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Divide & Conquer

Portland State

vvvvvvvvvv

Problem:

—Au=f on Q,
u= on 09.

@
Split Q into Q71 and 5.
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Divide & Conquer

Portland State

uuuuuuuuuu

Problem:

—Au=f on Q,

u= on 0Q.

If we know 7, then the problem
decouples into two problems,
one on £21, and another on Q.
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The decoupling Portland State

If we know the solution 7 on the interface I, then:
@ Compute Un = Harmonic extension of 7 into €2;:
—A(Un)=0 ony

i Un=mn onT
Unp=0 ondQ\T.

Up —H

o) !

@ Compute Uf on Qy:

—A(Uf)=f ony
Uf=—f 1|0

UfF =0 on 09;.

o
Linear superposition = u=Un+Uf on Q.

Same on Q5.
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Divide & Conquer...?

Portland State

vvvvvvvvvv

Problem:

—Au=f on Q,
u= on 09.

o If we know 7, then

u=Un+Uf.

@ But, canwe findponl...7
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Solve the “interface problem” Portland State

© Classical theorem: 7 is the unique function in Izll/z(l-) satisfying

a(n, p)=b(pn), Yu e HY2(T)

where

a(n, p) /VU77 V(U ), @‘
b = [ (U n) .

@ Recover solutionby wuw =Un +U f.

Dimensional reduction: The interface problem is 1D!
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Solve the “interface problem” Portland State

@ C(lassical theorem: 7 is the unique function in M) satisfying
a(nn, p)=b(p), Yue M, C HYA(I)

where

a(n, p) —/Qﬁ(Um)ﬁ(Uhu% @ ‘ @
bli) = [ (Unn) . |

@ Recover solution by  up = Upnp + Upf .

[Bramble+Pasciak+Schatz, 1986]: The same statements hold for the Lagrange
finite element approximation of u, provided U and U are replaced by their
discrete analogues Uy, and Uy,.
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Next Portland State

@ A domain decomposition perspective v
» The interface function 7y, a(np, 1) = b(p) .
> Recovery of solution up, up = Upnp + Upf .
@ Hybridized methods

>

>

o Eigenvalue problems

>

>
>
>
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Let subdomains be elements Portland State

“Hybridized methods” are obtained by applying domain decomposition
where subdomains are elements.

S

As we transition from the simple two-domain splitting to the case

—

r Subdomains=elements Element interfaces I

subdomains €); = elements K;,

we continue to have a(np, p) = b(i), and wup = Upnp + Upf .

Jay Gopalakrishnan 8/26



Let subdomains be elements Portland State

“Hybridized methods” are obtained by applying domain decomposition
where subdomains are elements.

]‘r[ Subdomains=elements Element interfaces I

As we transition from the simple two-domain splitting to the case

subdomains €); = elements K;,

we continue to?/ a(np, 1) = b(p), and up = Upnp + Unf .

This is the “statically condensed” system.
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Dimensional reduction Portland State

Static condensation is good for high order finite elements:

A degree p = 7 element statically condensed

If p = polynomial degree of FEM, then for 2D problems,

original system size reduced system size

O(p?) O(p).
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What about DG methods? Portland State

In DG (discontinuous Galerkin) methods, approximations can be
discontinuous across interfaces.

L ontinui®y
iscon’
d —
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What about DG methods? Portland State

In DG (discontinuous Galerkin) methods, approximations can be
discontinuous across interfaces.
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What about DG methods? Portland State

In DG (discontinuous Galerkin) methods, approximations can be
discontinuous across interfaces.

Nodes that can be condensed out (®). Remaining coupled nodes (®).

