Automatically finding stable pairs of spaces in DPG schemes

Jay Gopalakrishnan

University of Florida

Collaborator: Leszek Demkowicz (UT Austin)

INRIA Sophia Antipolis (Nice), France, July 2011

Outline

What?

- CG, DG, PG, CPG, ..., DPG
- Why?
 - ID 1-element example
 - 2D pure transport
 - Laplace's equation
 - Elasticity
 - Wave propagation
- Item 4
 - Optimal test functions
 - Deriving an ultraweak formulation
 - Theory leading to quasioptimality.

PG schemes are distinguished by different trial and test spaces.

The problem:
$$\begin{bmatrix} P.D.E.+\\ boundary conditions. \\ \downarrow \\ Variational form: \begin{bmatrix} Find \ u \text{ in a trial space } U \text{ satisfying} \\ b(u,v) = l(v) \\ for all \ v \text{ in a test space } V. \\ \downarrow \\ Discretization: \begin{bmatrix} Find \ u_n \text{ in a discrete trial space } U_n \subset U \text{ satisfying} \\ b(u_n,v_n) = l(v_n) \\ for all \ v_n \text{ in a discrete test space } V_n \subset V. \\ \end{bmatrix}$$

For PG schemes, $U_n \neq V_n$ in general.

Elements of theory

• Variational formulation:

Exact inf-sup condition

$$C \| u \|_{U} \leq \sup_{v \in V} \frac{|b(u, v)|}{\|v\|_{V}} + \begin{bmatrix} a \text{ uniqueness} \\ condition \end{bmatrix} \implies \text{wellposedness}$$

Babuška's theorem:

Discrete inf-sup condition

$$C \|u_n\|_U \leq \sup_{\mathbf{v}_n \in \mathbf{V}_n} \frac{|b(u_n, \mathbf{v}_n)|}{\|\mathbf{v}_n\|_V} \implies \|u - u_n\|_U \leq C \inf_{\mathbf{w}_n \in U_n} \|u - w_n\|_U.$$

• Difficulty: Exact inf-sup condition \implies Discrete inf-sup condition

• Is there a way to find a stable test space for *any* given trial space (thus giving a stable method automatically)?

The DPG method

Pick any $U_h \subseteq U$. The DPG method finds $u_h \in U_h$ such that $b(u_h, v_h) = l(v_h), \quad \forall v_h \in V_h \equiv T(U_h),$ where $T : U \mapsto V$ is defined by $(Tw, v)_V = b(w, v), \quad \forall w \in U, v \in V.$

The DPG method

Pick any $U_h \subseteq U$. The DPG method finds $u_h \in U_h$ such that $b(u_h, v_h) = l(v_h), \quad \forall v_h \in V_h \equiv T(U_h),$ where $T : U \mapsto V$ is defined by $(Tw, v)_V = b(w, v), \quad \forall w \in U, v \in V.$

Motivation:

Q: Which function v maximizes ||v||_V for any given u ?
A: v = Tu is the maximizer. ← The optimal test function.

DPG Idea: If the discrete test space contains the *optimal test functions*, then stability of the discrete scheme is inherited from the wellposedness.

Jay Gopalakrishnan

The DPG method

Pick any $U_h \subseteq U$. The DPG method finds $u_h \in U_h$ such that $b(u_h, v_h) = l(v_h), \quad \forall v_h \in V_h \equiv T(U_h),$ where $T : U \mapsto V$ is defined by $(Tw, v)_V = b(w, v), \quad \forall w \in U, v \in V.$

But ... can we really compute Tu?

- For a few problems, Tu can be calculated in closed form.
- For the remaining problems...this idea is applicable if an *ultraweak* variational formulation can be found in a space V with a "broken" innerproduct (·, ·)_V. Then, Tu can be *locally approximated*.

