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Forms
O-form (pt) ¢
1-form (length) E,H
2-form (area) D,B,J M
3-form (volume) p

SlectroScience
f

LABOR

VXE =—joB E.H: fields e H(cur/:Q)
VxH=J+ jaoD J,D,B: flux densities e H(d/'v;Q)
V.-B=0 ue H(cur/;Q)Huand Vxu eLZ(Q)

V-D=p ue H(div:Q)eo ue L) (Q)and V-u € *(Q)

Energy Densities:

po, ED, HB, E-J, H‘M}dual pairing p form pairs with 3-p form
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Features of DG Methods

@ General Principles of DG Methods

e Partition the computational domain into polyhedra

@ In each polyhedron the field is represented as a linear
combination of a local set of basis

e Interelement continuity at polyhedra interfaces is weakly enforced

@ DG Pros

e Explicit time marching schemes in time-domain
e Non-conformal meshes
e Easier hp— refinement
e High parallel efficiency

@ DG Cons
e High number of degrees of freedom.
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The Proposed Approach

@ The derived DGTD method is explicit and
conditionally stable.

@ A matrix-free memory efficient implementation
is applied. There is no assembly and storage of
global matrices. All updates are performed at
element level.

@ Interior Penalty (IP) derivation provides
multiple formulations

e A Conformal PML is applied to reduce the
buffer space

-
-
—

@ A Local Time-Stepping is strategy is applied to
increase computational efficiency especially for
multi-scale applications
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BVP Statement

Original BVP(No free sources o = 0)

00 V x E = _g‘?H inQ
VxH:% inQ
Next XE =0 on 6Q

> [ | Boundary Faces DecompOSGd BVP

L] Boundary Faces
"1 Internal Facesf,
_11:6H:
V X Ej = Malt I in K;
€;OE;
YV X H = ! ! n K
T ot '
5 —ujOH;
3 1 V X Ej = % "h
V X Hj = GO in Kj
Notation: (u;) = h; X Uy o
X ! - Y (M —AI I@Q,’A ﬁiXEi:_ﬁjXEj onl
. T i) = N; i n; 3 n A
otation: 7 (u;) = fA; x (U; X Aj)|aq, A; x H; = —f; x H; onl
Next XEjj =0 on OX2
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The Galerkin Statement

H.
Ri) =V xE; + “gt / € H(div, K;) (B")
RY =V xH, - ng" € H(div, K) (D)
(3) _ _ pOH; . _ err
RKj —VXEJ—FW - H(le,f(j)(Bj )
OE;
Rggy =V x Hj— Eatf € H(div, K)) (Df)

R(F5) =n; x E; + ﬁj X Ej € H_1/2(diV7-, M) (mg”)
R® = f; x H; + fi; x H, e H™'/2(div-,T) (ig")
Residual  Physical Meaning Duality Testing Energy Term
R,/ time changing Bf" H(curl, K;)(H) H-B
Ri” time changing D& H(curl, K;)(E) E.-D
Rﬁg’_) time changing B H(curl, K;)(H) H-B
Rﬁg time changing D¢ H(curl, K;)(E) E-D
R me"" H="/2(curl,, K;)(~ (E)) M- H
R® jer H=1/2(curl,, K;)(r (H)) J-E
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Weighted Residuals with Interior Penalty

@ A summation of weighted residuals can be written as
(wi, Rig )k, — (vi, Ry )i
+ (wy, Ri )k — (v, R )k
+ ¢ (mr (Vi) + 7 (V) , R)r + d (- (W) + 7 (W), RE)r
+ € (vr (Vi) + 77 (V) , R®)r + f (37 (wi) + - (W) , R)r = 0

o VKk={ve[L2(Q): vl € [PXK)®, VK €Tp

Remarks:
@ The choice of ¢, d, e and f will define a corresponding numerical flux

@ The choice of numerical flux can drastically affect the convergence rate
and the numerical dispersion and dissipation of the final formulation.
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IP-DGTD Formulation

Find (H,E) € VX x VX such that

/w.(vXE “8H)d§z /v(vXH—@)dQJr v} - [H], ds
JQ Fh

7

\ 7
Ve

VolumeTerms SurfaceTerms

_/ {{w}.[[E]]TdS—e/ [[V]]T-[[E]]Tds—f/ [w]- - [H]-ds=0
\ Fh Fh Fh

7

Vv

SurfaceTerms

o

Coefficients

® {u} = (mr(u) + 7r (u;))/2and [u]; = (u;) + 7 ()
@ c=-d=1/2and e = f = 0 will give rise to a conservative formulation but suboptimal
convergence(central flux)

