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Multigrid Methods

Classical Relaxation Methods

Hackbusch 1985: “For about one century the Jacobi and
Gauss-Seidel method ('relaxation’) were the only tools for solving

Martin J. Gander

Classical

small linear systems iteratively. A lot of interesting variations were
proposed which were well-fitted for hand calculations.”

For the linear system of equations Au = f using the
decomposition A = L+ D + U, the classical Jacobi method is

u™ =D (=L - U)u" +f) =u" + D7I(f — Au")
and the classical Gauss Seidel Method is
ut = (L+ D)"Y (—Uu" +f) =u" + (L+ D)"}(f — Au").

Example: For the Laplace equation in 2d, with the standard
5 point finite difference stencil [-1, —1,4,—1, —1], the
Jacobi method is

n+1_1

n n n n
i = Z(UH—IJ + Ui+ Uit uli)



Historical Purpose: Hand Relaxation

€N

Stiefel 1952: Uber einige Metho-
den der Relaxationsrechnung

“Ein geubter Rechner, der ein
gewisses Gefuhl fur den Ver-
lauf einer Potentialfunktion hat,
kann im vorliegenden Beispiel
von 25 Unbekannten mit diesem
Einzelschrittverfahren  durchkom-
men.

Links von jedem Gitterpunkt
sind Funktionswerte oder Funk-
tionsanderungen  angeschrieben,
rechts wird der jeweilige Stand der
Residuen protokolliert”

Multigrid Methods

Martin J. Gander

Classical



Q9

+100 v

00 ‘ Q0
“Py B Py Py o

0o o 0
il R s

¢ m@i)o 40?30 304]3340 zoql?no nﬁfom 0

12

10?0 zﬂi’m lo‘lflro uQ?-ao o?-lo 80

0 ”f szo a?ro ,o?a o?a 20

L%, - w—Cr

7] 0 0
“Im Allgemeinen muss aber die Methoc?e noch gedeutend
verfeinert werden”

<
(==
o

Multigrid Methods

Martin J. Gander

Classical



Multigrid Methods

General Idea of Relaxation (following Stiefel)

If A is symmetric and positive definite, we have

Martin J. Gander

Classical

Au=f <= F(u):= %UTAU—fTU — min

To solve the minimization problem, a natural relaxation
procedure is

n+1

u" =u" 4+ ap

where p is a search direction and « is the distance to go
along this direction.
Example: The Jacobi method

u =u" + DH(f — Au")

for the five point finite difference Laplacian uses

n 1
p:= (f — Au") a=,.



Multigrid Methods

Is the Jacobi Choice a Good One ?

The direction of Jacobi is p = (f — Au") = —F'(u"), and
thus Jacobi goes into the direction of fastest decrease of F o
at u™

Martin J. Gander

F'(u™)

Hence the direction is a good choice, but the distance a = %

might not be good.
“Ritzscher Gedanke (Stiefel)”: Use « to minimize F along

the direction p, hence a = «a(n):
—> Method of Steepest Descent.



Multigrid Methods

Problems of Steepest Descent: Prison Syndrome

10
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Prison Syndrome

Stiefel 1952: “Das Auftreten von Kifigen ist eine allgemeine
Erscheinung bei Relaxationsverfahren und sehr unerwiinscht. Es
bewirkt, dass eine Relaxation am Anfang flott vorwarts geht, aber
dann immer weniger ausgiebig wird...”



General Prison Syndrome for Relaxation Methods
“... Es ist leicht festzustellen, wann man bei diesem
Einzelschrittverfahren [Jacobi] des Dirichlet Problems in einem
Kéfig sitzt: Dies ist dann der Fall, wenn die Residuen in den
inneren Punkten alle dieselben Vorzeichen haben.”
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so dass der positive
; Residualberg mit den Loffel
statt mit einer Baggermas-
chine abgetragen wird !”

residual norm
5
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Remedies Proposed By Stiefel i Hehods

Martin J. Gander

» Block relaxation: simultaneous relaxation of several
equations by the same averaged amount.
Remedies

» “Scheibenrelaxation”:

1. either choosing search directions related to
eigenfunctions on subdomains.

2. or solving directly small subproblems for low modes by
relaxation.

“Es ist zweckmassig, fiir einen gegebenen Operator eine
Sammlung von Scheiben anzulegen.”
These are precursors of multigrid methods and/or
domain decompaosition.
» Conjugate search directions: in that case, one can
eliminate completely error components in the direction
of each p, independent of the other directions.

» “Das n-Schritt Verfahren”: the method of conjugate
gradients, (CG).



The Birth of Multigrid et et
Martin J. Gander
Federenko (1961): A Relaxation Method for Solving
Elliptic Difference Equations

The familiar iterative process [of Jacobi] is very slowly History
convergent. We shall try to use some special features of the
convergence in order to speed it up...