HDG methods improve the situation . ..
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What is HDG? Portland State

@ Many HDG methods were discovered and presented together in
[Cockburn+G+Lazarov,’09] (“Unified hybridization of DG, mixed, and CG
methods ..."”, SINUM).
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What is HDG? Pordand Ste

@ Many HDG methods were discovered and presented together in
[Cockburn+G+Lazarov,'09] (“Unified hybridization of DG, mixed, and CG
methods ...", SINUM).

o "HDG" methods:
Hybridized
Discontinuous Galerkin methods

Jay Gopalakrishnan 11/26



What is HDG? Pordand Ste

@ Many HDG methods were discovered and presented together in
[Cockburn+G+Lazarov,'09] (“Unified hybridization of DG, mixed, and CG
methods ..."”, SINUM).

o “HDG" methods:
Hybridized

Discontinuous Galerkin methods
@ Uses approximating functions with no interelement m
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What is HDG? Pordand Ste

Many HDG methods were discovered and presented together in
[Cockburn+G+Lazarov,'09] (“Unified hybridization of DG, mixed, and CG
methods ..."”, SINUM).

o "HDG" methods:

Discontinuous Galerkin methods
Uses approximating functions with no interelement m

Elements are coupled through interelement traces
(a separate unknown of the method).
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HDG methods Portland State

In HDG methods, coupling is achieved through new interface variables 7,
which are called numerical traces (indicated by “®" below).

Tlh

Jay Gopalakrishnan 12/26



HDG methods Portland State

In HDG methods, coupling is achieved through new interface variables 7,
which are called numerical traces (indicated by “@®" below).

Tlh

Nodes that can be condensed out (®). Remaining coupled nodes (®).

= More nodes can be condensed out in HDG methods!
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Common elements of all HDG methods Portland State

@ An interface function 7y, satisfying a(np, 1n) = b(p) -

@ Recovery of interior solution up by up = Upnp + Upf .

Standard condensed FEM HDG method
a(n.p) = | S - S(0) a(.19 = [ G- G
K r K r
Ul Ul

—A(Un)=0 onK
U =~ Un : Un=n onl
Unp=0 ondK\T.

For HDG, use DG flux approx:
éhﬁ N = 6( Un).

Jay Gopalakrishnan 13/26



A popular HDG method Portland State

G+Vu=0 —
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A popular HDG method Portland State

G+Vu=0 —
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A popular HDG method Portland State

G+Vu=0 =
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A popular HDG method Portland State

e Set gy =G+ 7(un—n) ‘ to obtain a stable method for any 7 > 0.

@ Spaces: Gy, up are polynomials of degree at most k.

o Qun = G, and Upn = up when f = 0.
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Extension to other problems Portland State

e We used ‘6;, = Gp, + 7(up — Up) | for the Dirichlet problem.
@ Such numerical flux prescriptions can be made for many problems.

Example of Euler equations, courtesy of Jaime Peraire (MIT):

0.1
0.1

000
008
007
006
005
004
003
002
01

Figure 1. Invlscld flow over a Kdrman-Trefftz airfoil: My = 0.1, @ = 0. Detail of the mesh employed (left) and
Mach of the solution using fourth order polynomial approximations (right).
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Wh y H D G ? Portland §Et£‘tv§

@ HDG methods yield matrices of the same size and sparsity as mixed
methods (finally overcoming the criticism that
“all DG methods are bloated with too many unknowns”).

e Stability is guaranteed for any positive stabilization parameter. (It
does not have to be “sufficiently large”.)

@ Mixed methods require carefully crafted spaces for stability, while
HDG methods offer greater flexibility in the choice of spaces.

@ Unlike most older DG methods, HDG methods yield (provably)
optimal error estimates for flux (and the other unknowns).

e Coupling methods, even across non-matching mesh interfaces, is easy.
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Next Portland State

@ A domain decomposition perspective v
» The interface function ny a(nm, 1) = b(p)
» Recovery of solution uy, up = Upnp + Upf .

@ Hybridized methods v

» Static condensation
» HDG methods qn = G, + 7(up — nn) ‘

@ Eigenvalue problems

vV vyVvYyy
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Divide the eigenproblem?

Portland State

vvvvvvvvvv

Problem:

—Au=Au on €,
u=20 on 09.

—

Split © into 7 and Q.
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Interface =T .
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Condensation/Hybridization

Portland State

uuuuuuuuuu

Source Problem

@ Condensed problem at interface:
Find n, € My, satisfying
a(nn, 1) = b(p) Yy € My,

where
a(n, p) = /Q Qun - Qnt

b() = /Q (Unit)f

Jay Gopalakrishnan

Eigenproblem, by analogy. ..

