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Q@ What?
» CG, DG, PG, CPG, ..., DPG

Q@ Why?

» 1D 1l-element example
2D pure transport
Laplace's equation
Elasticity
Wave propagation

v vy VvYy

©@ How?
» Optimal test functions
» Deriving an ultraweak formulation
» Theory leading to quasioptimality.
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“Petrov-Galerkin” schemes (PG) UF [FLORTDA

PG schemes are distinguished by different trial and test spaces.

The problem:

1

Variational form:

Discretization:

[PDE.+

boundary conditions.

[ Find v in a trial space U satisfying

b(u,v) =1(v)

for all v in a test space V.

[ Find u, in a discrete trial space U, C U satisfying

b(un, vn) = I(vp)
for all v, in a discrete test space V, C V.

For PG schemes, U, # V,, in general.

Jay Gopalakrishnan

3/20



Elements of theory UF 51555

@ Variational formulation:

a uniqueness

b(u,v
Cllully < sup 121

vev vl

Exact inf-sup condition
[ condition

] =—> wellposedness

@ Babuska's theorem:

Discrete inf-sup condition
b, )l | = 10 = nllu < € _inf Jlu = w,lo.

n n

Cllunllu < sup
oV lallv

o Difficulty: Exact inf-sup condition =~ Discrete inf-sup condition

@ Is there a way to find a stable test space for any given trial space
(thus giving a stable method automatically)?
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The DPG method UF 51555

Pick any U, C U. The DPG method finds u, € Uy such that

b(Uh, Vh) = /(Vh), Vv, € V) = T(Uh),
where T : U~ V is defined by

(Tw,v)y = b(w,v), Vwe U, ve V.
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The DPG method UF 51555

Pick any U, C U. The DPG method finds u, € Uy such that

b(Uh, Vh) = I(Vh), Vv, € V) = T(Uh),
where T : U~ V is defined by

(Tw,v)y = b(w,v), Vwe U, ve V.

Motivation:
|b(u, v)|
[vilv

o A: v = Tuis the maximizer. < The optimal test function.

@ @: Which function v maximizes for any given u 7

DPG Idea: If the discrete test space contains the optimal test functions,
then stability of the discrete scheme is inherited from the wellposedness.
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The DPG method UF 51555

Pick any U, C U. The DPG method finds u, € Uy such that

b(Uh, Vh) = I(Vh), Vv, € V) = T(Uh),
where T : U~ V is defined by

(Tw,v)y = b(w,v), Vwe U, ve V.

But ... can we really compute Tu?
@ For a few problems, Tu can be calculated in closed form.

@ For the remaining problems. . . this idea is applicable if an ultraweak
variational formulation can be found in a space V with a “broken”
innerproduct (+,-)y. Then, Tu can be locally approximated.
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Next ml‘umvlmsrn( of

@ Examples where T can be calculated in closed form:

» Example 1: A 1D example
» Example 2: 2D transport

@ Examples where new ultraweak formulations need to be derived:

» Example 3: Laplace's equation
» Example 4: Elasticity
» Example 5: Wave propagation
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Example 1: An ODE UF 058 T5A

1D transport:

L? variational form:

Jay Gopalakrishnan

J=rFf in(0,1),
u(0) = up (inflow b.c.)

[Find u € L%, and a number 41 € R, satisfying

1 1
—/ uv' + iyv(1) = / fv+ upv(0), Vve H.
0 0

b( (u,01), v) I(v)

| Trial space: U = [? x R, Test space: V = H*.
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Example 1: An

O D E W‘UNWERS“Y of

1D transport:

L? variational form:

Spectral DPG: [

Jay Gopalakrishnan

J=rFf in(0,1),
u(0) = up (inflow b.c.)

[Find u € L%, and a number 41 € R, satisfying

1 1
—/ uv' + iyv(1) = / fv+ upv(0), Vve H.
0 0

b( (u,d1), v) I(v)

| Trial space: U = [? x R, Test space: V = H*.

Find (Up7 Z\Il) € Um = Pp X R, Satisfying
b( (up, 01),v) = I(v), Vv € Vi = T(Up) =7
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Optimal test functions UF FLORIDA

1
b( (u, 01), v):—/ w' + d1v(1), U=1>xR, vV =H!
0

o 2
Q: Which function achieves sup < b(, (2u, i), v) 2>?
vert \|[V/[|7> + [v(1)]

1
A: The maximizer is V = {1 +/ u(s) ds. < Optimal test function

X

T(U, a1) =V
m.ﬁl

0 transport direction 1

Q: If Uy = P, xR, what is V,,?
A: By the above formula for T, we conclude that V,,, = T(Un) = Ppi1.
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What have we gained? W‘UN!VERSITYQ[

The spectral DG solutions

0
05 @ Experiment: Solve 1D
' transport equation using
» o DG and DPG on one
S RN element.
= £ oy .
R — 1@ Exact solution has a
/
, e sharp layer at x = 1.
2 , P 7
7
/ 7
7
-25}/ e
/ s
e
7
-3 . . : :
0 0.2 0.4 0.6 08 1
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What have we gained? UF S055T5A

The spectral DPG solutions

0
05 @ Experiment: Solve 1D
' transport equation using
4l DG and DPG on one
element.
ELd S 1@ Exact solution has a
sharp layer at x = 1.
-2F 4
o DPG is more stable.
Exact solution . .
25} - - —p=1 1 (Solution oscillates an
~ - p3 X
“““ b8 order of magnitude less.)
= 02 0.4 06 08 1
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Example 2: 2D transport UF B850

@ The same ideas can be applied to multidimensional transport:

5 v f, on £,

u
u=g, on 9ipQ2 (inflow boundary).