We shall speak of the eigenfunctions as “good” and “bad”;
the good ones include those that are smooth on the net and
have few changes of sign in the domain; the bad ones often
change sign and oscillate rapidly...

After a fairly small number of iterations, the error will consist
of “good” eigenfunctions [...] We shall use the following
method to annihilate the “good” components of the error.
We introduce into the domain an auxiliary net, the step of
which is g times greater than the step of the original net.



The Invention of MUItIgI’Id Multigrid Methods

Martin J. Gander

Nicolaides 1975: On Multiple Grid and Related Techniques
for Solving Discrete Elliptic Systems

History

Methods of multiple grid type: the general principle
underlying this type of method was understood by pencil and
paper relaxation users, and the method used by them and
based on this principle was called “block relaxation.”

For second-order elliptic equations in the plane [...] to
reduce the error by a factor of 1077 requires an amount of
work proportional to the number of gridpoints n and p.

It must be said here that the implementation of a multiple
grid method involves a high strategic component [...]
programming a multiple grid method is a rather complex
operation.



Hackbusch and Brandt

Two major competitors in the development of multigrid
methods:

Brandt 1972: Multi-Level Adaptive Technique (MLAT) for
Fast Numerical Solution to Boundary Value Problems

“The only disadvantage seems to be the complex
programming involved”

Hackbusch 1976: A fast iterative method for solving
Poisson’s equation in a general region

“The basic idea — using auxiliary systems of difference
equations corresponding to coarser grids — has been
developed independently by the author, but it was already
described by R. P. Federenko in 1961. Since then this idea
has only been revived by N. S. Bakhvalov and A. Brandt.”

Multigrid Methods

Martin J. Gander



HaCkbUSCh and Brandt cont. Multigrid Methods

Martin J. Gander

Brandt 1977: Multi-Level Adaptive Solutions to
Boundary-Value Problems

History

“Multi-grid algorithms are not difficult to program, if the
various grids are suitably organized.”

“As soon as the residuals are smoothed out, convergence
slows down. This is then exactly the point where relaxation
sweeps should be discontinued and approximate solution of
the (smoothed out) residual equations by coarser grids
should be employed.”.

“The basic tool is local mode (Fourier) analysis, applied to
the locally linearized-frozen difference equations, ignoring
boundaries.”



Multigrid Methods
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Model Problem

We consider the classical model problem

nu— Au="f, on Q2 =(0,1),

with homogeneous Dirichlet boundary conditions.

Discretization by finite differences with h = ﬁ on the

mesh x,, = mh, m=1,2 ... M, leads to the linear system
1 [24mn -1
Au = — u=f
h? -1 .
MxM

The coarsest grid possible is h = 5, with one grid point only.
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We consider only grids with h = 2,% M =2*1 _1 and
thus the coarsest level is / = 0, and there is always a mesh

point in the center (M is odd).



Main Idea of Mu|t|gr|d Multigrid Methods

error_damped Jacobi

. . . . Martin J. Gander
Fact: Classical stationary iterative methods based on

A= L+ D+ U can be very effective for high frequency
components of the error, but are not effective for low
frequency components.

Examples: Damped Jacobi and Gauss Seidel for the model
problem:

Main Idea
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Damped Jacobi Gauss-Seidel

ut =u"+wD H(f—Au")  u"t'=u"+(L+ D)7 (f—Au")



Multigrid Methods

Spectra of the lteration Operators

.. . 1 1 Martin J. Gander
For the damped Jacobi iteration operator /| —wD™"A, w = 5:
Spectrum Lowest Mode
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Spectra of the lteration Operators

For the Gauss Seidel iteration operator / — (D + L)1 A:

Gauss Seidel eigenvalues

Intermediate Mode

Highest Mode

Spectrum Lowest Mode
...ﬂ
08| L} o
nﬂ
kN o4
o} B
‘ﬂ‘ 0.08|
o] o, N
03| 0.02|
m X

Multigrid Methods

Martin J. Gander

Main Idea



Multigrid Methods

Analysis of Damped Jacobi

The eigenvalues and normalized eigenvectors for the model

problem matrix
24k —1 ]
-1 R FYPY

are given for m=1,2,..., M by the formulas
4 sin?(mzh _ )
A= 2B L o) = Vahsin(mm),

Since the diagonal D is constant, the damped Jacobi
iteration operator

Martin J. Gander

Main Idea

| —wD A
has the same eigenvectors, and the associated eigenvalues
h? 4sin?(TIhY 4 p2p
=l-wr—sAp=1- 2
pm RN YT 2

Hence each mode ¢, converges with factor pp,.



Multigrid Methods

Choice of Relaxation Parameter |
n= land w= %awopt, 1 n= 10000 and w = %awopta 1 Martin J. Gander

Main Idea

Optimal choice of w for convergence:

min  max |pm| = w”* solves p;(w) = —pm(w)
w mel,... .M

Optimal choice of w for smoothing:

min - max |pm| = w" solves pu(w) = —pm(w)
w me%,...,M 2

2+h%y ~ 2+h%p
2—cos(%7rh)+h2n—cos(M7rh) 34+-h2p

which leads to wep: =



Multigrid Methods

How to Treat Low Frequency Error?