@ c=-d=1/2ande= ;- andf_ WIchr— 2(1/“’ “’f)and Yr = 2(\/
+ 4 /<L ) will give rise to a Iossy formulatlon but optimal convergence (upwind flux)
o Desretlze in time using leap-frog scheme
§ 1 ’ 1 )
M. e”+1 = (M. + e6tPc)e] + 6t(Se — Fi)h[ 2 — 6tFLh[" 2 + estPle”
M.h" "2 = (M, + f5tP)h" 2 1 5t(—Sp, + Fi)en! +5tF77e”+1 + f5tP”h”+2
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Stability Condition - Local Time-Stepping Update [1]

Stability Condition (S. Piperno)
Vi,Vk , ciot[2a; + Bixmax( ﬂ, 3)] < —
V ik ek Pi

/

@ The set of elements is partitioned into N classes. This partition is done before the
time-marching simulation and is based on the stability condition

@ Forthe i class §t; = (2m + 1) S tmin
@ We choose m = 1 so each class has three times larger time step from its previous class

E-update H-update
class 1 class 0 class 1 class 0
1 n+1
n+ 5 1 n—+1 _
L' hi*z e €p
n4+2 L™ T
3] 4
€ 0
5 5
42 1 nt+=
hi* s Cp °©
n+1 . 3 nt3
et €0 h! "2 hiy "2

[1]: G. Cohen et.al."Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin

scheme for the time-domain Maxwell’s equations". J. Comput. Phys.,Vol. 227, 2008.
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DGTD+PML

@ The derived DGTD method is explicit and
conditionally stable.

@ A maltrix-free memory efficient
implementation is applied. There is no
assembly and storage of global matrices. All
updates are performed at element level.

@ Interior Penalty (IP) derivation provides
multiple formulations

@ A Conformal PML is applied to reduce the
buffer space

@ A Local Time-Stepping strategy is applied to
increase computational efficiency especially
for multi-scale applications
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DGTD

Conformal Perfectly Matched Layer

@ —jw,uE-H =V X EandjweE- E = V x Hwhere S11 = 3283/31, Soo = 3183/82 and

S33 = S1S2/S3

@ 512 =1r12(&3,1,2) +012(£3,1,2)/jweo , S3 = K3(€3) + 03(£3)/jweo and rq o are the
local radii of curvature for attenuation in the &3 direction

@ An anisotropic PML in time domain is enforced with the introduction of the auxiliary

vector fields P¢ and P,

10/28

Equations in PML [1] Conformal PML [2]

= = o =H'

@ VY XE — ubH; — utPy; = 21
= = =E.
@ V x Hj — cbE; — P, = 2

=_1 = . 8Ph

-1 =5 _ 9P

Space and Time discetization

;
— Fahj |i=nt1

Q Ma% = —Mpe; — Mce; + (Se — Fg)hi

° Ma% = —Mph; — Mch; — (Sy, + Fi)e; + Fle; lt=nt1/2
o Maa—pf =M, _1hj — Mgp] |¢—n 1

o Maa—p[e =M, _ie; — Mgpf |i—pi1/2

_ hokg
o a1 = Py
_ 1
@ b = Ry o (02K3 + O3k — d11K3)
@ =228 —p L, dyy =
11 2 il =50 Gl = T
Uix Uy Uiz
Q@ J=(u, gy U2z
Usx U3y, U3z

‘ /_\X}/Z - Jt/_\U-I U2U3J

[1]: S. Gedney et.al."A Discontinuous Galerkin
Finite Element Time Domain Method with PML"
[2]: F. Teixeira et.al."Analytical Derivation of a
Conformal Perfectly Matched Absorber for
Electromagnetic Waves"



Numerical Experiments - Coated Sphere Scattering

Coated Sphere Scattering

@ Inner radius is a = 3.0m, outer radius is b = 3.25m and the

coating has ¢, = 2.0
® EinC — EOe—[t—to—ﬁ-(r—ro)/0]2/7'2 ,EO _ (O) O’ 1), R — (1 , O7 O)

o RCSerror — 9039 - 02
300MHz, H-plane

300MHz, E—pl
z ‘pane | 50 ‘
- --Mie
—DGTD

RCS (dB)
RCS (dB)