@ The optimal test functions can have lines of discontiuity within mesh
elements.

@ Optimal h and p convergence rates can be proved for the resulting
DPG method [Demkovvicz f G,'lO].
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Crosswind diffusion in 2D transport UF FLORIDA

Pure transport should not diffuse| But most numerical methods do.
materials crosswind.

Experiment: Use DG and DPG for simulating vertically upward transport
of linearly varying density from the bottom of the unit square.
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Crosswind diffusion in 2D transport UF [£16RT5A

DG has crosswind diffusion.

Experiment: Use DG and DPG for simulating vertically upward transport
of linearly varying density from the bottom of the unit square.
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Next ml‘umvlmsrn of

@ Examples where new ultraweak formulations need to be derived:

» Example 3: Laplace's equation
» Example 4: Elasticity
» Example 5: Wave propagation
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Example 3: Laplace equation lIPl|UN|vERsan

—l—ﬁu:o —
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Example 3: Laplace equation lIPl|UN|vERsan

—l—ﬁu:o —

‘?h'?—/uhv-?-l-/ p(7 - 1) = 0
K K IK\OQ

V-d=Ff =
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Example 3: Laplace equation UF FLORIDA

F+Vu=0 =
Eh'F—/UhV'F‘i'/ p(7-A) = 0
K K AK\OQ

V-o=f =
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Example 3: Laplace equation UF ¥ ORTDA

FAVu=0 —

~

Eh'f'—/uhv'f)—i-/ uh(F-Fi) = 0
K K OK\OQ

V-o=f =

@ Traditionally, various DG methods are obtained by setting various
expressions for the numerical trace Ui, and numerical flux &p,.
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Example 3: Laplace equation UF ¥ ORTDA

FAVu=0 —

~

Eh'f'—/uhv'f)—i-/ uh(F-Fi) = 0
K K OK\OQ

V-o=f =

@ Traditionally, various DG methods are obtained by setting various
expressions for the numerical trace Ui, and numerical flux &p,.

@ DPG methods set both i, and 6} as unknowns.

Jay Gopalakrishnan 13/20



Example 3: Laplace equation W‘UNIVERSITYf

Z{/‘?h'?‘/ uhvf+/ iy (7 - )
% K K IK\oQ

b( (5h7 Up, l,.\lh, &h)a (7?7 V) )’) = \/(7?7 V)

@ Traditionally, various DG methods are obtained by setting various
expressions for the numerical trace Ui, and numerical flux &p,.

@ DPG methods set both i, and 6} as unknowns.
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DPG theory UF [FLORIDA

Form: Trial functions (&', u, i1, 6n) € U,  Test functions (7,v) € V,

[/af—uv-ﬂu/ o7 i
K oK

b( (3, u,0,6,), (F.v)) =)
K

Spaces: 7 ¢ L2(Q)’V
ue L?(Q)
0 € the set of traces of Hj(Q)-functions on L}gE)K

Gn € the set of normal traces of H(div)-functions on LKJ8K

7 € “broken” H(div)  (i.e., 7|k € H(div,K), ¥YK)
v € "broken” H! (i.e., v|k € HYK), VK)
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DPG theory A

Trial functions (57 u, i, 6,7) e U, Test functions (7_", V) eV,

Form:
/5"F—UV-F+/ o7-n
K oK

Discrete Spaces:
Given any U, C U, we set V,,, = T(Upn). Recall the definition of T :
Vwel, velV.

(Tw,»)y =b(w,7),
For this application, the V-innerproduct is
(71, v1), (72, v2))v = Z/ AR+ (V-A)(V 7))+ viva+ Vv - Vi,
K
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DPG theory A

Form:

K

K K E)

Theorem

@ This ultraweak formulation is wellposed. [Demkowicz+G, 2011]

@ For any U, C U, the DPG solution (G, u, ii,6p)m € Un satisfies

=

”(&7 u, 76")_(57 u, z\”‘%n)m“U <C '2{1 H(&v u, a?‘%n)_WnHU
m

n

© This implies optimal h and p error estimates if Uy, is an hp space.

