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Key challenge

Central challenge in many computational 
modeling and design efforts 

Computational time

This is caused by

✓ Large problems
✓ Non-linearity
✓ Open domains
✓ Requirement for high accuracy
✓ Long time integration
✓ Small cells
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Overview of talk

Three different ways to combat this problem

✓Recall DG-FEM

✓ Part I: A new basis well suited for open domains

✓Part II: Local time-stepping

✓Part III: GPU acceleration of DG-FEM 

Mistake - several talks in one - Sorry !
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Recall DG-FEM (for EM)

Consider Maxwell’s equations

ε∂tE −∇×H = −j, µ∂tH +∇× E = 0,

Write it on conservation form as
∂q

∂t
+∇ · F = −J q =

[
E
H

]
F =

[
−ê×H
ê× E

]

Represent the solution as 

Ω =
∑

k

Dk

and assume

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F( signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].
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qN =
N∑

i=1

q(xi, t)Li(x)
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Recall DG-FEM (for EM)

On each element we then define 

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F( signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].
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triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have
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2
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To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s
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we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
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where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
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To obtain the local matrix based scheme
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where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
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One then typically uses an explicit Runge-Kutta 
or a LeapFrog method to advance in time 
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Recall DG-FEM

The advantages of this approach are many 
and the scheme is well understood :

✓ High-order, geometrically flexible, robust, 
explicit etc

✓ Well understood 

✓ Generalizes to broad class of problems

... but a central criticism is speed - or lack of it !
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Part I: Unbounded problems

The need to numerically solve problems on 
semi-infinite/infinite domains arises in many 
applications:

➡ Acoustic/Electromagnetic/Elastic scattering
➡ Kinetic/Boltzmann models
➡ Computational chemistry
➡ Molecular dynamics
➡ Numerical relativity
➡ etc
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Introduction

➡ Approximate/absorbing boundary conditions
➡ Typically problem dependent

➡ Domain truncation
➡ Where to truncate ?

➡ Infinite expansions
➡ Hermite/Laguerre polynomials/functions
➡ Expensive/inflexible - require exp(-|x|)
➡ .... but O(N) spectrum

➡ Rational/mapped Chebyshev methods (Boyd)
➡ Amenable to FFT
➡ .... but O(N*N) spectrum
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Objective

What we seek is a new basis set with the properties
➡ Controllable asymptotic decay of basis
➡ The FFT can be used to evaluate
➡ The spectrum is O(N) for 1st order operator

.. but is it possible ?

Motivation - Wiener(‘49) proposed the rational basis

A Generalization of Wiener’s Orthogonal Basis for
Expansions Over the Infinite Interval

by Akil C. Narayan and Jan S. Hesthaven

Abstract

The main contribution of this paper is the formulation and derivation of a generalization
for an orthogonal rational-function basis for spectral expansions over the infinite interval.
The original functions first presented by Wiener are a mapping of the Fourier basis to the
infinite interval. It is known that the Wiener rational functions thus inherit sparse
Galerkin matrices for various operations, and can utilize the Fast Fourier Transform for
computation of the modal coefficients. We show that the generalized bases share these
same properties. We also compare the generalized Wiener expansion to other types of
expansions including Hermite polynomials and mapped Chebyshev functions.

1 Introduction

The approximation of a function by a finite sum of canonical basis elements has long been a
hallmark tool in numerical analysis. Over the finite interval much is known about expansion
properties and periodic Fourier expansions or polynomial expansions are well-studied. On
infinite intervals there are complications due to the unbounded domain on which approximation
is necessary. Nevertheless many expansion sets have been successfully investigated in this case;
Hermite functions provide a suitable method for approximation when it can be assumed that the
function decays exponentially; for functions that do not decay exponentially, the so-called
mapped Chebyshev rational functions can fill the void and open up the possibility for utilizing
the Fast Fourier Transform; additionally, a Fourier basis mapped to the real line has been
explored and provides an additional method for function approximation over the infinite
interval. This last basis set serves as inspiration for the newly proposed basis set in this paper.

Despite the available methods for function approximation over the infinite interval, there are
shortcomings that can be remedied. The Hermite functions/polynomials do not admit an FFT
exploitation and have problems approximating functions that do not decay exponentially (which
is to say, most functions). The Chebyshev rational functions are robust with respect to the defi-
ciencies of the Hermite basis, but they have slight disadvantages compared with the generalized
Wiener basis we will derive.

As mentioned above, our generalized basis is inspired by a collection of orthogonal and com-
plete functions originally published by Wiener [1]. He introduces the functions

φn(x)=
(1− ix)n

π
√

(1 + ix)n+1
, n∈N0 (1.1)

as Fourier Transforms of the Laguerre functions. He furthermore shows that these functions are
orthogonal under the L2 conjugate inner product. Higgins [2] expands this result by presenting
the functions ψn along with their complex conjugates as a complete system in L2. Following
this, many others have followed up on these functions by applying them to the solution of differ-
ential equations. We note that the functions ψn(x) presented above have magnitude that decays

like 1

x
as |x|→∞. We will generalize the above functions so that they have decay 1

xs for any s >
1

2
. The ability to choose the rate of decay of the basis set is an advantage if such information is

present about the nature of the function to be approximated or the differential equation to be
solved.

1

➡ Orthonormal (and can be made complete)
➡ Fourier transform of Laguerre functions

∝ 1
|x| , |x|→∞
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Some previous work

Several authors have considered this basis

➡Higgins (1977) considered even/odd real basis and 
proved L2-completeness of complex basis

➡Christov (1982 and later) extended some of this and 
also applied the basis to solve PDE’s

➡Boyd (1990) offers some comparison with mapped 
functions

➡Weideman (1992) consider basic properties of 
operators
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Let’s sketch how this is possible ...

Several of the requirements suggest we take off from
the Fourier basis

νn,0
(α,β) =

2(n + α + 1)(n + α + β +1)
(2n + α + β + 1)(2n + α + β + 2)

√

(2.13)

νn,−1
(α,β) =

2n(n + β)
(2n + α + β)(2n + α + β + 1)

√

(2.14)

ηn
(α,β) = n(n + α + β + 1)

√

(2.15)

Finally, we present two classical notational conventions that we will use briefly in the next
section. The Jacobi polynomials that result from the cases α = β = − 1

2
and α = β = + 1

2
are the

Chebyshev polynomials of the first and second kinds, respectively. Recalling the relation r =
cos θ, these polynomials are typically denoted Tn(r) and Un(r) and have a very special and con-
cise representation as trigonometric polynomials:

π

2

√

P̃n
(−1/2,−1/2)(r) = Tn(r) = cos(nθ) = cos[n arccos(r)]

π

2

√

P̃n
(1/2,1/2)(r) = Un(r) =

sin[(n + 1)θ]
sin θ

=
sin[(n+ 1) arccos(r)]

sin[arccos(r)]
.

2.3 Generalizing the Fourier basis

In this section we will generalize the canonical Fourier basis given by

ψk(θ)= eikθ.

Our methodology is based upon the following dissection of the canonical Fourier basis for k 0:

eikθ = cos(kθ) + i sin(kθ)

= cos(|k | θ) + i sgn(k) sin(|k | θ)

= T|k|(cosθ) + i sgn(k) sin(θ)U|k|−1(cos θ)

=
π

2

√ [

P̃|k|
(−1/2,−1/2)(cos θ) + i sgn(k) sin(θ) P̃|k|−1

(1/2,1/2)(cos θ)
]

.

We have broken down the Fourier basis into two components: the first component is even with
respect to θ as it is simply a polynomial in cos θ. The second term is odd in θ because it is a
polynomial in cos θ (an even function) multiplied by the odd function sin θ. This breakdown
suggests that we can construct more general kinds of Fourier-type functions by merely aug-
menting the type of polynomials that we use.

However, we cannot switch around polynomials with impunity; we still want to retain
orthogonality (at least with respect to some weight function). Due to the even-odd decomposi-
tion just performed, it is clear that the even and odd functions will be orthogonal with respect
to each other. However, we must retain orthogonality of the even functions and orthogonality of
the odd functions under the same inner product. To do this we use lemma 2.1.

Derivation of the basis 5

νn,0
(α,β) =

2(n + α + 1)(n + α + β +1)
(2n + α + β + 1)(2n + α + β + 2)

√

(2.13)

νn,−1
(α,β) =

2n(n + β)
(2n + α + β)(2n + α + β + 1)

√

(2.14)

ηn
(α,β) = n(n + α + β + 1)

√

(2.15)

Finally, we present two classical notational conventions that we will use briefly in the next
section. The Jacobi polynomials that result from the cases α = β = − 1

2
and α = β = + 1

2
are the

Chebyshev polynomials of the first and second kinds, respectively. Recalling the relation r =
cos θ, these polynomials are typically denoted Tn(r) and Un(r) and have a very special and con-
cise representation as trigonometric polynomials:

π

2

√

P̃n
(−1/2,−1/2)(r) = Tn(r) = cos(nθ) = cos[n arccos(r)]

π

2

√

P̃n
(1/2,1/2)(r) = Un(r) =

sin[(n + 1)θ]
sin θ

=
sin[(n+ 1) arccos(r)]

sin[arccos(r)]
.

2.3 Generalizing the Fourier basis

In this section we will generalize the canonical Fourier basis given by

ψk(θ)= eikθ.

Our methodology is based upon the following dissection of the canonical Fourier basis for k 0:

eikθ = cos(kθ) + i sin(kθ)

= cos(|k | θ) + i sgn(k) sin(|k | θ)

= T|k|(cosθ) + i sgn(k) sin(θ)U|k|−1(cos θ)

=
π

2

√ [

P̃|k|
(−1/2,−1/2)(cos θ) + i sgn(k) sin(θ) P̃|k|−1

(1/2,1/2)(cos θ)
]

.

We have broken down the Fourier basis into two components: the first component is even with
respect to θ as it is simply a polynomial in cos θ. The second term is odd in θ because it is a
polynomial in cos θ (an even function) multiplied by the odd function sin θ. This breakdown
suggests that we can construct more general kinds of Fourier-type functions by merely aug-
menting the type of polynomials that we use.

However, we cannot switch around polynomials with impunity; we still want to retain
orthogonality (at least with respect to some weight function). Due to the even-odd decomposi-
tion just performed, it is clear that the even and odd functions will be orthogonal with respect
to each other. However, we must retain orthogonality of the even functions and orthogonality of
the odd functions under the same inner product. To do this we use lemma 2.1.

Derivation of the basis 5

Rewrite this as (Szego’30)

Even Odd
Thursday, July 23, 2009



Let’s sketch how this is possible ...

Can we generalize the Fourier basis by combining 
Jacobi polynomials in a special way:
➡ Maintain orthogonality of the basis 
➡ Maintain connection to Fourier basis for FFT

For α, β > − 1, we have the polynomials P̃n
(α,β) that are orthogonal in L2

(

[ − 1, 1], R;

wr
(α,β)

)

. By setting a = b = 1

2
in lemma 2.1, we also have that the Jacobi functions

P̃n
(α+1,β+1,1/2,1/2) = (1 − r2)1/2 P̃n

(α+1,β+1) are also orthogonal under the same weight. If we set

α = β = − 1

2
, add these two functions together with the appropriate scaling factors, then we

exactly recover the Fourier basis by reversing the dissection steps above. Of course, we are free
to choose any values of (α, β) that we desire in order to derive generalized trigonometric Fourier
functions. In fact, this technique has already been used by Szegö [3] to determine orthogonal
polynomials on the unit disk. Because the statement in [3] is markedly different from the formu-
lation we desire, we restate the result in our own way:

Theorem 2.2. (Szegö, [3]) For any γ >− 1

2
, the functions

Ψk
(γ)(θ)=























1

2
√ P̃0

(−1/2,γ−1/2)(cos θ), k = 0

1
2

[

P̃|k|
(−1/2,γ−1/2)(cos θ)+ i sgn(k) sin(θ)P̃|k|−1

(1/2,γ+1/2)(cos θ)
]

, k 0

are complete and orthonormal in L2
(

[− π, π],C; wθ
(γ ,0)

)

.

Proof. For orthonormality, it suffices to show

1.
〈

P̃|k|
(−1/2,γ−1/2)

(cos θ), P̃|l|
(−1/2,γ−1/2)

(cos θ)
〉

wθ
(γ,0)

=2δ|k|,|l|

2.
〈

sin θ P̃|k|−1
(1/2,γ+1/2)

(cos θ), sin θ P̃|l|−1
(1/2,γ+1/2)

(cos θ)
〉

wθ
(γ,0)

= 2 δ|k|,|l|, for k, l 0.

3.
〈

P̃k
(−1/2,γ−1/2)(cos θ), sin θ P̃|l|−1

(1/2,γ+1/2)(cos θ)
〉

wθ
(γ,0)

= 0, for l 0.

The first property is a direct result of orthonormality of the normalized Jacobi polynomials
P̃ and the observation that on [0, π], 〈f(cos θ), g(cos θ)〉

wθ
(γ,0) = 〈f(r), g(r)〉

wr
(−1/2,γ−1/2). The

second property is a result of the same observations as the first property along with the result of
lemma 2.1. The third property results from the fact that an odd function integrated over a sym-
metric interval is 0.

Orthonormality follows from an explicit calculation of
〈

Ψk
(γ)

, Ψl
(γ)

〉

wθ
(γ,0)

using the above

three properties.

For completeness, we note that any function f ∈ L2 can be decomposed into an even fe and

an odd fo part. That fe is representable is clear from the fact that P̃n
(−1/2,γ−1/2)(cos θ) is com-

plete over θ ∈ [0, π] (i.e. Jacobi polynomial completeness), which by symmetry means complete-

ness over all L2-even functions fe. Similary, the collection of functions sin θ P̃n
(−1/2,γ−1/2) is

complete over all L2-odd functions fo by the completeness result of lemma 2.1. Linearity and
orthogonality of the even and odd parts then gives the result. !

