

Preconditioning Techniques

Matthias Bollhöfer (TU Braunschweig)

INRIA Sophia Antipolis 15. September 2010

Preconditioning

- Plain Iterative Solvers
- Introduction to Preconditioning
 - Introduction to Multigrid
- Multilevel ILU Preconditioning

Summary

Model Problems

1D elliptic boundary value problem

$$-u''(x) + \beta u'(x) + \gamma u(x) = f(x), x \in [0, 1]$$
$$u(0) = g_0, u(1) = g_1$$

2D elliptic boundary value problem

$$\Omega = [0,1] \times [0,1]$$

$$\overbrace{-u_{xx}(x,y) - u_{yy}(x,y)}^{-\Delta u(x,y)} + \beta u_x(x,y) + \gamma u(x,y) = f(x,y), (x,y) \beta n\Omega$$

$$u(x,y) = g(x,y), (x,y) \in \partial\Omega$$

3D elliptic boundary value problem

$$-\Delta u + \beta u_x + \gamma u = f \text{ in } [0, 1]^3 + \text{b.c.}$$

Discrete Linear System

- use discrete grid of mesh size $h = \frac{1}{n+1}$
- centered finite difference of second order for term $-\Delta u$ \longrightarrow stiffness matrix K_h
- first order upwind discretization for u_x \longrightarrow matrix S_h

$$Au_h = f_h$$
, where $A = K_h + \beta S_h + \gamma I$

- $\beta = 0, \gamma \ge 0 \Rightarrow A = K_h + \gamma I$ is symmetric, and positive definite \longrightarrow iterative solver CG can be used
- β = 0, γ < 0 ⇒ A = K_h + γI is symmetric, but indefinite
 → iterative solver MINRES (or QMR for symmetric matrices) can be used
- $\beta \neq 0 \Rightarrow A = K_h + \beta S_h + \gamma I$ is unsymmetric \longrightarrow general iterative solver (GMRES, BiCGstab,QMR,...) has to be used

1D boundary value problem, $\beta = \gamma = 0$					
h	problem size	comput. time[sec]	steps		
$\frac{1}{31}$	31	0.002	16		
$\frac{1}{63}$	63	0.004	32		
<u>1</u> 127	127	0.007	64		
$\frac{1}{255}$	255	0.010	128		

2D boundary value problem, $\beta = \gamma = 0$					
h	problem size	comput. time[sec]	steps		
$\frac{1}{31}$	961	0.01	60		
$\frac{1}{63}$	3969	0.06	121		
$\frac{1}{127}$	16129	0.47	230		
$\frac{1}{255}$	65025	2.87	453		

3D boundary value problem, $\beta = \gamma = 0$

h	problem	comput.	steps
	size	time[sec]	
$\frac{1}{31}$	$3.0\cdot10^4$	0.3	79
$\frac{1}{63}$	$2.5\cdot 10^6$	6.9	156
<u>1</u> 127	$2.0\cdot 10^7$	103.4	294
<u>1</u> 255	$1.7\cdot 10^8$	1638.2	579

Convergence theory:

$$\frac{\|\boldsymbol{x} - \boldsymbol{x}_l\|_{\mathcal{A}}}{\|\boldsymbol{x} - \boldsymbol{x}_0\|_{\mathcal{A}}} \leqslant 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^l,$$

Since $\sqrt{\kappa} \approx \frac{2}{h\pi}$ for all spatial dimensions \Rightarrow number of steps proportional to $\frac{1}{h}$

Introduction to Preconditioning

Objective in the SPD case:

• Compute $M \approx A^{-1}$ such that $\hat{\kappa} = \frac{\lambda_{\max}(AM)}{\lambda_{\min}(AM)} \ll \kappa = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$

Good experience in the general case:

- Compute $M \approx A^{-1}$ such that AM = I + E, where
 - ||E|| is small or
 - E is of low rank or
 - E has many eigenvalues close to 0.

