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Divide & Conquer

Problem:

−∆u = f on Ω,

u = 0 on ∂Ω.

u

ΩΓ

η = u
∣∣
Γ

Ω

Split Ω into Ω1 and Ω2.

Γ

Ω1 Ω2

Interface = Γ.
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Divide & Conquer

Problem:

−∆u = f on Ω,

u = 0 on ∂Ω.

u

ΩΓ

η = u
∣∣
Γ

If we know η, then the problem
decouples into two problems,
one on Ω1, and another on Ω2.

Γ

Ω1 Ω2

Interface = Γ.
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The decoupling

If we know the solution η on the interface Γ, then:

1 Compute Uη ≡ Harmonic extension of η into Ω1:

Γ

η

Ω1

Uη


−∆(Uη) = 0 on Ω1

Uη = η on Γ

Uη = 0 on ∂Ω1 \ Γ.

2 Compute Uf on Ω1:

0fUf

{
−∆(Uf ) = f on Ω1

Uf = 0 on ∂Ω1.

3

Linear superposition =⇒ u = Uη + Uf on Ω1.

Same on Ω2.
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Divide & Conquer. . . ?

Problem:

−∆u = f on Ω,

u = 0 on ∂Ω.

u

ΩΓ

η = u
∣∣
Γ

If we know η, then

u = Uη + Uf .

But, can we find η on Γ . . . ?
Γ

Ω1 Ω2

Interface = Γ.
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Solve the “interface problem”

1 Classical theorem: η

h

is the unique function in H̊1/2(Γ) satisfying

a( η

h

, µ ) = b( µ ) , ∀µ ∈ H̊1/2(Γ)

⊂ H̊1/2(Γ)

where

a(η, µ) =

∫
Ω

~∇(U

h

η) · ~∇(U

h

µ),

b(µ) =

∫
Ω

(U

h

µ) f .

Γ

Ω1 Ω2

2 Recover solution by u

h

= U

h

η

h

+ U

h

f .

Dimensional reduction: The interface problem is 1D!
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Solve the “interface problem”

1 Classical theorem: ηh is the unique function in Mh satisfying

a( ηh, µ ) = b( µ ) , ∀µ ∈ Mh ⊂ H̊1/2(Γ)

where

a(η, µ) =

∫
Ω

~∇(Uhη) · ~∇(Uhµ),

b(µ) =

∫
Ω

(Uhµ) f .

Γ

Ω1 Ω2

2 Recover solution by uh = Uhηh + Uhf .

[Bramble+Pasciak+Schatz, 1986]: The same statements hold for the Lagrange
finite element approximation of u, provided U and U are replaced by their
discrete analogues Uh and Uh.
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Next

A domain decomposition perspective !

I The interface function ηh a(ηh, µ) = b(µ) .

I Recovery of solution uh uh = Uhηh + Uhf .

Hybridized methods
I

I

Eigenvalue problems
I

I

I

I
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Let subdomains be elements

“Hybridized methods” are obtained by applying domain decomposition
where subdomains are elements.

Γ

Ω1 Ω2

Ω

K7

K6 K5

K4

K2

K1

K3

Subdomains=elements

ηh

η
h

η
h

ηh

η
h

η
h

η h

Γ

Element interfaces Γ

As we transition from the simple two-domain splitting to the case

subdomains Ωi = elements Ki ,

we continue to have a(ηh, µ ) = b(µ), and uh = Uhηh + Uhf .

This is the “statically condensed” system.
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Dimensional reduction

Static condensation is good for high order finite elements:

A degree p = 7 element statically condensed

If p = polynomial degree of FEM, then for 2D problems,

original system size reduced system size
O(p2) O(p).
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What about DG methods?

In DG (discontinuous Galerkin) methods, approximations can be
discontinuous across interfaces.

discontinuity

Nodes that can be condensed out ( ). Remaining coupled nodes ( ).

HDG methods improve the situation . . .
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What is HDG?

Many HDG methods were discovered and presented together in
[Cockburn+G+Lazarov,’09] (“Unified hybridization of DG, mixed, and CG

methods . . . ”, SINUM).

“HDG” methods:

Hybridized
Discontinuous Galerkin methods

Uses approximating functions with no interelement continuity.

Elements are coupled through interelement traces
(a separate unknown of the method).
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HDG methods

In HDG methods, coupling is achieved through new interface variables ηh,
which are called numerical traces (indicated by “ ” below).

ηh

Nodes that can be condensed out ( ). Remaining coupled nodes ( ).

=⇒ More nodes can be condensed out in HDG methods!
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HDG methods

In HDG methods, coupling is achieved through new interface variables ηh,
which are called numerical traces (indicated by “ ” below).

ηh
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Common elements of all HDG methods

1 An interface function ηh satisfying a(ηh, µ) = b(µ) .

2 Recovery of interior solution uh by uh = Uhηh + Uhf .

Standard condensed FEM

a(η, µ) =

∫
Ω

~∇(Uhη) · ~∇(Uhµ)

η

K Γ

Uhη

HDG method

a(η, µ) =

∫
Ω

~Qhη · ~Qhµ

K Γ

η

(
~Qhη
Uhη

)

Uhη ≈ Uη :


−∆(Uη) = 0 on K

Uη = η on Γ

Uη = 0 on ∂K \ Γ.

