The Hybridized Eigenproblem

Jay Gopalakrishnan

Portland State University

July 2012

INRIA Sophia Antipolis

Thanks: NSF

Collaborators: B. Cockburn, F. Li, N.C. Nguyen, J. Peraire

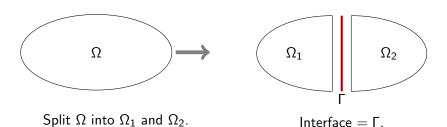
Outline

- A domain decomposition perspective
- Hybridized methods
- Eigenvalue problems

Divide & Conquer

Problem:

$$-\Delta u = f$$
 on Ω ,
 $u = 0$ on $\partial \Omega$.

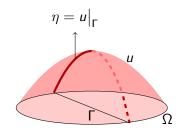


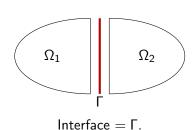
Divide & Conquer

Problem:

$$-\Delta u = f$$
 on Ω ,
 $u = 0$ on $\partial \Omega$.

If we know η , then the problem decouples into two problems, one on Ω_1 , and another on Ω_2 .

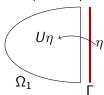




The decoupling

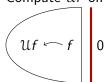
If we know the solution η on the interface Γ , then:

① Compute $U\eta \equiv \mathsf{Harmonic}$ extension of η into Ω_1 :



$$\left\{ \begin{array}{ll} -\Delta(\mathit{U}\eta) = 0 & \text{ on } \Omega_1 \\ & \mathit{U}\eta = \eta & \text{ on } \Gamma \\ & \mathit{U}\eta = 0 & \text{ on } \partial\Omega_1 \setminus \Gamma. \end{array} \right.$$

2 Compute $\mathcal{U}f$ on Ω_1 :



$$\begin{cases} -\Delta(\mathcal{U}f) = f & \text{ on } \Omega_1 \\ \mathcal{U}f = 0 & \text{ on } \partial\Omega_1. \end{cases}$$

Linear superposition

 \Longrightarrow

$$u = U\eta + \mathcal{U}f$$
 on Ω_1 .
Same on Ω_2 .

Divide & Conquer...?

Problem:

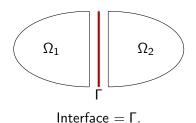
$$-\Delta u = f$$
 on Ω ,
 $u = 0$ on $\partial \Omega$.

 $\eta = u|_{\Gamma}$

• If we know η , then

$$u=U\eta+\mathcal{U}f.$$

• But, can we find η on $\Gamma \dots$?



Solve the "interface problem"

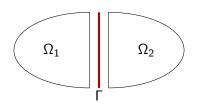
1 Classical theorem: η is the unique function in $\mathring{H}^{1/2}(\Gamma)$ satisfying

$$a(\eta, \mu) = b(\mu), \quad \forall \mu \in \mathring{H}^{1/2}(\Gamma)$$

where

$$a(\eta, \mu) = \int_{\Omega} \vec{\nabla}(U \ \eta) \cdot \vec{\nabla}(U \ \mu),$$

 $b(\mu) = \int_{\Omega} (U \ \mu) \ f.$



② Recover solution by $u = U \eta + \mathcal{U} f$.

Dimensional reduction: The interface problem is 1D!

Solve the "interface problem"

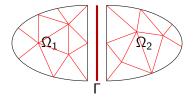
① Classical theorem: η_h is the unique function in M_h satisfying

$$a(\eta_h, \mu) = b(\mu),$$

$$\forall \mu \in M_h \subset \mathring{H}^{1/2}(\Gamma)$$

where

$$a(\eta,\mu) = \int_{\Omega} \vec{\nabla}(U_{h}\eta) \cdot \vec{\nabla}(U_{h}\mu),$$
 $b(\mu) = \int_{\Omega} (U_{h}\mu) f.$



② Recover solution by $u_h = U_h \eta_h + \mathfrak{U}_h f$.

[Bramble+Pasciak+Schatz, 1986]: The same statements hold for the Lagrange finite element approximation of u, provided U and $\mathcal U$ are replaced by their discrete analogues U_h and $\mathcal U_h$.