Federenko (1961): "We introduce into the domain an
auxiliary net, the step of which is q times greater than the
step of the original net.

Martin J. Gander

Main Idea

residual
residual

05 1 15 2 25 3 o 05 1 15 2 25 3

X X
Need to transfer residual from a fine grid to a coarser grid,
ry = I,',"rh. Simplest possibility: injection

010

01 0
S _ “Restriction”



Multigrid Methods

Interpolation Matrices

Also need to transfer residual from coarse grid back to the
fine grid, r, = I,’_’,rH: interpolation

Martin J. Gander

-1 -
2
11 :
2 Main Idea
h 1 1 @ - - n
Iy = 5 Prolongation, Extension
1
2
=3 1 -
This gives an alternative for the restriction: full weighting
1 21

1 1 1 2 1
Iy = 50" =

"= 2



The Coarse Grid Problem Hiuitgrid Hethods

Martin J. Gander

There are two main possibilities to define a coarse grid

problem:
1. Simply discretize the same problem on the coarser grid
H = 2h:
Main Idea
2
AH 1 24+ Hnp -1
e L

2. Use the restriction and prolongation operators:
AH = 1HALR,
Lemma

For the model problem and a FEM discretization, these two
approaches give the same coarse problem A",



Proof:
The discretization of (n — A)u = f by finite elements leads
to the discrete problem (nM + K)u = f, where the mass and
stiffness matrices are

Multigrid Methods

Martin J. Gander

114 1 1 2 -1
wd[P ] en[n
1 - " MxM _1 C- C- MxM Main ldea
Now M”:I,T’MI,Z:
) .
12 1 s 1 4 1 i 2
_1 1114 1 (111
4 6 2 2
J . _
121 6 0 i .
4 1
:i 1 2 1 10 1 114
48 6 6 6
1 10 | .




Proof continued: Hiuitgrid Hethods

Martin J. Gander

and for the stiffness matrix, we obtain AH = I,f"AI,’;, =

1
1212 ) 2 -1 2
_1 111 2-1(1]11 |
h2 . 2 2 Main Idea
1
0 0
121 2-1
1 121 00 1 2-1
- — - |-1 21
2(2h)2 -1 2 H? _
0
L. _1 =

Note: The h? scaling on the stiffness matrix is unusual for
FEM methods.



TWO Grid Method Multigrid Methods

Martin J. Gander
1. To solve Au = f, start with an initial guess u®

2. Apply v1 steps of damped Jacobi:
u™l =u"+wD I (f—Au"), n=0,1,...090—1
3. Compute the residual
r—=f— Au”t. Two Grid Method

4. Instead of solving the residual equation for a correction,
Ae =r (= A(u"* + e) = Au"* +r =f), solve this
equation on a coarse grid:

AHeH = |y,

5. Extend this correction to the fine grid to correct the
approximation:
u’ =u” + Ifiet
6. Apply v, steps of damped Jacobi:
u™l =u"+wDI(fF—Au"), n=0,1,...00—1



Convergence Analysis for Finite Differences e Hethods

Martin J. Gander

By linearity, it suffices to analyze the homogeneous problem
and prove convergence to zero. The two grid iteration
operator is then:

B := §"2(I — If(AH) 11 A)sm

Two Grid Method

with the damped Jacobi smoothing step
S=1-wD™'A

We know already that for an eigenvector ¢n,(j) = sin(mmnx;)
of the discretized model problem, v damped Jacobi steps 5”
give
452 +nh?\"”
o= (1-wom T
2+ nh?

where s, := sin?(T2h). Let also c2, := cos?(™2h).



Multigrid Methods

An Important Lemma

Martin J. Gander

Lemma
Let m=1,2,. —andm—M—I—l—m Then

Cm' = Sm, Sm' = Cm-

Two Grid Method

Proof: Using a trigonometric identity, we obtain

m'mh M+1—m)rh m  mnh
):cos(( 5 ) ):cos(E—T)

Cmy = cos(

cos(A — B) = cos(A)cos(B) + sin(A)sin(B)

mmh

)= sin(T) = Sm-

T mwh, . w. .  mwh
= COS(E)COS(T)+SIn(§)SIn( 5
The second identity then follows from

srzn,—l—c,—l c2



__ Qv h( AH\-1H v
B = S»(] — Ih(AM)~1IHA)S»
On a low frequency eigenmode ¢, the operator A acts like
4
Apm = (1+ 135m)Pm

and on a high frequency mode ¢y, mM =M +1—m, it
acts, using the Lemma, like

A(pm’ - (77+ h2 m)‘Pm"

The coarse grid solver (AH)~! acts on a coarse grid
eigenvector ¢! (j) = V2H sin(mmjH), j,m = 1,2,... M=

1 1
AH -1 H: H_ H
(A7) em 0 i ,mersam N ERa ©rm

since sin(2A) = 2sin(A)cos(A).