For HDG, use DG flux approx:

~Qhη ≈ − ~∇(Uη).
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A popular HDG method

~q + ~∇u = 0 =⇒∫
K
~q · ~v −

∫
K

u ∇ ·~v = −
∫
∂K

u (~v · ~n)

∇ · ~q = f =⇒
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A popular HDG method

~q + ~∇u = 0 =⇒∫
K
~qh · ~v −

∫
K

uh∇ ·~v = −
∫
∂K

η(~v · ~n)

∇ · ~q = f =⇒
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A popular HDG method

~q + ~∇u = 0 =⇒∫
K
~qh · ~v −

∫
K

uh∇ ·~v = −
∫
∂K

η(~v · ~n)

∇ · ~q = f =⇒

−
∫
K

~∇w · ~q +

∫
∂K

w ~q · ~n =

∫
K

f w

Jay Gopalakrishnan 14/26



A popular HDG method

~q + ~∇u = 0 =⇒∫
K
~qh · ~v −

∫
K

uh∇ ·~v = −
∫
∂K

η(~v · ~n)

∇ · ~q = f =⇒

−
∫
K

~∇w · ~qh +

∫
∂K

w q̂h · ~n =

∫
K

f w

Set q̂h = ~qh + τ(uh − η) to obtain a stable method for any τ > 0.

Spaces: ~qh, uh are polynomials of degree at most k .
~Qhη = ~qh and Uhη = uh when f = 0.
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Extension to other problems

We used q̂h = ~qh + τ(uh − ûh) for the Dirichlet problem.

Such numerical flux prescriptions can be made for many problems.

Example of Euler equations, courtesy of Jaime Peraire (MIT):

∇ · ~F (~u) = 0
−(~F (~uh),∇~w)K + 〈F̂h · ~n, ~w〉∂K = 0

F̂h · ~n = ~F (ûh) · ~n + Tûh,~uh(~uh − ûh) .
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Why HDG?

HDG methods yield matrices of the same size and sparsity as mixed
methods (finally overcoming the criticism that
“all DG methods are bloated with too many unknowns”).

Stability is guaranteed for any positive stabilization parameter. (It
does not have to be “sufficiently large”.)

Mixed methods require carefully crafted spaces for stability, while
HDG methods offer greater flexibility in the choice of spaces.

Unlike most older DG methods, HDG methods yield (provably)
optimal error estimates for flux (and the other unknowns).

Coupling methods, even across non-matching mesh interfaces, is easy.
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Next

A domain decomposition perspective !

I The interface function ηh a(ηh, µ) = b(µ) .

I Recovery of solution uh uh = Uhηh + Uhf .

Hybridized methods !
I Static condensation
I HDG methods q̂h = ~qh + τ(uh − ηh)

Eigenvalue problems
I

I

I

I
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Divide the eigenproblem?

Problem:

−∆u = λu on Ω,

u = 0 on ∂Ω.

Ω

Split Ω into Ω1 and Ω2.

Γ

Ω1 Ω2

Interface = Γ.
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Condensation/Hybridization

Source Problem

Condensed problem at interface:
Find ηh ∈ Mh satisfying

a(ηh, µ) = b(µ) ∀µ ∈ Mh,

where

a(η, µ) =

∫
Ω

~Qhη · ~Qhµ

b(µ) =

∫
Ω

(Uhµ)f

Eigenproblem, by analogy. . .

Could we not condense the
eigenproblem to interfaces?
Guess:

a(ηh, µ) = λh〈ηh, µ〉 ∀µ ∈ Mh

where

〈η, µ〉 =

∫
Ω

(Uhη) (Uhµ).

Really? Spectrum reduced!

– Which eigenvalues disappeared?

– Condensed λh = Actual λh?

Jay Gopalakrishnan 19/26



Condensation/Hybridization

Source Problem

Condensed problem at interface:
Find ηh ∈ Mh satisfying

a(ηh, µ) = b(µ) ∀µ ∈ Mh,

where

a(η, µ) =

∫
Ω

~Qhη · ~Qhµ

b(µ) =

∫
Ω

(Uhµ)f

Eigenproblem, by analogy. . .

Could we not condense the
eigenproblem to interfaces?
Guess:

a(ηh, µ) = λh〈ηh, µ〉 ∀µ ∈ Mh

where

〈η, µ〉 =

∫
Ω

(Uhη) (Uhµ).

Really? Spectrum reduced!

– Which eigenvalues disappeared?

– Condensed λh = Actual λh?

Jay Gopalakrishnan 19/26



Condensation/Hybridization

Source Problem

Condensed problem at interface:
Find ηh ∈ Mh satisfying

a(ηh, µ) = b(µ) ∀µ ∈ Mh,

where

a(η, µ) =

∫
Ω

~Qhη · ~Qhµ

b(µ) =

∫
Ω

(Uhµ)f

Eigenproblem, by analogy. . .