Next

- A domain decomposition perspective √
 - ▶ The interface function η_h
 - ightharpoonup Recovery of solution u_h
- Hybridized methods

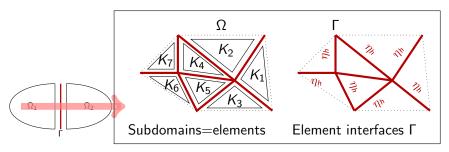
 - •
- Eigenvalue problems
 - .

$$a(\eta_h, \mu) = b(\mu) .$$

$$u_h = U_h \eta_h + \mathcal{U}_h f .$$

Let subdomains be elements

"Hybridized methods" are obtained by applying domain decomposition where subdomains are elements.

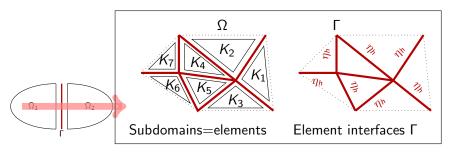


As we transition from the simple two-domain splitting to the case subdomains $\Omega_i = \text{elements } K_i$,

we continue to have $a(\eta_h, \mu) = b(\mu)$, and $u_h = U_h \eta_h + \mathcal{U}_h f$.

Let subdomains be elements

"Hybridized methods" are obtained by applying domain decomposition where subdomains are elements.



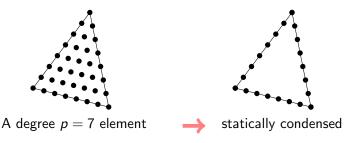
As we transition from the simple two-domain splitting to the case $subdomains \ \Omega_i = elements \ K_i,$

we continue to have $a(\eta_h, \ \mu) = b(\mu)$, and $u_h = U_h \eta_h + \mathcal{U}_h f$.

This is the "statically condensed" system.

Dimensional reduction

Static condensation is good for high order finite elements:

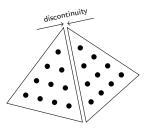


If p = polynomial degree of FEM, then for 2D problems,

original system size reduced system size $O(p^2)$ \longrightarrow O(p).

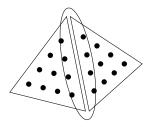
What about DG methods?

In DG (discontinuous Galerkin) methods, approximations can be discontinuous across interfaces.



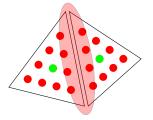
What about DG methods?

In DG (discontinuous Galerkin) methods, approximations can be discontinuous across interfaces.



What about DG methods?

In DG (discontinuous Galerkin) methods, approximations can be discontinuous across interfaces.



Nodes that can be condensed out (•).

Remaining coupled nodes (•).

(-).

HDG methods improve the situation . . .

 Many HDG methods were discovered and presented together in [Cockburn+G+Lazarov,'09] ("Unified hybridization of DG, mixed, and CG methods...", SINUM).

- Many HDG methods were discovered and presented together in [Cockburn+G+Lazarov,'09] ("Unified hybridization of DG, mixed, and CG methods ...", SINUM).
- "HDG" methods:

Hybridized
Discontinuous Galerkin methods

- Many HDG methods were discovered and presented together in [Cockburn+G+Lazarov,'09] ("Unified hybridization of DG, mixed, and CG methods ...", SINUM).
- "HDG" methods:

Hybridized

Discontinuous Galerkin methods —

Uses approximating functions with no interelement continuity.

- Many HDG methods were discovered and presented together in [Cockburn+G+Lazarov,'09] ("Unified hybridization of DG, mixed, and CG methods ...", SINUM).
- "HDG" methods:

Hybridized

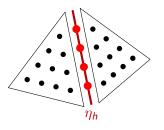
Discontinuous Galerkin methods

- Uses approximating functions with no interelement continuity.
- Elements are coupled through interelement traces

 (a separate unknown of the method).

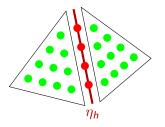
HDG methods

In *HDG methods*, coupling is achieved through new interface variables η_h , which are called *numerical traces* (indicated by " \bullet " below).



HDG methods

In *HDG methods*, coupling is achieved through new interface variables η_h , which are called *numerical traces* (indicated by " \bullet " below).



Nodes that can be condensed out (•). Remaining coupled nodes (•).

