Schémas de discrétisation en temps adaptatifs pour l'équation des ondes

Julien Diaz

En collaboration avec

Marcus Grote, Hélène Barucq et Caroline Baldassari

 $24 \ \mathrm{mars} \ 2010$

Schémas de discrétisation en temps adaptatifs.

Introduction — Wave Equations

Second Order Wave Equations :

• Acoustics :

$$\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0$$

 \bullet Elastodynamics :

$$p \frac{\partial^2 \boldsymbol{u}}{\partial t^2} - \operatorname{div} \underline{\underline{C}} \underline{\underline{\varepsilon}}(\boldsymbol{u}) = 0$$

 \bullet Maxwell :

$$\frac{\partial^2 \boldsymbol{u}}{\partial t^2} + c^2 \operatorname{\mathbf{curl}} \operatorname{\mathbf{curl}} \, \boldsymbol{u} = 0$$

< 三→

æ

Introduction — Wave Equations

Second Order Wave Equations :

• Acoustics :

$$\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0$$

 \bullet Elastodynamics :

$$p \frac{\partial^2 \boldsymbol{u}}{\partial t^2} - \operatorname{div} \underline{\underline{C}} \underline{\underline{\varepsilon}}(\boldsymbol{u}) = 0$$

 \bullet Maxwell :

$$\frac{\partial^2 \boldsymbol{u}}{\partial t^2} + c^2 \operatorname{\mathbf{curl}} \operatorname{\mathbf{curl}} \, \boldsymbol{u} = 0$$

After space discretization we obtain :

$$M\frac{d^2U}{dt^2} + KU = 0$$

Schémas de discrétisation en temps adaptatifs.

< 注 → 注

Introduction — Space Discretization

$$M\frac{d^2U}{dt^2} + K = 0$$

We consider space discretization methods such that M and K are symmetric positive matrices and M is (block-)diagonal (FEM with mass lumping or DG methods).

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Introduction — Space Discretization

$$M^{\frac{1}{2}}\frac{d^{2}U}{dt^{2}} + \underbrace{M^{-\frac{1}{2}}KM^{-\frac{1}{2}}}_{A}\underbrace{M^{\frac{1}{2}}U}_{Y} = 0$$

Schémas de discrétisation en temps adaptatifs.

æ

Introduction — Space Discretization

$$\frac{d^2Y}{dt^2} + AY = 0$$

Schémas de discrétisation en temps adaptatifs.

2

$$\frac{d^2Y}{dt^2} + AY = 0$$

Schémas de discrétisation en temps adaptatifs.

æ

★ 문 ► ★ 문 ► ...

< 同 ▶

$$\frac{d^2Y}{dt^2} + AY = 0$$

Classical Leap Frog Scheme :

$$\frac{Y(t+\Delta t) - 2Y(t) + Y(t-\Delta t)}{\Delta t^2} = \frac{d^2Y}{dt^2}(t) + O(\Delta t^2)$$

Schémas de discrétisation en temps adaptatifs.

æ

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

$$\frac{d^2Y}{dt^2} + AY = 0$$

Classical Leap Frog Scheme : $\frac{Y(t + \Delta t) - 2Y(t) + Y(t - \Delta t)}{\Delta t^2} = \frac{d^2Y}{dt^2}(t) + O(\Delta t^2)$

Schémas de discrétisation en temps adaptatifs.

(本部) (本語) (本語) (語)

$$\frac{d^2Y}{dt^2} + AY = 0$$

Classical Leap Frog Scheme : $\frac{Y(t + \Delta t) - 2Y(t) + Y(t - \Delta t)}{\Delta t^2} = AY(t) + O(\Delta t^2)$

Schémas de discrétisation en temps adaptatifs.

★御▶ ★理▶ ★理▶ 二理

$$\frac{d^2Y}{dt^2} + AY = 0$$

★@> ★ E> ★ E> = E

$$\frac{d^2Y}{dt^2} + AY = 0$$

Classical Leap Frog Scheme :

$$\frac{Y^{n+1}-2Y^n+Y^{n-1}}{\Delta t^2}=-AY^n.$$

Energy Conservation

$$E^{n+\frac{1}{2}} = \left\langle \frac{Y^{n+1} - Y^n}{\Delta t}, \frac{Y^{n+1} - Y^n}{\Delta t} \right\rangle + \left\langle AY^{n+1}, Y^n \right\rangle$$

Schémas de discrétisation en temps adaptatifs.

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

$$\frac{d^2 \mathbf{Y}}{dt^2} + A \mathbf{Y} = 0$$

Classical Leap Frog Scheme : $\frac{Y^{n+1} - 2Y^n + Y^{n-1}}{\Delta t^2} = -AY^n.$

Energy Conservation

$$E^{n+\frac{1}{2}} = \left\langle \left(I - \frac{\Delta t^2}{4}A\right) \frac{Y^{n+1} - Y^n}{\Delta t}, \frac{Y^{n+1} - Y^n}{\Delta t} \right\rangle$$
$$+ \left\langle A\frac{Y^{n+1} + Y^n}{2}, \frac{Y^{n+1} + Y^n}{2} \right\rangle$$

Schémas de discrétisation en temps adaptatifs.

2

Energy Conservation

$$E^{n+\frac{1}{2}} = \left\langle \left(I - \frac{\Delta t^2}{4}A\right) \frac{Y^{n+1} - Y^n}{\Delta t}, \frac{Y^{n+1} - Y^n}{\Delta t} \right\rangle$$
$$+ \left\langle A \frac{Y^{n+1} + Y^n}{2} \frac{Y^{n+1} + Y^n}{2} \right\rangle$$

CFL Condition

The scheme is stable if :

$$I - \frac{\Delta t^2}{4}A$$
 and A are symmetric positive

2

Schémas de discrétisation en temps adaptatifs.

æ

Energy Conservation

$$E^{n+\frac{1}{2}} = \left\langle \left(I - \frac{\Delta t^2}{4}A\right) \frac{Y^{n+1} - Y^n}{\Delta t}, \frac{Y^{n+1} - Y^n}{\Delta t} \right\rangle$$
$$+ \left\langle A \frac{Y^{n+1} + Y^n}{2}, \frac{Y^{n+1} + Y^n}{2} \right\rangle$$

CFL Condition

The scheme is stable if :

$$I - rac{\Delta t^2}{4}A$$
 and A are symmetric positive $0 \le \lambda_A \le rac{4}{\Delta t^2}$

Schémas de discrétisation en temps adaptatifs.