Pros/Cons:

- SPD case: CG is expected to take less steps general case: similar observation is often made
- \ominus **P** = M⁻¹ or **M** needs to computed
- ⊖ application of AM instead of A is more expensive

$$P = M^{-1}$$

- Choose P = D as diagonal part of A ("Jacobi")
- Output Series Content of A ("Forward Gauss-Seidel")
- Solution choose P = U as the upper triangular part of A ("Backward Gauss-Seidel")
- Choose P = LD⁻¹U ("Symmetric Gauss-Seidel")
- block versions of 1–4
- Compute A = LDU + R, P = LDU where some entries during Gaussian elimination are dropped ("ILU")
- **2** compute *M* such that $||AMe_i||_2$ is small for i = 1, ..., n ("SPAI")

Plain Iterative Solvers The General Case — restarted GMRES(30)

	2D boundary value problem, $\beta = 1, \gamma = 0$						
h	problem size	comput. time[sec]	steps				
		JACOBI					
$\frac{1}{63}$	3969	2.3	520				
$\frac{1}{127}$	16129	34.0	1581				
1 255	65025	527.0	5435				
	FORWARD GAUSS-SEIDEL						
$\frac{1}{63}$	3969	1.2	269				
$\frac{1}{127}$	16129	15.4	710				
1 255	65025	281.1	2894				
	SYMMETRI	C GAUSS-SEIDEL					
$\frac{1}{63}$	3969	0.4	97				
$\frac{1}{127}$	16129	5.4	251				
1 255	65025	73.2	724				

Incomplete LU Factorization

1 step LU:

$$\boldsymbol{A} = \left(\begin{array}{cc} \boldsymbol{\alpha} & \boldsymbol{f}^{\top} \\ \boldsymbol{e} & \boldsymbol{C} \end{array} \right) = \left(\begin{array}{cc} \boldsymbol{\alpha} & \boldsymbol{0} \\ \boldsymbol{e} & \boldsymbol{I} \end{array} \right) \left(\begin{array}{cc} \frac{1}{\boldsymbol{\alpha}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{S}_{\boldsymbol{C}} \end{array} \right) \left(\begin{array}{cc} \boldsymbol{\alpha} & \boldsymbol{f}^{\top} \\ \boldsymbol{0} & \boldsymbol{I} \end{array} \right),$$

where $S_C = C - \frac{ef^{\top}}{\alpha}$ is the so-called Schur complement. Repeat elimination step for S_C .

$$S_{C} = L_{S} D_{S}^{-1} U_{S} \Rightarrow A = \begin{pmatrix} \alpha & 0 \\ e & L_{S} \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & D_{S} \end{pmatrix}^{-1} \begin{pmatrix} \alpha & f^{\top} \\ 0 & U_{S} \end{pmatrix},$$

Naive approximate decomposition, sparsify S_C :

$$S_C \longrightarrow \tilde{S}_C$$

where \tilde{S}_C coincides with S_C , whereever *C* is nonzero. This yields an approximate factorization of *A*.

$$A \approx \tilde{L}\tilde{D}^{-1}\tilde{U}$$

"ILU(0)" (resp. IC(0) in the SPD case).

Incomplete LU Factorization

Strategies to suppress entries

- drop entries outside a specific pattern
- drop entries with higher level of fill
- drop entries with small modulus
- preserve structures (symmetry, SPD, diagonal dominance,...)

Efficient algorithms require appropriate data structures

In the sequel: A is stored in compressed row storage

 row pointer
 1
 4
 6
 7
 9

 column indices
 1
 2
 4
 1
 4
 3
 2
 4

 values
 2
 -1
 1
 2
 1
 -1
 -7
 6

Adapted (incomplete) LU decomposition for matrices A in CSR storage

- access by rows
- elimination inside a row from left to right

Sketch order of elimination

Technische

Universität Braunschweig

for
$$i = 2, ..., n$$
:
for $k = 1, ..., i - 1$, whenever $a_{ik} \neq 0$
 $a_{ik} := a_{ik}/a_{kk}$
for $j = k + 1, ..., n$, whenever $a_{ij} \neq 0$
 $a_{ij} = a_{ij} - a_{ik}a_{kj}$

- ⊕ straight forward to implement.
- ⊖ often stability problems

$$\begin{pmatrix} 2 & -1 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & -1 & 5 \\ -8 & 0 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 5 \\ -8 & 0 & -1 & 2 \end{pmatrix}$$

ILU(p), level p of fill-in depends on the kind of entry which produces the fill

Example ILU(1): Let $a_{ij}^{(0)}$ refer to the "original" level-0 entries for i = 2, ..., n: for k = 1, ..., i - 1, whenever $a_{ik} \neq 0$ $a_{ik} := a_{ik}/a_{kk}$ for j = k + 1, ..., n, whenever $a_{ij} \neq 0$ or $a_{ik}^{(0)} a_{kj}^{(0)} \neq 0$ $a_{ij} = a_{ij} - a_{ik}a_{kj}$