O | | |
5 | | |
0 50 100 150 0 50 6 100 150




Instability

PML performance and Late Time Instability

o(&) = amaxf;—g for attenuation in the £ direction

m = O(constant o) is stable and provides smallest reflection [1]

o profiling leads to late time instability [2](linear growth)

Stabilization [2] removes instability without significantly altering the PML properties

S11 (dB)

PML Reflection Coeffecient

®
&
xxxxxxx

=0.

max

o |
o o

max

max

a _a _a _aaqg
1]

1
1
2
3
4

QO

max

u
% .0
']
®

0 5 10 15

20
Frequency (MHz)

25 30

S11 (dB)

PML Reflection Coeffecient

o =20, m=4

max

O, ax = 20, m=4, Stabilized |

o 5 10 15 20 25 30

Frequency (MHz)

[1]: J. Niegemann et.al."Higher-order time-domain methods for the analysis of nano-photonic systems"

[2]: J. Heasthaven et.al."Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics”
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F-16 Scattering with Conformal PML

@ F-16 featuring fine detail(dt,,;, = 7.50e — 13, dtmax = 5.33e — 11)
@ Dielectric radome and glass canopy along with PEC body

@ 4-laver PML . 0 = constant = 0.02
Computational Statistics

Tetrahedra 1,656,676

DOFs 52,641,744

DOFs in PML 13,213,392
Number of Classes 4

Elements per Class 0: 252,
1: 36158,
2: 395760,
3: 1224506

Solution time LTS 88.38 hours

Solution time no LTS 1,301 hours
CPU Gain with LTS 14.7245
Memory Matrix free 18.3 GB
Memory no Matrix free > 32 GB
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F-16 Scattering with Conformal PML

@ F-16 aircraft with incident Gaussian pulse(fz;gs = 300MHZ)
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DGTD + Lumped Elements

@ Lumped elements are small compared
to the wavelength. We can assume
that the electric and magnetic fields
are constant in the surface of the
lumped element

@ Start from the voltage and current
relationships

@ Derive the equivalent relationship that
describe each of the R, L, C in terms
of the electric and magnetic fields.

@ Enforce these field expressions
weakly through the IPDG formulation




Formulation-Resistor

Resistor Vg = IgR

[ | Boundary Faces
] Boundary Faces

VR [T Internal Faces fi].
@ Surface W Aana
Impedance J = |

Element Kj, Vg = IgrR and Vg, = Vp;

Element Kj, Vgj = IgR and Vg; = Vp;

n,-><H,-+nj><Hj:mn,-><n,-><E,- onlp n,-><H,-—|—nj><Hj:mnj><nj><Ej onlp
ﬁ,-><E,-—|—ﬁj><Ej:OonI',:,> ﬁ,‘XE,'—i-ﬁjXEj:OOIer

@ Vi={ve l2QP: vk € PK)B, VK €T
@ En(r,t)lk ~ 8¢ ex(t)Vi(r) and Hp(r, 1)k ~ S0 (Wi (r) , w,v € VS

Residuals in Element K; Residuals in Element K;
R(1) A H ~ H . A E err 3) ~ ~ I A err
rR:"iX i + 0 X j—mn,xn,x i (d7) RFR:n,-xH,-+nj><Hj—mnjxnijj J7)
2 A A err 2 A ~
RI(_E)’ =Nn; X E,‘ —+ nj X Ej (M ) RI(-R) =Nn; X E,‘ -+ nj X Ej (Merr)
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Formulation-Resistor

Resistor Vg = IgR (Cont’d)

Testing Element K;

R R I . .
(mr (v;),n; x Hj +n; x H; — Py i X i X E)=0 (E-J°)

(mr(W;),fi x E; + A; x Ej) =0 (H-M°")

Testing Element K;

A ~ I .
(wT(vj),n/xH;+nijj—mnjxnijj):O (E-Jerr)
(T (Wj) A X Ej + ﬁj X Ej> =0 (H- Merr)

Time-Discretization

M. W = Sch; — Feh; — mBe e; — Feh; It:n+% o H”J)UZ and Ef(f; are available
8h i n n+1
M, h ot = —Spe; + Fre; + F/ ej | t=n+1 o E7+1/2 ~ #
Fully Discretized System
otl otl it B n+
M. B)e ! = (M. — ——BH)e” + 6t(Se — Fi)h. " 2 — 5tF’fh 2
(M. + 5= BDe"! = (M — = BI)e] + 5t(Sc — Fh;