Energy Conservation

+

$$E^{n+\frac{1}{2}} = \left\langle \left(I - \frac{\Delta t^2}{4}A\right) \frac{Y^{n+1} - Y^n}{\Delta t}, \frac{Y^{n+1} - Y^n}{\Delta t} \right\rangle$$
$$\left\langle \begin{array}{c} Y^{n+1} + Y^n & Y^{n+1} + Y^n \end{array} \right\rangle$$

CFL Condition

The scheme is stable under the CFL condition :

 $\frac{1}{2}$, -

 $\Delta t \le \alpha_{LF} h$

2

Schémas de discrétisation en temps adaptatifs.

æ

★御▶ ★理≯ ★理≯

$$\frac{d^2Y}{dt^2} + AY = 0$$

Schémas de discrétisation en temps adaptatifs.

▲御▶ ▲理≯ ▲理≯

$$\frac{d^2Y}{dt^2} + AY = 0$$

Modified Equation Scheme :

$$\frac{Y(t+\Delta t) - 2Y(t) + Y(t-\Delta t)}{\Delta t^2} = \frac{d^2Y}{dt^2}(t) + \frac{\Delta t^2}{12}\frac{d^4Y}{dt^4}(t) + O(\Delta t^4).$$

Schémas de discrétisation en temps adaptatifs.

▲御▶ ▲ 国▶ ▲ 国▶ -

$$\frac{d^2Y}{dt^2} + AY = 0$$

Modified Equation Scheme :

$$\frac{Y(t+\Delta t) - 2Y(t) + Y(t-\Delta t)}{\Delta t^2} = \frac{d^2 Y}{dt^2}(t) + \frac{\Delta t^2}{12}\frac{d^4 Y}{dt^4}(t) + O(\Delta t^4).$$

Schémas de discrétisation en temps adaptatifs.

★御▶ ★理▶ ★理▶

$$\frac{d^2Y}{dt^2} + AY = 0$$

Modified Equation Scheme :

$$\frac{Y(t+\Delta t) - 2Y(t) + Y(t-\Delta t)}{\Delta t^2} = AY(t) + \frac{\Delta t^2}{12}A\frac{d^2Y}{dt^2}(t) + O(\Delta t^4).$$

Schémas de discrétisation en temps adaptatifs.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

$$\frac{d^2Y}{dt^2} + AY = 0$$

Modified Equation Scheme :

$$\frac{Y(t+\Delta t)-2Y(t)+Y(t-\Delta t)}{\Delta t^2} = AY(t) + \frac{\Delta t^2}{12}A\frac{d^2Y}{dt^2}(t) + O(\Delta t^4).$$

Schémas de discrétisation en temps adaptatifs.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

$$\frac{d^2Y}{dt^2} + AY = 0$$

Modified Equation Scheme :

$$\frac{Y(t + \Delta t) - 2Y(t) + Y(t - \Delta t)}{\Delta t^2} = AY(t) + \frac{\Delta t^2}{12}A^2Y(t) + O(\Delta t^4).$$

Schémas de discrétisation en temps adaptatifs.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

$$\frac{d^2Y}{dt^2} + AY = 0$$

Modified Equation Scheme :

$$\frac{Y^{n+1} - 2Y^n + Y^{n-1}}{\Delta t^2} = -AY^n + \frac{\Delta t^2}{12}A^2Y^n.$$

Schémas de discrétisation en temps adaptatifs.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

$$\frac{d^2Y}{dt^2} + AY = 0$$

Modified Equation Scheme :

$$\frac{Y^{n+1} - 2Y^n + Y^{n-1}}{\Delta t^2} = -AY^n + \frac{\Delta t^2}{12}A^2Y^n.$$

Energy Conservation

$$E^{n+\frac{1}{2}} = \left\langle \left(I - \frac{\Delta t^2}{4} \left(A - \frac{\Delta t^2}{12} A^2\right)\right) \frac{Y^{n+1} - Y^n}{\Delta t}, \frac{Y^{n+1} - Y^n}{\Delta t} \right\rangle$$
$$+ \left\langle \left(A - \frac{\Delta t^2}{12} A^2\right) \frac{Y^{n+1} + Y^n}{2}, \frac{Y^{n+1} + Y^n}{2} \right\rangle$$

Schémas de discrétisation en temps adaptatifs.

æ

・ロト ・四ト ・ヨト ・ヨト

Energy Conservation

$$E^{n+\frac{1}{2}} = \left\langle \left(I - \frac{\Delta t^2}{4} \left(A - \frac{\Delta t^2}{12} A^2\right)\right) \frac{Y^{n+1} - Y^n}{\Delta t}, \frac{Y^{n+1} - Y^n}{\Delta t} \right\rangle$$
$$+ \left\langle \left(A - \frac{\Delta t^2}{12} A^2\right) \frac{Y^{n+1} + Y^n}{2}, \frac{Y^{n+1} + Y^n}{2} \right\rangle$$

CFL Condition

The scheme is stable if

$$I - \frac{\Delta t^2}{4} \left(A - \frac{\Delta t^2}{12} A^2 \right)$$
 and $A - \frac{\Delta t^2}{12} A^2$ are symmetric positive

Schémas de discrétisation en temps adaptatifs.

æ

イロト 不得下 イヨト イヨト

Energy Conservation

$$E^{n+\frac{1}{2}} = \left\langle \left(I - \frac{\Delta t^2}{4} \left(A - \frac{\Delta t^2}{12} A^2\right)\right) \frac{Y^{n+1} - Y^n}{\Delta t}, \frac{Y^{n+1} - Y^n}{\Delta t} \right\rangle$$
$$+ \left\langle \left(A - \frac{\Delta t^2}{12} A^2\right) \frac{Y^{n+1} + Y^n}{2}, \frac{Y^{n+1} + Y^n}{2} \right\rangle$$

CFL Condition

The scheme is stable under the CFL condition $\Delta t \leq \alpha_{ME} h = \sqrt{3} \alpha_{LF} h$

Schémas de discrétisation en temps adaptatifs.