 $level_{\textit{ij}} = min\{level_{\textit{ij}}, level_{\textit{ik}} + level_{\textit{kj}} + 1\} \leqslant p$

ILUT: drop entries with small value in modulus with respect to threshold $\tau \ll$ 1.

for
$$i = 1, ..., n$$
:
 $w = (a_{i1}, ..., a_{in}), \tau_i = \tau ||w||$
for $k = 1, ..., i - 1$, whenever $w_k \neq 0$
 $w_k := a_{ik}/u_{kk}$. If $|w_k| \leq \tau_i$: $w_k = 0$
If $w_k \neq 0$
for $j = k + 1, ..., n$, whenever $u_{kj} \neq 0$
 $w_j = w_j - w_k u_{kj}$
end
end

for
$$j = 1, \dots, i - 1$$
, whenever $w_j \neq 0$: $l_{i,j} = w_j$
for $i = i$, whenever $w_i \neq 0$: If $|w_i| > \tau$: $u_i = i$

for
$$j = i, ..., n$$
, whenever $w_j \neq 0$: If $|w_j| > \tau_i$: $u_{i,j} = w_j$
 $w = 0$

work array w is managed similar to CSR format

M. Bollhöfer (TU BS)

Preconditioning

~ ¬

Iterative Solvers with ILU Preconditioning The General Case — BiCGstab

2D boundary value problem, $\beta = 1, \gamma = 0$					
h	problem size	comput. time[sec]	steps		
		ILU(0)			
$\frac{1}{127}$	16129	5.4	150		
1 255	65025	85.1	273		
	ILU	T, $\tau = 10^{-2}$			
$\frac{1}{127}$	16129	0.3	67		
1 255	65025	2.9	123		
ILUT, $\tau = 10^{-3}$					
$\frac{1}{127}$	16129	0.36	23		
$\frac{1}{255}$	65025	3.5	41		
UMFPACK (MATLAB "\")					
$\frac{1}{255}$	65025	1.0			

Iterative Solvers with ILU Preconditioning The General Case — BicGstab

	3D boundary value pro	oblem, $\beta = 1, \gamma = 0$	
	ILUT, $ au$ =	= 10 ⁻²	
<u>1</u> 31	$4.0\cdot 10^4$	1.6	35
1 63	$2.5 \cdot 10^5$	60.5	57
	ILUT, $ au$ =	= 10 ⁻³	
$\frac{1}{31}$	$4.0\cdot10^4$	5.9	17
$\frac{1}{63}$	$2.5 \cdot 10^5$	197.7	31
	UMFPACK (M	IATLAB "\")	
$\frac{1}{31}$	$4.0\cdot 10^4$	2.8	
1 63	$2.5 \cdot 10^5$	156.0	

Incomplete LU Factorization

- in principle any of these ILUs could be supplemented with column pivoting easily
- additional preprocessing recommended
 - maximum weight matching (column permutation plus scaling) such that $|a_{i,\pi(i)}| = 1$, $|a_{i,\pi(j)}| \leq 1$ for all $i \neq j$
 - fill-reducing symmetric reorderings

Sparse Approximate Inverse Preconditioning - SPAI

$$A = [a_1, ..., a_n], M = (m_{ij})_{i,j} = [m_1, ..., m_n].$$

In any case we have

$$\min \|AM - I\|_F^2 = \min \sum_{j=1}^n \|Am_j - e_j\|_F^2 = \sum_{j=1}^n \left(\min \|Am_j - e_j\|_F^2\right)$$

Formally, minimization can be done for every column of *M* separately!

Denote by \mathcal{I}_j the nonzero pattern of *M* in column $j \Longrightarrow m_j = \sum_{i \in \mathcal{I}_j} m_{ij} e_j$.

$$\implies \min \|\textit{Am}_j - \textit{e}_j\|_{\textit{F}}^2 = \min \|\sum_{i \in \mathcal{I}_j} a_i m_{ij} - \textit{e}_j\|_{\textit{F}}^2$$

Solving this problem requires columns $(a_i)_{i \in \mathcal{I}_i}$ of *A* and computes m_j .

- suitable initial guess for pattern of *M*, e.g., *I*, *A*, A^{\top} or $|A| + |A|^{\top}$
- we end up with least-squares problems of the following type

$$\|A_j x_j - e_j\|_2^2 = \min.$$

These can be solved either with *QR*–decomposition or by solving the normal equations.