M.h" "2 = M,h" T2 4 5t(—S, + Flyert + 8tF] e

i




Formulation-Capacitor

Capacitor Ic = C%¢

[ | Boundary Faces
[ ] Boundary Faces
[ Internal Faces fij

@ Surface w |
Impedance ) =

3 1
_ 9% _ av
Element K;, Ic = C—* and V¢; = Vg Element K, Ic = C—* and Vg = Vg
A A Cl . " dE; A A Cl dE;
niXHi—|—anHj:Wn,><nIXWOan niXHi—f—anHj:anxn]XEoan
ﬁ,’XE,’—l—ﬁjXEj:OOan ﬁ,'XE,'—l—ﬁjXEj:OOan

@ VE={ve[l2(Q)P:v|x € [PKK)]}, VK €7Tp}
@ Eu(r, 1)k, ~ pe ex(tVi(r) and  Ha(r, )]k, = S0 hk(H)wi(r) , w,v € VK

Residuals in Element K;

Residuals in Element Kj

Cl dE;
R — A, x Hj + A x H — —fA; x Aj x — (J°7
Mo ] I ] N - ] ] ot ( )

R(rzc) = ﬁi X E,' + ﬁ/ X Ej (Merr)
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Formulation-Capacitor

Capacitor Ic = C2¥¢ (Cont'd)

Testing Element K;

N / . E,
<7T7'(Vi)7ﬁi><Hj+nj><Hj fvn,xn,xdd_t>—o (E - Jerr)

<7T7- (W,) , ﬁ,‘ X E,' + ﬁj X Ej> =0 (H . Merr)

Testing Element K;

/ . dE;
<7T7'(Vf) n; x H; "’"/XH—anxn/XW)—O (E Jerr)

<7T7- (Wj) ,n,- X E,' + I‘Ij X Ej> =0 (H . Merr)

Time-Discretization

oe; i Cl _ g 0e;
M. a—t' = Sch; — Fgh; — WBe — — Fih; |t:n+% o HfJ)Vz and Ef(jr)1 are available
oh; j N+l _gn
M. Ty = —Sne; + Fhe/ F;jve/ |t=n+1 ° 8El |n+2 = = St .
Fully Discretized System
Cl,c n+1 _ Cloc ii Mt 3
(M + —BE)el™! = (Mc + —BF)e] + 5t(Se Fi)h! " 2 _ otFl h;

M.h" "2 =M, h”+2 +61(—Sp + Fj)ef ™! + otFjel”

I




Formulation-Inductor

Inductor I, = 1 [ V,dt

[ | Boundary Faces
[ ] Boundary Faces
[ Internal Faces fij

@ Surface W YT
Impedance 1 ) ==

Element K, I, = § J{ Vi dtandand V;; = Vj;

Element Kj, I, = } [{ Vi dtandand V}; = Vj;
/

Lw

/ t t
ﬁiXHi—l—ﬁjXHj:mAiXﬁ,‘X/(;E/dt onl ﬁ,‘XH,'—l-ﬁjXHj: ﬁ/Xﬁ/X/O Ejdl' onl

ﬁ,‘XE,‘—l—ﬁjXEj:OOan ﬁ,’XE,‘—}—ﬁjXEjZOOIIFL

@ Vi={ve[l?(Q)P vl e [PK)®, VK eTp}
@ En(r, )k ~ 8¢ ex(t)vin(r) and Hp(r, )|k ~ 30" hic(t)Wi(r) , w,v € VK

Residuals in Element K; Residuals in Element K;

/ t / t
RY — A x H; + A; x H; — —f; x A; x / Eidt (J°7) R®A xH + A x H — —A; x A; x / Edt (J°7
My / / J J Lw I I 0 I rp i J] Ji Lo Ji J] Q Ji ( )

2) . R R .
R(rL) = fi; x E; +fi; x E; (M) R(FQL) = A x Ej +f; x E; (M)
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Inductor I, = 1 [ V,dt (Contd)

Testing Element K;

(mr(Vj),n; x Hj + n; X Hj = L—n,- X Nj X / Edt)=0 (E- Jerr)
0

w
<7T7-(W,'),ﬁ,' x E;j + ﬁj X Ej> =0 (H- Merr)

Testing Element K;

R A I . . ’
<7TT(Vj)aniXHi"'anHj_mnjxan/OEjdt>:O (E-Jerr)

<7T7- (Wj) ,ﬁ,’ X E,' + ﬁj X Ej> =0 (H . Merr)