CFL Condition

The scheme is stable under the CFL condition

$$\Delta t \le \alpha_{ME} h = \sqrt{3}\alpha_{LF} h$$

CFL Condition

We want the new scheme to satisfy

 $\Delta t^{\text{coarse}} \leq \alpha_{ME} h^{\text{coarse}}$ and $\Delta t^{\text{fine}} \leq \alpha_{ME} h^{\text{fine}}$

▲ 듣 ▶ . ▲ 듣 ▶

CFL Condition

We want the new scheme to satisfy

 $\Delta t^{\text{coarse}} \leq \alpha_{ME} h^{\text{coarse}}$ and $\Delta t^{\text{fine}} \leq \alpha_{ME} h^{\text{fine}} \approx \alpha_{ME} h^{\text{coarse}} / p$

(本部) (本語) (本語) (三語

Bibliography

 $\label{eq:POems} POems \ Team: Bécache, \ Collino, \ Fouquet, \ Joly, \ Rodríguez$

- Conservation of energy
- Optimal stability condition
- Requires the introduction of a Lagrange Multiplier
- Implicit scheme on the interface

Bibliography

POems Team : Bécache, Collino, Fouquet, Joly, Rodríguez

- Conservation of energy
- Optimal stability condition
- Requires the introduction of a Lagrange Multiplier
- Implicit scheme on the interface

Piperno

- First-order Maxwell system
- Conservation of energy
- Optimal stability condition
- Explicit or implicit scheme on the interface

Hairer, Lubich and Wanner (2002), Leimkuhler and Reich (2004) : Local Time Stepping for ODE's (second order scheme)

伺下 イヨト イヨト

Hairer, Lubich and Wanner (2002), Leimkuhler and Reich (2004) : Local Time Stepping for ODE's (second order scheme)

Diaz, Grote (2009) : High-Order Local Time Stepping for the Wave Equation.

- Conservation of energy
- Optimal stability condition

① Fourth order local time-stepping.

2

・ロト ・四ト ・ヨト ・ヨト

- **1** Fourth order local time-stepping.
- 2 Multilevel Fourth order local time-stepping.

æ

★ 문 ► ★ 문 ►

< 同 ▶

- **1** Fourth order local time-stepping.
- 2 Multilevel Fourth order local time-stepping.
- **3** Numerical Results

æ

< A >
Auxiliary Function

At each time step n we define an auxiliary function

$$Q_n(\tau) = \frac{Y(n\Delta t - \tau) + Y(n\Delta t + \tau)}{2}$$

for $\tau \in [-\Delta t; \Delta t]$.

E

★ 문 ► ★ 문 ► ...

Auxiliary Function

At each time step n we define an auxiliary function

$$Q_n(\tau) = \frac{Y(n\Delta t - \tau) + Y(n\Delta t + \tau)}{2}$$

for $\tau \in [-\Delta t; \Delta t]$.

This function is obviously even and satisfy :

$$\left\{ \begin{array}{ll} \displaystyle \frac{d^2 Q_n}{d\tau^2}(\tau) = -A Q_n(\tau), \\ \\ \displaystyle Q_n(0) = Y(n \Delta t), \qquad \frac{d Q_n}{d\tau}(0) = 0, \end{array} \right. \label{eq:Qn}$$

Schémas de discrétisation en temps adaptatifs.

・四ト ・ヨト ・ヨト

Auxiliary Function

At each time step n we define an auxiliary function

$$Q_n(\tau) = \frac{Y(n\Delta t - \tau) + Y(n\Delta t + \tau)}{2}$$

for $\tau \in [-\Delta t; \Delta t]$.

This function is obviously even and satisfy :

$$\left\{ \begin{array}{ll} \displaystyle \frac{d^2 Q_n}{d\tau^2}(\tau) = -A Q_n(\tau), \\ \displaystyle Q_n(0) = Y(n \Delta t), \qquad \frac{d Q_n}{d\tau}(0) = 0, \end{array} \right. \label{eq:Qn}$$

After having solved this equation, $Y((n+1)\Delta t)$ can be computed using $Y((n+1)\Delta t) = -Y((n-1)\Delta t) + 2Q_n(\Delta t)$

▲御▶ ▲理≯ ▲理≯

First Way

Solve

$$\begin{cases} \frac{d^2 Q_n}{d\tau^2}(\tau) = -AQ_n(\tau), \\ Q_n(0) = Y(n\Delta t), \qquad \frac{dQ_n}{d\tau}(0) = 0, \end{cases}$$

by a fourth order modified equation scheme of time step $\Delta t/p$ and compute $Y((n+1)\Delta t) = -Y((n-1)\Delta t) + 2Q_n(\Delta t)$.

First Way

Solve

$$\begin{cases} \frac{d^2 Q_n}{d\tau^2}(\tau) = -AQ_n(\tau), \\ Q_n(0) = Y(n\Delta t), \qquad \frac{dQ_n}{d\tau}(0) = 0, \end{cases}$$

by a fourth order modified equation scheme of time step $\Delta t/p$ and compute $Y((n+1)\Delta t) = -Y((n-1)\Delta t) + 2Q_n(\Delta t)$.

Remark

It is equivalent to solve the original equation by a fourth order modified equation scheme of time step $\Delta t/p$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Two different ways to solve the auxiliary equation

Second Way

Use a fourth order approximation of $AQ_n(\tau)$:

$$AQ_n(\tau) \approx AQ_n(0) + \frac{\tau^2}{2}A\frac{d^2Q_n(0)}{d\tau^2} = AY(n\Delta t) - \frac{\tau^2}{2}AAY(n\Delta t),$$

then solve

$$\begin{cases} \frac{d^2 Q_n}{d\tau^2}(\tau) = -AY(n\Delta t) + \frac{\tau^2}{2}AAY(n\Delta t), \\ Q_n(0) = Y(n\Delta t), \qquad \frac{dQ_n}{d\tau}(0) = 0, \end{cases}$$

by a fourth order modified equation scheme of time step $\Delta t/p$ and compute $Y((n+1)\Delta t) = -Y((n-1)\Delta t) + 2Q_n(\Delta t)$.

▲御▶ ▲理▶ ▲理▶

Two different ways to solve the auxiliary equation

Second Way

Use a fourth order approximation of $AQ_n(\tau)$:

$$AQ_n(\tau) \approx AQ_n(0) + \frac{\tau^2}{2} A \frac{d^2 Q_n(0)}{d\tau^2} = AY(n\Delta t) - \frac{\tau^2}{2} AAY(n\Delta t),$$

then solve

$$\left\{ \begin{array}{l} \displaystyle \frac{d^2 Q_n}{d\tau^2}(\tau) = -AY(n\Delta t) + \frac{\tau^2}{2}AAY(n\Delta t), \\ \displaystyle Q_n(0) = Y(n\Delta t), \qquad \frac{dQ_n}{d\tau}(0) = 0, \end{array} \right.$$

by a fourth order modified equation scheme of time step $\Delta t/p$ and compute $Y((n+1)\Delta t) = -Y((n-1)\Delta t) + 2Q_n(\Delta t)$.