- Unfortunately: Often slow or *M* becomes dense!

Why are elementary methods so bad?

For simplicity: 1D problem, $\beta = \gamma = 0$, Jacobi $D = \frac{2}{h^2}I$, basic iteration

$$x^{(k+1)} = x^{(k)} + D^{-1}(b - A_h x^{(k)}).$$

error $e^{(k+1)} = x - x^{(k+1)}$ satisfies

$$e^{(k+1)} = x - x^{(k+1)} = x - \left[x^{(k)} + \frac{h^2}{2}(A_h x - A_h x^{(k)})\right] = (I - \frac{h^2}{2}A_h)e^{(k)}$$

For the analysis use the eigenvectors $s^{(k)}$ and eigenvalues λ_k of A_h .

Smoothing Analysis — eigenvectors

M. Bollhöfer (TU BS)

Preconditioning

Smoothing Analysis — Jacobi method

Expand error *e* in terms of the eigenvectors as $e = \sum_{k=1}^{N} \alpha_k s^{(k)}$

$$(I - \frac{h^2}{2}A_h)e = \sum_{k=1}^N \alpha_k (s^{(k)} - \frac{h^2}{2}A_h s^{(k)}) = \sum_{k=1}^N \alpha_k \left(1 - \frac{h^2}{2}\lambda_k\right)s^{(k)}.$$

eigenvectors are damped by $\left|1 - \frac{\hbar^2}{2}\lambda_k\right|$

Smoothing Analysis — Jacobi method

Introduce damping parameter ω , i.e., $D \longrightarrow \frac{1}{\omega}D$

$$(I-\omega\frac{h^2}{2}A_h)e = \sum_{k=1}^N \alpha_k \left(1-\omega\frac{h}{2}\lambda_k\right)s^{(k)}.$$

Optimize ω for $\left|1 - \omega \frac{h}{2} \lambda_k\right|$ for high frequencies $k \ge \frac{N}{2}$

$$\implies \omega = \frac{2}{3}, \quad \left| 1 - \frac{2}{3} \frac{h}{2} \lambda_k \right| \leq \frac{1}{3}, \text{ for all } k \geq \frac{N}{2}.$$

Smoothing Analysis — Jacobi method

eigenvectors before and after smoothing

- undamped Jacobi method only damps frequencies in the medium range
- damped ($\omega = \frac{2}{3}$) Jacobi method damps high frequencies
- no damping for low frequencies
- BUT: low frequencies show up on the coarse grid with H = 2h and A_{2h}
- We add a correction step to reduce the low frequencies.
 Idea: Use coarse grid Ω_{2h} and A_{2h}.

Coarse Grid Correction

 $\begin{array}{ll} H=2h, \, \text{transfer} & \begin{array}{c} \Omega_h \longrightarrow \Omega_H & \text{restriction} \\ \Omega_H \longrightarrow \Omega_h & \text{interpolation} \end{array} \hspace{0.1 cm} x \in \Omega_h, \, y \in \Omega_H \end{array}$

restriction R. weighted average w.r.t. neighbours

$$y(iH) = \frac{1}{4}x(iH - h) + \frac{1}{2}x(iH) + \frac{1}{4}x(iH + h), \ \forall i$$

Coarse Grid Correction

 $\begin{array}{ll} \Omega_h \longrightarrow \Omega_H & ext{restriction} \\ \Omega_H \longrightarrow \Omega_h & ext{interpolation} \end{array} \quad x \in \Omega_h, \ y \in \Omega_H$

interpolation P. linear interpolation

$$x(ih) = \begin{cases} y(jH) & \text{if } i = 2j \\ \frac{1}{2}y(jH) + \frac{1}{2}y(jH+H) & \text{if } i = 2j+1 \end{cases}, \forall i$$

principle of the restriction being reversed. $P = 2R^{\top}$

Two Grid Method

Combine (damped) Jacobi with coarse grid correction $A_h^{-1} \approx P A_H^{-1} R$.

$$\begin{aligned} x_h^{(k+\frac{1}{2})} &= x_h^{(k)} + \omega D_h^{-1} (b_h - A_h x_h^{(k)}) \\ x_h^{(k+1)} &= x_h^{(k+\frac{1}{2})} + P_h A_H^{-1} R_h (b_h - A_h x_h^{(k+\frac{1}{2})}) \end{aligned}$$

Solving systems with A_H is recursively replaced by another instance of the two-grid method.