Remark 2.3. Szegö [3] gives a more general result that involves orthogonality over the weight
wθ

(γ ,δ) for δ 0. We do not require this level of generality; for δ 0 the weight function becomes
zero at θ = 0, which we will see does not help our cause. Indeed, it is possible to generalize

Szegö’s result: he derived polynomials on the unit disk orthogonal with respect to wθ
(γ ,δ). By

using lemma 2.1 with a, b different from 1

2
, we can in fact derive non-polynomial basis sets that
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Szego solved it (at least in spirit)

We denote L2
(

A, B; w) = Lw
2
(

A, B) the space of square integrable functions f : A→ B under
the weight w. We endow Lw

2 (A, B) with the conjugate bilinear inner product; the norm on this
space will be denoted ‖ · ‖w. The following weights will be used a great deal in this paper:

wr
(α,β)(r) = (1− r)α( 1+ r)β

wθ
(γ ,δ)(θ) = wr

(δ,γ)(r(θ))= (1 + cos θ)γ (1− cos θ)δ

wx
(s,t)(x) = wθ

(s,t)(θ(x))=
2s+t

(1 +x2)s

(

x2t

(1+ x2)t

)

.

In addition, we will make use of a phase-shifted square root of wx
(s,t) and wθ

(γ ,δ), which we define
below:

wx
(s,t)(x)∗

√

wx
(s,t)

√

exp

[

i(s + t)
2

(π − θ(x))

]

=
2

(

s+t

2

)

xt

(x− i)s+t
(2.1)

wθ
(γ ,δ)(θ)∗

√

= wx
(γ ,δ)(x(θ))∗

√

=2

(

γ+δ

2

)

sinδ

(

θ

2

)

cosγ

(

θ

2

)

exp

[

i(g + d)
2

(π − θ)

]

(2.2)

2.2 Jacobi polynomials

The classical Jacobi Polynomials Pn
(α,β) are a family of orthogonal polynomials [3] that have

been used extensively in many applications for their ability to approximate general classes of
functions. They are a class of polynomials that encompasses the Chebyshev, Legendre, and
Gegenbauer/ultraspheric polynomials. These polynomials will form the building blocks for our
generalization.

The Jacobi differential equation is

(1− r2) ρ′′+ [β −α− (α + β +2)r] ρ′+n (n +α + β + 1) ρ =0, r∈ [− 1, 1], (2.3)

and for α, β > − 1 the only polynomial solution ρ = Pn
(α,β)(x) is a polynomial of degree n. The

family of polynomials
{

Pn
(α,β)(x)

}

n=0

∞
is complete and orthogonal in L2

(

[− 1, 1],R; wr
(α,β)

)

. We

denote hn
(α,β) =

∥

∥

∥
Pn

(α,β)
∥

∥

∥

wr
(α,β)

2
, and thus define the normalized polynomials as

P̃n
(α,β)(r)=

Pn
(α,β)(r)

hn
(α,β)

√ .

The orthonormal Jacobi polynomials P̃n
(α,β) will be integral in the derivation of the Wiener

rational function basis on the real line. In addition, we require a minor generalization of Jacobi
polynomials: we perform a change of dependent variable in equation (2.3) to obtain the fol-
lowing:

Lemma 2.1. (Jacobi Functions)

Derivation of the basis 3
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Let’s sketch how this is possible ...

Let’s orthonormalize them

are orthogonal under a great variety of weights. These functions naturally may not be periodic
on θ ∈ [− π , π] if the weight function is not periodic.

It is desirable to use the L2-normalized versions of the Jacobi polynomaisl P̃ , rather than the
monic polynomials P . If the monic polynomials instead are used, then the norm of the Szegö-

Fourier functions Ψk
(γ) depends on the rather unpleasant-looking sum h|k|

(−1/2,γ−1/2) +
h|k|−1

(1/2,γ+1/2).

We can also distribute the weight function onto the basis functions, which gives us orthogo-
nality in the unweighted L2 norm:

Corollary 2.4. For any γ >− 1

2
, the functions

ψk
(γ)(θ)=



































wθ
(γ ,0)∗

√

2
√ P̃0

(−1/2,γ−1/2)(cos θ), k = 0

wθ
(γ ,0)∗

√

2

[

P̃|k|
(−1/2,γ−1/2)(cos θ)+ i sgn(k) sin(θ)P̃|k|−1

(1/2,γ+1/2)(cos θ)
]

, k 0

are complete and orthonormal in L2([−π , π],C).

Due to the properties of wθ
(γ ,0)∗

√

given in equation (2.2), the functions ψk
(γ)(θ) decay like

(

cos θ

2

)γ
at θ = ± π. This is exmplified in figure 2.1 where we plot the real and imaginary parts

of the functions for γ = 2. The even/odd behavior in θ for real/imaginary components depicted
in the figure depends on the even/odd parity of γ. (There is no such characterization possible

when γ N.) Clearly for γ = 0 we have Ψk
(0) = ψk

(0) = 1

2π
√ eikθ, the canonical Fourier basis.

Figure 2.1. Plots of the weighted Szegö-Fourier functions ψk

(2)(θ) for k = 0, 1, 2, 3, and 4.
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Note: Decay as
(

cos
θ

2

)γ

θ → ±π

for
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2
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Let’s sketch how this is possible ...

Taking it to the unbounded domain involves

2.4 Mapping to the real line

Having developed the necessary preliminaries on the finite interval, we now jump to the infinte
line x ∈ R using the mappings introduced in table 2.1. To facilitate the changes, the following
identities characterizing the mapping between θ-space and x-space are useful:

cos θ =
1−x2

1 +x2 , (1− cos θ) =
2x2

x2 +1
,

sin θ =
2 x

x2 +1
, (1 + cos θ) =

2
x2 +1

.

Using these identities, we rewrite and relabel the functions Ψk
(γ)(θ):

Φk
(s)(x) Ψk

(s−1)(θ)

=



























1

2
√ P̃0

(−1/2,s−3/2)
(

1− x2

1+ x2

)

, k = 0

1
2

[

P̃|k|
(−1/2,s−3/2)

(

1−x2

1 +x2

)

+
2 ix sgn(k)

x2 +1
P̃|k|−1

(1/2,s−1/2)
(

1− x2

1 + x2

)]

, k 0

The above definition is valid for any s >
1

2
. s = 1 corresponds to a mapping of the canonical

Fourier basis. These functions are orthogonal over the weight wx
(s,0). By following the route

from corollary 2.4 we can distribute the weight over the basis functions, and in this particular
instance we choose the phase-shifted square root given in equation (2.1):

φk
(s)

wx
(s,0)∗

√

Φk
(s)(x)

=



































2

(

s−1

2

)

(x− i)s
P̃0

(−1/2,s−3/2)
(

1− x2

1+ x2

)

, k = 0

2
( s

2
−1

)

(x− i)s

[

P̃|k|
(−1/2,s−3/2)

(

1− x2

1+ x2

)

+
2 ix sgn(k)

x2 + 1
P̃|k|−1

(1/2,s−1/2)
(

1−x2

1 +x2

)]

, k 0.

At present there is no clear reason why we have chosen to use wx
(s,0)∗

√

instead of the usual

square root wx
(s,0)

√

to distribute the weight. However, the corollary following the coming

proposition should provide the motivation.

Proposition 2.5. For any s >
1

2
, the functions Φk

(s)(x) are complete and orthonormal in L2
(

R,

C; wx
(s,0)

)

. The functions φk
(s)(x) are complete and orthonormal in L2(R, C). Furthermore, the

decay rate of these functions can be characterized as

lim
|x|→∞

∣

∣

∣
xt φk

(s)(x)
∣

∣

∣
<∞, t≤ s

Corollary 2.6. Recalling the definition of Wiener’s original basis functions φn(x) in equation
( 1.1), the following relation holds:

i 2
√

φn
(1)(x) φn(x), n∈N0.

We show plots of the functions φk
(4) in figure 2.2.
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At present there is no clear reason why we have chosen to use wx
(s,0)∗

√

instead of the usual

square root wx
(s,0)

√

to distribute the weight. However, the corollary following the coming

proposition should provide the motivation.

Proposition 2.5. For any s >
1

2
, the functions Φk

(s)(x) are complete and orthonormal in L2
(
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C; wx
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)
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∣

∣

∣
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∣
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Leading to 

Note: Still Chebyshev-like Jacobi polynomials

γ = s− 1
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Let’s sketch how this is possible ...
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The above definition is valid for any s >
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2
. s = 1 corresponds to a mapping of the canonical

Fourier basis. These functions are orthogonal over the weight wx
(s,0). By following the route

from corollary 2.4 we can distribute the weight over the basis functions, and in this particular
instance we choose the phase-shifted square root given in equation (2.1):
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At present there is no clear reason why we have chosen to use wx
(s,0)∗

√

instead of the usual

square root wx
(s,0)

√

to distribute the weight. However, the corollary following the coming

proposition should provide the motivation.

Proposition 2.5. For any s >
1

2
, the functions Φk

(s)(x) are complete and orthonormal in L2
(

R,

C; wx
(s,0)

)

. The functions φk
(s)(x) are complete and orthonormal in L2(R, C). Furthermore, the

decay rate of these functions can be characterized as

lim
|x|→∞

∣

∣

∣
xt φk

(s)(x)
∣

∣

∣
<∞, t≤ s

Corollary 2.6. Recalling the definition of Wiener’s original basis functions φn(x) in equation
( 1.1), the following relation holds:

i 2
√

φn
(1)(x) φn(x), n∈N0.

We show plots of the functions φk
(4) in figure 2.2.
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A Generalization of Wiener’s Orthogonal Basis for
Expansions Over the Infinite Interval

by Akil C. Narayan and Jan S. Hesthaven

Abstract

The main contribution of this paper is the formulation and derivation of a generalization
for an orthogonal rational-function basis for spectral expansions over the infinite interval.
The original functions first presented by Wiener are a mapping of the Fourier basis to the
infinite interval. It is known that the Wiener rational functions thus inherit sparse
Galerkin matrices for various operations, and can utilize the Fast Fourier Transform for
computation of the modal coefficients. We show that the generalized bases share these
same properties. We also compare the generalized Wiener expansion to other types of
expansions including Hermite polynomials and mapped Chebyshev functions.

1 Introduction

The approximation of a function by a finite sum of canonical basis elements has long been a
hallmark tool in numerical analysis. Over the finite interval much is known about expansion
properties and periodic Fourier expansions or polynomial expansions are well-studied. On
infinite intervals there are complications due to the unbounded domain on which approximation
is necessary. Nevertheless many expansion sets have been successfully investigated in this case;
Hermite functions provide a suitable method for approximation when it can be assumed that the
function decays exponentially; for functions that do not decay exponentially, the so-called
mapped Chebyshev rational functions can fill the void and open up the possibility for utilizing
the Fast Fourier Transform; additionally, a Fourier basis mapped to the real line has been
explored and provides an additional method for function approximation over the infinite
interval. This last basis set serves as inspiration for the newly proposed basis set in this paper.

Despite the available methods for function approximation over the infinite interval, there are
shortcomings that can be remedied. The Hermite functions/polynomials do not admit an FFT
exploitation and have problems approximating functions that do not decay exponentially (which
is to say, most functions). The Chebyshev rational functions are robust with respect to the defi-
ciencies of the Hermite basis, but they have slight disadvantages compared with the generalized
Wiener basis we will derive.

As mentioned above, our generalized basis is inspired by a collection of orthogonal and com-
plete functions originally published by Wiener [1]. He introduces the functions

φn(x)=
(1− ix)n

π
√

(1 + ix)n+1
, n∈N0 (1.1)

as Fourier Transforms of the Laguerre functions. He furthermore shows that these functions are
orthogonal under the L2 conjugate inner product. Higgins [2] expands this result by presenting
the functions ψn along with their complex conjugates as a complete system in L2. Following
this, many others have followed up on these functions by applying them to the solution of differ-
ential equations. We note that the functions ψn(x) presented above have magnitude that decays

like 1

x
as |x|→∞. We will generalize the above functions so that they have decay 1

xs for any s >
1

2
. The ability to choose the rate of decay of the basis set is an advantage if such information is

present about the nature of the function to be approximated or the differential equation to be
solved.
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for an orthogonal rational-function basis for spectral expansions over the infinite interval.
The original functions first presented by Wiener are a mapping of the Fourier basis to the
infinite interval. It is known that the Wiener rational functions thus inherit sparse
Galerkin matrices for various operations, and can utilize the Fast Fourier Transform for
computation of the modal coefficients. We show that the generalized bases share these
same properties. We also compare the generalized Wiener expansion to other types of
expansions including Hermite polynomials and mapped Chebyshev functions.
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The approximation of a function by a finite sum of canonical basis elements has long been a
hallmark tool in numerical analysis. Over the finite interval much is known about expansion
properties and periodic Fourier expansions or polynomial expansions are well-studied. On
infinite intervals there are complications due to the unbounded domain on which approximation
is necessary. Nevertheless many expansion sets have been successfully investigated in this case;
Hermite functions provide a suitable method for approximation when it can be assumed that the
function decays exponentially; for functions that do not decay exponentially, the so-called
mapped Chebyshev rational functions can fill the void and open up the possibility for utilizing
the Fast Fourier Transform; additionally, a Fourier basis mapped to the real line has been
explored and provides an additional method for function approximation over the infinite
interval. This last basis set serves as inspiration for the newly proposed basis set in this paper.

Despite the available methods for function approximation over the infinite interval, there are
shortcomings that can be remedied. The Hermite functions/polynomials do not admit an FFT
exploitation and have problems approximating functions that do not decay exponentially (which
is to say, most functions). The Chebyshev rational functions are robust with respect to the defi-
ciencies of the Hermite basis, but they have slight disadvantages compared with the generalized
Wiener basis we will derive.

As mentioned above, our generalized basis is inspired by a collection of orthogonal and com-
plete functions originally published by Wiener [1]. He introduces the functions

φn(x)=
(1− ix)n

π
√

(1 + ix)n+1
, n∈N0 (1.1)

as Fourier Transforms of the Laguerre functions. He furthermore shows that these functions are
orthogonal under the L2 conjugate inner product. Higgins [2] expands this result by presenting
the functions ψn along with their complex conjugates as a complete system in L2. Following
this, many others have followed up on these functions by applying them to the solution of differ-
ential equations. We note that the functions ψn(x) presented above have magnitude that decays

like 1

x
as |x|→∞. We will generalize the above functions so that they have decay 1

xs for any s >
1

2
. The ability to choose the rate of decay of the basis set is an advantage if such information is

present about the nature of the function to be approximated or the differential equation to be
solved.
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Let’s sketch how this is possible ...

What about the decay rate ?

Parametrized 
decay rates

Figure 2.2. Plots of the functions φk

(4)(x) for k = 0, 1, 2, 3, 4.