Time-Discretization

oe; ’ / t i 1/2 :
Mea—tl — Sch; — Fip, — mBé/o e;dt — Flh, e 3 @ H; /% and E{1! are available
Kk K+1
ah . .. n—|—1/2 ) ~ n Ei +EI
Mua_tl = —Spe; + Fhe; + F;{,ej | t=n+1 ° fo Eidt ~ 01 ko 2
@ el =3} oef
Fully Discretized System
521 5121 i S i b
(M. + = BE)el™! = M.e + - Bla] + 61(Se — Fi)h;" # — 5tFln]" 2
3 1 ) )
M.h? "2 = MuhT 2+ 5t(—Sy + Fl)el ™ + otFjent
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Interior Port

4 [ ] Boundary Faces

// N\ (] Boundary Faces
0=K;uU Kj / N\ (1 Internal Faces f.
R 7 \ "

@ w
Interior
Port

Element K;, [t =

Element Kj, jlot —

Residuals in Kj;)

1M _ a4 A A A N - inc err
RF —n/XH,'-I-anHj— I'I,'Xh,'XE,'—I— I'I,'Xh,'XE,- (J )

sW sW
R(2) _a A err
r _n,-><E,-—|-nj><Ej (M )

/ / ;
A A A A~ nc err
njxnijj—i-—njxnijj (J )

R®) — a, x Hi+n; x H; —
s : : : . Rsw Rsw
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Interior Port (cont'd)

Testing Element K;

<7T7-(V,'),ﬁ/><H,'+ﬁj><Hj— n; x A; X E; + ﬁ,’Xﬁ,’XE;nC—ﬁ,'XH;nC>:0 (E-Jerr)

Rsw Rsw

(7 + (WI) ,ﬁ,’ X E;j + ﬁj X Ej> =0 (H- Merr)

Testing Element Kj

" . I " I . ;
<7‘r7—<Vj),n,'><H,'—|-anHj— n,xnijjernjxnij]'.”c):O (E-Jerr)

Rsw

<7T7— (W]) ,ﬁ,‘ X E,‘ +ﬁ] X Ej> =0 (H . Merr)

Time-Discretization

oe; i / R ij inc

eﬁ = Seh; — Fléhi - mBesei - Fehj + €' |t:n+%
oh: y y

“8—1‘/ = —Spe; + Fre; + Flej |i=n+1

Fully Discretized System

otl
2Rsw

otl

M.
(M + 2Rsw

. 1 .. 1 .
Bfs)e/ ! = (M, — BZ:)e] + 61(Se — Fi)h! 2 — 6tFLh" 2 4 o6

M E W S-S, P 4t
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Interconnect Device with Lumped Elements
@ 3mmx3mmx 0.6mm (St = 8.6297 x 10~ 165, §tmax = 1.5804 x 10— 13¢)

@ 4-metal layer interconnect device inside a dielectric ¢, = 3.8

Computational Statistics

Tetrahedra 65,676
DOFs

1,290,608
Number of Classes 5

Elements per Class 0: 49,
1: 4687,
2: 38938,
3: 21515,
4: 649,

Solution time LTS 50.15 hrs

Solution time no LTS 466.72
hrs

CPU Gain with LTS 8.78
Memory 583 MB

i
U}
Wi
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S-Parameters

Yq 30
RagteEEr T 25,
) ;ff" a \\
E /’,:' q U) 1 [ ‘\\
TN o w
2 o 2 K
S - - ‘: III' © 0’
g 30! —.FD-FEM-S_, '\3%; '.#, | _ Y
- _,Measurement-S 11 w ) ] Y
o W = -1 N ' | _._FD-FEM-S |
= _40t |---DGTD-S12 u | ° "Ly '
-.-FD-FEM-S , u 2 ol *sw..¢ |___DGTD-S,,
=S
5ol |- -Measurement-S, | o . -FD-FEM-S
i i ; : ; _37 L I L f
1 2 3 4 5 6 1 2 3 4 5 6
Frequency (GHz) Frequency (GHz)

2Vt (w) — Vs(w)
Vs(w)
2V (w)
Vs(w)
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Conclusions

@ DGTD results in an explicit time-marching algorithm

@ Conformal PML and Lumped Elements can be incorporated with
DGTD methods

@ Upwind flux has optimal convergence whereas Central flux has
suboptimal

@ Local Time Stepping is a useful strategy for multi-scale
applications

Upcoming Work

@ MPI/GPU Implemantation
@ DGTD on non-conformal meshes



An MPI/GPU Implementation of Interior Penalty
Discontinuous Galerkin Time Domain Methods