I.e., for
$$b_{H} = R_{h}(b_{h} - A_{h}x_{h}^{(k+\frac{1}{2})})$$
 replace $A_{H}x_{H} = b_{H}$ by

$$\begin{cases}
x_{H}^{(\frac{1}{2})} = x_{H}^{(0)} + \omega D_{H}^{-1}(b_{H} - A_{H}x_{H}^{(0)}) \\
x_{H}^{(1)} = x_{H}^{(\frac{1}{2})} + P_{H}A_{2H}^{-1}R_{H}(b_{H} - A_{H}x_{H}^{(\frac{1}{2})})
\end{cases} \Longrightarrow x_{h}^{(k+1)} \approx x_{h}^{(k+\frac{1}{2})} + P_{h}x_{H}^{(1)}$$

problem reduction $h \longrightarrow 2h = H \longrightarrow 2H = 4h \longrightarrow \cdots$

- smoothing analysis carries over two 2D, 3D with same ω for JACOBI
- interpolation/restriction are analogously defined in 2D/3D
- alternatively other smoothers Sh can be used, e.g. Gauss-Seidel without damping
- multigrid leads to
 - hierarchy of nested grids $\Omega_{h_1} \subseteq \Omega_{h_2} \subseteq \cdots \subseteq \Omega_{h_l}$, z.B. $h_{s+1} = h_s/2$, $\forall s$
 - sequence of discretized equations $A_{h_s} x_{h_s} = b_{h_s}$
 - sequence of interpolation operators P_{hs} and restriction operators R_{hs}
- number of smoothing steps $\nu = 1$ could be chosen also greater than 1
 - \rightarrow pre- and post- smoothing
- number of recursive calls $\mu = 1$ could be chosen also greater than 1 \rightarrow *V* and *W*-cycle

2D boundary value problem, $\beta = \gamma = 0$

h	V–cycle, $\nu = 2$ iteration steps	W–cycle, $\nu = 2$ iteration steps
<u>1</u> 31	26	20
1 63	27	20
<u>1</u> 127	27	21
$\frac{1}{255}$	28	21

here multigrid is used with damped Jacobi smoothing

Multigrid Preconditioning

Any composed basic iterative method can be upgraded as preconditioner

$$\begin{array}{lll} x^{(k+1)} & = & x^{(k)} + B_1(b - Ax^{(k)}) \\ x^{(k+2)} & = & x^{(k+1)} + B_2(b - Ax^{(k+1)}) \end{array}$$

$$\Rightarrow I - BA \equiv (I - B_2 A)(I - B_1 A) = I - [B_2 + B_1 - B_2 A B_1] A$$

 \Rightarrow preconditioner $M = B_1 + B_2 - B_2 A B_1$

2D boundary value problem with multigrid preconditioning and CG

	V–cycle, $\nu = 2$,	W–cycle, $\nu = 2$		
	damped Jacobi	Gauss-Seidel	damped	Jacobi	Gauss-Seide	əl
h	iteration steps	iteration steps	iteratior	n steps	iteration step	s
<u>1</u> 31	11	9		10		8
<u>1</u> 63	11	9		10		8
$\frac{1}{127}$	12	9		10		8
$\frac{1}{255}$	12	9		10		8
M. Bollhöfer (TU BS)		Preconditioning			INRIA 2010	34

/ 42

Multilevel ILU

Reordering (possibly rescaling) the system $\rightarrow \begin{cases} \mathcal{F} & \text{"fine grid nodes"} \\ \mathcal{C} & \text{"coarse grid nodes"} \end{cases}$ $A \rightarrow \Pi^{\top} A \Pi = \begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix}$

Approximate block decomposition

$$\begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix} = \begin{pmatrix} L_{\mathcal{F}\mathcal{F}} & 0 \\ L_{\mathcal{C}\mathcal{F}} & I \end{pmatrix} \begin{pmatrix} D_{\mathcal{F}\mathcal{F}} & 0 \\ 0 & S_{\mathcal{C}\mathcal{C}} \end{pmatrix} \begin{pmatrix} U_{\mathcal{F}\mathcal{F}} & U_{\mathcal{F}\mathcal{C}} \\ 0 & I \end{pmatrix} + E$$

$$\underbrace{\left(\bigsqcup_{L} \right)}_{L} \underbrace{\left(\bigsqcup_{L} \right)}_{L} \underbrace{\left(\bigsqcup_{L} \right)}_{D} \underbrace{\left(\bigsqcup_{L} \right)}_{U} \underbrace{\left(\bigsqcup_{L} \bigcup, U} \underbrace{\left(\bigsqcup_{L} \right)}_{U} \underbrace{\left(\bigsqcup_{L} \right)}_{U} \underbrace{\left(\bigsqcup_{L} \bigcup, U} \underbrace{\left(\bigsqcup, U}$$