The conclusion of the corollary is easily seen if one makes the connection

eiθ =
i−x

i +x
,

along with knowledge of the fact that Φk
(1)(x(θ)) = ψk

(1)(θ) = 1

2π
√ eikθ. We have thus shown that

the orthogonal functions φk
(s) over the real line are a generalization of Wiener’s original basis set.

Furthermore, φk
(s) decays like xs while retaining orthogonality under the same unit weight mea-

sure. When s is an integer, the functions are also purely rational: they are the division of one
polynomial in x by another. This connection was rather helpful in the nascent stages of the
computing when the calculation of a non-polynomial function required significantly more com-
putational investment, but now this property is probably more aesthetic than functional. As a

result, our use of the quantity wx
(s,0)∗

√

is not entirely necessary; it is equally valid to use the tra-

ditional squre root wx
(s,0)

√

. The only sacrifice made is that the analogous written form of corol-

lary 2.6 becomes less fortuitous and is complicated by x-dependent phase-shift factors. The

same observation is true of the weight wθ
(γ ,0)∗

√

used in the definition of the Szegö-Fourier func-
tions ψk

(γ)(θ).

3 Basis properties

In this section we explore some of the desirable properties of the generalized Wiener basis set
{

φk
(s)

}

k∈Z
, s >

1

2
. The argument we make is that these functions inherit all the useful properties

of the Fourier basis with the additional property that the decay rate s at |x| = ∞ may be
chosen, and even adapted quickly on-the-fly. We first briefly discuss the similarities between the
generalized Wiener functions and the Fourier basis; next we move on to other properties of the
basis that are derived from the properties of Jacobi polynomials; finally we discuss quadrature
and other computational issues, including the application of the Fast Fourier Transform (FFT)
for the computation of expansion coefficients.
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What about efficiency ?

Recall

Recall also the connections

The Jacobi functions defined as

Pn
(α,β ,a,b)(r)= (1− r)a (1 + r)b Pn

(α,β)(r)

satisfy the following properties:

1.
{

Pn
(α,β,a,b)(r)

}

n∈N0

are orthogonal and complete in L2(Ir,R; w) under the weight w(r) =

(1− r)α−2a (1+ r)β−2b.

2. The Pn
(α,β ,a,b)(r) are eigenfunctions ρn(r) of the Sturm-Liouville problem

− d
dr

[p(r) ρ′(r)] + q(r) ρ(r)−λw(r) ρ(r)= 0, (2.4)

which is defined by the parameters

p(r) = (1− r)α+1−2a (1 + r)β+1−2b

q(r) =
[

a (α− a) (1− r)−2 + b (β − b) (1+ r)−2
]

(1− r)α+1−2a (1 + r)β+1−2b

w(r) = (1− r)α−2a (1+ r)β−2b

λn = n (n +α + β + 1)− 2 a b + a (β + 1) + b (α + 1)











































(2.5)

The proof is simple but tedious and we omit it. We shall actually only require the result of
lemma 2.1 for a = b = 1

2
. Another selection of properties we need for Jacobi polynomials are

listed below:

(1− r) P̃n
(α,β) = µn,0

(α,β)
P̃n

(α−1,β)− µn,1
(α,β)

P̃n+1
(α−1,β)

, (2.6)

(1 + r)P̃n
(α,β) = µn,0

(β ,α) P̃n
(α,β−1) + µn,1

(β,α)P̃n+1
(α,β−1)

, (2.7)

P̃n
(α,β) = νn,0

(α,β)
P̃n

(α+1,β)− νn,−1
(α,β)

P̃n−1
(α+1,β)

, (2.8)

P̃n
(α,β) = νn,0

(β,α)
P̃n

(α,β+1) + νn,−1
(β ,α)

P̃n−1
(α,β+1)

, (2.9)

d
dr

P̃n
(α,β) = ηn

(α,β)
P̃n−1

(α+1,β+1) (2.10)

where µn,0/1
(α,β), νn,0/−1

(α,β) , and ηn
(α,β) are constants for which we take explicit formulae from [?]:

µn,0
(α,β) =

2(n + α)(n + α + β)
(2n + α + β)(2n + α + β + 1)

√

(2.11)

µn,1
(α,β) =

2(n + 1)(n + β + 1)
(2n + α + β + 1)(2n + α + β + 2)

√

(2.12)
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2.4 Mapping to the real line

Having developed the necessary preliminaries on the finite interval, we now jump to the infinte
line x ∈ R using the mappings introduced in table 2.1. To facilitate the changes, the following
identities characterizing the mapping between θ-space and x-space are useful:

cos θ =
1−x2

1 +x2 , (1− cos θ) =
2x2

x2 +1
,

sin θ =
2 x

x2 +1
, (1 + cos θ) =

2
x2 +1

.

Using these identities, we rewrite and relabel the functions Ψk
(γ)(θ):

Φk
(s)(x) Ψk

(s−1)(θ)

=



























1

2
√ P̃0

(−1/2,s−3/2)
(

1− x2

1+ x2

)

, k = 0

1
2

[

P̃|k|
(−1/2,s−3/2)

(

1−x2

1 +x2

)

+
2 ix sgn(k)

x2 +1
P̃|k|−1

(1/2,s−1/2)
(

1− x2

1 + x2

)]

, k 0

The above definition is valid for any s >
1

2
. s = 1 corresponds to a mapping of the canonical

Fourier basis. These functions are orthogonal over the weight wx
(s,0). By following the route

from corollary 2.4 we can distribute the weight over the basis functions, and in this particular
instance we choose the phase-shifted square root given in equation (2.1):

φk
(s)

wx
(s,0)∗

√

Φk
(s)(x)

=



































2

(

s−1

2

)

(x− i)s
P̃0

(−1/2,s−3/2)
(

1− x2

1+ x2

)

, k = 0

2
( s

2
−1

)

(x− i)s

[

P̃|k|
(−1/2,s−3/2)

(

1− x2

1+ x2

)

+
2 ix sgn(k)

x2 + 1
P̃|k|−1

(1/2,s−1/2)
(

1−x2

1 +x2

)]

, k 0.

At present there is no clear reason why we have chosen to use wx
(s,0)∗

√

instead of the usual

square root wx
(s,0)

√

to distribute the weight. However, the corollary following the coming

proposition should provide the motivation.

Proposition 2.5. For any s >
1

2
, the functions Φk

(s)(x) are complete and orthonormal in L2
(

R,

C; wx
(s,0)

)

. The functions φk
(s)(x) are complete and orthonormal in L2(R, C). Furthermore, the

decay rate of these functions can be characterized as

lim
|x|→∞

∣

∣

∣
xt φk

(s)(x)
∣

∣

∣
<∞, t≤ s

Corollary 2.6. Recalling the definition of Wiener’s original basis functions φn(x) in equation
( 1.1), the following relation holds:

i 2
√

φn
(1)(x) φn(x), n∈N0.

We show plots of the functions φk
(4) in figure 2.2.
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Recall

s=1: Chebyshev - 
FFT is possible

Recall also the connections

The Jacobi functions defined as

Pn
(α,β ,a,b)(r)= (1− r)a (1 + r)b Pn

(α,β)(r)

satisfy the following properties:

1.
{

Pn
(α,β,a,b)(r)

}

n∈N0

are orthogonal and complete in L2(Ir,R; w) under the weight w(r) =

(1− r)α−2a (1+ r)β−2b.

2. The Pn
(α,β ,a,b)(r) are eigenfunctions ρn(r) of the Sturm-Liouville problem

− d
dr

[p(r) ρ′(r)] + q(r) ρ(r)−λw(r) ρ(r)= 0, (2.4)

which is defined by the parameters

p(r) = (1− r)α+1−2a (1 + r)β+1−2b

q(r) =
[

a (α− a) (1− r)−2 + b (β − b) (1+ r)−2
]

(1− r)α+1−2a (1 + r)β+1−2b

w(r) = (1− r)α−2a (1+ r)β−2b

λn = n (n +α + β + 1)− 2 a b + a (β + 1) + b (α + 1)











































(2.5)

The proof is simple but tedious and we omit it. We shall actually only require the result of
lemma 2.1 for a = b = 1

2
. Another selection of properties we need for Jacobi polynomials are

listed below:

(1− r) P̃n
(α,β) = µn,0

(α,β)
P̃n

(α−1,β)− µn,1
(α,β)

P̃n+1
(α−1,β)

, (2.6)

(1 + r)P̃n
(α,β) = µn,0

(β ,α) P̃n
(α,β−1) + µn,1

(β,α)P̃n+1
(α,β−1)

, (2.7)

P̃n
(α,β) = νn,0

(α,β)
P̃n

(α+1,β)− νn,−1
(α,β)

P̃n−1
(α+1,β)

, (2.8)

P̃n
(α,β) = νn,0

(β,α)
P̃n

(α,β+1) + νn,−1
(β ,α)

P̃n−1
(α,β+1)

, (2.9)

d
dr

P̃n
(α,β) = ηn

(α,β)
P̃n−1

(α+1,β+1) (2.10)

where µn,0/1
(α,β), νn,0/−1

(α,β) , and ηn
(α,β) are constants for which we take explicit formulae from [?]:

µn,0
(α,β) =

2(n + α)(n + α + β)
(2n + α + β)(2n + α + β + 1)

√

(2.11)

µn,1
(α,β) =

2(n + 1)(n + β + 1)
(2n + α + β + 1)(2n + α + β + 2)

√

(2.12)
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What about efficiency ?
We can clearly use the connection coefficients to 
connect the different families as 

THE GENERALIZED WIENER RATIONAL FUNCTIONS 15

4.2.1. The Ψ-Ψ Connection Problem. Suppose we have a function
f ∈ L2

(
[−π, π], ;w(γ)

θ

) ⋂
L2

(
[−π, π], ;w(Γ)

θ

)
with a Fourier expansion for some

γ > − 1
2 :

f(x) =
∑

k∈
f̂ (γ)

k Ψ(γ)
k .

The goal is determine a way to re-expand f in a Fourier expansion for a different
decay parameter Γ:

f(x) =
∑

k∈
f̂ (Γ)

k Ψ(Γ)
k .

The shift Γ − γ can take values in the interval
(
− 1

2 − γ,∞
)
. Naturally one may

equate the two expansions and use orthogonality to relate one set of expansion
coefficients to the other:

f̂ (Γ)
k =

∑

l∈
f̂ (γ)

l

〈
Ψ(γ)

l ,Ψ(Γ)
k

〉

w(Γ)
θ

.

We can then define the connection coefficients

λΨ
k,l =

〈
Ψ(γ)

l ,Ψ(Γ)
k

〉

w(Γ)
θ

,

where we have suppressed the dependence of λ on γ and Γ. Our task is to determine
how to calculate these connection coefficients. Due to orthogonality, it is clear that

(4.1) λΨ
k,l ≡ 0, |l| < |k|.

This implies that the connection problem is solved via the relation

(4.2) f̂ (Γ)
k =

∑

l ∈ ,
|l| ≥| k|

f̂ (γ)
l λΨ

k,l.

Relation (4.2) is still not attractive: we must perform an infinite number of oper-
ations for an exact connection. If we only have a finite expansion (say a total of
N modal coefficients), we must still perform O(N2) operations to capture all the
information at our disposal. However we will show that, for integer values of the
shift Γ− γ, the connection problem can be solved inexpensively. To be precise, we
will show that for G ∈ , (4.2) reduces to

(4.3) f̂ (γ+G)
k =

∑

k+G≥|l|≥|k|

f̂ (γ)
l λΨ

k,l.

That is, only 2(G + 1) operations per coefficient are necessary to solve the connec-
tion problem (independent of k, and of any truncation size N). We refer to the
above collapse of the infinite connection problem (4.2) into the finite N -indepedent
problem (4.3) as a sparse connection.

In order to relate one Fourier function to another, we first recall a result from
[25] using (A.4) – (A.7) that states that the connection coefficients binding one
Jacobi polynomial class to another are sparse in certain special circumstances.

Lemma 4.1. For any α,β > −1 and any A, B,∈ 0, the connection problem

f(r) =
∞∑

n=0

f̂ (α,β)
n P̃ (α,β)

n (r) −→ f(r) =
∞∑

n=0

f̂ (α+A,β+B)
n P̃ (α+A,β+B)

n (r),

If (A,B) are integer one has the (non-trivial) result

16 AKIL C. NARAYAN AND JAN S. HESTHAVEN

can be solved exactly via the relation

(4.4) f̂ (α+A,β+B)
n =

A+B∑

m=0

λP
n,n+mf̂ (α,β)

n+m .

In the above we have suppressed the dependence of λP on α,β, A,and B, but in
the sequel we shall occasionally refer to the above coefficients as λP

n,m(α,β, A,B).
The result (4.4) is not a trivial one; the upper limit for the sum on the right-hand
side is∞ for a general connection problem. For the very special cases satisfying the
lemma, the exact connection becomes finite. We have not shown how to obtain the
Jacobi-Jacobi connection coefficients λP . For this, one may use explicit formulae
given in [23] or [2], or one may utilize the algorithm given in [25].

The above result can be expanded to apply to the Szegö-Fourier functions Ψ(γ)
k (θ)

and the corresponding mapped functions Φ(s)
k (x).

Proposition 4.1. For any γ > − 1
2 and any G ∈ , the connection problem

f(θ) =
∞∑

k=−∞
f̂ (γ)

k Ψ(γ)
k (θ) −→ f(θ) =

∞∑

k=−∞
f̂ (γ+G)

k Ψ(γ+G)
k (θ),

can be solved exactly via the relation

(4.5) f̂ (γ+G)
k =

|k|+G∑

l=|k|

λΨ
k,lf̂

(γ)
l +

−|k|∑

l=−|k|−G

λΨ
k,lf̂

(γ)
l .

Note that (4.5) is exactly (4.3). By making the connection s− 1←→ γ, we recover
λΦ

k,l ≡ λΨ
k.l, where Φ(s)

k (x) are the maps of the Szegö-Fourier functions Ψ(γ)
k . We

stress again that this result is nontrivial. This also yields the functional connection

(4.6) Ψ(γ)
m (θ) =






∑
|k|≤m λΨ

k,mΨ(γ+G)
k (θ), |m| ≤ G

∑
m−G≤|k|≤m λΨ

k,mΨ(γ+G)
k (θ), |m| > G,

i.e. Ψ(γ)
m is a linear combination of at most 2G + 1 functions Ψ(γ+G)

k . Note that
the Fourier relation (4.6) parallels (4.5) in exactly the same way that the Jacobi
relations (A.4) – (A.5) parallel (A.6) – (A.7).