- Examples where *T* can be calculated in closed form:
 - Example 1: A 1D example
 - Example 2: 2D transport
- Examples where new ultraweak formulations need to be derived:
 - Example 3: Laplace's equation
 - Example 4: Elasticity
 - Example 5: Wave propagation

1D transport:
$$\begin{bmatrix} u' = f & \text{in } (0, 1), \\ u(0) = u_0 & (\text{inflow b.c.}) \end{bmatrix}$$
$$L^2 \text{ variational form:} \begin{bmatrix} \text{Find } u \in L^2, \text{ and a number } \hat{u}_1 \in \mathbb{R}, \text{ satisfying} \\ -\int_0^1 uv' + \hat{u}_1 v(1) = \int_0^1 fv + u_0 v(0), \quad \forall v \in H^1 \\ \underbrace{\int_0^1 (u, \hat{u}_1), v}_{l(v)} = \underbrace{\int_0^1 fv + u_0 v(0)}_{l(v)}, \quad \forall v \in H^1 \\ \text{Trial space: } U = L^2 \times \mathbb{R}, \quad \text{Test space: } V = H^1 \end{bmatrix}$$

1D transport:
$$\begin{bmatrix} u' = f & \text{in } (0, 1), \\ u(0) = u_0 & (\text{inflow b.c.}) \end{bmatrix}$$
$$L^2 \text{ variational form:} \begin{bmatrix} \text{Find } u \in L^2, \text{ and a number } \hat{u}_1 \in \mathbb{R}, \text{ satisfying} \\ -\int_0^1 uv' + \hat{u}_1 v(1) = \int_0^1 fv + u_0 v(0), \quad \forall v \in H^1. \\ \underbrace{\int_{b((u,\hat{u}_1), v)}^{b((u,\hat{u}_1), v)} = \int_{(v)}^{l(v)} fv \in H^1. \\ \text{Trial space: } U = L^2 \times \mathbb{R}, \quad \text{Test space: } V = H^1. \end{bmatrix}$$

Spectral DPG:
$$\begin{bmatrix} \mathsf{Find} \ (u_p, \hat{u}_1) \in U_m \equiv P_p \times \mathbb{R}, \text{ satisfying} \\ b((u_p, \hat{u}_1), \mathbf{v}) = l(\mathbf{v}), \quad \forall \mathbf{v} \in V_m = T(U_m) = ? \end{bmatrix}$$

Optimal test functions

$$b((u, \hat{u}_1), v) = -\int_0^1 uv' + \hat{u}_1 v(1), \qquad U = L^2 \times \mathbb{R}, \qquad V = H^1$$

Q: Which function achieves
$$\sup_{v \in H^1} \left(\frac{b((u, \hat{u}_1), v)^2}{\|v'\|_{L^2}^2 + |v(1)|^2} \right)?$$
A: The maximizer is $\tilde{v} = \hat{u}_1 + \int_x^1 u(s) \, ds. \qquad \leftarrow \text{Optimal test function}$

$$T(u, \hat{u}_1) = \tilde{v}$$
integrate $\leftarrow \hat{u}_1$

Q: If $U_m \equiv P_p \times \mathbb{R}$, what is V_m ? *A*: By the above formula for *T*, we conclude that $V_m = T(U_m) = P_{p+1}$.

transport direction

1

0

Example 2: 2D transport

• The same ideas can be applied to multidimensional transport:

 $\vec{\beta} \cdot \vec{\nabla} u = f,$ on $\Omega,$ u = g, on $\partial_{in}\Omega$ (inflow boundary).

- The optimal test functions can have lines of discontiuity within mesh elements.
- Optimal *h* and *p* convergence rates can be proved for the resulting DPG method [Demkowicz+G,'10].

Crosswind diffusion in 2D transport

Pure transport should not diffuse But most numerical methods do. materials crosswind.

Experiment: Use DG and DPG for simulating vertically upward transport of linearly varying density from the bottom of the unit square.

Jay Gopalakrishnan

Crosswind diffusion in 2D transport

Experiment: Use DG and DPG for simulating vertically upward transport of linearly varying density from the bottom of the unit square.