Multigrid Methods

Martin J. Gander

Two Grid Method



B = 51/2(, _ //_}(AH)—I/f{-IA)Sy1 Multigrid Methods

. e . . Martin J. Gander
Applying the restriction to an eigenvector, we obtain

) 1 21
Hoa=t| 121,
and hence for j = 2,4,..., M we get the components Two Grid Method
(1)) = V22 (sin( ~ )mich) - 25inimnh) +sin((-+ 1))
sin(A — B) = sin(A)cos(B) — cos(A)sin(B)
@(sm(‘/mwh) cos(mmh)+2sin(jmmh)+sin(jmmh) cos(mmh))
=@(2 + 2 cos(mmh)) sin('é.mﬂH),

1 1
= It om = C°52(m77h/2)%90#1 = CanE‘PnH'r



But l,f’tpm = ﬁ,\%(p,’;’, is useful only for m=1,2,... #

Ifm> % our last relation

(' om)(L) = V2R sin(L mrH)

givesform =M+1—-—m, m=12,. —1usmgthe

2
Lemma

(18 <me)( ) = Vahs? SIIr1( m'mH)
and with sin(A — B) = sm(A)cos(B) - cos( )sin(B)
sin(jm'nh) = sin(j(M + 1 — m)mh) = sin(jm — jmmh)
= sin(jm) cos(jmmh) — cos(jm) sin(jmmh)
- —sin(émﬂH) (remember j is pair!)

Hence, the restriction combines a low and high frequency
mode:

1
II:-ISDm = Cm%‘»oma Ilfisom’ = _sm_‘norl;ln (In' s = 0).

Multigrid Methods

Martin J. Gander

Two Grid Method



Example: Lowest and Highest Mode
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— 51/2(, _ /IZ(AH)—ll[IA)Syl Multigrid Methods
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Using orthogonality and full weighting, (1/')T = %I,’_’, we
obtain from the former relations on the one hand

%\H

(Som)Tlh Pm= Cm\/—(som) = r2n
and on the other hand Two Grid Method
T 1
() o= (e IHem) = en(i ol = Senileh

and thus the extension splits the low mode into the
corresponding low mode on the fine grid

H‘Pm \/_C
and similarly the corresponding high, “aliased” mode

Qom’ IHQOm - \/551271



Multigrid Methods

Summary of the Convergence Analysis

) Martin J. Gander
Consider an error vector

e =apny + /B‘Pm’
The two grid iteration operator
B = S™(I — Ify(A")~ 1] A) s Tuo Gid Mthod

acts on the coefficients o and 3 of this vector as follows:

v 2 v
- St 7, )]
b —5Sm |4s2,c24nh? 4hL2m b

where the smoothing coefficients are

452, + nh? bzl_w4c§,+nh2

—1- Xom TN
2 Y 2+ nh?

On ¢ m+1 only the smoother acts, with b1 72,
2



Special Case of the Poisson Equation Hiuitierd Hethods

1 . . Martin J. Gander
If n =0, and we choose w = 5 as damping parameter in

Jacobi, the action of the iteration operator B simplifies to
¢ Plsm o [ ca ”
S Sm S
and for m = 1,2,...,%, we have 0 < s2, < % and
% < ¢2, < 1, and the complementarity of smoothing and
coarse grid correction is evident.
Theorem (Convergence independent of h)

For vy = 0, the spectral radius of the iteration operator B is
bounded by

Two Grid Method

mpq_pen =t 11

2 (.2\ 2 (2 \1
Proof: The spectral radius of z’zngz’zngul 2’2"5’2";”1 is
m\-m m\Tm
s2(c2)1 4 c2(s2)"1. The dominant term-is £(1 — €)1,



Classical Multigrid Cycle i Hehods

. . Martin J. Gander
Applying the same idea to the coarse problem, we get one

multigrid cycle:

function u=Cycle(A,f,u0);

if isSmall(A) then u=A\f else
u=Smooth1(A,f,u0);
r=Restrict(f-Au);
e=0; for i=1:n, e=Cycle(A" r,e); end;
u=u-+Extend(e);
u=Smooth2(A,f,u);

Multigrid

VAWV

n =1 V-cycle n =2 W-cycle



Multigrid Methods

Multigrid Algorithm Variants
Classical Multigrid Method:

Martin J. Gander

u=u0;
for i=1:n, u=Cycle(A,f,u); end;

Full Multigrid Method:

u=A0\f0; Multigrid
for j=1:I

u:I,’;,u;

for i=1:n, u=Cycle(Aj,f,u); end;
end;

Full Approximation Scheme: (nonlinear 2 grid cycle)

u = Smoothl(A,f,u)

solve AH(U) = IH(f — Ah(u)) + AH(1}1u)
u=u+If(U—1Hu)
u=Smooth2(A, f, u)



Wave Propagation Problems L e

Martin J. Gander

We consider now the Helmholtz equation
Lu:=—(A+K)u="f, inQCR
with appropriate boundary conditions.