We now illustrate how to calculate the Szegö-Fourier connection coefficients λΨ

in Proposition 4.1 from the Jacobi coefficients λP . In the following, we make use
of the notation:

n := |k|− 1, α = − 1
2 , β = γ − 1

2 .

From the definition of Ψ(γ)
k in (2.4) we have

P̃ (α,β)
n+1 = Ψ(γ)

k + Ψ(γ)
−k

P̃ (α+1,β+1)
n = Ψ(γ)

|k| −Ψ(γ)
−|k|





n ≥ 0,

P̃ (α,β)
0 =

√
2Ψ(γ)

0 .

Note: One “could” compute connection coefficients 
directly -- but is better not to
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What about efficiency ?

Using this to create connectivity operators, the FFT can 
be used to evaluate/manipulate the new basis
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Figure 5.2. Plot of the time required to find modes f̂k for |k |≤ N from nodal evaluations for γ = δ = 0,

1, 2, and 3. The two methods compared are direct quadrature (red dashed line), and usage of the FFT
coupled with the transformation matrix T (blue solid line). The modes from the two methods agree with
each other down to magnitude εmach ×N .

To extend this, one use of this basis is for an expansion to solve PDEs. This means that we’d
probably like to take derivatives of the interpolant that is f[2N ]. In order to do this, we can use
the modal basis to take these derivatives. Of course, for the Fourier basis (the functions Ψ̃k

(0,0))
yields the very convenient differentiation formula

d
dθ

eikθ = i k eikθ,

which means that derivatives are trivially easy to compute from a modal point of view. We re-
introduce the modal stiffness matrix:

Sk,l
Ψ(0,0)

=

〈

Ψ̃k
(0,0)

,
d
dθ

Ψ̃l
(0,0)

〉

=− i kδk,l.

The general case for γ , δ 0 is similar except that the inner product is taken in the weighted

space corresponding to wθ
(γ ,δ) and explicit expressions for the entries of this matrix are not

nearly as nice as they for the case γ = δ = 0 above. For simplicity we again allow negative
indices. To compute fj

′ = f[2N ]
′ (θj), we can simply do

f ′ = F−1THSΨ̃(γ,δ)
TF f . (5.6)

The whole point of using the FFT operators F and F−1 is that they allow us to perform O(N2)
computations in O(N log N) time. Of course, this property is destroyed if the modal stiffness
matrix is full. However, note that for the Fourier basis Ψ̃(0,0), the stiffness matrix is diagonal,
meaning that it only takes about O(N) operations to multiply by this matrix. Thus, we can still
compute nodal derivative values in a total of O(N log N ) operations. We also note that the

ψ̃k
(0,0) are the same functions as the Ψ̃k

(0,0) (since wt
(0,0) ≡ 1) so that everything discussed above

holds for these functions as well.
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Cost scales like

However, it turns out that the quantity Ψ̃k
(γ ,δ)

wθ
(γ ,δ) is a sparse combination of the eilθ. In

general, we see that the function Ψ̃k
(γ ,δ)

wθ
(γ ,δ) is exactly a linear combination of about 2 (max (γ ,

δ) + 1) complex exponentials when γ , δ 0 and are integers. Of course, when γ = δ = 0, each

function Ψ̃k
(0,0)

wθ
(0,0) is exactly a complex exponential. Figure 5.1 shows the sparsity patterns

for the matrices T for γ , δ ranging up to 3. Now let us write out explicitly how we can use the

FFT for expansions in the Ψ̃k
(γ ,δ) when γ or δ are integers different from 0.

!20 !10 0 10 20

20

10

0

!10

!20

l

k

γ = 0, δ = 0

!20 !10 0 10 20

20

10

0

!10

!20

l

k

γ = 1, δ = 1

!20 !10 0 10 20

20

10

0

!10

!20

l
k

γ = 2, δ = 2

!20 !10 0 10 20

20

10

0

!10

!20

l

k

γ = 3, δ = 3

Figure 5.1. Sparsity patterns for the matrices T for various values of γ and δ with the k indices run-

ning from − 20 to 20. T represents the linear expansion of Ψ̃k
(γ,δ)

wθ
(γ ,δ) in terms of the complex expo-

nentials eilθ.

Instead of taking just 2N points θj as the quadrature points, we take 2(N + γ + δ) points
(still under the Fourier quadrature nodes). This ensures that we will exactly integrate products

of the form Ψ̃k
(γ ,δ) Ψ̃l

(γ ,δ)
wθ

(γ ,δ) using this rule. Then we have

f(θ)!I2Nf =
∑

k=−N

N−1

f̃kΨ̃k
(γ ,δ)(θ).

Note that there is not a one-to-one correspondence between the nodal evaluations f(θj) and the
modes f̂k as written above: there are 2(N + γ + δ) nodes, but only 2N modes. However, there is
a deterministic connection between these two pairs.

We introduce an auxilliary function h[2N ](θ) which uses the same modal coefficients f̂k with
different basis functions, and is thus a different expansion of the function f(θ):

h[2N ](θ) =
∑

k=−N

N−1

f̃k

[

wθ
(γ ,δ) Ψ̃k

(γ ,δ)
]

=
∑

k=−N−γ−δ

N+γ+δ

h̃k eikθ.

We will assume that the nodal evaluations of h(θ) are just the nodal evaluations of f(θ). We
can now make use of the transformation matrix T that was defined earlier. Indeed, we have that
each f̂k is related to the ĥk by precisely this matrix. In other words, we have

f̂ = Tĥ ,

88 Section 5

Connectivity operators are sparse

O(N log N + (γ + 1)N)

Outline Introduction Jacobi + FFT Construction Basis Properties Examples Wrap up

Inheritance – Jacobi Polynomials

Using the FFT

FFT speedup
(
Tdirect
Tfft

)

N s = 5 s = 6 s = 7 s = 8 s = 9 s = 10

512 2.4 2.3 2.2 1.9 1.9 1.8

800 5.6 5.0 4.8 4.5 4.1 3.7

1024 8.1 7.1 7.0 6.4 6.1 5.5

1600 16.3 15.3 13.5 12.9 12.0 11.2

2025 23.2 21.2 20.0 17.4 16.8 15.9

2916 48.9 33.9 37.6 28.7 27.3 24.4

Akil Narayan Brown University
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Other basic properties of basis

➡ Simple convolution (for s=1 only)

➡ Stiffness matrix is sparse and skew-symmetric

➡ Spectrum scales as N+Ks

2.5 Galerkin computation of nonlinearities

Consider a function u ∈ L2 with known expansion πφ,(s)
N u. A salient practical question is how to compute

the quantity
πφ,(s)

N

[
πφ,(s)

N u× πφ,(s)
N u

]
,

which is of importance in the numerical solution of PDEs. In other words, given the modal coefficients
for u, how can we compute those for u2? The essence of this problem lies in finding an expression for
πφ,(s)

N

(
φ(s)

k φ(s)
l

)
. For the Fourier series, this problem is easily solved via the relation Ψ(0)

k × Ψ(0)
l = Ψ(0)

k+l.
However, the Wiener basis set for s #= 1 does not possess such a compact representation. When s = 1, we
can use a relation from [7]:

φ(1)
k × φ(1)

l =
1

4
√

π

[
φ(1)

k+l+1 − φ(1)
k+l

]
, (4)

which mimics the Fourier case very nicely. If s ∈ , we can use the φ−φ connection algorithm given in [19]
to accomplish the quadratic product:

1. Perform a φ− φ connection to obtain πφ,(1)
N u

2. Use (4) to recover πφ,(1)
N

(
u2

)

3. Finally, perform another φ− φ connection to obtain πφ,(s)
N

(
u2

)

Note that this is not a particularly fast method: it is O(N2) asymptotically, whereas a collocation-type FFT
approach would require only O(N log N) time. However, if one desired a strictly Galerkin representation,
then this algorithm provides the means. The quadratic nonlinearity considered here may be extended to
other types of polynomial nonlinearities as well; one must only generalize (4).

3 Other Approximation Methods

Classical approximation techniques for the infinite and semi-infinite intervals exist and have been found
useful in many situations. In this section we delineate these methods and describe some of their advantages
and disadvantages. Numerical comparisons between these methods and Wiener expansion methods will be
performed in Sections 4.1 and 4.2.

3.1 The Infinite Interval

Expansions on the infinite interval have been well-explored in the past. The usual methods include Hermite-
type approximations, Sinc function expansions, and mapping techniques. For an excellent discussion of these
existing methods and some approximation theory, see [21].

3.1.1 Hermite Expansions

The Hermite polynomial (e.g. [23]), denoted Hn : → , is the nth order polynomial satisfying the
orthogonality condition ∫

HnHme−x2
dx =

√
π2nn!δm,n, m, n ∈ 0.

Orthogonality under the weight function wH = e−x2
allows us to define approximations as partial sums of

weighted Hermite polynomials that converge in that norm. However, since the Hermite polynomials are
unbounded at infinity, the pointwise quality of the approximant is not very good [9]. Other surveys have

9

Outline Introduction Jacobi + FFT Construction Basis Properties Examples Wrap up

Inheritance – Jacobi Polynomials

Stiffness matrix

The stiffness matrix S for the generalized Wiener rational functions
1 is skew-Hermitian

2 is sparse:

d

dx
φ

(s)
k

(x) =
∑

l∈{±k ,±(k+1),±(k−1)}

τk ,lφ
(s)
l

(x)

3 has maximum eigenvalue that scales as O(N + Ks)

s \ N 11 50 101 250 501

0.6 7.31 43.76 91.50 237.60 483.75

1.0 7.99 44.51 92.28 238.39 484.54

6.0 15.96 53.75 101.81 248.14 494.40

π2 21.72 60.67 109.05 255.63 501.99

15.5 29.73 70.45 119.40 266.44 512.99

Akil Narayan Brown University
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What about accuracy ?

then in θ-space, the function looks infinitely smooth everywhere. Furthermore, the function
looks perioidic of infinite order at θ = ± π because this corresponds to x = 0, and we’ve already
assumed regularity of the function at x = 0 from both sides. In other words, an analytic expo-
nentially decaying function in x-space looks like an infinitely smooth and genuinely periodic
function in θ-space. The result: spectral accuracy.

It is worth mentioning that for many analytic, exponentially decaying functions, (e.g.

xne−x2
, cos(x) e−x2

), Hermite and sinc expansions give superior approximations. All expansions
converge spectrally, but for N > 20 one can achieve a given error tolerance ε (in the L2 or L∞

sense) with half as many modes in sinc and Hermite expansions than with rational function
expansions. However it is also possible to give examples of infinitely smooth, exponentially

decaying functions (e.g. arctan(x) e−x2
) for which the roles are completely reversed, in favor of

rational function expansions. Thus, even in the case of analytic exponentially decaying func-
tions, the choice of which basis to use is not clear in terms of accuracy. The tiebreaker may
come in with speed, where the FFT is usable for the rational function expansions, but is not
applicable to sinc or Hermite expansions.

We shall dwell no longer on analytic, exponentially decaying functions. Instead, we shall con-
sider exponentially decaying functions with a deficiency in regularity. In this section, we’ll take
the model functions

f(1)(x) = sgn(x) e−x2
, f(2)(x) = |x| e−x2

,

f(3)(x) = sgn(x)x2e−x2
, f(4)(x) = |x3| e−x2

.

Figure 5.5 shows plots of the four functions. It is not difficult to see that f(i) ∈ Hi−1(R, R) for
i = 1, 2, 3, 4. Also, the linear fractional map z = x + i

x − i
carrying the infinite interval to the finite

interval does not exacerbate or ameliorate any singularities, so that the smoothness that is pre-
sent on the infinite interval is directly related to the smoothness on the finite interval. Recalling
that all of our basis sets are merely combinations and maps of polynomials, we expect, from
applying polynomial convergence theory on the finite interval, that order of convergence will be
dictated by regularity of the function. Therefore, we expect the order of convergence for e.g. f(4)

to be greater than that for f(3).
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then in θ-space, the function looks infinitely smooth everywhere. Furthermore, the function
looks perioidic of infinite order at θ = ± π because this corresponds to x = 0, and we’ve already
assumed regularity of the function at x = 0 from both sides. In other words, an analytic expo-
nentially decaying function in x-space looks like an infinitely smooth and genuinely periodic
function in θ-space. The result: spectral accuracy.
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, cos(x) e−x2
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Tests of increasing regularity
In figures 5.6 and 5.7 we plot the unweighted L2 and L∞ error, respectively, for each of the

four functions f(i), i = 1, 2, 3, 4 with expansions in the basis sets Cj(x) (sinc functions), hn
(0)(x)

(Hermite functions), φ̃(1,0)(x) (rational Wiener functions, mapped Fourier Series), π̃ (1,1)(x)
(quasi-rational Jacobi functions, mapped Chebyshev polynomials), and η̃ (1,0)(x) (non-periodic
generalized Fourier Series). To reduce clutter from unecessary data, we have not shown data for

expansions in the unweighted functions Φ̃(s,t), Π̃(s,t), or H̃ (s,t). The data for the unweighted

Φ̃(1,0) (respectively, Π̃(1,1), H̃(1,0)) is almost identical to that for the weighted φ̃(1,0) (respec-

tively, π̃ (1,1), η̃(1,0)).
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What about accuracy ?
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Figure 5.9. L∞ errors for expansions in various basis sets for the functions f(i), i = 5, 6, 7, 8.

These results are significantly less rosy than that of exponentially decaying functions. In par-
ticular, we do not always see spectral convergence. Let us run through each of the cases:

1. For the function f(5), the decay is as 1/x. The π̃ and the η̃ expansion converge spec-

trally, but the ψ̃ basis does not. It turns out that this is one of those ‘special’ cases we
tried to avoid. However, there is virtue in this example: when mapped to θ ∈ [− π,π], this

function is not periodic (there is a kink at θ = 0). Thus, the basis set φ̃, a Fourier Series,
cannot approximate it well. However the η̃ expansion, by coincidence, is able to cope
with this particular type of non-periodicity and converge spectrally. Due to another coin-
cidence, this function is smooth on the r interval when expanded in the π̃ functions,
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finding mimics the theory for polynomial or Fourier expansions on finite intervals.