Jay Gopalakrishnan

- Examples where *T* can be calculated in closed form:
 - Example 1: A 1D example
 - Example 2: 2D transport

• Examples where new ultraweak formulations need to be derived:

- Example 3: Laplace's equation
- Example 4: Elasticity
- Example 5: Wave propagation

UF FLORIDA

 $\vec{\sigma} + \vec{\nabla} u = 0 \implies$

$$\int_{K} \vec{\sigma} \cdot \vec{\tau} - \int_{K} u \nabla \cdot \vec{\tau} + \int_{\partial K} u (\vec{\tau} \cdot \vec{n}) = 0$$

 $\nabla\cdot\,\vec{\sigma}=f\implies$

UF FLORIDA

 $\vec{\sigma} + \vec{\nabla} u = 0 \implies$

$$\int_{K} \vec{\sigma}_{h} \cdot \vec{\tau} - \int_{K} u_{h} \nabla \cdot \vec{\tau} + \int_{\partial K \setminus \partial \Omega} \hat{u}_{h} (\vec{\tau} \cdot \vec{n}) = 0$$

 $\nabla\cdot\,\vec{\sigma}=f\implies$

 $\vec{\sigma} + \vec{\nabla} \, u = 0 \implies \int_{K} \vec{\sigma}_{h} \cdot \vec{\tau} - \int_{K} u_{h} \nabla \cdot \vec{\tau} + \int_{\partial K \setminus \partial \Omega} \hat{u}_{h} (\vec{\tau} \cdot \vec{n}) = 0$

$$\nabla \cdot \vec{\sigma} = f \implies$$

$$-\int_{K} \vec{\nabla} \mathbf{v} \cdot \vec{\sigma} + \int_{\partial K} \mathbf{v} \, \vec{\sigma} \cdot \vec{n} = \int_{K} f \, \mathbf{v}$$

 $\vec{\sigma} + \vec{\nabla} u = 0 \implies \int_{K} \vec{\sigma}_{h} \cdot \vec{\tau} - \int_{K} u_{h} \nabla \cdot \vec{\tau} + \int_{\partial K \setminus \partial \Omega} \hat{u}_{h} (\vec{\tau} \cdot \vec{n}) = 0$ $\nabla \cdot \vec{\sigma} = f \implies$

$$-\int_{\mathcal{K}} \vec{\nabla} \mathbf{v} \cdot \vec{\sigma}_{h} + \int_{\partial \mathcal{K}} \mathbf{v} \, \hat{\sigma}_{h} \cdot \vec{n} \qquad = \qquad \int_{\mathcal{K}} f \, \mathbf{v}$$

• Traditionally, various DG methods are obtained by setting various expressions for the numerical trace \hat{u}_h and numerical flux $\hat{\sigma}_h$.

 $\vec{\sigma} + \vec{\nabla} \, \boldsymbol{u} = \boldsymbol{0} \implies \int_{K} \vec{\sigma}_{h} \cdot \vec{\tau} - \int_{K} \boldsymbol{u}_{h} \, \nabla \cdot \vec{\tau} + \int_{\partial K \setminus \partial \Omega} \hat{\boldsymbol{u}}_{h} (\vec{\tau} \cdot \vec{n}) = \boldsymbol{0}$ $\nabla \cdot \vec{\sigma} = f \implies$

$$-\int_{\mathcal{K}} \vec{\nabla} \mathbf{v} \cdot \vec{\sigma}_h + \int_{\partial \mathcal{K}} \mathbf{v} \, \hat{\sigma}_h \cdot \vec{n} \qquad = \qquad \int_{\mathcal{K}} f \, \mathbf{v}$$

- Traditionally, various DG methods are obtained by setting various expressions for the numerical trace \hat{u}_h and numerical flux $\hat{\sigma}_h$.
- DPG methods set both \hat{u}_h and $\hat{\sigma}_h$ as unknowns.

UF FI OF

- Traditionally, various DG methods are obtained by setting various expressions for the numerical trace \hat{u}_h and numerical flux $\hat{\sigma}_h$.
- DPG methods set both \hat{u}_h and $\hat{\sigma}_h$ as unknowns.