Remark

Is is equivalent to solve the original equation by a fourth order modified equation scheme of time step Δt , whatever is p.

Schémas de discrétisation en temps adaptatifs.

$$\frac{d^2 Q_n}{d\tau^2} + A Q_n = 0$$

Schémas de discrétisation en temps adaptatifs.

æ

문어 비원어

< 47 ▶

$$\frac{d^2 Q_n}{d\tau^2} + A Q_n = 0$$

Let us now split Q_n in two parts :

$$Q_n = \left[egin{array}{c} Q_n^{ ext{coarse}} \ Q_n^{ ext{fine}} \ Q_n^{ ext{fine}} \end{array}
ight]$$

$$\frac{d^2 Q_n}{d\tau^2} + A Q_n = 0$$

Let us now split Q_n in two parts :

$$Q_n = \left[\begin{array}{c} Q_n^{\text{coarse}} \\ 0 \end{array} \right] + \left[\begin{array}{c} 0 \\ Q_n^{\text{fine}} \end{array} \right]$$

$$\frac{d^2 Q_n}{d\tau^2} + A Q_n = 0$$

Let us now split Q_n in two parts :

$$Q_n = \begin{bmatrix} Q_n^{\text{coarse}} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ Q_n^{\text{fine}} \end{bmatrix} = (I-P)Q_n + PQ_n, \text{ with } P^2 = P$$

Schémas de discrétisation en temps adaptatifs.

$$\frac{d^2 Q_n}{d\tau^2} + A(I-P)Q_n + APQ_n = 0$$

Let us now split Q_n in two parts :

$$Q_n = \begin{bmatrix} Q_n^{\text{coarse}} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ Q_n^{\text{fine}} \end{bmatrix} = (I-P)Q_n + PQ_n, \text{ with } P^2 = P$$

$$\frac{d^2 Q_n}{d\tau^2} + A(I-P)Q_n + APQ_n = 0$$

Idea

Approximate only $A(I-P)Q_n(\tau)$ by

$$A(I-P)Q_n(\tau) \approx A(I-P)Q_n(0) + \frac{\tau^2}{2}A(I-P)\frac{d^2Q_n(0)}{d\tau^2}$$

Schémas de discrétisation en temps adaptatifs.

æ

・ロト ・四ト ・ヨト ・ヨト

$$\frac{d^2 Q_n}{d\tau^2} + A(I-P)Q_n + APQ_n = 0$$

Idea

Approximate only $A(I-P)Q_n(\tau)$ by

$$A(I-P)Q_n(\tau) \approx A(I-P)Y(n\Delta t) - \frac{\tau^2}{2}A(I-P)AY(n\Delta t)$$

Schémas de discrétisation en temps adaptatifs.

æ

▲御▶ ▲理▶ ▲理▶

$$\frac{d^2 Q_n}{d\tau^2} + A(I-P)Q_n + APQ_n = 0$$

Idea

Approximate only $A(I-P)Q_n(\tau)$ by

$$A(I-P)Q_n(\tau) \approx A(I-P)Y(n\Delta t) - \frac{\tau^2}{2}A(I-P)AY(n\Delta t)$$

So that Q_n is the solution to

$$\frac{d^2 Q_n(\tau)}{d\tau^2} + A(I-P)Y(t) - \frac{\tau^2}{2}A(I-P)AY(n\Delta t) + APQ_n(\tau) = 0$$
$$Q_n(0) = Y(t)$$
$$Q'_n(0) = 0$$

Schémas de discrétisation en temps adaptatifs.

Computation of $Q(\Delta t)$

We solve
$$\begin{vmatrix} \frac{d^2}{d\tau^2}Q_n(\tau) + A(I-P)Y^n - \frac{\tau^2}{2}A(I-P)AY^n + APQ_n(\tau) = 0\\ Q_n(0) = Y^n\\ Q'_n(0) = 0\\ \text{from } \tau = 0 \text{ to } \tau = \Delta t, \text{ using a fourth order Modified Equation Scheme}\\ \text{with a time step } \frac{\Delta t}{p}. \end{aligned}$$

Schémas de discrétisation en temps adaptatifs.

Ξ.

▲御▶ ▲ 臣▶ ▲ 臣▶

Computation of $Q(\Delta t)$

$$\begin{aligned} Q_n^0 &= Y^n \\ V_1 &= -A(I-P)Y^n - APQ_n^0 = -AY^n \\ V_2 &= A(I-P)AY^n - APV_1 \\ Q_n^{\frac{1}{p}} &= Q_n^0 + \frac{\Delta t^2}{2p^2}V_1 + \frac{\Delta t^4}{24p^4}V_2 \\ \text{For } i &= 1..p-1 \\ V_1 &= -A(I-P)Y^n + \frac{1}{2}\left(\frac{i\Delta t}{p}\right)^2 A(I-P)AY^n - APQ_n^{\frac{i}{p}} \\ V_2 &= A(I-P)AY^n - APV_1 \\ Q_n^{\frac{i+1}{p}} &= 2Q_n^{\frac{i}{p}} - Q_n^{\frac{i-1}{p}} + \frac{\Delta t^2}{p^2}V_1 + \frac{\Delta t^4}{12p^4}V_2 \\ \text{Endfor} \end{aligned}$$

Schémas de discrétisation en temps adaptatifs.

Computation of Y^{n+1}

$$Y^{n+1} = 2Q_n^1 - Y^{n-1}$$

Schémas de discrétisation en temps adaptatifs.

Ξ.

イロト イヨト イヨト イヨト

Computation of Y^{n+1}

$$Y^{n+1} = 2Q_n^1 - Y^{n-1}$$

This algorithm requires only one multiplication by A(I - P) and p multiplications by AP.

2

(四) (正) (日)

Energy Conservation

This algorithm can be rewritten as

$$\frac{Y^{n+1} - 2Y^n + Y^{n-1}}{\Delta t^2} = -A_p Y^n$$

where A_p is defined by

$$A_p = A - \frac{\Delta t^2}{12} A^2 - \frac{2}{p^2} \sum_{j=1}^{2(p-1)} \left(\frac{\Delta t}{p}\right)^{2(j+1)} \beta_j^p (AP)^j A^2.$$

Schémas de discrétisation en temps adaptatifs.