Scc coarse grid matrix, E error matrix

- E arises from dropping entries of small size in L, U
- E might also arise from suppressing entries outside a specific pattern

Multilevel ILU

• Approximation
$$B_{\mathcal{FF}} \approx A_{\mathcal{FF}}^{-1}$$
,

•
$$B_{\mathcal{FC}} \approx -A_{\mathcal{FF}}^{-1}A_{\mathcal{FC}}$$

e.g. via solving with $L_{\mathcal{FF}}D_{\mathcal{FF}}U_{\mathcal{FF}}$ e, e.g. via $-L_{\mathcal{F}\mathcal{F}}^{-1}L_{\mathcal{F}\mathcal{C}}$ $B_{CF} \approx -A_{CF}A_{FF}^{-1}$, e.g. via $-U_{CF}U_{FF}^{-1}$

$$\begin{pmatrix} A_{\mathcal{F}\mathcal{F}} & A_{\mathcal{F}\mathcal{C}} \\ A_{\mathcal{C}\mathcal{F}} & A_{\mathcal{C}\mathcal{C}} \end{pmatrix}^{-1} \approx \begin{pmatrix} B_{\mathcal{F}\mathcal{F}} & 0 \\ 0 & 0 \end{pmatrix} + \underbrace{\begin{pmatrix} B_{\mathcal{F}\mathcal{C}} \\ I \end{pmatrix}}_{P} S_{\mathcal{C}\mathcal{C}}^{-1} \underbrace{\begin{pmatrix} B_{\mathcal{C}\mathcal{F}} & I \end{pmatrix}}_{R^{\top}}$$

- P "interpolation"
- R^{\top} "restriction"

Multilevel approach: analogous principle recursively applied to $S_{CC} = R^T A P$

• supplement with smoothing steps S_1 , S_2 (e.g. Jacobi, Gauss–Seidel) iteration matrix for the amplified error $e = x - \tilde{x}$

$$e
ightarrow (I - \left\{ \left(egin{array}{c} B_{\mathcal{FF}} & 0 \ 0 & 0 \end{array}
ight) + PS_{\mathcal{CC}}^{-1}R^{ op}
ight\} A)e$$

upgrade ↓ to Algebraic Multigrid

$$e \rightarrow (I - S_2 A)(I - PS_{\mathcal{CC}}^{-1}R^{\top}A)(I - S_1 A)e$$

• V-cycle (μ = 1), W-cycle (μ = 2)

$$(I - S_2 A)(I - PS_{CC}^{-1}R^{\top}A)^{\mu}(I - S_1 A)$$

Inverse-Based Pivoting

- in principle we can estimate $\|L^{-1}\|, \|U^{-1}\|$ efficiently
- keep $\|L^{-1}\|, \|U^{-1}\|$ below ξ by inverse-based pivoting

- inverse-based pivoting drives the coarsening process automatically
- $\bullet \longrightarrow \mathsf{postponed}$ updates become the coarse grid system

Inverse-Based Pivoting

Example

* = rejected, • = accepted

Preconditioning

• Inverse-based pivoting directly yields

 $\|L^{-1}\|,\|U^{-1}\|\leqslant\xi$

for partial decomposition.

• If $\begin{pmatrix} A_{\mathcal{FF}} & A_{\mathcal{FC}} \\ A_{\mathcal{CF}} & A_{\mathcal{CC}} \end{pmatrix}$ has a large size block diagonal dominant block $A_{\mathcal{FF}}$, then $\|L^{-1}\|, \|U^{-1}\|$ are small and a large portion of the system can be reduced.

• Inverse-based pivoting moves the low frequencies to $S_{\mathcal{CC}}$

• Inverse-based pivoting directly yields

 $\|L^{-1}\|,\|U^{-1}\|\leqslant\xi$

for partial decomposition.