This equation is very similar to the equation we considered
before,

Wave Problems
Lu=—(A-nu=Ff, inQCR
and discretization leads again to a linear system
Lu =f,

but in the Helmholtz case, this system is indefinite, there are
positive and negative eigenvalues.

How does this influence a multigrid method 7



A Very Early Reference Hultgrid Hethods

Martin J. Gander
Bakhvalov 1965: On the Convergence of a Relaxation
Method with Natural Constraints on the Elliptic Operator

For instance it is used in the case of the equation
Au+ A\u = f with large positive A\(x1, x2).
Previously no methods of solving this equation
with good asymptotics for the number of
operations were known.

Literature

. we carry out Abel’s transformation and are
convinced of the truth of the equality ...

In the case of the equation Au+ Au = f with large
positive A\ we do not exclude the possibility that
the evaluation of (3.21) may be attained in order.
Then the increase in the number m in comparison
with that calculated can lead to a deterioration in
the discrepancy of the approximation.



Multigrid Methods

Problems for Helmholtz: from the Literature
Brandt and Livshits (1997):

On the fine grids, where [the characteristic components]
are accurately approximated by the discrete equations,
they are invisible to any local relaxation, since their
errors can have very small residuals. On the other hand,
on coarser grids such components cannot be
approximated, because the grid does not resolve their
oscillations. Thus, there is a need for an alternative
approach for reducing characteristic error components.

Martin J. Gander

Literature

Lee, Manteuffel, McCormick and Ruge (2000):

Helmholtz problems tax multigrid methods by admitting
certain highly oscillatory error components that yield
relatively small residuals. Because these components are
oscillatory, standard coarse grids cannot represent them
well, so coarsening cannot eliminate them effectively.
Because they yield small residuals, standard relaxation
methods cannot effectively reduce them.



Multigrid Methods

Problems of the Coarse Grid Correction

Example: solution we try to compute on Q = (0,1) x (0,1),
f=—9 h=3, k>=19.71is

Martin J. Gander

2 //[/;/;/;;;;;"1‘5? ¢“c““s ‘&s}&‘
| SN
G SN
0 Wm“::“ ‘ A Coarse Grid

Random initial guess ug, two grid cycle, Fourier smoothing
(using the Boris Diskin principle)



lteration 1: error before presmoothing e Hethods
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Two Grid Method
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Iteration 1: error after presmoothing

Multigrid Methods

Martin J. Gander
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Iteration 1: error to remove from coarse grid

correction
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Iteration 1 error before postsmoothing Multigrid Methods
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lteration 1: error after postsmoothing e Hethods
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lteration 2: error after presmoothing e Hethods
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Iteration 2: error to remove from coarse grid

correction

Multigrid Methods
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Multigrid Methods

Iteration 2: error before postsmoothing
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. Multigrid Methods
Observation rene e

Martin J. Gander

» while the error on the coarse grid is well resolved, the
correction calculated on the coarse grid is 100%
incorrect, it has the wrong sign!

» the problem does not seem to be that certain high
frequency components in the error are left to the coarse
grid and can not be approximated accurately there.

Brandt and Ta’asan (1986):

Usual multigrid for indefinite problems is sometimes
found to be very inefficient. A strong limitation exists
on the coarsest grid to be used in the process. The
limitation is not so much a result of the indefiniteness
itself, but of the nearness to singularity, that is, the
existence of nearly zero eigenvalues. These eigenvalues
are badly approximated (e.g. they may even have a
different sign) on coarse grids, hence the corresponding
eigenfunctions, which are usually smooth ones, cannot
efficiently converge.

Coarse Grid



Fourier Analysis of the Coarse Grid Correction

In order to explain, we consider the 1d case
— U — KPu = f, on Q2 =(0,1),
with homogeneous Dirichlet conditions.

Discretization by finite differences with h = ﬁ on the

mesh x, = mh, m=1,2,.... M, leads to
1 [ 2=mK> -1
hoh . _ h _ ¢h
Lu —Fl 1 u = f".

The eigenvalues and eigenvectors of L" are

1 .
b~ +3(2 = 2cos(mmh)) — k2, oh (1) = sin(mnx),

form=1,2,..., M.