æ

★ 문 ► ★ 문 ► ...

< A >

Energy Conservation

This algorithm can be rewritten as

$$\frac{Y^{n+1} - 2Y^n + Y^{n-1}}{\Delta t^2} = -A_p Y^n$$

where A_p is defined by

$$A_p = A - \frac{\Delta t^2}{12} A^2 - \frac{2}{p^2} \sum_{j=1}^{2(p-1)} \left(\frac{\Delta t}{p}\right)^{2(j+1)} \beta_j^p (AP)^j A^2.$$

Property

 AA_p is symmetric and the following energy is conserved

$$E^{n+\frac{1}{2}} = \frac{1}{2} \left[\left\langle \left(A - \frac{\Delta t^2}{4} A A_p \right) \frac{Y_{n+1} - Y_n}{\Delta t}, \frac{Y_{n+1} - Y_n}{\Delta t} \right\rangle + \left\langle A A_p \frac{Y_{n+1} + Y_n}{2}, \frac{Y_{n+1} + Y_n}{2} \right\rangle \right].$$

Schémas de discrétisation en temps adaptatifs.

Schémas de discrétisation en temps adaptatifs.

-≣ →

Schémas de discrétisation en temps adaptatifs.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

<回> < E> < E>

Schémas de discrétisation en temps adaptatifs.

★御▶ ★理≯ ★理≯

Schémas de discrétisation en temps adaptatifs.

▲御▶ ▲理≯ ▲理≯ …

Schémas de discrétisation en temps adaptatifs.

Schémas de discrétisation en temps adaptatifs.

CFL			
	Overlap		
h^{coarse}	1	2	
0.5	0.85	1	
0.2	0.84	1	
0.1	0.86	1	

Ratio $\Delta t_p / \Delta t_{opt}$ for p = 2

Schémas de discrétisation en temps adaptatifs.

æ

・ロト ・回ト ・ヨト ・ヨト

CFL			
	Overlap		
р	1	2	
2	0.85	1	
3	0.603	1	
4	0.4	1	
6	0.3	1	
7	0.4	1	

Ratio $\Delta t_p / \Delta t_{opt}$ for $h^{\text{coarse}} = 0.2$

Schémas de discrétisation en temps adaptatifs.

12 / 34

2

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

Numerical Experiments in 1D

Initial Condition

$$U(0,x) = \sin\left(\frac{8\pi}{6}x\right), \quad U'(0,x) = -\frac{8\pi}{6}\cos\left(\frac{8\pi}{6}x\right)$$
$$\implies U_{ex}(t,x) = \sin\left(\frac{8\pi}{6}(x-t)\right)$$

Schémas de discrétisation en temps adaptatifs.

æ

イロン イロン イヨン イヨン

Numerical Experiments in 1D

Initial Condition

$$U(0,x) = \sin\left(\frac{8\pi}{6}x\right), \quad U'(0,x) = -\frac{8\pi}{6}\cos\left(\frac{8\pi}{6}x\right)$$
$$\implies U_{ex}(t,x) = \sin\left(\frac{8\pi}{6}(x-t)\right)$$

Space Discretization

IPDG,
$$\mathcal{P}^3$$
 – elements with $\alpha = 7$.

Schémas de discrétisation en temps adaptatifs.

æ

Schémas de discrétisation en temps adaptatifs.

14 / 34

< 注→

母▶ ∢ ≧▶

Computational Domain

 $\Omega = [-0.5\,;\,0.5]\times [-0.5\,;\,0.5] \text{ with Neumann Condition}$ Width of the slot : 0.004

Schémas de discrétisation en temps adaptatifs.

伺 ト イヨト イヨト

Space Discretization

IPDG, \mathcal{P}^3 -elements with $\alpha = 11, \Delta t \leq 0.14h$

Schémas de discrétisation en temps adaptatifs.

15 / 34

圖 🕨 🔸 문 🕨 🔺 문 🕨

Space Discretization

IPDG, \mathcal{P}^3 -elements with $\alpha = 11, \Delta t \leq 0.14h$

Time Discretization

Order 4 in time, using the modified equation technique

Schémas de discrétisation en temps adaptatifs.

Schémas de discrétisation en temps adaptatifs.

16 / 34

Schémas de discrétisation en temps adaptatifs.

$$h^{\text{coarse}} = 0.0125, h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}}/16.44$$

 $\Delta t = 0.14h^{\text{coarse}}, p = 17$

Schémas de discrétisation en temps adaptatifs.

$$h^{\text{coarse}} = 0.0125, h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}}/16.44$$

 $\Delta t = 0.14h^{\text{coarse}}, p = 17$

Schémas de discrétisation en temps adaptatifs.

16 / 34

æ

イロン イロン イヨン イヨン

$$\begin{aligned} h^{\text{coarse}} &= 0.0125, \ h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}} / 16.44 \\ \Delta t &= 0.14 h^{\text{coarse}}, \ p = 17 \end{aligned}$$

Schémas de discrétisation en temps adaptatifs.

æ

イロン イロン イヨン イヨン

$$\begin{aligned} h^{\text{coarse}} &= 0.0125, \ h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}} / 16.44 \\ \Delta t &= 0.14 h^{\text{coarse}}, \ p = 17 \end{aligned}$$

Schémas de discrétisation en temps adaptatifs.

16 / 34

(本部) (本語) (本語)

$$h^{\text{coarse}} = 0.0125, h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}}/16.44$$

 $\Delta t = 0.14h^{\text{coarse}}, p = 17$

Schémas de discrétisation en temps adaptatifs.

- 4 回 2 - 4 回 2 - 4 回 2

$$h^{\text{coarse}} = 0.0125, h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}}/16.44$$

 $\Delta t = 0.14h^{\text{coarse}}, p = 17$

Schémas de discrétisation en temps adaptatifs.

- 4 回 2 - 4 回 2 - 4 回 2

$$\begin{aligned} h^{\text{coarse}} &= 0.0125, \ h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}} / 16.44\\ \Delta t &= 0.14 h^{\text{coarse}}, \ p = 17 \end{aligned}$$

Schémas de discrétisation en temps adaptatifs.

- 4 回 2 - 4 回 2 - 4 回 2

$$h^{\text{coarse}} = 0.0125, \ h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}}/16.44$$
$$\Delta t = 0.14h^{\text{coarse}}, \ p = 17$$

Schémas de discrétisation en temps adaptatifs.