@ Could we not condense the
eigenproblem to interfaces?
Guess:

a(np, ) = MM ) Vo € My

where

(n, 1) = /Q(Uhn) (Unp).
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Condensation/Hybridization

Portland State

vvvvvvvvvv

Source Problem

@ Condensed problem at interface:
Find n, € My, satisfying
a(nn, 1) = b(p) Yy € My,

where
a(n, p) = /Q Qun - Qnt

b() = /Q (Unit)f

Jay Gopalakrishnan

Eigenproblem, by analogy. ..

@ Could we not condense the
eigenproblem to interfaces?
Guess:

a(nn, 1) = An(nm, ) Vo € My,

where

(n, 1) = /Q(Uhn) (Unp).

Really?
— Which eigenvalues disappeared?
— Condensed A\, = Actual A\p?

Spectrum reduced!
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@ Condensed problem at interface:
Find n, € My, satisfying
a(nn, 1) = b(p) Yy € My,

where
a(n, p) = /Q Qun - Qnt

b() = /Q (Unit)f
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Eigenproblem, by analogy. ..

@ Could we not condense the
eigenproblem to interfaces?
Guess:

a(nh, 1) = A (nip, ) Vo € My,

where

(n, 1) = /Q(Uhn) (Unp).

Really?
— Which eigenvalues disappeared?
— Condensed A\, = Actual \p?

Spectrum reduced!
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Recall Portland State

Returning to the simple 2-domain case temporarily, recall:

Source Problem: n= U‘r

—Au="f on €,
u=20 on 0.

o If we know 7, then

u=Un+Uf.
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Recall Portland State

Returning to the simple 2-domain case temporarily, recall:

Eigenproblem: n=ul

—Au=\u on Q,
u=20 on 0.

o If we know 7, then

u=Un+Uu) .
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Deriving the condensed eigenproblem Portland State

u= Un+U(\v)

Jay Gopalakrishnan

—Au=\u on £,
u=20 on 0Q.

n=ur
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Deriving the condensed eigenproblem Portland State

u= Un+U(\v)
= Un+ U ( U77+U()\u)>

Jay Gopalakrishnan

—Au=\u on £,
u=20 on 0Q.

n=ur
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Deriving the condensed eigenproblem Portland State

—Au=)\u on €,
u= Un+Uuv) u=0 on 9%
= Un+ MU Un+UQw) )
= - - - [recursively repeat] - - -

= (14+ XU+ (AU +---) Uny
= (I — xu)~tup,

n=ur

provided the series converges.

Recall definition of Uf:

—A(Uf) = f, on subdom.,
Uf =0, on d(subdom).
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Deriving the condensed eigenproblem Portland State

—Au=)\u on €,
u= Un+Uu) u=0 on 9%,
= Un+ MU Un+UQw) )
= - - [recursively repeat] - - -

= (14+ XU+ (AU +---) Uny
= (I — \U)"tun,

n=ur

provided the series converges.

@ Series converges if subdomains small. Recall definition of Uf:

@ Then u can be recovered from 7. “A(UF) = f, on subdom
{ Uf =0, on d(subdom).
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Deriving the condensed eigenproblem Portland State

_ Un+AU( U77+U(A“))
= .- - [recursively repeat] - - -
= (I + MU+ (AW + ) Un

provided the series converges.

@ Series converges if subdomains small.

@ Then u can be recovered from 7.

° a(n,ﬂ)Z/Q(Uu)f

Jay Gopalakrishnan

—Au=\u on €,
u=20 on 0f.

n=ur

{

Recall definition of Uf:

—A(Uf) = f, on subdom.,
Uf =0, on d(subdom).
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Deriving the condensed eigenproblem Portland State

_ Un+AU( U77+U(A“))
= .- - [recursively repeat] - - -
= (I + MU+ (AW + ) Un

provided the series converges.