Multigrid Methods

Martin J. Gander
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Fourier Analysis of the Coarse Grid Correction
Suppose on the fine grid, we have an error component

" = sin(mx). This function is very smooth and can be well
approximated on the coarse grid. The fine grid residual of
this error is

Martin J. Gander

<P1 = )\1<P1

and thus the coarse grid correction is solution of (H = 2h)
LHVH = \bjHph

Since the eigenfunction is smooth, 17! is still
approximately an eigenfunction of L with eigenvalue A},
and thus the coarse grid correction is
H ~ A I
PURS

Coarse Grid

\'}

and the new error after correction is

h H )‘{, h
- IHV ~ (1 — A_H> P1-
1



How Big Can the Error Be ? e Hethos
. . Martin J. Gander
If A\ ~ Al then the error after correction is small. BUT t
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It Can Be Much More Than JUSt DOUble Multigrid Methods

- . . . Martin J. Gander
Since Al can be arbitrarily close to zero if A" was close to

zero, the error after the correction can be arbitrary large:

)\h
h_ thyH 1 h _ Hy h
p1—Ipv' = (1 T \H ¢1 = C(A1)e?
1
10
— :7 ] Coarse Grid
T
Zoor
Gl
_10 “o.05 H o

AL
If k =0, the positive definite case, we have
lim C(A{') = -3 +2v2 =~ -0.1716.
H=3
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Problems of the Smoother
Example: solution we try to compute on Q = (0,1) x (0,1),
f = —1000, h = 35, k> =400 is

Martin J. Gander

o ‘\\\"' A 0(!; /lo,
‘\‘ “I ,Q \
»’I',x /!“‘“‘!,IIO J 0
\0'1 \\ mw*\‘,’., 7
W L T\

""I//‘\»

Smoother

02

Random initial guess ug, two grid cycle, exact coarse grid
correction (the exact error on the fine grid, just restricted
and extended), and an optimally relaxed Jacobi smoother.



Iteration 1: error before presmoothing
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Iteration 1: error after presmoothing
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Iteration 1: error to remove from coarse grid
correction

Martin J. Gander
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Iteration 1: error before postsmoothing
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lteration 1: error after postsmoothing
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Iteration 2: error after presmoothing
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Iteration 2: error to remove from coarse grid
correction
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lteration 2: error after postsmoothing
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lteration 3: error after presmoothing e Hethods
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Iteration 3: error to remove from coarse grid
correction
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Iteration 3: error before postsmoothing
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Iteration 3: error after postsmoothing
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Multigrid Methods

Fourier Analysis of the Smoother

In order to explain, we consider again the 1d example.
Damped Jacobi for smoothing is

Martin J. Gander

u™ =u" +wD (b - Lu").

Looking at each eigenfunction ¢ we obtain the
corresponding contraction factor

2 cos(mmh)
p(m’ W) o 1 - (1 N 2 — h2k2 ) Smoother
In order to obtain optimal damping for the higher half of the
spectrum, one needs to choose w = w’ such that

wh = argmin,, max |p(m, w)].

Note: If m, solves 1 — % = 0, then for this mode

p(m,,w) =1, and no contraction is possible, independent of
h
w.
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Need to Consider Three Cases

First case: m, < % Then equioscillation leads to the
optimal relaxation parameter

ho h’k? -2 PPk =2
" h2k2 4 cos(mmh) + cos(mmh/2) —2 ~ h2k2 -3

Martin J. Gander

w

Smoother

—0.2 1
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When the Grid Becomes Coarser Hultgrid Hethods

Martin J. Gander

Still first case: m, < ¥, but h = 1/201:

\

p( m ) : Smoother

20 40 60 80 100 120 140 160 180 200
m



Multigrid Methods
And Coarser ... rene e

Martin J. Gander

Still first case: m, < ¥, but h = 1/101:

1.54
1 *.’h
*
*,
*
+*
*
*
*,
+*
+*
*
’0
p( m) 0.5 *+” Smoother
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-,
*
*
*,
*,
*
*,
0 T
0"
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And Coarser ...
Still first case: m, < %, but h=1/71:

34
o,
e,
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.,
*
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5] .
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*
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-
*.
p(m) o
”
-
*
-
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-
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-
*
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*.
..
o,
s,
ey
—1 M
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m

All low frequency modes are greatly amplified!

Multigrid Methods

Martin J. Gander

Smoother
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Second Case
Second case: % < m; < M. In that case one can not use
Jacobi for smoothing: for any choice of w”, high frequencies
will be amplified
1.4

Martin J. Gander

1.2

1] — -

Smoother

10 20 30 40 50 60



Last Case

Last case: m, > M. Then equioscillation leads again to the
same optimal relaxation parameter. For h =1/46 we get

0.5
p(m)~0-5
1.5 .
= 10 20 30 40

Multigrid Methods

Martin J. Gander

Smoother



And Coarser . Multigrid Methods

Martin J. Gander

Last case: m, > M, h = 1/40:

0.2 .

0] -
-0.2 - *
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-0.81

-1

5 10 15 20 25 30 35
m



And Coarser ...