This connection is no surprise. To understand what we’d expect with algebraiclly decaying
functions, first consider a functions ξ(x) defined on the real line. With ξ(x) on the real line, we

associate with it a function Θ(θ) = ξ(x(θ)) on θ ∈ [ − π , π] via the mapping eiθ = x + i

x − i
and

another function ρ(r) = ξ(x(r)) on r ∈ [ − 1, 1] via the mapping r = x

x2 +1
√ . Suppose that ξ(x)

decays exponentially at x = ∞. Then Θ(θ) has an infinite-order zero at θ = 0. Θ(θ) is also peri-
odic at θ = ± π if ξ(x) is smooth at x = 0. This gives a spectrally convergent expansion of ξ(x).
This is the case with the φ̃ and η̃ functions. A similar argument is made with the π̃ functions,
except one must only consider the nonperiodic interval [− 1, 1] with ρ(r).

However, if ξ(x) does not decay exponentially at x = ∞, then the function Θ(θ) only has a
finite-order zero at θ = 0. This may not seem like a problem, but recall that a function of the

form ρ(r) = 1− r
√

= (1 − r)1/2 does not have a spectrally convergent expansion in polynomials
because ρ(r) is not smooth at r = 1. Similarly, the function

ξ(x) = ρ(r(x)) =
2

√

(1 +x2)1/2
,

will not have a spectrally convergent expansion. Note that it is no longer because ξ(x) is not
smooth in the variable x; ξ(x) is very regular as a member of H∞(R, R). However, its mapped
function ρ(r) is not smooth on the finite interval, and this is the reason for the loss of spectral
convergence.

The details for each of the basis sets is different and depend in non-trivial ways on the fol-
lowing criterion:

• The rate at which ξ(x) decays to zero at x = ∞. I.e., the infimum of r such that
limx→∞xr ξ(x) 0.

• The way in which the function decays as x → ∞. E.g. 1

1+ x2
√ and 1

1+ x24√ , which both

decay as 1/x will exhibit different convergence patterns.

Therefore there may be clear winners for each specific function. However, we will attempt to
give examples that show the general trend of the basis sets, without regard to special cases.
With this in mind, we give the following model functions for this section:

f(5) =
1

x4 +14√ f(6) =
x5

x6 + 1

f(7) =
1

(x2 +1)7/8
f(8) =

log(x2 + 2)
x2 +1

.

Functions f(5), f(7), and f(8) are hump functions, while f(6) looks like a hump function multi-
plied by x. We perform expansions again using 1000-point Gaussian quadratures (except for the
Hermite case, where we only use around 400 points), and compute L2 errors with these same
quadratures. The L∞ error is computed with a 5000-point grid, the nodes of which are the

Gaussian quadrature nodes for the Φ̃(1,0) functions. We show results for L2 and L∞ errors in fig-
ures 5.8 and 5.9.

104 Section 5

When γ = 0, the quadrature rule
{

θn
(γ)

, Ωn
(γ)

}

is the equispaced Fourier quadrature rule, and

thus the FFT can be used to perform the associated quadratures. Thus to obtain a set of N
Fourier expansion coefficients from N nodal evaluations, only O(N log N) operations are
required, instead of the O(N2) for a direct method.

Therefore, nodal-modal transformations can be completed in O(N log N) cost for both the

basis sets Ψk
(0)(θ) and ψk

(0)(θ), since these basis sets are exactly the canonical Fourier basis.
However, it is also possible to use the FFT to inexpensively perform computations for both Ψk

(γ)

and ψk
(γ) when γ ∈ N. We first begin by showing this for the Ψk

(γ) set, after which generaliza-

tions to ψk
(γ), Φk

(s)(x), and φk
(s)(x) are straightforward.

In proposition 3.3 we showed that modal coefficients for a Ψk
(γ+G) expansion can be obtained

from the coefficients of a Ψk
(γ) expansion if G ∈ N. For each mode, this can be accomplished in

O(G) operations, independent of k. By setting γ = 0, then we see that N modes of a Ψk
(G)

expansion be obtained in O(NG) operations from the canonical Fourier modes via e.g. a sparse
banded matrix-multiply. Knowing that we can obtain the Fourier modes via the FFT then com-
pletes the algorithm. We write down the process below in detail:

Given N nodal evaluations
{

f
(

θn
(0)

)}

n=1

N
at the equispaced Fourier nodal locations:

1. Use the FFT to obtain the N modes
{

Ψ̂n
(0)

}

n=1

N
, which are the classical Fourier modes

for the basis elements 1

2π
√ eikθ.

2. Use the connection coefficients λk,l
Ψ from proposition 3.3 to obtain the modes

{

Ψ̂n
(G)

}

n=1

N
.

The reverse procedure can be used to obtain the equispaced Fourier nodal evaluations from the

modes f̂n
(G).

This procedure will work to obtain the modal coefficients Ψ̂k
(γ) for any γ ∈N. In order to uti-

lize the FFT for obtaining the modes ψ̂k
(γ), we need some preprocessing. The basic idea is that

the quantity
〈

f
[

w
√ ]−1

, Ψk

〉

w
is the same as the sought quantity

〈

f , w
√

Ψ
〉

. The details are
as follows:

1. Compute the N nodal evaluations

[

wθ
(γ ,0)

(

θn
(0)

)

∗
√

]−1

f
(

θn
(0)

)

.

2. Use the previous algorithm to compute the modes Ψ̂k
(γ) for these nodal evaluations.

Having now obtained FFT algorithms for both basis sets on θ-space, it is easy to translate
these to x-space. In fact, everything is the same; we need only replace any mention of Ψk

(γ) with
Φk

(γ+1) and any θ by x(θ).

4 Numerical Results

4.1 Function approximation

Consider the analytic function

f(x)=
arctan(x +3)

x4 + 1
, x∈R.

We seek to approximate this function with a spectral expansion. To judge the accuracy of the
Wiener basis set, we compare it against expansion in Hermite functions, and against an interpo-
lating sinc basis. We compute both the modal coefficients and the L2 errors on a 1000-point
grid, where the quadrature used is the

{

x
(

θn
(0)

)

, ωn
(0)

}

grid; i.e. the equispaced Fourier grid
mapped to the real line.
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Figure 4.1. L2 expansion errors of Hermite, Sinc, and Wiener (s = 1) approximations vs the number of
modal coefficients used. All L2 errors are computed using the same grid.

4.2 Solving differential equations
In this example we take the model equation

ũtt = c2 ∆ũ , (x, t)∈ (Γ, [0, T ]), (4.1)

for Γ ⊂R3 some exterior domain in R3. Equation (4.1) is a common problem in electromagnetic
problems where we are trying to determine the electromagnetic scattering response of an object,
which we surround with e.g. an unstructured finite-element grid. This grid eventually termi-
nates, and we must somehow simulate radiation outflow. There is a vast literature regarding
absorbing boundary conditions to complete such a task. These boundary conditions are often
mathematically complex and computationally intensive. An alternative is to use an infinite ele-
ment method, which involves surrounding the finite element grid with several elements that
extend infinitely in the radial direction. To use these elements, we must employ basis functions
on a semi-infinite interval. To keep the analysis simple, we assume that the scattering object
together with the finite element grid forms a sphere of radius R. Γ is then the (infinite) exterior
of this sphere.

We endow R3 with the spherical coordinate system (ρ, φ, θ). On the finite domains θ ∈ [0, 2π]
and φ∈ [0,π] we expand in Spherical Harmonics to represent our function as

ũ(ρ, φ, θ , t)=
∑

n=0

∞
∑

|m|≤n

Ynm(θ, φ)unm(ρ, t),

where Ymn(φ, θ) are the spherical Harmonic functions, eigenmodes of the negative spherical
Laplacian with eigenvalue n(n + 1). They are given by

Ymn(θ, φ)=
eimθ Pn

|m|
(cos φ)

∥

∥

∥
eimθ Pn

|m|(cos φ)
∥

∥

∥

sin φ

,
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Example: Nonlinear Waves

We consider the 1D KdV equation

the FFT method.)

4.2 Solving differential equations

Our last examples consider solving differential equations using function expansions on the infinite line, as
well as semi-infinite expansions as presented in Section 3.2.

4.2.1 The Korteweg-de Vries Equation – 2-soliton solution

We will solve the following PDE problem with various spectral methods on the infinite interval and the
truncated domain. Our method for scaling each basis set exactly mimics the discussion given in Section 4.1;
i.e. with N basis functions, we will tune the scaling for each basis set and for each N , so that approximately
a ratio δ of the resolution is confined within some predefined interval |x| ≤ L0. In this example, we consider
the solution of the one-dimensional Korteweg-de Vries (KdV) equation

ut + uxxx + 6uux = 0, x ∈ (7)

This equation has a colliding two-soliton solution of the form

u(x, t) =
2(ff ′′ − (f ′)2)

f2
, (8)

where prime (′) denotes partial differentiation with respect to x. f(x, t) is defined for any constants
a1, a2, b1, b2 as

f = 1 + b1ew1 + b2ew2 +
(

a1−a2
a1+a2

)
b1b2ew1+w2 ,

w1 = a1x− a3
1t,

w2 = a2x− a3
2t.

The solution defined in (8) decays exponentially as |x| increases. For our simulation, we take the parameters
to have the values a1 = b1 = b2 = 1 and a2 = 2. This produces a solution u(x, t) defined by equation (8)
that exhibits a faster soliton overtaking a slower one. A graphical depiction of the evolution is shown for
|x| ≤ 15 and |t| ≤ 3.5 in Figure 5.

20

Figure 5: Colliding soliton solution as given by (8). The figure shows the Wiener s = 1 solution for N = 100.
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Example: Nonlinear Waves

Heuristically-determined stable ∆t
N =50 N =100 N =150 N =200 N =300 N =400 N =500

Fourier 7.64e-02 1.06e-02 3.54e-03 1.67e-03 4.85e-04 2.13e-04 1.13e-04
Hermite 6.79e-02 8.20e-03 2.63e-03 1.24e-03 4.69e-04 2.11e-04 1.00e-04

Sinc 6.65e-03 9.26e-04 3.27e-04 1.43e-04 4.19e-05 1.80e-05 ——
Mapped Cheb. 5.78e-02 6.05e-03 1.85e-03 8.11e-04 2.98e-04 1.43e-04 7.09e-05
Wiener, s = 1 5.52e-02 5.96e-03 1.85e-03 8.13e-04 2.98e-04 1.43e-04 7.09e-05
Wiener, s = 2 5.31e-02 5.86e-03 1.75e-03 8.11e-04 2.98e-04 1.43e-04 7.09e-05
Wiener, s = 5 5.29e-02 5.79e-03 1.75e-03 8.11e-04 2.93e-04 1.34e-04 7.09e-05

Total evolution time, t = −3.5, . . . ., 3.5
N =50 N =100 N =150 N =200 N =300 N =400 N =500

Fourier 5.45e-01 4.53e+00 1.44e+01 3.47e+01 1.51e+02 3.92e+02 8.64e+02
Hermite 5.15e+00 4.88e+00 2.37e+01 7.05e+01 5.46e+02 2.13e+03 7.81e+03

Sinc 1.40e+00 2.31e+01 1.24e+02 4.63e+02 3.38e+03 —— ——
Mapped Cheb. 8.90e-01 9.68e+00 3.72e+01 9.79e+01 3.60e+02 9.95e+02 2.65e+03
Wiener, s = 1 9.43e-01 9.70e+00 3.49e+01 8.88e+01 2.99e+02 7.25e+02 1.66e+03
Wiener, s = 2 2.06e+00 2.03e+01 7.45e+01 1.71e+02 5.34e+02 1.26e+03 2.81e+03
Wiener, s = 5 2.31e+00 2.33e+01 8.35e+01 1.91e+02 6.20e+02 1.51e+03 3.18e+03

Table 8: Largest empirically-stable ∆t (top) and required evolution time under this timestep (bottom). We include the Wiener
s = 2, 5 data to show the impact of the parameter s on these quantities.

L2 errors
N =50 N =100 order N =150 order

Fourier 1.36e+00 2.43e-03 9.13 2.00e-03 0.474
Hermite —— 3.29e-02 —— 2.12e-03 6.76

Sinc 4.71e-02 1.74e-04 8.08 1.74e-04 ——
Mapped Cheb. 3.84e+00 5.74e-01 2.74 5.96e-02 5.59
Wiener, s = 1 3.54e+00 5.12e-01 2.79 5.57e-02 5.47

L∞ errors
N =50 N =100 order N =150 order

Fourier 9.80e-01 1.48e-03 9.37 1.50e-03 ——
Hermite —— 1.60e-02 —— 1.62e-03 5.65

Sinc 2.38e-02 1.30e-04 7.52 1.29e-04 ——
Mapped Cheb. 2.18e+00 4.21e-01 2.37 2.39e-02 7.07
Wiener, s = 1 2.20e+00 3.82e-01 2.52 2.26e-02 6.97

Table 9: L2 and L∞ errors for the KdV 2-soliton solution. The Wiener s = 2, 5 results are omitted because they are almost
identical to the s = 1 results.
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Wiener, s = 1 2.20e+00 3.82e-01 2.52 2.26e-02 6.97

Table 9: L2 and L∞ errors for the KdV 2-soliton solution. The Wiener s = 2, 5 results are omitted because they are almost
identical to the s = 1 results.
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Example: Nonlinear Waves

We can conclude for this particular example with an exponentially decaying solution that the mapped
methods (mapped Jacobi polynomials and Wiener functions) produce very similar results. The Sinc and
Hermite methods do produce very promising results, but they are suboptimal for reasons of computational
effort required. The Fourier domain truncation method seems to produce better results than the others in
terms of purely spatial error. However, this is in a case where the finite-interval periodicity imposed by
the Fourier approximation is not a problem at all: the function is exponentially decaying for all time and
we have chosen an initial window that captures the dynamics very well. Thus, the truncation error here is
inconsequential; we can expect that the truncation error will adversely affect the solution if care is not taken
in choosing the scaling parameter, or if the solution cannot so well-contained due to slower decay as the next
example shows.

4.2.2 A Modified KdV equation

The previous section considered different expansions on the infinite line for a nontrivial PDE with an
exponentially-decaying solution. We consider now a similar PDE with an algebraically-decaying soliton
solution:

ut + 6(u + 1)2ux + uxxx = 0, x ∈ .