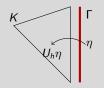
⇒ More nodes can be condensed out in HDG methods!

Common elements of all HDG methods

- **1** An interface function η_h satisfying $a(\eta_h, \mu) = b(\mu)$.
- **2** Recovery of interior solution u_h by $u_h = U_h \eta_h + \mathcal{U}_h f$.

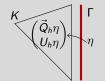
Standard condensed FEM

$$a(\eta,\mu) = \int_{\Omega} \vec{
abla}(U_h \eta) \cdot \vec{
abla}(U_h \mu)$$



HDG method

$$a(\eta,\mu)=\int_{\Omega} ec{Q}_{h} \eta \cdot ec{Q}_{h} \mu$$



$$U_h\etapprox U\eta: \left\{ egin{array}{ll} -\Delta(U\eta)=0 & ext{on } K \ & U\eta=\eta & ext{on } \Gamma \ & U\eta=0 & ext{on } \partial K\setminus\Gamma. \end{array}
ight.$$

For HDG, use DG flux approx:

$$ec{m{Q}}_{m{h}} m{\eta} pprox - ec{
abla}(U m{\eta}).$$

$$\vec{q} + \vec{\nabla} u = 0 \implies$$

$$\int_{K} \vec{q} \cdot \vec{v} - \int_{K} u \ \nabla \cdot \vec{v} = - \int_{\partial K} u \ (\vec{v} \cdot \vec{n})$$

$$\nabla \cdot \vec{q} = f \implies$$

$$\vec{q} + \vec{\nabla} u = 0 \implies$$

$$\int_{\mathcal{K}} \vec{q}_{h} \cdot \vec{v} - \int_{\mathcal{K}} u_{h} \nabla \cdot \vec{v} = - \int_{\partial \mathcal{K}} \eta(\vec{v} \cdot \vec{n})$$

$$\nabla \cdot \vec{q} = f \implies$$

$$\vec{q} + \vec{\nabla} u = 0 \implies$$

$$\int_{\mathcal{K}} \vec{q}_{h} \cdot \vec{v} - \int_{\mathcal{K}} u_{h} \nabla \cdot \vec{v} = - \int_{\partial \mathcal{K}} \eta(\vec{v} \cdot \vec{n})$$

$$\nabla \cdot \vec{q} = f \implies$$

$$-\int_{K} \vec{\nabla} w \cdot \vec{q} + \int_{\partial K} w \, \vec{q} \cdot \vec{n} = \int_{K} f \, w$$

$$\vec{q} + \vec{\nabla} u = 0 \implies$$

$$\int_{\mathcal{K}} \vec{q}_{h} \cdot \vec{v} - \int_{\mathcal{K}} u_{h} \nabla \cdot \vec{v} = - \int_{\partial \mathcal{K}} \eta(\vec{v} \cdot \vec{n})$$

$$\nabla \cdot \vec{q} = f \implies$$

$$-\int_{K} \vec{\nabla} w \cdot \vec{q}_{h} + \int_{\partial K} w \, \hat{q}_{h} \cdot \vec{n} = \int_{K} f \, w$$

- Set $|\hat{q}_h = \vec{q}_h + \tau(u_h \eta)|$ to obtain a stable method for any $\tau > 0$.
- Spaces: \vec{q}_h , u_h are polynomials of degree at most k.
- $\vec{Q}_h \eta = \vec{q}_h$ and $U_h \eta = u_h$ when f = 0.

Extension to other problems

- We used $\hat{q}_h = \vec{q}_h + \tau(u_h \hat{u}_h)$ for the Dirichlet problem.
- Such numerical flux prescriptions can be made for many problems.

Example of Euler equations, courtesy of Jaime Peraire (MIT):

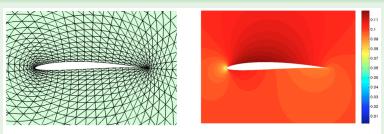


Figure 1. Inviscid flow over a Kármán-Trefftz airfoil: $M_{\infty}=0.1$, $\alpha=0$. Detail of the mesh employed (left) and Mach number contours of the solution using fourth order polynomial approximations (right).

$$\nabla \cdot \vec{F}(\vec{u}) = 0$$

$$-(\vec{F}(\vec{u}_h), \nabla \vec{w})_K + \langle \hat{F}_h \cdot \vec{n}, \vec{w} \rangle_{\partial K} = 0$$

$$\left| \hat{F}_h \cdot \vec{n} = \vec{F}(\hat{u}_h) \cdot \vec{n} + \mathcal{T}_{\hat{u}_h, \vec{u}_h} (\vec{u}_h - \hat{u}_h) \right|.$$

Why HDG?