Last case: m, > M, h=1/30:

15

20

25

Multigrid Methods

Martin J. Gander

Smoother
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Solutions from the Literature: Coarse Grid

Martin J. Gander

Brandt and Ta’asan (1986):
The trouble of the coarse-grid approximation has
been resolved by introducing a modification to the
usual coarse grid equations, based on the
observation that there are just few smooth
eigenfunctions which are not well represented on Conree Grid
the coarse grid [in the slightly indefinite case].



Modified Coarse Grid Equations Hiuitierd Hethods

Martin J. Gander
We use again the one dimensional model problem, and
assume that just the first eigenmode ! is not corrected
properly.

Suppose u” is the exact solution on the fine grid,
[hyh — gt

Suppose that the current approximation ii” on the fine grid
is missing 7 in the direction of ¢,

Coarse Grid

(", @f) = (@" + nel, o).

If n was known, the approximation on the fine grid would be
i+ ne", and thus the coarse grid correction equation
would be

L = 1f1 (6" — LPa" — L")



Modified Coarse Grid Equations
The coarse grid correction v obtained from this equation,
L = 1l (6" — Lhah — L")

computes an approximation to v/ := uf

by the definition of 7,

L ne?, which

(", @7) = (@" + nel, o).

does not contain any component in the troublesome direction
of !, and thus the calculated correction is effective.

But 7 is not known, so we need an additional equation. A
reasonable choice is (Brandt and Ta’asan 1986)

(v 1) = 0.

Similar generalization to several problematic modes.

Multigrid Methods

Martin J. Gander

Coarse Grid



SOIUtlonS from the L|terature Smoother Multigrid Methods

Martin J. Gander

Brandt and Ta’asan (1986):

Indeed, even though some smooth components diverge

with this relaxation, on fine enough grids this divergence

is slow and can, therefore, easily be corrected by the

coarse-grid corrections. On coarser grids, however, the

divergence of the smooth components in Gauss-Seidel

relaxation is faster, hence, another relaxation scheme is

needed. We have used for that purpose the Kaczmarz SEsicr
relaxation, which always converges.



Multigrid Methods

Kaczmarz Relaxation

Stefan Kaczmarz (1937): Przyblizone rozwigzywanie
ukladéw réwnari liniowych.— Angenaherte Auflosung von
Systemen linearer Gleichungen.

Martin J. Gander

An iterative method for solving linear systems: “Gauss Seidel
applied to the normal equations”

For our 1d Helmholtz model problem we get for the damped
Jacobi variant (Cimmino 1938) the modal contraction factor

(2 — 2cos(mmh) — k?h?)?
2+ (2— h2k22

p(m,w) =1 - w

Smoother

1 1/-\ T T,
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04 04
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o 3
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The Wave Ray MUltlgl’Id Method Multigrid Methods

Martin J. Gander

For large k, the detection of problematic modes and the
modification of the coarse grid correction dominate the cost,
and the algorithm is not optimal any more.

Idea of Wave Ray Multigrid: Brandt and Livshits (1997)
» Construct explicitly problematic modes using plane
waves.

» On fine grids, where multigrid is effective, just use
multigrid.

» On coarser grids, correct the error using a plane wave ity e [
representation.

+ Algorithm fully addresses all problems of multigrid for
Helmbholtz.

— Its implementation and use is not easy.



USing Kry|ov Methods Multigirid Methods
Ideas: Elmann, Ernst, O’Leary (2001) Martin J. Gander

» Since classical smoothers and Kazcmarz smoothing is
not effective for problematic modes, replace in that case
the smoother by a Krylov method. If GMRES is used,
the method will minimize the residual, and thus will
have to treat problematic modes.

» Since the overall convergence of the multigrid cycle is
significantly worse than for the Poisson problem, use
multigrid only as a preconditioner for an outer Krylov
method: if the multigrid iteration computes

u™ = u" + My (F — L"u")

Krylov Methods

solve instead by GMRES the preconditioned system
—1 h -1
MycLl"u = My, -f.
+ This algorithm is easy to use.

— It addresses only indirectly the problems of multigrid
for Helmholtz.
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New ldeas: Modified Discrete Equations

In 1d, the coarse grid correction equation can be modified to
yield accurate corrections: instead of using

Martin J. Gander

1 [ 2-mK* -1 1
hyh . _ h _ ¢h
Lu —p _1 . . u —f
we use ) )
1 [ 2=m%K2 -1 1
hh . h _ ¢h
L"u" = 12 1 .. |u =f
with

k2 = o (2 — 2cos(kh)).

Thus the spectral shift due to the discretization is precisely
compensated by a shift of the wave-number kj, and the Caarse Grid
problematic modes are all correctly treated on any coarse

grid,
)\h



Spectral Shift with kh Multigrid Methods

Martin J. Gander
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Coarse Grid Error Reduction Factor

rror reduction factor
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How About Higher Dimensions ?