@ Series converges if subdomains small.

@ Then u can be recovered from 7.

® a(n, p) Z/Q(UM)AU
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—Au=\u on €,
u=20 on 0f.

n=ur
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Recall definition of Uf:

—A(Uf) = f, on subdom.,
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Deriving the condensed eigenproblem Portland State

—Au=)\u on €,
u= Un+Uu) u=0 on 9%,
= Un+ MU Un+UQw) )
= - - [recursively repeat] - - -

= (14+ XU+ (AU +---) Uny
= (I — \U)"tun,

n=ur

provided the series converges.

@ Series converges if subdomains small. Recall definition of Uf:

@ Then u can be recovered from 7. _A(UF) = f, on subdom.,

o alin.p) = [ (U~ X0 U, UF = 0, on O(subdom).
Q
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Portland State

Nonlinear eigenproblem  pPortlandftae

The preceding arguments indicate:

@ |t should be possible to “hybridize” or “condense” the eigenproblem
to element interfaces when meshsize is small enough.

@ Upon condensation, we should expect a linear eigenproblem to
become a nonlinear eigenproblem of the form:

Findn: () = [ (URA( =20 MU, i
Q
@ The first guess that A may solve
Find 7 : a(n, ) = MXn, ), Vu,

where (n, u) = /(Un) (Up) is not correct.
Q
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Condensed HDG eigenproblem Portland State

Theorem

There is a constant C > 0 such that for any A\, < C/h, the operator
I — AU is invertible, and moreover, )\, satisfies

) = /Q (= MU Unp U Ve M,

with some np £ 0 in My, if and only if the number Ay, and the functions
My up = (I = AWt Unp

together solve the HDG eigenproblem.

—> Condensed HDG eigenproblem does not lose lower eigenmodes.
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Perturbed interface eigenproblem Portland State

The condensed interface eigenproblem: Find Aj € R and 1, # 0 satisfying
(1) = [ a1 =207 (Ue) (Up) Vi € M

Perturbed interface eigenproblem: Find Ap € R and 7}, # 0 satisfying

(7 ) = S /Q (Uiin) (Up) Y1 € M.

Theorem

For any HDG eigenvalue A\, < C/h, there is an eigenvalue An of the
perturbed eigenproblem satisfying

[An — An|

< CMAph
)\h = h\h

for sufficiently small h.
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Portland State

Perturbed interface eigenproblem = & Portlandtae

The condensed interface eigenproblem: Find Aj € R and 1, # 0 satisfying
a(nn, 1) = /Q)\h(l = W) (Unn) (Up) V€ My,
Perturbed interface eigenproblem: Find A\p € R and 7}, # 0 satisfying

a(fin, p) = S\h/Q(Uﬁh) (Up) Ve My

Theorem

= We can use the solution of the perturbed eigenproblem as initial
iterates in a nonlinear solver for \p!
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Discretization errors

Portland State

vvvvvvvvvv

Eigenproblem
—Au=M\u

Eigenfunction:
Eigenvalue:

u

A

HDG discretization

Theorem

Eigenfunction: u
Interface fn: Nh
Eigenvalue: Ah

Condensation

Interface fn:
Eigenvalue:

Mh
Ah

If the exact eigenfunction is smooth, then

for the HDG discretization using polynomials of degree at most k. The

|)\_ )‘h’ < Ch2k+1

L2(Q)- “gap” between the discrete and exact eigenspaces is O(h*T1).

Jay Gopalakrishnan
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Conclusion Portland State

@ A domain decomposition perspective
» The interface function 7y, a(np, 1) = b(p) .
» Recovery of solution up, up = Upnp + Upf .

@ Hybridized methods

» Static condensation
» HDG methods ‘ah =Gy + 7(un — nn) ‘

o Eigenvalue problems
» HDG eigenproblem & its condensation

» HDG eigenvalue convergence rates O(h?k*1)
» Perturbed interface eigenproblem a(np, 1) = 5\;,/ Unp U
Q
» Nonlinear eigenproblem a(np, p) = /)\h (I = AW~ Uny Up
Q
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