- HDG methods yield matrices of the same size and sparsity as mixed methods (finally overcoming the criticism that "all DG methods are bloated with too many unknowns").
- Stability is guaranteed for any positive stabilization parameter. (It does not have to be "sufficiently large".)
- Mixed methods require carefully crafted spaces for stability, while HDG methods offer greater *flexibility* in the choice of spaces.
- Unlike most older DG methods, HDG methods yield (provably) optimal error estimates for flux (and the other unknowns).
- Coupling methods, even across non-matching mesh interfaces, is easy.

Next

- A domain decomposition perspective √
 - ▶ The interface function η_h
 - ► Recovery of solution *u_h*
- Hybridized methods ✓
 - Static condensation
 - ► HDG methods
- Eigenvalue problems \longleftarrow

 - •

$$a(\eta_h, \mu) = b(\mu) .$$

$$u_h = U_h \eta_h + \mathcal{U}_h f .$$

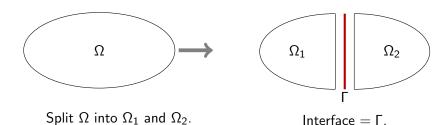
$$\widehat{\mathbf{q}}_h = \vec{\mathbf{q}}_h + \tau(\mathbf{u}_h - \eta_h)$$

Divide the eigenproblem?

Problem:

$$-\Delta u = \lambda u \qquad \text{on } \Omega,$$

$$u = 0 \qquad \text{on } \partial \Omega.$$



Condensation/Hybridization

Source Problem

• Condensed problem at interface: Find $\eta_h \in M_h$ satisfying

$$a(\eta_h,\mu)=b(\mu) \quad \forall \mu \in M_h,$$

where

$$a(\eta,\mu) = \int_{\Omega} \vec{Q}_h \eta \cdot \vec{Q}_h \mu \ b(\mu) = \int_{\Omega} (U_h \mu) f$$

Eigenproblem, by analogy...

 Could we not condense the eigenproblem to interfaces?
 Guess:

$$a(\eta_h,\mu) = \lambda_h \langle \eta_h,\mu \rangle \quad \forall \mu \in M_h$$

where

$$\langle \eta, \mu \rangle = \int_{\Omega} (U_h \eta) (U_h \mu).$$

Condensation/Hybridization

Source Problem

• Condensed problem at interface: Find $\eta_h \in M_h$ satisfying

$$a(\eta_h,\mu)=b(\mu) \quad \forall \mu \in M_h,$$

where

$$a(\eta,\mu) = \int_{\Omega} \vec{Q}_h \eta \cdot \vec{Q}_h \mu$$
 $b(\mu) = \int_{\Omega} (U_h \mu) f$

Eigenproblem, by analogy...

 Could we not condense the eigenproblem to interfaces? Guess:

$$a(\eta_h,\mu) = \lambda_h \langle \eta_h,\mu \rangle \quad \forall \mu \in M_h$$

where

$$\langle \eta, \mu \rangle = \int_{\Omega} (U_h \eta) (U_h \mu).$$

Really?

Spectrum reduced!

- Which eigenvalues disappeared?
- Condensed λ_h = Actual λ_h ?

Condensation/Hybridization

Source Problem

• Condensed problem at interface: Find $\eta_h \in M_h$ satisfying

$$a(\eta_h,\mu)=b(\mu) \quad \forall \mu \in M_h,$$

where

$$a(\eta,\mu) = \int_{\Omega} \vec{Q}_h \eta \cdot \vec{Q}_h \mu$$
 $b(\mu) = \int_{\Omega} (U_h \mu) f$

Eigenproblem, by analogy...

 Could we not condense the eigenproblem to interfaces?
 Guess:

$$a(\eta_h,\mu) = \tilde{\lambda}_h \langle \eta_h,\mu \rangle \quad \forall \mu \in M_h$$

where

$$\langle \eta, \mu \rangle = \int_{\Omega} (U_h \eta) (U_h \mu).$$

Really?