Could we not condense the
eigenproblem to interfaces?
Guess:

a(ηh, µ) = λ̃h〈ηh, µ〉 ∀µ ∈ Mh

where
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∫
Ω

(Uhη) (Uhµ).
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Recall

Returning to the simple 2-domain case temporarily, recall:

Source Problem:

−∆u = f

λu

on Ω,

u = 0 on ∂Ω.

u

ΩΓ

η = u
∣∣
Γ

If we know η, then

u = Uη + Uf .

Γ

Ω1 Ω2
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Recall

Returning to the simple 2-domain case temporarily, recall:

Eigenproblem:

−∆u = λu on Ω,

u = 0 on ∂Ω.

u

ΩΓ

η = u
∣∣
Γ

If we know η, then

u = Uη + U(λu) .

Γ

Ω1 Ω2
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Deriving the condensed eigenproblem

u = Uη + U(λu)

= Uη + λU
(

Uη + U(λu)
)

= · · · [recursively repeat] · · ·
=
(
I + λU + (λU)2 + · · ·

)
Uη

= (I − λU)−1Uη,

provided the series converges.

Series converges if subdomains small.

Then u can be recovered from η.

a(η, µ) =

∫
Ω

(Uµ)

−∆u = λu on Ω,

u = 0 on ∂Ω.

u

ΩΓ

η = u
∣∣
Γ

Recall definition of Uf :{
−∆(Uf ) = f , on subdom.,

Uf = 0, on ∂(subdom).
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Nonlinear eigenproblem

The preceding arguments indicate:

It should be possible to “hybridize” or “condense” the eigenproblem
to element interfaces when meshsize is small enough.

Upon condensation, we should expect a linear eigenproblem to
become a nonlinear eigenproblem of the form:

Find η : a(η, µ) =

∫
Ω

(Uµ)λ(I − λU)−1Uη, ∀µ.

The first guess that λ may solve

Find η : a(η, µ) = λ〈η, µ〉, ∀µ,

where 〈η, µ〉 =

∫
Ω

(Uη) (Uµ) is not correct.
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Condensed HDG eigenproblem

Theorem

There is a constant C > 0 such that for any λh < C/h, the operator
I − λhU is invertible, and moreover, λh satisfies

a(ηh, µ) =

∫
Ω
λh (I − λhU)−1Uηh Uµ ∀µ ∈ Mh

with some ηh 6≡ 0 in Mh, if and only if the number λh and the functions

ηh, uh = (I − λhU)−1Uηh

together solve the HDG eigenproblem.

=⇒ Condensed HDG eigenproblem does not lose lower eigenmodes.
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Perturbed interface eigenproblem

The condensed interface eigenproblem: Find λh ∈ R and ηh 6≡ 0 satisfying

a(ηh, µ) =

∫
Ω
λh (I − λhU)−1(Uηh) (Uµ) ∀µ ∈ Mh.

Perturbed interface eigenproblem: Find λh ∈ R and η̃h 6≡ 0 satisfying

a(η̃h, µ) = λ̃h

∫
Ω

(U η̃h) (Uµ) ∀µ ∈ Mh.

Theorem

For any HDG eigenvalue λh < C/h, there is an eigenvalue λ̃h of the
perturbed eigenproblem satisfying

|λh − λ̃h|
λh

≤ C λhλ̃h h

for sufficiently small h.
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Perturbed interface eigenproblem

The condensed interface eigenproblem: Find λh ∈ R and ηh 6≡ 0 satisfying

a(ηh, µ) =

∫
Ω
λh (I − λhU)−1(Uηh) (Uµ) ∀µ ∈ Mh.

Perturbed interface eigenproblem: Find λh ∈ R and η̃h 6≡ 0 satisfying

a(η̃h, µ) = λ̃h

∫
Ω

(U η̃h) (Uµ) ∀µ ∈ Mh.

Theorem

=⇒ We can use the solution of the perturbed eigenproblem as initial
iterates in a nonlinear solver for λh!
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Discretization errors

Eigenproblem
−∆u = λu
Eigenfunction: u
Eigenvalue: λ

HDG discretization
Eigenfunction: uh

Interface fn: ηh
Eigenvalue: λh

Condensation
Interface fn: ηh
Eigenvalue: λh

Theorem

If the exact eigenfunction is smooth, then

|λ− λh| ≤ Ch2k+1

for the HDG discretization using polynomials of degree at most k. The
L2(Ω)-“gap” between the discrete and exact eigenspaces is O(hk+1).
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Conclusion

A domain decomposition perspective

I The interface function ηh a(ηh, µ) = b(µ) .

I Recovery of solution uh uh = Uhηh + Uhf .

Hybridized methods
I Static condensation
I HDG methods q̂h = ~qh + τ(uh − ηh)

Eigenvalue problems
I HDG eigenproblem & its condensation
I HDG eigenvalue convergence rates O(h2k+1)

I Perturbed interface eigenproblem a(ηh, µ) = λ̃h

∫
Ω

Uηh Uµ

I Nonlinear eigenproblem a(ηh, µ) =

∫
Ω

λh (I − λhU)−1Uηh Uµ
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