An algebraically-decaying soliton solution to the above modified KdV equation is given by

u(x, t) =
−4

4(x− 6t)2 + 1
.

Because this solution decays algebraically rather than exponentially, the traditional truncation methods,
Hermite approximations, and Sinc expansions will all have trouble approximating the solution, not even to
speak of evolving a PDE with such a solution. However, both the mapped Chebyshev and Wiener methods
are amenable to approximation of this type of solution. Most of the same observations comparing the
different methods are identical from Section 4.2.1. However, the accuracy consideration is now tipped in
favor of the mapped Chebyshev and Wiener expansions. We plot the time evolution of the L2 and L∞

errors with N = 150 for the Fourier, Sinc, Hermite, mapped Chebyshev, and Wiener expansions in Figure 6.
We can very clearly see the advantage of the rational function methods. In particular, the Wiener method
outshines the mapped Chebyshev method in the L2 metric. The case for using the Wiener rational function
expansion is very solid in this example.
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Figure 6: Time evolution of the L2 (left) and L∞ (right) error for the example of Section 4.2.2 with N = 150.
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Let’s consider a slightly modified equation

Solution

Algebraic decay

N=150
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Example:  Vlasov equations

We consider the 1.5D consistent problem

1 Introduction

In this section we’ll set up the problem we’re trying to solve. We start with the one-dimensional
Vlasov-Maxwell (collisionless) system for a plasma:

∂f

∂t
+ vx

∂f

∂x
+

q

m

[

(Ex + vyBz)
∂f

∂vx
+ (Ey − vxBz)

∂f

∂vy

]

= 0. (1)

The variables used above are defined below:

f(x, vx, vy, t) Distribution function for particle species of a single type
vx, vy Velocity coordinates, x- and y- directions

Ex, Ey Vector components of the electric field
Bz z-component of the magnetic field

q Charge of particle species
m Mass of particle species

We will often just write f(x, vx, vy, t) as f(x, v, t). The velocity-space independent variables
vx and vy can take any real values. We will assume that the physical-space independent variable
x is defined on a finite interval [ − 1, 1]. The electric and magnetic fields are generated by the
particles whose distibution is governed by f . In particular, given a distribution f over phase
space, we can derive charge and current densities ρ and J for the single species given by

ρ(x, t) =

∫

f(x, v, t) dvx dvy

Jx(x, t) =

∫

vxf(x, v, t) dvx dvy

Jy(x, t) =

∫

vy f(x, v, t) dvx dvy

(2)

Having defined the charge and current densities, we must now determine how the electric
and magnetic fields are computed. Of course, given the inhomogeneous inputs ρ(x, t) and
Jx,y(x, t), we can use these to solve Maxwell’s equations to determine the electric and magnetic
fields:

∂Ex

∂t
=− 1

ε0
Jx

∂Bz

∂t
+

∂Ey

∂x
= 0

∂Ey

∂t
+ c2 ∂Bz

∂x
=− 1

ε0
Jy

(3)

In addition, we must satisfy Gauss’s Law:

∂Ex

∂x
=

ρ

ε0
(4)

Define u(t) =
(

f , Ex,Ey, Bz)T as the full solution vector. Given a temporal discretization param-
eter ∆t, a general numerical scheme we will consider involves the following steps:

1. Set t0 = 0, n = 0.

2. Solve (1) and (3) simultaneously for u(tn + ∆t) given u(tn)

3. Correct for Gauss’s Law using (4).

4. Update the densities ρ and Jx,y at time tn + ∆t using (2).

5. Set tn+1 = tn +∆t, n←n + 1, and go back to step 2.

The methods we will use to actually perform steps 2, 3, and 4 will differentiate one method
from another.
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Example:  Vlasov solvers

Consider a two-stream 
instability as test

with K being a normalization constant and ε = 0.03 is a perturbation parameter. This is a case
of (weak) linear Landau damping in which the amplitude of the excited mode of the electric field
decreases exponentially in time.

In physical space we take Nx = 5, K = 35 with periodic boundary conditions, and in velocity
space we take one of the spectral expansions described above with Nvx

= 128.

4.3 Two-Stream Instability

Consider an initial phase-space electron distribution of the form

f0(x, vx) =Kvx
2 e−vx

2/2 (1+ ε cos(πx)),

where K is a normalizing constant and ε = 10−3. For this type of initial condition there is a
unstable mode that grows which is physically due to two streams of particles with opposite
velocities interacting with each other at the same position. This results in vortex-like behavior
in phase space at the point of interaction.

In physical space we use Nx = 5, K = 35, and in velocity space we use a total of Nvx
= 128

modes. For the Fourier spectral method, we truncate the velocity domain to [ − Vx, Vx] for Vx =
10. The boundary conditions in physical space are periodic, and the boundary conditions in
velocity space are the natural boundary conditions imposed by the basis expansions (i.e. peri-
odic for the Fourier expansion, exponentially decaying for the Hermite expansion, algebraically
decaying (at least) for the Wiener expansion, and no conditions for PIC).
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Figure 1. Density plots in velocity space for the two-stream instability at times t = 0, 10, 20, 30 for the
Wiener expansion method.

In figure we show the time evolution of the electrostatic energy for each method. For the
spectral methods solving the Vlasov equation, we see that the energy starts out low initially and
then succumbs to the instability when the unstable mode begins to grow. Each of the methods
agrees with the others for short-time into the instability; the behavior longer in time shows some
disagreement due to the fine structure exhibited by the density function in velocity space due to
the instability (figure 1). Refinement in velocity space suggests that the Hermite and Wiener
expansions are the more accurate representations for Nvx

= 128 rather than the Fourier represen-
tation. This makes sense since the Fourier approximation introduces a nonphysical periodic
boundary condition. Thus the Wiener and Hermite expansions are the better choice for this
problem.

Numerical Results 9
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Example: Wave problem
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Figure 4.1. L2 expansion errors of Hermite, Sinc, and Wiener (s = 1) approximations vs the number of
modal coefficients used. All L2 errors are computed using the same grid.

4.2 Solving differential equations
In this example we take the model equation

ũtt = c2 ∆ũ , (x, t)∈ (Γ, [0, T ]), (4.1)

for Γ ⊂R3 some exterior domain in R3. Equation (4.1) is a common problem in electromagnetic
problems where we are trying to determine the electromagnetic scattering response of an object,
which we surround with e.g. an unstructured finite-element grid. This grid eventually termi-
nates, and we must somehow simulate radiation outflow. There is a vast literature regarding
absorbing boundary conditions to complete such a task. These boundary conditions are often
mathematically complex and computationally intensive. An alternative is to use an infinite ele-
ment method, which involves surrounding the finite element grid with several elements that
extend infinitely in the radial direction. To use these elements, we must employ basis functions
on a semi-infinite interval. To keep the analysis simple, we assume that the scattering object
together with the finite element grid forms a sphere of radius R. Γ is then the (infinite) exterior
of this sphere.

We endow R3 with the spherical coordinate system (ρ, φ, θ). On the finite domains θ ∈ [0, 2π]
and φ∈ [0,π] we expand in Spherical Harmonics to represent our function as

ũ(ρ, φ, θ , t)=
∑

n=0

∞
∑

|m|≤n

Ynm(θ, φ)unm(ρ, t),

where Ymn(φ, θ) are the spherical Harmonic functions, eigenmodes of the negative spherical
Laplacian with eigenvalue n(n + 1). They are given by

Ymn(θ, φ)=
eimθ Pn

|m|
(cos φ)

∥

∥

∥
eimθ Pn

|m|(cos φ)
∥

∥

∥

sin φ

,

16 Section 4

Three dimensional wave problem

Assuming spherical symmetry yields semi-infinite problem

where the normalizing factor is

∥

∥

∥
eimθ Pn

|m|(cos φ)
∥

∥

∥

sin φ

2 4π(n + |m|)!
(2n +1)(n− |m|)! ,

and Pn
|m| is the unnormalized associated Legendre function. With this, we can recast (4.1) as a

differential equation for the modes unm(ρ, t). In the following we shall omit the subscript mn
dependence of u. The differential equation is

utt = c2

[

uρρ +
2
ρ
uρ −

n(n + 1)
ρ2

u

]

. (4.2)

To determine a harmonic solution, we use the ansatz

u(ρ, t)= cos(c t)û(ρ).

With this ansatz, we see that û satisfies the eigenvalue equation

ρ2û ′′+ 2ρ û ′+
(

ρ2−n(n + 1)) û = 0,

which has the spherical Bessel functions as solutions:

ûn,1(ρ) = jn(ρ) =
π

2ρ

√

Jn+1/2(ρ)

ûn,2(ρ) = yn(ρ)=
π

2ρ

√

Yn+1/2(ρ),

where Jn( · ) and Yn( · ) are the Bessel functions of the first and second kinds, respectively. The
functions ûn,1 and ûn,2 are the kinds of the functions that we will see in the solution to our
time-evolution problem. Therefore, we should be interested in how well these functions are
approximated by our spectral expansion. The solutions ûn,1 and ûn,2 do not decay exponentially
and so we expect in general that the rational Chebyshev and Wiener methods give better
behavior than the Laguerre method, but even so the convergence with the latter methods is not
very good: second order at best.

We turn now to the numerical solution of (4.2) on the domain ρ ∈ [R,∞) with the following
initial and boundary conditions:

u(ρ, 0) = jn(ρ)

uρ(ρ, 0) = jn
′ (ρ)

uρ(R, t) =















jn
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expansions as a function of the total number of modes for four different values of the Spherical
Harmonic parameter n. We see that the rational Chebyshev and Wiener methods give better
behavior than the Laguerre method, but even so the convergence is not very good: second order
at best.

Note that we are restricted in how many Laguerre modes we can expand in because com-
puting Gaussian quadratures for Laguerre functions leads to overflow for N ! 180, and finding a
good quadrature using the Wiener or rational Chebyshev functions for all the Laguerre functions
from N = 0, , 200 is surprisingly difficult because the Laguerre functions oscillate on a much
different spatial scale than the Wiener or Chebyshev functions.
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Figure 5.12. Plots of the L2 errors between an expansion in N modes and the actual function. Errors
are computed via a 170-point Gaussian quadrature for the Laguerre case, and with a 105-point Gaussian
quadrature for the Wiener and Chebyshev cases.
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Figure 4.1. L2 expansion errors of Hermite, Sinc, and Wiener (s = 1) approximations vs the number of
modal coefficients used. All L2 errors are computed using the same grid.

4.2 Solving differential equations
In this example we take the model equation

ũtt = c2 ∆ũ , (x, t)∈ (Γ, [0, T ]), (4.1)

for Γ ⊂R3 some exterior domain in R3. Equation (4.1) is a common problem in electromagnetic
problems where we are trying to determine the electromagnetic scattering response of an object,
which we surround with e.g. an unstructured finite-element grid. This grid eventually termi-
nates, and we must somehow simulate radiation outflow. There is a vast literature regarding
absorbing boundary conditions to complete such a task. These boundary conditions are often
mathematically complex and computationally intensive. An alternative is to use an infinite ele-
ment method, which involves surrounding the finite element grid with several elements that
extend infinitely in the radial direction. To use these elements, we must employ basis functions
on a semi-infinite interval. To keep the analysis simple, we assume that the scattering object
together with the finite element grid forms a sphere of radius R. Γ is then the (infinite) exterior
of this sphere.

We endow R3 with the spherical coordinate system (ρ, φ, θ). On the finite domains θ ∈ [0, 2π]
and φ∈ [0,π] we expand in Spherical Harmonics to represent our function as

ũ(ρ, φ, θ , t)=
∑

n=0

∞
∑

|m|≤n

Ynm(θ, φ)unm(ρ, t),

where Ymn(φ, θ) are the spherical Harmonic functions, eigenmodes of the negative spherical
Laplacian with eigenvalue n(n + 1). They are given by

Ymn(θ, φ)=
eimθ Pn

|m|
(cos φ)

∥

∥

∥
eimθ Pn

|m|(cos φ)
∥

∥

∥

sin φ

,
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Assuming spherical symmetry yields

where the normalizing factor is

∥

∥

∥
eimθ Pn

|m|(cos φ)
∥

∥

∥

sin φ

2 4π(n + |m|)!
(2n +1)(n− |m|)! ,

and Pn
|m| is the unnormalized associated Legendre function. With this, we can recast (4.1) as a

differential equation for the modes unm(ρ, t). In the following we shall omit the subscript mn
dependence of u. The differential equation is

utt = c2

[

uρρ +
2
ρ
uρ −

n(n + 1)
ρ2

u

]

. (4.2)

To determine a harmonic solution, we use the ansatz

u(ρ, t)= cos(c t)û(ρ).

With this ansatz, we see that û satisfies the eigenvalue equation

ρ2û ′′+ 2ρ û ′+
(

ρ2−n(n + 1)) û = 0,

which has the spherical Bessel functions as solutions:

ûn,1(ρ) = jn(ρ) =
π

2ρ

√

Jn+1/2(ρ)

ûn,2(ρ) = yn(ρ)=
π

2ρ

√

Yn+1/2(ρ),

where Jn( · ) and Yn( · ) are the Bessel functions of the first and second kinds, respectively. The
functions ûn,1 and ûn,2 are the kinds of the functions that we will see in the solution to our
time-evolution problem. Therefore, we should be interested in how well these functions are
approximated by our spectral expansion. The solutions ûn,1 and ûn,2 do not decay exponentially
and so we expect in general that the rational Chebyshev and Wiener methods give better
behavior than the Laguerre method, but even so the convergence with the latter methods is not
very good: second order at best.

We turn now to the numerical solution of (4.2) on the domain ρ ∈ [R,∞) with the following
initial and boundary conditions:
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expansions as a function of the total number of modes for four different values of the Spherical
Harmonic parameter n. We see that the rational Chebyshev and Wiener methods give better
behavior than the Laguerre method, but even so the convergence is not very good: second order
at best.

Note that we are restricted in how many Laguerre modes we can expand in because com-
puting Gaussian quadratures for Laguerre functions leads to overflow for N ! 180, and finding a
good quadrature using the Wiener or rational Chebyshev functions for all the Laguerre functions
from N = 0, , 200 is surprisingly difficult because the Laguerre functions oscillate on a much
different spatial scale than the Wiener or Chebyshev functions.
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Figure 5.12. Plots of the L2 errors between an expansion in N modes and the actual function. Errors
are computed via a 170-point Gaussian quadrature for the Laguerre case, and with a 105-point Gaussian
quadrature for the Wiener and Chebyshev cases.