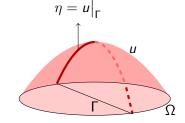
Spectrum reduced!

- Which eigenvalues disappeared?
- Condensed $\tilde{\lambda}_h$ = Actual λ_h ?

Returning to the simple 2-domain case temporarily, recall:

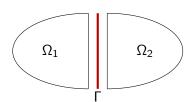
Source Problem:

$$-\Delta u = f$$
 on Ω ,
 $u = 0$ on $\partial \Omega$.



• If we know η , then

$$u = U\eta + \mathcal{U}f$$
.

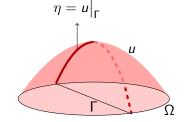


Returning to the simple 2-domain case temporarily, recall:

Eigenproblem:

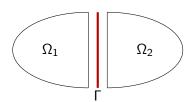
$$-\Delta u = \frac{\lambda u}{\partial \Omega} \qquad on \ \Omega,$$

$$u = 0 \qquad on \ \partial \Omega.$$



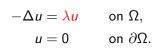
• If we know η , then

$$u = U\eta + \mathcal{U}(\lambda u).$$



Deriving the condensed eigenproblem

$$u = \boxed{U\eta + \mathcal{U}(\lambda u)}$$

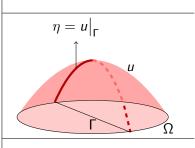




$$u = \boxed{ U\eta + \mathcal{U}(\lambda u)}$$
$$= U\eta + \lambda \mathcal{U}\left(\boxed{U\eta + \mathcal{U}(\lambda u)} \right)$$

$$-\Delta u = \frac{\lambda u}{\Delta u} \quad \text{on } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$



$$u = \frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}$$

$$= U\eta + \lambda \mathcal{U}\left(\frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}\right)$$

$$= \cdots \text{[recursively repeat]} \cdots$$

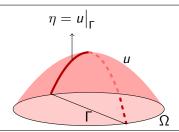
$$= \left(I + \lambda \mathcal{U} + (\lambda \mathcal{U})^2 + \cdots\right) U\eta$$

$$= \left(I - \lambda \mathcal{U}\right)^{-1} U\eta,$$

provided the series converges.

$$-\Delta u = \frac{\lambda u}{\Delta u} \quad \text{on } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$



$$\begin{cases} -\Delta(\mathcal{U}f) = f, \text{ on subdom.,} \\ \mathcal{U}f = 0, \text{ on } \partial(\text{subdom}). \end{cases}$$

$$u = \frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}$$

$$= U\eta + \lambda \mathcal{U}\left(\frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}\right)$$

$$= \cdots [\text{recursively repeat}] \cdots$$

$$= \left(I + \lambda \mathcal{U} + (\lambda \mathcal{U})^2 + \cdots\right) U\eta$$

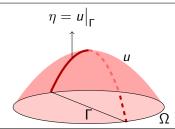
$$= (I - \lambda \mathcal{U})^{-1} U\eta,$$

provided the series converges.

Series converges if subdomains small.

$$-\Delta u = \frac{\lambda u}{\Delta u} \quad \text{on } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$



$$\begin{cases} -\Delta(\mathfrak{U}f) = f, \text{ on subdom.,} \\ \mathfrak{U}f = 0, \text{ on } \partial(\text{subdom}). \end{cases}$$

$$u = \frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}$$

$$= U\eta + \lambda \mathcal{U}\left(\frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}\right)$$

$$= \cdots [\text{recursively repeat}] \cdots$$

$$= (I + \lambda \mathcal{U} + (\lambda \mathcal{U})^2 + \cdots) U\eta$$

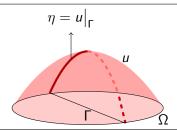
$$= (I - \lambda \mathcal{U})^{-1}U\eta,$$

provided the series converges.