DPG theory

UF FLORIDA

Form:

Trial functions $(\vec{\sigma}, u, \hat{u}, \hat{\sigma}_n) \in U$, Test functions $(\vec{\tau}, v) \in V$,

$$b((\vec{\sigma}, u, \hat{u}, \hat{\sigma}_n), (\vec{\tau}, v)) = \sum_{K} \left[\int_{K} \vec{\sigma} \cdot \vec{\tau} - u \nabla \cdot \vec{\tau} + \int_{\partial K} \hat{u} \vec{\tau} \cdot \vec{n} - \int_{K} \vec{\sigma} \cdot \vec{\nabla} v + \int_{\partial K} \hat{\sigma}_n v \right].$$

Spaces: $\vec{\sigma} \in L^2(\Omega)^N$ $u \in L^2(\Omega)$ $\hat{u} \in$ the set of traces of $H_0^1(\Omega)$ -functions on $\bigcup \partial K$ $\hat{\sigma}_n \in$ the set of normal traces of H(div)-functions on $\bigcup \partial K$ $\vec{\tau} \in$ "broken" H(div) $(i.e., \vec{\tau}|_K \in H(div, K), \forall K)$ $v \in$ "broken" H^1 $(i.e., v|_K \in H^1(K), \forall K)$

DPG theory

UF FLORIDA

Form:

Trial functions $(\vec{\sigma}, u, \hat{u}, \hat{\sigma}_n) \in U$, Test functions $(\vec{\tau}, v) \in V$,

$$b((\vec{\sigma}, u, \hat{u}, \hat{\sigma}_n), (\vec{\tau}, v)) = \sum_{K} \left[\int_{K} \vec{\sigma} \cdot \vec{\tau} - u \nabla \cdot \vec{\tau} + \int_{\partial K} \hat{u} \vec{\tau} \cdot \vec{n} - \int_{K} \vec{\sigma} \cdot \vec{\nabla} v + \int_{\partial K} \hat{\sigma}_n v \right].$$

Discrete Spaces:

Given any $U_m \subseteq U$, we set $V_m \equiv T(U_m)$. Recall the definition of T:

$$(T_{\mathscr{W}}, \mathscr{V})_{\mathcal{V}} = b(\mathscr{W}, \mathscr{V}), \qquad \forall \mathscr{W} \in U, \ \mathscr{V} \in \mathcal{V}.$$

For this application, the V-innerproduct is

$$((\vec{\tau}_1, v_1), (\vec{\tau}_2, v_2))_{\mathbf{V}} = \sum_{\mathbf{K}} \int_{\mathbf{K}} \vec{\tau}_1 \cdot \vec{\tau}_2 + (\nabla \cdot \vec{\tau}_1) (\nabla \cdot \vec{\tau}_2) + v_1 v_2 + \vec{\nabla} v_1 \cdot \vec{\nabla} v_2.$$

Jay Gopalakrishnan

DPG theory

UF FLORIDA

Form:

Trial functions $(\vec{\sigma}, u, \hat{u}, \hat{\sigma}_n) \in U$, Test functions $(\vec{\tau}, v) \in V$,

$$b((\vec{\sigma}, u, \hat{u}, \hat{\sigma}_n), (\vec{\tau}, v)) = \sum_{K} \left[\int_{K} \vec{\sigma} \cdot \vec{\tau} - u \nabla \cdot \vec{\tau} + \int_{\partial K} \hat{u} \vec{\tau} \cdot \vec{n} - \int_{K} \vec{\sigma} \cdot \vec{\nabla} v + \int_{\partial K} \hat{\sigma}_n v \right].$$

Theorem

This ultraweak formulation is wellposed. [Demkowicz+G, 2011]
 For any U_m ⊂ U, the DPG solution (\$\vec{\sigma}\$, \$u\$, \$\hat{u}\$, \$\hat{\sigma}\$_n\$)_m ∈ U_m satisfies
 \$||(\$\vec{\sigma}\$, \$u\$, \$\hat{u}\$, \$\hat{\sigma}\$_n\$) - (\$\vec{\sigma}\$, \$u\$, \$\hat{u}\$, \$\hat{\sigma}\$_n\$)_m\$||_U ≤ C \$\vec{inf}{w_n \in U_m}} ||(\$\vec{\sigma}\$, \$u\$, \$\hat{u}\$, \$\hat{\sigma}\$_n\$) - w_n||_U

This implies optimal h and p error estimates if U_m is an hp space.