• If $\begin{pmatrix} A_{\mathcal{FF}} & A_{\mathcal{FC}} \\ A_{\mathcal{CF}} & A_{\mathcal{CC}} \end{pmatrix}$ has a large size block diagonal dominant block $A_{\mathcal{FF}}$, then $\|L^{-1}\|, \|U^{-1}\|$ are small and a large portion of the system can be reduced.

• Inverse-based pivoting moves the low frequencies to $S_{\mathcal{CC}}$

$$Ax = \varepsilon x$$

Inverse-based pivoting directly yields

 $\|L^{-1}\|,\|U^{-1}\|\leqslant\xi$

for partial decomposition.

• If $\begin{pmatrix} A_{\mathcal{FF}} & A_{\mathcal{FC}} \\ A_{\mathcal{CF}} & A_{\mathcal{CC}} \end{pmatrix}$ has a large size block diagonal dominant block $A_{\mathcal{FF}}$, then $\|L^{-1}\|, \|U^{-1}\|$ are small and a large portion of the system can be reduced.

• Inverse-based pivoting moves the low frequencies to $S_{\mathcal{CC}}$

 $Ax = \varepsilon x$

$$\frac{1}{\varepsilon} x = A^{-1} x \approx \left(\begin{array}{c} \underbrace{(L_{\mathcal{F}\mathcal{F}} D_{\mathcal{F}\mathcal{F}} L_{\mathcal{F}\mathcal{F}}^{\mathsf{T}})^{-1}}_{\approx \mathcal{C}} & 0 \\ 0 & 0 \end{array} \right) x + \underbrace{P}_{\approx \varepsilon} S_{\mathcal{C}\mathcal{C}}^{-1} \underbrace{R}_{\approx \varepsilon} x$$

• Inverse-based pivoting directly yields

 $\|L^{-1}\|,\|U^{-1}\|\leqslant\xi$

for partial decomposition.

• If $\begin{pmatrix} A_{\mathcal{FF}} & A_{\mathcal{FC}} \\ A_{\mathcal{CF}} & A_{\mathcal{CC}} \end{pmatrix}$ has a large size block diagonal dominant block $A_{\mathcal{FF}}$, then $\|L^{-1}\|, \|U^{-1}\|$ are small and a large portion of the system can be reduced.

• Inverse-based pivoting moves the low frequencies to $S_{\mathcal{CC}}$

$$Ax = \varepsilon x$$

$$\frac{1}{\varepsilon} x = A^{-1} x \approx \left(\begin{array}{c} (\underline{L_{\mathcal{F}\mathcal{F}}} D_{\mathcal{F}\mathcal{F}} L_{\mathcal{F}\mathcal{F}}^{\mathsf{T}})^{-1} & 0 \\ \approx c & 0 \end{array} \right) x + \underbrace{P}_{\approx \varepsilon} \underbrace{S_{\mathcal{C}\mathcal{C}}^{-1}}_{\mathsf{LARGE}} \underset{\approx \varepsilon}{\mathsf{R}} x$$

 \Rightarrow by inverse-based pivoting $S_{\mathcal{CC}}$ captures the eigenvalues with small modulus

3D boundary value problem, $\beta=1,\gamma=0$

h	size	time ILU [sec]	nnz(ILU) nnz(A)	time iteration [sec]	iteration steps
$\frac{1}{31}$	$3.0\cdot 10^4$	0.7	3.2	0.4	20
$\frac{1}{63}$	$2.5\cdot 10^5$	5.7	3.2	5.8	31
$\frac{1}{127}$	$2.0\cdot 10^6$	59.3	3.6	128.4	61
$\frac{1}{255}$	$1.6 \cdot 10^{7}$	535.2	3.6	2215.5	124

- Summary
- various collection of preconditioners
- significant improvement of Krylov subspace methods
- wherever possible, multigrid can be used as 'optimal' preconditioner
- multilevel ILU closely connected
- coarse grid can be detected algebraically

- Summary
- various collection of preconditioners
- significant improvement of Krylov subspace methods
- wherever possible, multigrid can be used as 'optimal' preconditioner
- multilevel ILU closely connected
- coarse grid can be detected algebraically

- Summary
- various collection of preconditioners
- significant improvement of Krylov subspace methods
- wherever possible, multigrid can be used as 'optimal' preconditioner
- multilevel ILU closely connected
- coarse grid can be detected algebraically

This is the building where we are!