- Series converges if subdomains small.
- Then u can be recovered from η .

$$-\Delta u = \lambda u \quad \text{on } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$



Recall definition of $\mathcal{U}f$:

$$\begin{cases} -\Delta(\mathcal{U}f) = f, \text{ on subdom.,} \\ \mathcal{U}f = 0, \text{ on } \partial(\text{subdom}). \end{cases}$$

Jay Gopalakrishnan 21/26

$$u = \frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}$$

$$= U\eta + \lambda \mathcal{U}\left(\frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}\right)$$

$$= \cdots \text{[recursively repeat]} \cdots$$

$$= (I + \lambda \mathcal{U} + (\lambda \mathcal{U})^2 + \cdots) U\eta$$

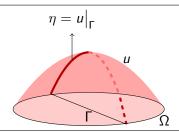
$$= (I - \lambda \mathcal{U})^{-1} U\eta.$$

provided the series converges.

- Series converges if subdomains small.
- Then u can be recovered from η .
- $a(\eta,\mu) = \int_{\Omega} (U\mu) f$

$$-\Delta u = \frac{\lambda u}{\Delta u} \quad \text{on } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$



$$\begin{cases} -\Delta(\mathcal{U}f) = f, \text{ on subdom.,} \\ \mathcal{U}f = 0, \text{ on } \partial(\text{subdom}). \end{cases}$$

$$u = \frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}$$

$$= U\eta + \lambda \mathcal{U}\left(\frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}\right)$$

$$= \cdots [\text{recursively repeat}] \cdots$$

$$= \left(I + \lambda \mathcal{U} + (\lambda \mathcal{U})^2 + \cdots\right) U\eta$$

$$= (I - \lambda \mathcal{U})^{-1} U\eta,$$

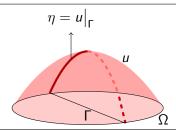
provided the series converges.

- Series converges if subdomains small.
- Then u can be recovered from η .

•
$$a(\eta,\mu) = \int_{\Omega} (U\mu) \lambda u$$

$$-\Delta u = \frac{\lambda u}{\Delta u} \quad \text{on } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$



$$\begin{cases} -\Delta(\mathcal{U}f) = f, \text{ on subdom.,} \\ \mathcal{U}f = 0, \text{ on } \partial(\text{subdom}). \end{cases}$$

$$u = \frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}$$

$$= U\eta + \lambda \mathcal{U}\left(\frac{U\eta + \mathcal{U}(\lambda u)}{U\eta + \mathcal{U}(\lambda u)}\right)$$

$$= \cdots \text{[recursively repeat]} \cdots$$

$$= \left(I + \lambda \mathcal{U} + (\lambda \mathcal{U})^2 + \cdots\right) U\eta$$

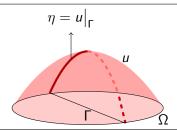
$$= (I - \lambda \mathcal{U})^{-1} U\eta.$$

provided the series converges.

- Series converges if subdomains small.
- Then u can be recovered from η .
- $a(\eta, \mu) = \int_{\Omega} (U\mu) \lambda (I \lambda U)^{-1} U\eta$.

$$-\Delta u = \frac{\lambda u}{\Delta u} \quad \text{on } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$



$$\begin{cases} -\Delta(\mathcal{U}f) = f, \text{ on subdom.,} \\ \mathcal{U}f = 0, \text{ on } \partial(\text{subdom}). \end{cases}$$

Nonlinear eigenproblem

The preceding arguments indicate:

- It should be possible to "hybridize" or "condense" the eigenproblem to element interfaces when meshsize is small enough.
- Upon condensation, we should expect a *linear* eigenproblem to become a *nonlinear eigenproblem* of the form:

Find
$$\eta$$
: $a(\eta, \mu) = \int_{\Omega} (U\mu) \lambda (I - \lambda \mathcal{U})^{-1} U\eta, \quad \forall \mu.$

ullet The first guess that λ may solve

Find
$$\eta$$
: $a(\eta, \mu) = \lambda \langle \eta, \mu \rangle$, $\forall \mu$,

where
$$\langle \eta, \mu \rangle = \int_{\Omega} (U\eta) (U\mu)$$
 is *not* correct.