Stylianos Dosopoulos and Jin-Fa Lee
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Features of DG Methods

@ General Principles of DG Methods

e Partition the computational domain into polyhedra

@ In each polyhedron the field is represented as a linear
combination of a local set of basis

e Interelement continuity at polyhedra interfaces is weakly enforced

@ DG Pros

e Explicit time marching schemes in time-domain

@ Non-conformal meshes

e Easier hp— refinement

e High parallel efficiency. By nature DGTD methods are suitable for
parallel hardware (multi-core CPUs, GPUs).

@ DG Cons
e High number of degrees of freedom.
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IP-DGTD Formulation

Find (H,E) € VX x VK such that

/W-(VXE “aH)dQ /v (VXH—ﬁ)dQJr/ v} - [H] ds
Q

7

Ve

VolumeTerms SurfaceTerms

— | {w}-[El-ds—e [ [vl--[E]-ds—f [ [w], [H]-ds=0
Fh Fh .

SurfaceTerms

Coefficients

@ Vi ={vel[l2(Q)]:v|k € [PYK)]3, VK € Tpn}, {u} = (7-(u;) + 7 (u;))/2 and

[ul- =+ () + 77 (u))
@ e = f = 0 will give rise to a conservative formulation but suboptimal

convergence(central flux)

Ce:landf:lwithzr:%( ﬂ+,/“’)andY 2(1/6’ 1/ )W|Ilg|ver|seto

a lossy formulation but optimal convergence(upwmd flux)
@ Descretize in time using leap-frog scheme

.. 1 .. 1 ..
M. e”+1 = (M. + e6tPc)e] + 6t(Se — Fi)h[ 2 — 6tFLh[" 2 + estPle!
M,.h " 2o, + f5tPh)hn+2 + 5t(—Sp + Fiyer +5tF;f7e”+1 + f5tP”hn+2

7
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' Stability Condition And Local Time-Stepping Update

Stability Condition (S. Piperno)
[ [ : 4V,
Vi,Vk , ciot[2a; + Bixmax( ﬂ, i)] < —
Kk €k

j
Pi

_4

@ The set of elements is partitioned into N classes. This partition is done before the
time-marching simulation and is based on the stability condition

@ Forthe i class 6ty = (2m + 1)/ 6tmin
@ We choose m = 1 so each class has three times larger time step from its previous class

E-update H-update
class 1 class 0 class 1 class 0
1 1 n+1 n+1
h't 2 h?t e, €o
n+= h"* s
& ]
€o 0
5 ]
-+ =2 1 n+=
h™e € °
n+1 e+l nt3 l n+ 3
& ] 0 hl z 1 0

[1]: G. Cohen et.al."Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin

scheme for the time-domain Maxwell’s equations". J. Comput. Phys.,Vol. 227, 2008.



Early era: Moore’s law!

— Number of transistors on chip doubles every 2 years
* More transistors means more data cacheing, better flow
control, and higher arithmetic capability [cite]
— Still observed today, but methods for design are very
costly (millions today as compared to tens in ‘70s) [2]

— Push limits of Moore’s law by adding more processors on
a single chip.

— Now data and task parallelism is possible on single chip
by utilizing multiple processors.
Can Moore’s Law help physics simulations?

— Realistic simulations require much more memory than is
available on'single CPU.

— Scientist and engineers pursue implementation of
algorithms across multiple connected CPUs

* Cheap alternative — memory is distributed,

Serial algorithms require re-do!
— Large communication overheads
- S = TH

— Implementation of scientific algorithms on MASSIVELY
PARALLEL architectures

Transistor count
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Control
ALU | ALU

Cache

DRAM

CPU Architecture

Main Transitor Utilizations

— Data Caching

—  Flow Control
Excellent for retreiving and setting
data

Makes CPU great for general-purpose
computing

Note: See [4] for further details.

Transistor Utilization of GPGPU vs CPU

ALU | ALU

DRAM

GPU Architecture

Main Transistor Utilization

—  Arithmetic Manipulation
Excellent for “on-the-fly” computing
Limited caching and flow control on a
processor

Inter-processor communication is
handled through DRAM access.

DRAM (global memory) access
requires hundreds of cycles.