• We can develop an ultraweak formulation in a similar fashion for

$$\begin{aligned} & A\sigma - \varepsilon(u) = 0 & \sigma = \text{stress}, \\ & \nabla \cdot \sigma = f & u = \text{displacement.} \end{aligned}$$

- Traditional difficulty:
 - Discrete stress spaces are complex due to competing requirements:
 - \star σ must be a *symmetric* matrix valued function,
 - ★ Interelement forces must be in *equilibrium*, i.e., $\sigma \in H(div)$.
 - Stress space must be chosen in relation to displacement space for discrete stability. [Arnold+Awanou+Winther, '08]
- Advantages of DPG:
 - Discrete stability is automatic. (Choose your favorite trial space for σ !)
 - We get *hp* optimal results if *hp* trial spaces are chosen.
 - DPG outperforms the mixed method.
 - ► There is no locking. [Bramwell+Demkowicz+G+Qiu,'11]

UF FI OPT

The *x*-component of the computed displacement (u_x) .

L-shaped steel

- The best any method can do is to deliver the *Best Approximation* from its trial space.
- For any method, the *ratio*

 $\frac{\text{Discretization Error}}{\text{Best Approximation Error}} \geq 1$

and its optimal value is 1.

• We investigate how this ratio changes as we approach incompressibility.

UF FLORIC

Experiment: Solve the linear elasticity system by the DPG method using DG spaces for stresses and displacements. [Bramwell+Demkowicz+G+Qiu,'11]

- Standard FEM exhibits pollution (manifested as *phase errors*).
- DPG shows smaller phase errors.

1D case: [Calo+Demkowicz+G+Muga+Pardo+Zitelli,'10]

- Standard FEM exhibits pollution (manifested as *phase errors*).
- DPG shows smaller phase errors.
 - Pollution errors arise because the ratio
 [Babu

Babuška+Sauter,'97

 $\left(\frac{\text{Discretization Error}}{\text{Best Approximation Error}}\right)$ depends on the frequency ω .

For standard FEM in 1D,

Ihlenburg,'98

$$\frac{\|u-u_h\|_{L^2}}{\|u\|_{L^2}} \leq C(\omega) \inf_{w_h \in U_n} \frac{\|u-w_h\|_{L^2}}{\|u\|_{L^2}}, \quad \text{with } C(\omega) = C_1 + C_2 \omega.$$

► For DPG in 1D, [Calo+Demkowicz+G+Muga+Pardo+Zitelli,'10]

 $C(\omega) \leq C$ (independent of ω).

- Standard FEM exhibits pollution (manifested as *phase errors*).
- DPG shows smaller phase errors.

2D case: Work in progress

UF FLORID

- UF FLORIDA
- Standard FEM exhibits pollution (manifested as *phase errors*).
- DPG shows smaller phase errors.

2D case: Work in progress

- UF FLORIDA
- Standard FEM exhibits pollution (manifested as *phase errors*).
- DPG shows smaller phase errors.

2D case: Work in progress

UF FLORIDA

A shallow-water acoustic waveguide. (Just four elements per wavelength.)

A shallow-water acoustic waveguide. (Just four elements per wavelength.)

Discrete solution Biquadratic FEM with blended quadrature

A shallow-water acoustic waveguide. (Just four elements per wavelength.)

Discrete solution Bilinear DPG method

A shallow-water acoustic waveguide. (Just four elements per wavelength.)

The exact solution

- Wellposedness implies discrete stability through the concept of optimal test functions.
- The DPG method often outperforms DG and other standard methods.
- We can prove optimal *hp* convergence estimates.
- The DPG methods exhibit extraordinary stability with respect to variations in *h*, *p*, and singular parameters.