Condensed HDG eigenproblem

Theorem

There is a constant C > 0 such that for any $\lambda_h < C/h$, the operator $I - \lambda_h \mathcal{U}$ is invertible, and moreover, λ_h satisfies

$$a(\eta_h,\mu) = \int_{\Omega} \lambda_h (I - \lambda_h \mathfrak{U})^{-1} U \eta_h U \mu \qquad \forall \mu \in M_h$$

with some $\eta_h \not\equiv 0$ in M_h , if and only if the number λ_h and the functions

$$\eta_h, \quad u_h = (I - \lambda_h \mathcal{U})^{-1} U \eta_h$$

together solve the HDG eigenproblem.

⇒ Condensed HDG eigenproblem does not lose lower eigenmodes.

Jay Gopalakrishnan 23/26

Perturbed interface eigenproblem

The condensed interface eigenproblem: Find $\lambda_h \in \mathbb{R}$ and $\eta_h \not\equiv 0$ satisfying

$$a(\eta_h,\mu) = \int_{\Omega} \lambda_h \left(I - \lambda_h \mathcal{U}\right)^{-1} (U\eta_h) \left(U\mu\right) \quad \forall \mu \in M_h.$$

Perturbed interface eigenproblem: Find $\lambda_h \in \mathbb{R}$ and $\tilde{\eta}_h \not\equiv 0$ satisfying

$$\mathsf{a}(ilde{\eta}_h,\mu) = ilde{\lambda}_h \int_{\Omega} (U ilde{\eta}_h) \ (U\mu) \quad orall \mu \in M_h.$$

Theorem

For any HDG eigenvalue $\lambda_h < C/h$, there is an eigenvalue $\tilde{\lambda}_h$ of the perturbed eigenproblem satisfying

$$\frac{|\lambda_h - \tilde{\lambda}_h|}{\lambda_h} \leq C \lambda_h \tilde{\lambda}_h h$$

for sufficiently small h.

Perturbed interface eigenproblem

The condensed interface eigenproblem: Find $\lambda_h \in \mathbb{R}$ and $\eta_h \not\equiv 0$ satisfying

$$a(\eta_h,\mu) = \int_{\Omega} \lambda_h (I - \lambda_h \mathfrak{U})^{-1} (U\eta_h) (U\mu) \quad \forall \mu \in M_h.$$

Perturbed interface eigenproblem: Find $\lambda_h \in \mathbb{R}$ and $\tilde{\eta}_h \not\equiv 0$ satisfying

$$\mathsf{a}(ilde{\eta}_h,\mu) = ilde{\lambda}_h \int_{\Omega} (U ilde{\eta}_h) \ (U\mu) \quad orall \mu \in \mathsf{M}_h.$$

Theorem

⇒ We can use the solution of the perturbed eigenproblem as initial iterates in a nonlinear solver for $\lambda_h!$

Discretization errors

Eigenproblem

 $-\Delta u = \lambda u$

Eigenfunction: Eigenvalue:

discretization HDG

Eigenfunction: Uh Interface fn:

 η_h Eigenvalue:

Condensation

Interface fn: η_h Eigenvalue:

Theorem

If the exact eigenfunction is smooth, then

$$|\lambda - \lambda_h| \leq Ch^{2k+1}$$

for the HDG discretization using polynomials of degree at most k. The $L^{2}(\Omega)$ - "gap" between the discrete and exact eigenspaces is $O(h^{k+1})$.

Conclusion

- A domain decomposition perspective
 - ▶ The interface function η_h
 - ightharpoonup Recovery of solution u_h
- Hybridized methods
 - Static condensation
 - ► HDG methods
- Eigenvalue problems
 - ▶ HDG eigenproblem & its condensation
 - ▶ HDG eigenvalue convergence rates
 - Perturbed interface eigenproblem
 - Nonlinear eigenproblem

$$a(\eta_h, \mu) = b(\mu)$$
.
 $u_h = U_h \eta_h + \mathcal{U}_h f$.

$$\widehat{\mathbf{q}}_h = \vec{\mathbf{q}}_h + \tau(\mathbf{u}_h - \eta_h)$$

$$O(h^{2k+1})$$

$$a(\eta_h,\mu) = \tilde{\lambda}_h \int_{\Omega} U \eta_h \ U \mu$$

$$a(\eta_h, \mu) = \int_{\Omega} \lambda_h (I - \lambda_h \mathcal{U})^{-1} U \eta_h \ U \mu$$