DHIO



Distributed Memory Parallel Program with GPGPU vs CPU

|

!

l

Control >| Control Control
Cache Cache Cache
DRAM DRAM DRAM
v 2
| | | | |
i % e o © i
Write Da 2Aieke Da Write Dat
to DRAM1 s RAM2 to DRAMN
CPU-CPU Parallelism GPU-GPU Parallelism
e« CPUs are connected via high-speed e GPUs are viewed as separate co-
bus. processors.
* Each node has large DRAM and large e Each co-processor has its own DRAM.
cache levels.

Control units are responsible for

symantics of data transfer

Communication via the high-speed
bus is major bottle-neck

LARGE communication bottle-neck
between GPU1 and GPU2.

Individual control units xfer to DRAM

(GPU memory), and CPU control accesses

GPU

OHIO
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A Heterogeneous Architecture

l l .

Control 1 Control 1 —>| Control 1
Cache Cache Cache
DRAM1 DRAM2 DRAM N
v
T EVI%E | = T Ev'
- Parallel Computing on Single GPU * GPGPU main purpose: CO-PROCESSOR
— Algorithms have been tested on single * True Heterogeneous System
GPU for scalability (both n-body and —  Many connected CPUs
EM) —  Within each CPU — several GPUs
- FDTD [5-7] _ _
. FMM [8-9] « Algorithm Challenges:
- Direct Methods [12] —  Minimization of communication
«  MLFMM [10-11] — Data Locality
« Problem: Acceleration capabilities of - CPU&GPU
GPGPU for frequency-domain CEM — Load Balancing
has not been explored! » CPU&GPU

Intra-GPU Balance

The Ohio State University July 26, 2010
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Motivation - CPU vs GPU ,
GPU Architecture [1]

CPU for DGTD e
Mulliprones?or N
@ Modern CPUs with 4 quad-core processors Mitiprocesesr?
Can run Up tO 16 threadS Multiprocessor 1
@ Fast global memory access time but memory
bandwidth may be a limiting factor in the e 1 A
performance. .,,mmupmm pmemﬁ
@ Mulii threading will swap the threads
execution channels on and off and this is slow

and expensive.

| A\

GPU for DGTD CUDA Model NVIDIA [1]
@ Modern GPUs have 30 multiprocessors and - DEGDL
1,024 active threads per multiprocessor. e L e
@ No swapping occurs between GPU threads. 1 6o | 4 ][ @9
@ Slower global memory access time but o || @ || @
memory bandwidth and the FLOPS on a GPU s 2
is about one order of magnitude higher than Komel I ‘
its CPU counterpart 2
Y < I i i [
@ Nvidia’s CUDA model offers an C-like Block (1, 1) 1]
language to program on GPUs T T | i | T | e [
@ [1]. http://developer.nvidia.com i | s v | s | =
4 ,-1) (1, 1y 1) (31 4. 1)
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GPU Computational Layout

Establish a computational layout by defining mapping between
DGTD and the CUDA architecture

DGTD to CUDA Mapping MESH

@ FEM Mesh is mapped to a
CUDA Girid

| Cuda Thread Block 0 | | Cuda Thread Block n |
@ Finite element is mapped to U U U U U U
CUDA d; x 1 thread block,
where d; are the local DOFs. ,
MaX|mum 51 2 threadS per ' 7 CUda Thread BIOCk
block on Tesla C0170

Cuda Grid

thread O
thread 1
thread O
thread 1

o -
@ Eylk = Ze,n(f)W(l‘),n S\ £
Element
Every DOF €jn IS updated by
a CUDA thread. Same for Hy,
and hin-
@ 1 GPU 10x speed up vs 1 DOF ejn, hin — Cuda Thread

CPU in double precision.

N. Godel, et.al., Scalability of Higher-Order Discontinuous Galerkin FEM Computations for Solving Electromagnetic Wave

Propagation Problems on GPU Clusters.
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DGTD on GPUs-Computational Layout

CUDA and Local Time Stepping

@ Use global memory to store the matrices in the update equations. The data are
copied once before the time stepping and reused through the time marching.

@ Use shared memory for field data.

E-update H-update : :
class 1 lass o class 1 class 0 @ LTS algorithm is unchanged.
- . ent! How_ever now each class. executes
multiple CUDA Grids for its elements
L/ ep+d K" @ Data are copied to CPU-Host every
s Noiotdt using cudaMemcpyAsync to
e % overlap computation with
communication.

n+1 ] n+3
e’;“ €p hi™2 h'i ™2

CUDA Kernels

@ LE Vol kernel and LH_ Vol kernel, update contributions from
volume terms for leapfrog E and leapfrog H accordingly.

