
those points into CCPR pairs is Vector Fitting (VF), described in
[Gustavsen and Semlyen, 1999] [Gustavsen, 2006]
[Deschrijver et al., 2008].

Availability

The most used routines to perform VF were written by Gustavsen
and are available in:

http://www.energy.sintef.no/Produkt/VECTFIT/

He also provides packages to ensure passivity of the model.

http://www.energy.sintef.no/Produkt/VECTFIT/
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Time integration stability

Modification of stability conditions

Inclusion of the ADE terms in equations (6) modifies the stability
conditions of the system when time integration is performed by
modifying the existing eigenvalues and adding new ones.

Conductive one-dimensional case

For the conductive case (single pole with ar = 0 and
cr = σ/(2ε∞)) and one dimension we find the following eigenvalue
for numerical frequency.

ω̃ = − σ

2ε∞
±

√√√√( σ

2ε∞

)2

−

(
k̃

√
ε∞µ

)2

(7)

with k̃ being the numerical wavenumber [Alvarez et al., 2012a].
More general cases can be studied, but not always we can find an
analytical expression (we can found pseudo–analytical).
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Time integration stability

Values of k̃ , numerical wavenumber

For FD and DG with centered fluxes spatial discretization k̃ ∈ R.
For FD max |k̃ | = h−1, for DG with centered fluxes
max |k̃ | = 4(p + 1)2h−1. See [Hesthaven and Warburton, 2007],
[Taflove and Hagness, 2005].

Values of ω̃, numerical frequency

The values of ω̃ tell us what is the max ∆t we can choose to
ensure stability.
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Time integration stability

LF Time integration for a simply conductive material

In the case of LF, the scheme is stable as long as ∆t ≤ 1/=[ω̃], an
open semi–infinite region not limited in R. Therefore, no value of
σ will make the scheme unstable.

RK Time integration for a simply conductive material

For the RK case the stability region is closed and limited in the R
axis. A value of σ big enough will make the scheme unstable. In
other words the ∆t imposed by k̃ alone could not be
sufficient to ensure stability.
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Time integration stability

With arbitrary poles (cr , ar ∈ C), LF and RK can become
unstable. The following figure illustrates the situation for a 5
poles material (modelling silver at THz frequencies) described in
[Han et al., 2006].
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Time integration stability

Possible solution

Solution at VF stage

At the VF stage. Ensure that all the poles fall in the stability
region. This would require information of the mesh and solver at
the vector fitting stage. We have not implemented anything like
this yet and what we do is to constrain the poles to have
|ar |−1 < ∆t, and pray.
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PEC backed Debye material

Results

Reflection coefficient of a PEC backed Debye material, thickness of
0.25mm, ε∞ = 2, σ = 2[S/m], (c1, a1) = (1/9.4E6,−1/9.4E6).
Up to 50GHz . Described in [Garcia et al., 2003]
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Silver slab

Silver slab with 5 poles described in [Han et al., 2006]. Thickness
of 100nm frequencies up to 1200THz .



Aims Method Results Conclusions

Summary

Summary

Arbitrary materials

The method can model any permittivity profile. Classical dispersive
models are particular cases. It can start from a collection of data
points.

Stability

Sources of unstability have been detected and analyzed. A solution
has been proposed.

Validity

Results show a good agreement with analytical predictions.
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Future work

Still to be done...

SMA

SMA conditions do not work for truncating dispersive materials.
No other absorbing technique has been tested.

VF feedbacked by solver

An automatic process to generate complex–poles guaranteed to be
stable for a given mesh and time integration technique.

Impedances in fluxes

Fluxes are not included in the ADE formulation. All the
impedances are taken at Z (ω →∞). The impact of this
approximation should be assesed. It has relevance in anisotropic
media [Alvarez et al., 2012b].
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Questions

Thanks. Questions?
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