★ 문 ► ★ 문 ►

< 1 →

Solution

$$\begin{aligned} h^{\text{coarse}} &= 0.0125, \ h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}} / 16.44 \\ \Delta t &= 0.14 h^{\text{coarse}}, \ p = 17 \end{aligned}$$

Schémas de discrétisation en temps adaptatifs.

≣⇒

≣⇒.

< A >

 $\Delta t = 0.14 h^{\text{coarse}}, p = 17$

Schémas de discrétisation en temps adaptatifs.

16 / 34

(四) (日) (日)

 $\begin{aligned} h^{\text{coarse}} &= 0.0125, \, h^{\text{fine}} = 7.62.10^{-4} \approx h^{\text{coarse}} / 16.44 \\ \Delta t &= 0.14 h^{\text{coarse}}, \, p = 17 \end{aligned}$

Schémas de discrétisation en temps adaptatifs.

16 / 34

注 ト ・ 注 ト

Schémas de discrétisation en temps adaptatifs.

≣≯

Solve

$$\frac{d^2 Q_n(\tau)}{d\tau^2} + A(I-P)Y(t) - \frac{\tau^2}{2}A(I-P)AY(n\Delta t) + APQ_n(\tau) = 0$$
$$Q_n(0) = Y(t)$$
$$Q'_n(0) = 0$$

for $\tau \in [0; \Delta t]$ with a time-step $\Delta \tau = \Delta t/p$ in the fine grid and $\Delta \tau/q$ in the very fine grid.

- < E > < E >

Solve

$$\begin{aligned} \frac{d^2 Q_n(\tau)}{d\tau^2} + A(I-P)Y(t) &- \frac{\tau^2}{2}A(I-P)AY(n\Delta t) + APQ_n(\tau) = 0\\ Q_n(0) &= Y(t)\\ Q'_n(0) &= 0 \end{aligned}$$

for $\tau \in [0; \Delta t]$ with a time-step $\Delta \tau = \Delta t/p$ in the fine grid and $\Delta \tau/q$ in the very fine grid.

Auxiliary Function

At each small time step m we define an auxiliary function

$$R_m(\theta) = \frac{Q_n(m\Delta\tau - \theta) + Q_n(m\Delta\tau + \theta)}{2}$$

for $\theta \in [-\Delta \tau; \Delta \tau]$.

Schémas de discrétisation en temps adaptatifs.

Auxiliary Function

At each small time step m we define an auxiliary function

$$R_m(\theta) = \frac{Q_n(m\Delta\tau - \theta) + Q_n(m\Delta\tau + \theta)}{2}$$

for $\theta \in [-\Delta \tau; \Delta \tau]$.

This function is obviously even and satisfy :

$$\begin{cases} \frac{d^2 R_m}{d\theta^2}(\theta) &= A(I-P)Y(n\Delta t) \\ &- \frac{(\tau-\theta)^2 + (\tau+\theta)^2}{4}A(I-P)AY(n\Delta t) + APR_m(\theta), \\ R_m(0) &= Q_n(m\Delta \tau), \qquad \frac{dR_m}{d\tau}(0) = 0, \end{cases}$$

Schémas de discrétisation en temps adaptatifs.

This function is obviously even and satisfy :

$$\begin{cases} \frac{d^2 R_m}{d\theta^2}(\theta) &= A(I-P)Y(n\Delta t) \\ &- \frac{(\tau-\theta)^2 + (\tau+\theta)^2}{4}A(I-P)AY(n\Delta t) + APR_m(\theta), \\ R_m(0) &= Q_n(m\Delta \tau), \qquad \frac{dR_m}{d\tau}(0) = 0, \end{cases}$$

After having solved this equation, $Q_n((m+1)\Delta\tau)$ can be computed using $Q_n((m+1)\Delta\tau) = -Q_n((m-1)\Delta\tau) + 2R_m(\Delta\tau)$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

$$\frac{d^2 R_m}{d\theta^2}(\theta) = A(I-P)Y(n\Delta t) - \frac{(\tau-\theta)^2 + (\tau+\theta)^2}{4}A(I-P)AY(n\Delta t) + APR_m(\theta)$$

Schémas de discrétisation en temps adaptatifs.

≣⇒

-≣ →

$$\frac{d^2 R_m}{d\theta^2}(\theta) = A(I-P)Y(n\Delta t) - \frac{(\tau-\theta)^2 + (\tau+\theta)^2}{4}A(I-P)AY(n\Delta t) + A(P-P_1)R_m(\theta) + AP_1R_m(\theta)$$

≣ ।•

$$\frac{d^2 \mathbf{R}_m}{d\theta^2}(\theta) = A(I-P)\mathbf{Y}(n\Delta t) - \frac{(\tau-\theta)^2 + (\tau+\theta)^2}{4}A(I-P)A\mathbf{Y}(n\Delta t) + A(P-P_1)\mathbf{R}_m(\theta) + AP_1\mathbf{R}_m(\theta)$$

Idea

Approximate only $A(P-P_1)R_m(\theta)$ by

$$A(P - P_1)R_m(\theta) \approx A(P - P_1)R_m(0) + \frac{\theta^2}{2}A(P - P_1)\frac{d^2R_m(0)}{d\theta^2},$$

Schémas de discrétisation en temps adaptatifs.

æ

$$\frac{d^2 \mathbf{R}_m}{d\theta^2}(\theta) = A(I-P)\mathbf{Y}(n\Delta t) - \frac{(\tau-\theta)^2 + (\tau+\theta)^2}{4}A(I-P)A\mathbf{Y}(n\Delta t) + A(P-P_1)\mathbf{R}_m(\theta) + AP_1\mathbf{R}_m(\theta)$$

Idea

Approximate only $A(P-P_1)\mathbf{R}_m(\theta)$ by

$$A(P-P_1)R_m(\theta) \approx A(P-P_1)Q_n(m\Delta\tau) - \frac{\theta^2}{2}A(P-P_1)\frac{d^2R_m(0)}{d\theta^2},$$

Schémas de discrétisation en temps adaptatifs.