@ LE Surf kerneland LH Surf kernel, update contributions from flux
terms for leapfrog E and leapfrog H accordingly
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MPI/GPU Coarse Grained Level

@ Quadro FX 5800 has only 4GB of global memory.
@ Big problems require a multi-GPU approach like MPI+CUDA.

MPI General Layout METIS

@ MPIis used is the coarse grained

parallelization level |

@ Metis partitions the elements to
sub-domains.

@ Each MPI process works on one
sub-domain.

@ Within a class all MPI processes P; that
have elements in the class will work to
perform the update

@ At the end of each class update we
communicate only between processes that
work on neighboring sub-domains.

@ Each MPI process write its own data to disk.
In post processing we use pvtu files and
vikMergeCells of VTK to merge partitions.

o
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MPI General Layout METIS

@ MPIis used is the coarse grained

parallelization level |

@ Metis partitions the elements to
sub-domains.

@ Each MPI process works on one

Su b'doma|n Simple Communication Example

s Po =root P4

@ Within a class all MPI processes P; that b
have elements in the class will work to Class 1

Class 1

perform the update

Class 1 Class 0
Class 0 Class 1

@ At the end of each class update we
communicate only between processes that Po
work on neighboring sub-domains.

@ Each MPI process write its own data to disk.
In post processing we use pvtu files and
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MPI+CUDA
Approach 1

@ Use host threads to run multiple GPUs Approach 2

on each cluster node, and MPI for @ Use MPI and run one process per

inter-node communications. (MPI GPU.(MPI processes is equal to the
processes is equal to the number of number of GPUs)
nodes).

OpenMP,
pthreads

Each MPI
ProcI:Eeascs:1 hngl;:::lles Process handles
One GPU

One Cluster Node

MPI /SEND and IRECV
for non-blocking
communication and
cudaMemcpyAsync
to overlap Host-GPU
communication with
GPU computation
when possible.

MPI ISEND and IRECV
for non-blocking
communication and
cudalMemcpyAsync
to overlap Host-GPU
communication with
GPU computation

when possible.
OpenMP,

pthreads

@ Approach 2 is simpler, since it uses one API. However, the MVAPICH implementation of
MPI in the Ohio SuperComputer Center will use shared memory to communicate
between MPI processes that reside in the same cluster node. Therefore, there is no
additional overhead of Approach 1 compared to Approach 2.
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Performance Analysis
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Cloaking DGTD

Study of SRR Cloaking Device in Time-Domain

@ SRR metamaterial cloaking device [Schurig, D. et. al., Science, vol 314, 2006].
Geometry featuring fine detail (6t, = 1.11e — 14, §tmax = 5.38e — 13

@ Substrate RT Duroid 5780 ¢, = 2.33 and 15! order ABC for domain truncation

@ (hzr = \/15, hgrr ~ \/50) 6,685,671 elements, 150x 108 unknowns (p = 1 elements

were used).

11/13
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- Study of SRR Cloaking Device in Time-Domain

@ Neuman pulse with 3,5 bandwidth at 8-11 GHz (Xband). E field polarization along
cylinder axis

@ 22 compute nodes, with 8 CPU cores, 2 Quadro FX 5800 GPUs and 24GB of RAM each
at Ohio Supercomputing Center(OSC) Glenn cluster.

@ We simulated the same problem using the 2 CPUs per node and also using 2 GPUs per

node. All simulations were done in double precision arithmetic.

Computational Statistics

Tetrahedra 6,685,671 elements
DOFs 150x10% DOFs
# LTS Classes 4
22 CPUs LTS 225.83 hrs
44 CPUs LTS 117.17 hrs
80 CPUs LTS 66.75 hrs
44 GPUs LTS 11.88 hrs
GPU Gain 9.86




Conclusions DGTD 13/13

Conclusions

Conclusions

@ We have presented an approach to map a DGTD method with
local time stepping on GPUs.

@ To account for the limited amount of memory in one GPU we
presented an MPI/GPU approach suitable for large problems

@ A speed up of 10x times compared to MPI/CPU was obtain for
double precision arithmetic and a 90% parallelization effeciency
was achived up to 40 GPUs

@ Finally a study of cloacking device was performed in time domain
to show the potential of the proposed MPI/GPU approach.