. . . _ . . . . Martin J. Gander
Dispersion curves of a 5 point finite difference discretization

Coarse Grid
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Further Dispersion Curves

. . . . . . Martin J. Gander
Dispersion curves of a P1 finite element discretization

3l

Coarse Grid
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Further Dispersion Curves

. . . . . . Martin J. Gander
Dispersion curves of a P2 finite element discretization

3l

Coarse Grid




Multi Step Jacobi Smoother i Hehods

Martin J. Gander
A multi step Jacobi smoother performs several Jacobi steps

with different damping parameter. For example for two
steps:
utt2 = u" 4w D (b — Lu")

u™l = un+1/2 + szfl(b _ Lun+1/2)

The corresponding contraction factor for the 1d Helmholtz
model problem is

j=1

For this to be a good smoother, we need to satisfy two
conditions:
L |p(mw) <1lforallm=1,2,..., M.

2. w=argmingmax,_um .. |p(m,w)|
m .

Smoother



An interesting Best Approximation Problem e Hethods

Martin J. Gander
Note that the contraction factor is a polynomial of degree J:

J

R(x,w) = H(l —wj(1 =x)), x € (Xmin, Xmax)

which equals 1 at x = 1. Hence we have the polynomial best
approximation problem

. Xmin + Xmax
min  max |R(x,w Xm = ———————
W x€(Xm,Xmax) | ( ’ )|’ m 2

under the side constraint |R(x,w)) < 1. Need to distinguish
again three cases:
1. x; > 1: solution by equioscillation Smoother

2. xm < 1 < Xmax: need to exclude resonance region in the
best approximation problem.

3. Xxmax < 1 solution by equioscillation
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Example for a Two-Step Jacobi: Case 1

Xm > 1: solution by equioscillation
k=107, Mh=20, kh=0.31416

Martin J. Gander
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Example for a Two-Step Jacobi: Case 1
Xm > 1: solution by equioscillation
k=10n, A/h=5, kh=1.2566

Martin J. Gander

Classical
T T Prison Syndrome
— A, )] S
12
—| 8
sm
1
osc H
=
%) 1 b
< i
-0.2- | 1
i
—0.4F ; i
-0.61 : b Coarse Grid
! Smoother
-0.8+ | .
1 N
-1000 -500 0 500 1000 1500 2000

A(A)



Multigrid Methods

Example for a Two-Step Jacobi: Case 2

Xm < 1 < Xmax: solution dominated by constraint
k=507, Ah=4, kh=1.5708

Martin J. Gander

Classical
T T Prison Syndrome
1+ 8 Remedies
0.8 7 History
1 oblem
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) Two Grid Method
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Example for a Two-Step Jacobi: Case 3

Xmax < 1: solution by equioscillation and constraint
k=50, Mh=3, kh=2.0944

Martin J. Gander
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Example for a Two-Step Jacobi: Case 3

Xmax < 1: solution by equioscillation
k=507, Mh=2, kh=3.1416

Martin J. Gander

Smoother
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Theoretical Results

Martin J. Gander

Theorem (Ernst and G (2009))

For the resonance case, x;, < 1 < Xmax, and an optimized
but fixed J-step Jacobi smoother, one needs to perform
O(k?) smoothing steps in order to obtain a multigrid
algorithm that converges independently of k.

Theorem (Ernst and G (2009))

With a variable J-step Jacobi smoother (like the Chebyshev
semi-iterative method), one only needs to perform O(k)
smoothing steps in order to obtain a multigrid algorithm
that converges independently of k.

Corollary

Smoother

If one uses a Krylov method for smoothing at the resonance
level, O(k) steps of the method suffice to obtain a multigrid
algorithm which converges independently of k.
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Numerical Results
1d Helmholtz equation with Dirichlet BC.

Martin J. Gander

10 points per wavelength, 8 pre and post smoothing steps
with spectral corrected coarse grid problem, optimized 2 step
Jacobi, or Krylov smoother, relative residual reduction 10~°

k 158.65 | 315.73 | 629.89 | 1258.21 | 2514.84
h 2—8 2—9 2—10 2—11 2—12

levels 6 7 8 9 10
iter J 12 11 10 10 9
iter G 9 9 8 8 8

iter J: number of iterations when on the resonance
level O(k?) 2-step optimized Jacobi steps are
performed

Smoother

iter G: number of iterations when on the resonance
level O(k) GMRES steps are performed.
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Conclusions

Martin J. Gander

» Multigrid methods are effective for symmetric positive
definite problems because:
1. The smoother is effectively removing high frequency
components in the error
2. The coarse grid correction is effectively removing low
frequency components in the error

> It is difficult to solve Helmholtz problems by a multilevel
method, because:
1. Classical smoothers amplify smooth modes and are
ineffective for modes close to resonance
2. Classical coarse grid corrections can lead to arbitrarily
bad corrections

Conclusions

» Any multilevel method for wave propagation problems
will have to deal with the dispersion relation problem on
coarser grids.