æ

$$\frac{d^2 \mathbf{R}_m}{d\theta^2}(\theta) = A(I-P)\mathbf{Y}(n\Delta t) - \frac{(\tau-\theta)^2 + (\tau+\theta)^2}{4}A(I-P)A\mathbf{Y}(n\Delta t) + A(P-P_1)\mathbf{R}_m(\theta) + AP_1\mathbf{R}_m(\theta)$$

Idea

Approximate only $A(P - P_1)R_m(\theta)$ by

$$A(P-P_1)R_m(\theta) \approx A(P-P_1)Q_n(m\Delta\tau) - \frac{\theta^2}{2}A(P-P_1)\frac{d^2R_m(0)}{d\theta^2},$$

with

$$\frac{d^2 R_m(0)}{d\theta^2} = A(I-P)Y(n\Delta t) + APQ_n(m\Delta \tau) - \frac{\tau^2}{2}A(I-P)AY(n\Delta t).$$

Schémas de discrétisation en temps adaptatifs.

(日) (월) (일) (일) (일)

$$\begin{aligned} \frac{d^2 \mathbf{R}_m}{d\theta^2}(\theta) &= A(I-P)\mathbf{Y}(n\Delta t) - \frac{(\tau-\theta)^2 + (\tau+\theta)^2}{4}A(I-P)A\mathbf{Y}(n\Delta t) \\ &+ A(P-P_1)\mathbf{Q}_n(m\Delta \tau) - \frac{\theta^2}{2}A(P-P_1)\frac{d^2 \mathbf{R}_m(0)}{d\theta^2} + AP_1\mathbf{R}_m(\theta) \end{aligned}$$

Idea

Approximate only $A(P - P_1)R_m(\theta)$ by

$$A(P-P_1)R_m(\theta) \approx A(P-P_1)Q_n(m\Delta\tau) - \frac{\theta^2}{2}A(P-P_1)\frac{d^2R_m(0)}{d\theta^2},$$

with

$$\frac{d^2 R_m(0)}{d\theta^2} = A(I-P)Y(n\Delta t) + APQ_n(m\Delta \tau) - \frac{\tau^2}{2}A(I-P)AY(n\Delta t).$$

Schémas de discrétisation en temps adaptatifs.

- Computation of $Q_n^{1/p}$:
 - Compute R_m^1 by a fourth order Modified Equation Scheme;
 - Compute $Q_n^{1/p} = R_m^1$;
- For i = 1..p 1
 - Computation of $Q_n^{(i+1)/p}$:
 - Compute R_m^1 by a fourth order Modified Equation Scheme;
 - Compute $Q_n^{(i+1)/p} = Q_n^{(i-1)/p} + 2R_m^1$;
- Compute $Y^{(n+1)/p} = Y^{(n-1)/p} + 2Q_n^1$.

・ロト ・ 一下・ ・ ヨト ・ ・ ヨト

Energy Conservation

▲御▶ ▲臣▶ ▲臣▶

Energy Conservation

Schémas de discrétisation en temps adaptatifs.

· < @ > · < 문 > · < 문 > · · 문

Schémas de discrétisation en temps adaptatifs.

22 / 34

ヨト

Initial Condition

$$U(0,x) = \sin\left(\frac{8\pi}{6}x\right), \quad U'(0,x) = -\frac{8\pi}{6}\cos\left(\frac{8\pi}{6}x\right)$$
$$\implies U_{ex}(t,x) = \sin\left(\frac{8\pi}{6}(x-t)\right)$$

Schémas de discrétisation en temps adaptatifs.

▲御 ▶ ▲ 臣 ▶

< 注→

Initial Condition

$$U(0,x) = \sin\left(\frac{8\pi}{6}x\right), \quad U'(0,x) = -\frac{8\pi}{6}\cos\left(\frac{8\pi}{6}x\right)$$
$$\implies U_{ex}(t,x) = \sin\left(\frac{8\pi}{6}(x-t)\right)$$

Space Discretization

IPDG,
$$\mathcal{P}^3$$
 – elements with $\alpha = 7$.

(日)、

< ∃→

Schémas de discrétisation en temps adaptatifs.

æ

Schémas de discrétisation en temps adaptatifs.

23 / 34
Computational Domain

Schémas de discrétisation en temps adaptatifs.

24 / 34

< 注→

< 日 > < (型 >

돈에 세종에

Schémas de discrétisation en temps adaptatifs.

24 / 34

æ

Top left corner

p=4

Schémas de discrétisation en temps adaptatifs.

< 同 ▶

Bottom left corner

$$p_1 = 3, p_2 = 3$$

Bottom left corner

$$p_1 = 3, p_2 = 3$$

Bottom right corner

$$p_1 = 5, p_2 = 2, p_3 = 3$$

Bottom right corner

$$p_1 = 5, p_2 = 2, p_3 = 3$$

Bottom right corner

$$p_1 = 5, p_2 = 2, p_3 = 3$$

Top right corner

$$p_1 = 4, p_2 = 2, p_3 = 5, p_4 = 4$$

Top right corner

$$p_1 = 4, p_2 = 2, p_3 = 5, p_4 = 4$$

Top right corner

$$p_1 = 4, p_2 = 2, p_3 = 5, p_4 = 4$$

Top right corner

$$p_1 = 4, p_2 = 2, p_3 = 5, p_4 = 4$$

$$\Delta t = \Delta t_{opt}$$

- * ロ ト * 御 ト * 臣 ト * 臣 * うへ()

Solution

Schémas de discrétisation en temps adaptatifs.

≣⇒

Solution

Schémas de discrétisation en temps adaptatifs.

< ∃⇒

Solution

Schémas de discrétisation en temps adaptatifs.

≣⇒

Solution

Schémas de discrétisation en temps adaptatifs.

▶ < ∃ >

Solution

문 ▶ | ★ 문 ▶

Solution

문 ▶ | ★ 문 ▶

New method : we consider the equation

$$\frac{d^2 Q_n}{d\tau^2}(\tau) + A(I-P)Y^n - \frac{\tau^2}{2}A(I-P)AY^n + APQ_n(\tau) = 0$$

and we discretize

$$(I-P)\frac{d^2}{d\tau^2}Q_n(\tau)$$

by a fourth order Modified equation scheme and

$$Prac{d^2}{d au^2} Q_n(au)$$

by a second order Leap-Frog scheme

New method : we consider the equation

$$\frac{d^2 Q_n}{d\tau^2}(\tau) + A(I-P)Y^n - \frac{\tau^2}{2}A(I-P)AY^n + APQ_n(\tau) = 0$$

so that

$$(I-P)\frac{Q_n^{\frac{i+1}{p}} - 2Q_n^{\frac{i}{p}} + Q_n^{\frac{i-1}{p}}}{\Delta\tau^2} = (I-P)\frac{d^2Q_n}{d\tau^2}(\tau) + \frac{\Delta\tau^2}{12}(I-P)\frac{d^4Q_n}{d\tau^4}(\tau)$$

and
$$P\frac{Q_n^{\frac{i+1}{p}} - 2Q_n^{\frac{i}{p}} + Q_n^{\frac{i-1}{p}}}{\Delta\tau^2} = P\frac{d^2Q_n}{d\tau^2}(\tau)$$

Schémas de discrétisation en temps adaptatifs.