Trial functions (57 u, i, 6,7) e U, Test functions (F, V) eV,
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Example 4: Linear elasticity UF‘UN!VERSITYQ[

@ We can develop an ultraweak formulation in a similar fashion for

Ao —e(u) =0 o = stress,

V-o=f u = displacement.

o Traditional difficulty:

> Discrete stress spaces are complex due to competing requirements:
* o must be a symmetric matrix valued function,
* Interelement forces must be in equilibrium, i.e., o € H(div).
* Stress space must be chosen in relation to displacement space for
discrete stability. [Arnold+Awanou+Winther, '08]

@ Advantages of DPG:
» Discrete stability is automatic. (Choose your favorite trial space for o!)
» We get hp optimal results if hp trial spaces are chosen.
» DPG outperforms the mixed method.
» There is no locking. [Bramwell+Demkowicz+G+Qiu, 11]
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L-shaped steel UF 6t

The x-component of the computed displacement (uy).
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L-Shaped steel W‘UNIVERSITYaf
0 Singular solution, refinement strategies
10 T . .
—o— Uniform h
—+— Uniform p
= —4— Adaptive h
% —— Adaptive hp
(\I_I »
o 10 ]
=
kS
[0]
o
—2
10 . L .
10° 10° 10* 10° 10°
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A measure Of robustness W‘UN!VERSITYf

@ The best any method can do is to deliver the Best Approximation
from its trial space.

@ For any method, the ratio

Discretization Error -1
Best Approximation Error —

and its optimal value is 1.

@ We investigate how this ratio changes as we approach
incompressibility.
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A measure Of robustness UF‘UNIVERSITYQ[

Smooth solution, nearly incompressible, p = 1
1.003 " ; .

1.0025¢ 1

1.002f 1

1.0015¢ 1

1.001 1

1.0005¢ 1

1t 4

Discretization error / L? projection error

0.9995¢ 1

0.999 : ; :
0.48 0.485 0.49 0.495 0.5

v

Experiment: Solve the linear elasticity system by the DPG method using
DG spaces for stresses and displacements. [Bramwell+Demkowicz+G+Qiu,'11]
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Example 5: Wave propagation UF &058T5A

e Standard FEM exhibits pollution (manifested as phase errors).

@ DPG shows smaller phase errors.

kh=r/3,p =1, test p = 7, energy error = 0.05689

— exact
. standard H' -conforming, L, error = 1.19609
- H'-conforming w/ special quadrature, L, error = 0.13379
- DPG, L, error = 0.04024

0.70 075 0.80 0.85 0.90 0.95 1.00
£

1D case: [CaIoADemkowicz+G+l\/Iuga+Pardo+ZiteIIi,'10]
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Example 5: Wave propagation UF 58 A

e Standard FEM exhibits pollution (manifested as phase errors).

@ DPG shows smaller phase errors.

» Pollution errors arise because the ratio [Babugka+Sauter,'97]

( Discretization Error

depends on the frequency w.
Best Approximation Error> pen A requency «

» For standard FEM in 1D, [Ihlenburg,'98]
o= thlle < ey g 10l witn cw) = 6+ G
llull ez el lull2
» For DPG in 1D, [Calo+Demkowicz+G+Muga-+Pardo+Zitelli,'10]

Cw)<C (independent of w).
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Example 5: Wave propagation UF ¥ ORTDA

e Standard FEM exhibits pollution (manifested as phase errors).

@ DPG shows smaller phase errors.

Bilinear elements. Four elements per wave

—— Standard FEM______

Ratio of Discretization Error to Projection Error

L L L
10% 10
Wavenumberw (on log scale)

2D case: Work in progress
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Example 5: Wave propagation

UF [FLORIDA

e Standard FEM exhibits pollution (manifested as phase errors).

@ DPG shows smaller phase errors.

Jay Gopalakrishnan

Ratio of Discretization Error to Projection Error

Bilinear elements. Four elements per wave

+ —»— Standard FEM

+

Blended Quadrature

10%
Wavenumber o

2D case: Work in progress

(on log scale)
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Example 5: Wave propagation UF ¥ ORTDA

e Standard FEM exhibits pollution (manifested as phase errors).

@ DPG shows smaller phase errors.

Bilinear elements. Four elements per wave

+ —— Standard FEM____
: +  Blended Quadrature
—©6— DPG method

Ratio of Discretization Error to Projection Error

L L L
10% 10
Wavenumberw (on log scale)

2D case: Work in progress
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Pekeris waveguide UF ¥ ORTDA

A shallow-water acoustic waveguide. (Just four elements per wavelength.)

X
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Pekeris waveguide UF ¥ ORTDA

A shallow-water acoustic waveguide. (Just four elements per wavelength.)

P oN f %
Discrete solution
Biquadratic FEM with blended quadrature
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Pekeris waveguide UF a8

A shallow-water acoustic waveguide. (Just four elements per wavelength.)

Discrete solution
Bilinear DPG method
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UF [FLORIDA

ide

is wavegui

Peker

A shallow-water acoustic waveguide. (Just four elements per wavelength.)

The exact solution
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UNIVERSITY of

Conclusions UF [¥1 ORIDA

@ Wellposedness implies discrete stability through the concept of
optimal test functions.

@ The DPG method often outperforms DG and other standard methods.
@ We can prove optimal hp convergence estimates.

@ The DPG methods exhibit extraordinary stability with respect to
variations in h, p, and singular parameters.
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