We turn now to the numerical solution of (5.11) on the domain ρ ∈ [R, ∞) with the fol-
lowing initial and boundary conditions:
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Figure 4.1. L2 expansion errors of Hermite, Sinc, and Wiener (s = 1) approximations vs the number of
modal coefficients used. All L2 errors are computed using the same grid.

4.2 Solving differential equations
In this example we take the model equation

ũtt = c2 ∆ũ , (x, t)∈ (Γ, [0, T ]), (4.1)

for Γ ⊂R3 some exterior domain in R3. Equation (4.1) is a common problem in electromagnetic
problems where we are trying to determine the electromagnetic scattering response of an object,
which we surround with e.g. an unstructured finite-element grid. This grid eventually termi-
nates, and we must somehow simulate radiation outflow. There is a vast literature regarding
absorbing boundary conditions to complete such a task. These boundary conditions are often
mathematically complex and computationally intensive. An alternative is to use an infinite ele-
ment method, which involves surrounding the finite element grid with several elements that
extend infinitely in the radial direction. To use these elements, we must employ basis functions
on a semi-infinite interval. To keep the analysis simple, we assume that the scattering object
together with the finite element grid forms a sphere of radius R. Γ is then the (infinite) exterior
of this sphere.

We endow R3 with the spherical coordinate system (ρ, φ, θ). On the finite domains θ ∈ [0, 2π]
and φ∈ [0,π] we expand in Spherical Harmonics to represent our function as

ũ(ρ, φ, θ , t)=
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n=0

∞
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|m|≤n

Ynm(θ, φ)unm(ρ, t),

where Ymn(φ, θ) are the spherical Harmonic functions, eigenmodes of the negative spherical
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Assuming spherical symmetry yields
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and Pn
|m| is the unnormalized associated Legendre function. With this, we can recast (4.1) as a

differential equation for the modes unm(ρ, t). In the following we shall omit the subscript mn
dependence of u. The differential equation is
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uρρ +
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ρ
uρ −

n(n + 1)
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u

]

. (4.2)

To determine a harmonic solution, we use the ansatz

u(ρ, t)= cos(c t)û(ρ).

With this ansatz, we see that û satisfies the eigenvalue equation

ρ2û ′′+ 2ρ û ′+
(

ρ2−n(n + 1)) û = 0,

which has the spherical Bessel functions as solutions:
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where Jn( · ) and Yn( · ) are the Bessel functions of the first and second kinds, respectively. The
functions ûn,1 and ûn,2 are the kinds of the functions that we will see in the solution to our
time-evolution problem. Therefore, we should be interested in how well these functions are
approximated by our spectral expansion. The solutions ûn,1 and ûn,2 do not decay exponentially
and so we expect in general that the rational Chebyshev and Wiener methods give better
behavior than the Laguerre method, but even so the convergence with the latter methods is not
very good: second order at best.

We turn now to the numerical solution of (4.2) on the domain ρ ∈ [R,∞) with the following
initial and boundary conditions:
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expansions as a function of the total number of modes for four different values of the Spherical
Harmonic parameter n. We see that the rational Chebyshev and Wiener methods give better
behavior than the Laguerre method, but even so the convergence is not very good: second order
at best.

Note that we are restricted in how many Laguerre modes we can expand in because com-
puting Gaussian quadratures for Laguerre functions leads to overflow for N ! 180, and finding a
good quadrature using the Wiener or rational Chebyshev functions for all the Laguerre functions
from N = 0, , 200 is surprisingly difficult because the Laguerre functions oscillate on a much
different spatial scale than the Wiener or Chebyshev functions.
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Figure 5.12. Plots of the L2 errors between an expansion in N modes and the actual function. Errors
are computed via a 170-point Gaussian quadrature for the Laguerre case, and with a 105-point Gaussian
quadrature for the Wiener and Chebyshev cases.

We turn now to the numerical solution of (5.11) on the domain ρ ∈ [R, ∞) with the fol-
lowing initial and boundary conditions:

u(ρ, 0) = jn(ρ)

uρ(ρ, 0) = jn
′ (ρ)

uρ(R, t) =















jn
′ (R) cos(c t), n > 1

1
3
sin(ct), n = 1

u(R, t) =







0, n > 0

jn(R) cos(ct), n = 0

ut(R, t) =







0, n > 0

− c sin(c t)jn(R), n = 0

ut(r, 0) = − c sin(c t) jn(ρ)

110 Section 5
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Example: Wave problem

Despite the fact that the convergence in N is not optimal, we cannot obtain better results
from any other method. The Laguerre method consistenly produces O(1) errors since we must
either choose to expand using Laguerre polynomials, which necessarily produce very highly oscil-
latory and unbounded derivatives, or using Laguerre functions, which have very poor conver-
gence properties if the function does not decay exponentially. There is also the possibility of
the ‘algebraically-mapped’ Chebyshev polynomials used by e.g. Boyd [17]. This method employs
the Chebyshev (or some other Jacobi polynomial) method with a tangent map directly from
Ir = [− 1, 1] to R+ (see table 6.1).

To determine which of these basis sets is best suited for this problem, we run the simulation
using all three methods with N = 100 and compare the qualitative function result as well as the
time evolution of the L2 error in figure 5.15. For all three cases, the L2 error was computed by

interpolating to an N = 10000-point ψ̃n
(1,0) Gauss grid, and then employing the associated

quadrature against the exact solution.
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Figure 5.15. Plot of the pointwise error at T = 25 (top) and the corresponding time evolution of the L2

errors (bottom) with the Wiener, Laguerre (function), and mapped Chebyshev methods. All methods use
N = 100 grid points.

Note that we have chosen L = 25 for the mapped Chebyshev and Wiener cases, which ensures
that half of the grid points are to the left of ρ = 26. For the Laguerre basis, the choice L ≈ 0.4
was made, which ensures roughly the same criterion of grid point distribution around ρ = 26.
The Laguerre case seems to have the smallest L∞ error in the top figure of figure 5.15, for small
ρ but the pointwise errors for ρ > 50 become very large, and one can see from the bottom por-
tion of the figure that the Laguerre case has a bad history of L2 error. In the pointwise error,
the rational Chebyshev basis does quite admirably. However, it is significantly worse than the
Wiener basis in the region 10 < ρ < 50, which is where most of the grid points are. In addition,
we will soon see that the time step restriction for the mapped Chebyshev basis is very handicap-
ping.

The Wiener and rational Chebyshev cases give comparable L2 accuracy, with a notable dis-
advantage for the Laguerre basis: convergence in N just for the initial condition is extremely
slow due to the exponential decay of the basis functions.

Computational Considerations 113

Mapped Chebychev and 
Wiener expansion clearly 

superior

Cost:
➡ Laguerre method: 391 sec
➡ Mapped Chebychev: 1019 sec
➡ Wiener method: 39 sec 

Due to FFT and much 
larger time-step
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Summary on Part I

It seems that expansions based on these functions
have interesting properties

➡ they are accurate
➡ the basis is flexible
➡ the evaluation is fast
➡ the spectral properties of operators are good
➡ other applications -- windowed Fourier series; 
        basis for infinite FEM elements etc
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Part II: Local time-stepping

Problem: Small cells, even just one, cause a very small 
global time-step in an explicit scheme.

Time Step Size Stability Restriction

for Explicit Time-domain Methods

• Time step size !t is subject to stability restriction:

where " is the CFL number and !x is a measure of cell size and shape.

• Smallest cell determines size of time step !t for stable time integration.

• Single small red cell of size !x/10 forces the use of  time step size ten times 

smaller for all the remaining blue cells => simulation runs ten times slower.

• Many targets have geometrical features that require extremely small cells to 

resolve, such as sharp tips, grooves, gapes, and various other small details:

cxt /!#! "

 Regular Cell !x 

Small Cell !x/10 

EMCC, May 22, 2008

East Hartford, CT

∆t ≤ C
√

εµ∆x # C1
√

εµ
N2

h

Time Step Size Stability Restriction

for Explicit Time-domain Methods

• Time step size !t is subject to stability restriction:

where " is the CFL number and !x is a measure of cell size and shape.

• Smallest cell determines size of time step !t for stable time integration.

• Single small red cell of size !x/10 forces the use of  time step size ten times 

smaller for all the remaining blue cells => simulation runs ten times slower.

• Many targets have geometrical features that require extremely small cells to 

resolve, such as sharp tips, grooves, gapes, and various other small details:

cxt /!#! "

 Regular Cell !x 

Small Cell !x/10 

EMCC, May 22, 2008

East Hartford, CT

A significant problem for large scale complex applications

Old idea: take only time-steps required by local restrictions.

Old problems: accuracy and stability
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Local time-stepping

Substantial recent work by 
       Cohen, Grote, Lanteri, Piperno, Gassner, Munz etc

Most of the recent work is based on LF-like schemes, 
restricted to 2nd order in time.

Layout for multi-rate local time-stepping

Local Time-Stepping

• Local time-stepping is time-advancing smaller cells with small time 

steps while time-advancing larger cells with large time steps:

• Presumably, most cells are time-advanced by 4!t and a small number of 

them are time-advanced by smaller time steps for appreciable speedup.

• Pattern can be extended to arbitrary number of levels with time step 

sizes !t, 2!t, 4!t,…, 2n!t.

tn

tn+1/4

tn+1/2

tn+1

tn+3/4

tn

tn+1

!t "!t #!t

EMCC, May 22, 2008

East Hartford, CT
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Local time-stepping

Challenge: Achieving this at high-order accuracy
Local Time-Stepping

Warburton-Hagstrom-Wilcox Approach [1]
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• Use regular AB3 to time-advance each coarse and fine mesh cell group:

tn

tn+1/2

tn+1
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tn-1 tn-1

tn-2

21$nu

• Use “half-step” AB3 to compute              at outer boundary of fine mesh.

It is needed to compute                 :

21$nu

)( 21$nuF

EMCC, May 22, 2008

East Hartford, CT [1] "Simplified local time stepping for discontinuous Galerkin methods“, in preparation. 

For all interior cells

At interface cells

This generalizes to many levels and arbitrary time-step fractions

Local Time-Stepping

Warburton-Hagstrom-Wilcox Approach [1]
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Local time-stepping
Sharp tips: Ogive

• Mesh refinement is necessary to capture the sharp tip geometry.

EMCC, May 22, 2008

East Hartford, CT

Local Time-Stepping Bistatic RCS Results for Ogive

• Solutions are essentially indistinguishable from each other

EMCC, May 22, 2008

East Hartford, CT

Execution Times with Local Time-Stepping

for Ogive

• One time level:

– N
o
= 23742

• Two time levels:

– N
o
=   151 (<1%)

– N
1
= 23591 (99%)

• Three time levels:

– N
o
=   151 (<1%)

– N
1
=  1959  (8%)

– N
2
= 21632 (91%)

• Four time levels:

– N
o
=   151 (<1%)

– N
1
=  1959  (8%)

– N
2
= 12622 (53%)

– N
3
=  9010 (38%)

EMCC, May 22, 2008

East Hartford, CT

Computations by 
HyperComp Inc
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Local time-stepping

Segmentation is done in preprocessing
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Ideally suited for local DG scheme

Known problems: 
        No known stability proof
        Time-step is not optimal (about 80%)

EMF 2009, May 28 2009, Mondovi 29

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens
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Example Simulation time with

Adams-Bashford

(global time step)

Adams-Bashford

(local time step)

LSERK

(global time step)

Resonator 100% 59% 45%

3dB-Coupler 100% 29% 45%

Airplane 100% 15% 45%

EMF 2009, May 28 2009, Mondovi 29

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens
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Example Simulation time with

Adams-Bashford

(global time step)

Adams-Bashford

(local time step)

LSERK

(global time step)

Resonator 100% 59% 45%

3dB-Coupler 100% 29% 45%

Airplane 100% 15% 45%
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Extension to plasma physics/PIC

Basic approach - 
✓ Do fields as fast scale
✓ Particles as slow scale
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Extension to plasma physics/PIC

These are initial results

Significant potential for problems where :

✓Hyperbolic cleaning is used
✓Significant grid induced stiffness
✓Cost dominated by particle push

This is often the case for complex applications
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Part III: CPUs vs GPUs

Notice the following

The memory bandwidth and the peak performance on Graphics 
cards (GPU’s) is developing MUCH faster than on CPU’sEMF 2009, May 28 2009, Mondovi 31

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens
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Reference: www.nvidia.com

At the same time, the mass-marked for gaming drives the 
prices down -- we have to find a way to exploit this !
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But why is this ?

Target for CPU:

✓ Single thread very fast

✓ Large caches to hide latency

✓ Predict, speculate etc

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Architectures

CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Lots of very complex logic
to predict behavior
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But why is this ?

For streaming/graphics cards it is very different

✓ Throughput is what matters

✓ Hide latency through parallelism

✓ Push hierarchy onto programmer

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Architectures

GPU Chip Real Estate

Die floorplan: AMD RV770 (2008).
55 nm, 800 SP ops at a time.

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Much simpler logic with
 a focus on performance
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GPUs 101

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Architectures

GPU: Architecture (e.g. Nvidia)

1 GPU = 30 MPs

1 MP = 1 ID (1/4 clock) +
8 SP + 1 DP +
16 KiB Shared +
32 KiB Reg + HW Sched

Scalar cores
max 512 threads/MP

Ded. RAM (140 GB/s)

PCIe2 Host DMA (6 GB/s)

Limited Caches

Andreas Klöckner, Applied Math, Brown Accelerated Computing

GPU layout ✓1 GPU = 30 MPs
✓1 MP has 1 IU, 8 SP, 1 DP
✓1 MP has 16KiB shared and 
     32 KiB Register memory
✓240 (512) threads
✓Dedicated RAM at 140GB/s
✓Limited caches
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GPUs 101

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Gains and Losses

Gains Losses

+ Memory Bandwidth
(140 GB/s vs. 12 GB/s)
+ Compute Bandwidth
(Peak: 1 TF/s vs. 50 GF/s,
Real: 200 GF/s vs. 10 GF/s)

- Recursion
- Function pointers
- Exceptions
- IEEE 754 FP compliance
- Cheap branches (i.e. ifs)

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Already here it is clear that programming models/codes 
may have to undergo substantial changes -- and that not 
all will work well
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GPUs 101
Introduction Programming GPUs GPU Scripting Discontinuous Galerkin on GPUs

Overview

GPUs: Execution Model

Computational Grid

Block
(0, 0)

Block
(0, 1)

Block
(1, 0)

Block
(1, 1)

Block
(2, 0)

Block
(2, 1)

Block (1, 0)

Thread
(0, 0)

Thread
(0, 1)

Thread
(0, 2)

Thread
(0, 3)

Thread
(1, 0)

Thread
(1, 1)

Thread
(1, 2)

Thread
(1, 3)

Thread
(2, 0)

Thread
(2, 1)

Thread
(2, 2)

Thread
(2, 3)

Thread
(3, 0)

Thread
(3, 1)

Thread
(3, 2)

Thread
(3, 3)

Multi-tiered Parallelism

Grid
Block

Only threads within a block can
communicate

Each Block is assigned to
physical execution unit.