05 / 24

★ 문 ► ★ 문 ►

New method : we consider the equation

$$\frac{d^2 Q_n}{d\tau^2}(\tau) + A(I-P)Y^n - \frac{\tau^2}{2}A(I-P)AY^n + APQ_n(\tau) = 0$$

so that

$$\frac{Q_n^{\frac{i+1}{p}} - 2Q_n^{\frac{i}{p}} + Q_n^{\frac{i-1}{p}}}{\Delta\tau^2} = \frac{d^2Q_n}{d\tau^2}(\tau) + \frac{\Delta\tau^2}{12}(I-P)\frac{d^4Q_n}{d\tau^4}(\tau)$$

Schémas de discrétisation en temps adaptatifs.

★ 문 ► ★ 문 ►

New method : we consider the equation

$$\frac{d^2 Q_n}{d\tau^2}(\tau) + A(I-P)Y^n - \frac{\tau^2}{2}A(I-P)AY^n + APQ_n(\tau) = 0$$

so that

$$\frac{Q_n^{\frac{i+1}{p}} - 2Q_n^{\frac{i}{p}} + Q_n^{\frac{i-1}{p}}}{\Delta\tau^2} = -A(I-P)Y^n + \frac{\tau^2}{2}A(I-P)AY^n - APQ_n^{\frac{i}{p}} + \frac{\Delta\tau^2}{12}(I-P)\left(A(I-P)AY^n - AP\frac{d^2Q_n}{d\tau^2}(\tau)\right)$$

Schémas de discrétisation en temps adaptatifs.

레이 소문이 소문이

New method : we consider the equation

$$\frac{d^2 Q_n}{d\tau^2}(\tau) + A(I-P)Y^n - \frac{\tau^2}{2}A(I-P)AY^n + APQ_n(\tau) = 0$$

so that

$$\frac{Q_n^{\frac{i+1}{p}} - 2Q_n^{\frac{i}{p}} + Q_n^{\frac{i-1}{p}}}{\Delta\tau^2} = -A(I-P)Y^n + \frac{\tau^2}{2}A(I-P)AY^n - APQ_n^{\frac{i}{p}} + \frac{\Delta\tau^2}{12}(I-P)A(I-P)AY^n - \frac{\Delta\tau^2}{12}(I-P)AP\frac{d^2Q_n}{d\tau^2}(\tau)$$

Schémas de discrétisation en temps adaptatifs.

▲御 ▶ ▲ 理 ▶ ▲ 理 ▶

New method : we consider the equation

$$\frac{d^2 Q_n}{d\tau^2}(\tau) + A(I-P)Y^n - \frac{\tau^2}{2}A(I-P)AY^n + APQ_n(\tau) = 0$$

$$\frac{Q_n^{\frac{i+1}{p}} - 2Q_n^{\frac{i}{p}} + Q_n^{\frac{i-1}{p}}}{\Delta \tau^2} = -A(I-P)Y^n + \frac{\tau^2}{2}A(I-P)AY^n - APQ_n^{\frac{i}{p}} + \frac{\Delta \tau^2}{12}(I-P)A(I-P)AY^n$$

Schémas de discrétisation en temps adaptatifs.

★御▶ ★理▶ ★理▶

Energy Conservation

This algorithm can be rewritten as

$$\frac{Y^{n+1} - 2Y^n + Y^{n-1}}{\Delta t^2} = -A_p Y^n$$

where A_p is defined by

$$A_p = A - \frac{\Delta t^2}{12} A (I - P) A - \frac{2}{p^2} \sum_{j=1}^{2(p-1)} \left(\frac{\Delta t}{p}\right)^{2(j+1)} \beta_j^p (AP)^j A^2.$$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Energy Conservation

This algorithm can be rewritten as

$$\frac{Y^{n+1} - 2Y^n + Y^{n-1}}{\Delta t^2} = -A_p Y^n$$

where A_p is defined by

$$A_p = A - \frac{\Delta t^2}{12} A(I-P)A - \frac{2}{p^2} \sum_{j=1}^{2(p-1)} \left(\frac{\Delta t}{p}\right)^{2(j+1)} \beta_j^p (AP)^j A^2.$$

Property

 AA_p is symmetric and the following energy is conserved

$$E^{n+\frac{1}{2}} = \frac{1}{2} \left[\left\langle \left(A - \frac{\Delta t^2}{4} A A_p \right) \frac{Y_{n+1} - Y_n}{\Delta t}, \frac{Y_{n+1} - Y_n}{\Delta t} \right\rangle + \left\langle A A_p \frac{Y_{n+1} + Y_n}{2}, \frac{Y_{n+1} + Y_n}{2} \right\rangle \right].$$

- Fine zone : $h_f = 0.1/160$, meshed with P1 or P3 elements;
- Transition zone : meshed with P1 or P3 elements;
- Coarse zone : $h_c = 0.1, 0.05, 0.025, 0.0125, 0.006125$, meshed with P3 elements.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fourth order time scheme, P3 Polynomials

Fourth order time scheme, P3/P1 Polynomials

4/2 order time scheme, P3 Polynomials, local time stepping

4/2 order time scheme, P3/P1 Polynomials, local time stepping

• This method is fully explicit.

æ

(本部) (本語) (本語)

- This method is fully explicit.
- It conserves a discrete energy.

Concluding Remarks

- This method is fully explicit.
- It conserves a discrete energy.
- The CFL is condition is "optimal".

⊒ ⊳

Concluding Remarks

- This method is fully explicit.
- It conserves a discrete energy.
- The CFL is condition is "optimal".
- It can be extended to any even order in time.
Concluding Remarks

- This method is fully explicit.
- It conserves a discrete energy.
- The CFL is condition is "optimal".
- It can be extended to any even order in time.
- K, M must be symmetric positive and M must be (block-)diagonal \Rightarrow computing M^{-1} must be cheap.