Grids and Blocks replace outer
loops in an algorithm.

Indices available at run time

Blocks segmented into
groups of 32 (“warps”)

Image Credit: Johan S. Seland, Sintef

Andreas Klöckner Applied Math, Brown

GPUs: How to Compute 10 Times Faster on Hardware You May Already Own

✓Genuine multi-tiered parallelism
✓Grids
✓blocks
✓threads

✓Only threads within a block can talk
✓Blocks must be executed in order

✓Grids/blocks/threads replace loops

✓Until recently, only single precision

✓Code-able with CUDA (C-extension)
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GPUs 101

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Memory Model

Global

Constant

Texture

Block (0, 0)

Shared Memory

Thread (0, 0)

Local

Registers

Thread (1, 0)

Local

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Local

Registers

Thread (1, 0)

Local

Registers

Already seen:

Registers

Global

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Memory model:

✓Registers
✓Local shared
✓Global 
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GPUs 101

Introduction Programming GPUs GPU Scripting Discontinuous Galerkin on GPUs

Memory Model

Registers

32 KiB of registers per MP

Per-thread

Latency: 1 clock

Variable amount per thread
Register count limits max.
threads/MP
CPUs: Fixed register file (∼)

“Yet another form of on-chip
memory”.

Global

Constant

Texture

Multiprocessor

Shared Memory

Thread (0, 0)

Local

Registers

Thread (1, 0)

Local

Registers

Andreas Klöckner Applied Math, Brown

GPUs: How to Compute 10 Times Faster on Hardware You May Already Own

✓Lots of multi-processors (about 30)

... communicate through global mem

✓Registers, shared memory, and 
threads communicate with low latency

... but memory is limited (16-32 KiB)
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GPUs 101

✓Global memory (4GiB/GPU) is 
plentiful

... but latency is high (512 bit bus)

... and stride one is preferred

✓ Texture is similar to global memory

... allows more general access patterns

... but it is read only

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Texture Memory

Same memory as global

But: more access patterns achieve
usable bandwidth

Optional: 2D and 3D indexing

Small, incoherent Cache
(prefers nD-local access)

Read-only

Latency: ∼1000 clocks
(despite cache!)

Optional: Linear Interpolation

Global

Constant

Texture

Multiprocessor

Shared Memory

Thread (0, 0)

Local

Registers

Thread (1, 0)

Local

Registers

Andreas Klöckner, Applied Math, Brown Accelerated Computing

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Review: Memory Model

Type Per Access Latency
Registers thread R/W 1
Local thread R/W 1000
Shared block R/W 2
Global grid R/W 1000 Not cached
Constant grid R/O 1-1000 Cached
Texture grid R/O 1000 Spatially cached

Important

Don’t “choose one” type of memory.
Successful algorithms combine many types’ strengths.

Andreas Klöckner, Applied Math, Brown Accelerated Computing
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Let’s consider an example

Matrix transpose

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Example: Matrix Transpose

c1,1 c1,1c1,2

c1,2

c1,3

c1,3

c1,4

c1,4

c2,1

c2,1

c2,2 c2,2c2,3

c2,3

c2,4

c2,4

c3,1

c3,1

c3,2

c3,2

c3,3 c3,3c3,4

c3,4c4,1

c4,1

c4,2

c4,2

c4,3

c4,3

c4,4 c4,4

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Memory bandwidth will be a limit here
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Let’s consider an example

Using just global memory

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Performance: Matrix transpose

Very likely: Bound by memory bandwidth.

Fantastic! About same as CPU. Why?

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Naive: Using global memory

global void transpose(float ∗out, float ∗in , int w, int h) {
unsigned int xIdx = blockDim.x ∗ blockIdx.x + threadIdx.x;
unsigned int yIdx = blockDim.y ∗ blockIdx.y + threadIdx.y;

if ( xIdx < w && yIdx < h ) {
unsigned int idx in = xIdx + w ∗ yIdx;
unsigned int idx out = yIdx + h ∗ xIdx;

out[ idx out ] = in[ idx in ];
}

}

Reading from global mem:

. . .

stride: 1 → one mem.trans.

Writing to global mem:

. . .

stride: 16 → 16 mem.trans.!

Andreas Klöckner, Applied Math, Brown Accelerated Computing

As CPU
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Let’s consider an example

Using just texture(read)+global(write) memory

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Performance: Transpose with Textures

Better! But texture units can’t quite hide wide data bus.
Need different idea.

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Getting better
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Let’s consider an example

Transpose block-by-block in shared memory - 
this does not care about strides

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Performance: Transpose with Shared Memory

Not bad! Are we done?

Andreas Klöckner, Applied Math, Brown Accelerated Computing
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Let’s consider an example

Additional improvements are possible for small 
matrices - bank conflicts in shared memory

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Performance: Transpose without Bank Conflicts

Pretty happy now!

Andreas Klöckner, Applied Math, Brown Accelerated Computing

A factor of 7-8 over CPU
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CPUs vs GPUs

The CPU is mainly the traffic controller
... although it need not be

HPC SUMMER
INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Relationship CPU ↔ GPU

CPU and GPU run
asynchronously.

CPU submits to GPU’s queue:
Grid launches
Transfers
Sync primitives
. . .

cudaThreadSynchronize():
“CPU, wait for empty queue!”

Transfers synchronize implicitly.
(unless explicitly told not to)

CPUCPU

GPUGPU

QueueQueue

Andreas Klöckner, Applied Math, Brown Accelerated Computing

✓The CPU and GPU runs 
      asynchronously

✓CPU submits to GPU queue

✓CPU synchronizes GPUs

✓Explicitly controlled concurrency 
      is possible
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GPUs overview

✓ GPUs exploit multi-layer concurrency

✓ The memory hierarchy is deep

✓ Memory padding is often needed to get optimal 
performance

✓ Several types of memory must be used for 
performance

✓ First factor of 5 is not too hard to get

✓ Next factor of 5 requires quite some work

✓ Additional factor of 2-3 requires serious work
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Nodal DG on GPU’s

So what does all this mean ?

✓GPU’s has deep memory hierarchies so local is good
➡The majority of DG operations are local

✓Compute bandwidth >> memory bandwidth
➡High-order DG is arithmetically intense

✓GPU global memory favors dense data
➡Local DG operators are all dense

uk

Flux Gather Flux Lifting

F (uk) Local Differentiation

∂tuk

(a) Decomposition of a DG operator into subtasks.
Element-local operations are drawn in green, commu-
nicating ones in red. The majority of the DG operator
is applied in an element-local fashion, making it it par-
ticularly suitable for GPUs among the group of finite-
element-based PDE solvers.

(b) A sample scattering problem solved on a GTX
280 GPU using our methods. The incident plane-wave
electric field is shown as pseudocolor values on the scat-
terer, while the scattered electric field is shown as ar-
rows. The computation was performed at order N = 4
on a mesh of K = 78745 elements. It achieved and
sustained more than 160 GFlops/s.

Figure 1: DG: Basic Sequence of Operations and Sample Computation.

requirements? And third, when will what piece of the data be fetched from main into the very
limited on-chip memory? The answers to these questions depend on a complex interplay between
various granularities dictated by the shape of the reference element, the mesh, the order of the DG
discretization and the hardware. Often, large amounts of development time for a high-performance
computational code are devoted to such profiling and optimization tasks. Unfortunately, this tuning
is often a very repetitive task, the outcome of which is strongly hardware-dependent.

This repetitiveness makes it desirable to automate the search for optimally-tuned codes within
a certain parameter space of, e.g., algorithm variants, memory layouts, and CUDA computation
layouts. This is metaprogramming: instead of writing a program to get a result, one writes a
program that writes a program that obtains the result. To enable metaprogramming in our DG
solver, our group has built PyCuda. PyCuda achieves two goals: First, it makes all of CUDA
accessible from Python, a high-level scripting language. Second and more importantly, it allows
the generation, compilation, and invocation of CUDA code at run time of the driving script. This
yields not only a friendly prototyping environment for CUDA, but also a powerful tool that can
help generate highly-tuned codes. PyCuda is available under a liberal open-source license and has
found a vibrant community of users, among them researchers from the DiCarlo neuroscience lab at
MIT and the Rowland Institute at Harvard.

Applying the principle of metaprogramming, our DG implementation writes, compiles and mea-
sures execution time for a moderate number of different versions of each required component at
run time, before the actual DG computation is launched. It determines an empirically optimal
combination of alignment block sizes, parallel work distribution constants, and algorithm variants.
An article [4] in which we describe the exact details of our methods is currently under review for
publication.

2

With proper care we should be able to obtain excellent 
performance for DG-FEM on GPU’s
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Nodal DG on GPU’s

(a) Performance in GFlops/s achieved at various poly-
nomial orders, for two separate implementations of DG
on CUDA. See text for further information.

(b) Mesh-dependent scaling of discontinuous Galerkin
on Nvidia GPUs.

Figure 11. Performance characteristics of DG on Nvidia graphics hardware, continued.

distribution parameters is found to deliver the best performance at all orders for flux lifting, as
well as for higher-order element-local differentiation. This is plausible behavior and was already
discussed in Section 5.4. It is therefore reasonable to ask what would be lost if the matrix-in-
shared approach were omitted from a GPU DG implementation entirely. Also, we have seen in a
number of sections that the introduction of microblocks into the method brings about some mild
complications, particularly in the form of shared memory bank conflicts, so one may be compelled
to ask how much is lost by ignoring microblocks and simply padding each element to the nearest
alignment boundary. The remaining performance after restricting our implementation to not use
one or both of these optimizations can be seen in Figure 11(a). Examination of this figure leads to
the conclusion that the work of implementing a matrix-in-shared strategy is likely only worthwhile
if one is particularly interested in running GPU-DG at a few specific low orders. The benefit of
employing mircoblocking, on the other hand, is pervasive and fairly substantial. It stretches to far
higher orders than one might suspect at first, given the growth of the involved operands.

Note that these conclusions apply only to the algorithms exactly as described so far. If even
one simple trick is omitted from an implementation, tradeoffs may shift dramatically. For example,
omitting the thread ordering trick from Section 5.2 makes a matrix-in-shared strategy optimal for
differentiation up to order six.

Finally, we note that the performance results in this section depend on the size of the problem
being worked on. A very small problem may, for example, not offer enough opportunity to properly
occupy all the processing cores that the hardware provides. Figure 11(b) reveals that even relatively
small problems achieve decent performance. In addition, we observe that this scaling effect is
apparently not just governed by the number of elements present, but also by the order N , which
influences the number of flops per DOF in the method. We conclude that as soon as there is a
certain amount of floating point work to be done per timestep, the method will perform fine.
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costs. Eqn. (4) highlights the splitting configuration for the
discretized Ampère’s law.

d
dt

(
EF

EC

)
=

(
LFF LFC

LCF LCC

) (
HF

HC

)
(4)

The linear operator L represents the right hand side compu-
tation in (1). The indices C and F denote coarse and fine
elements, CF and FC coarse-fine interactions, respectively.

Fig. 1. Multirate scheme for a
timestep ratio 4.

The benefit of this multirate
approach is that all evalu-
ations of the LCC operator
have to be executed only every
2sth timestep, as highlighted
in Fig.1 for s = 2. Regard-
ing stability, the intermediate
zones are of special interest.
With this configuration, the
Courant number has to be cho-
sen slightly smaller than in the
global scheme.

This behaviour has already been reported in [7] and will be
investigated in the full paper in detail.

IV. FIRST NUMERICAL RESULTS

As a first numerical benchmark, a cavity discretized with
398 tetrahedra was excited with its fundamental mode. Regard-
ing the different element sizes of the mesh, a level separation
with a timestep ratio 4 was chosen. This corresponds to 182
fine elements having an individual stable timestep lower than
4 · ∆tmin and 216 coarse elements having a larger stable
timestep. Computations were carried out on a AMD Opteron
8356 CPU at 2.3 GHz and on one of the four NVIDIA TESLA
S 1070 GPUs. Table I is listing computation time and speedup

TABLE I
COMPARISON OF GLOBAL CPU, GLOBAL GPU AND MULTIRATE GPU

Example Implementation Computation
time

Speedup compared
to CPU global

CPU global 4 h 56 min 54 s 1.0

GPU global 10 min 51 s 27.4

GPU multirate 8 min 6 s 36.7

CPU global 29 h 6 min 46 s 1.0

GPU global 39 min 1 s 44.8

GPU multirate 11 min 50 s 147.6

for CPU-GPU acceleration and in a second step with enabled
multirate. Although this academic example is not providing
large aspect ratios, the efficiency can benefit from the multirate
scheme. Regarding accuracy, Fig. 2 highlights the maximum
error of the electric field during several computations, each
evaluating 200 periods of the cavity mode with a maximum
of 1 577 781 micro-timesteps. The error of the computation
with DG-FEM of order 4 is below 10−3 for all compuations.
In detail, there is almost no difference in accuracy between
the GPU multirate and the GPU global scheme.

Regaring efficiency of the multirate scheme, a scattering
object as presented in Fig. 3 is discretized with 130 413

Fig. 2. Maximum relative error of the electric field computed in a 3D cavity
with multirate and global schemes on GPU and CPU.

Fig. 3. Scattering object - CAD
model.

Fig. 4. Scattering object - mesh
with 130 413 tetrahedra.

tetrahedra, as shown in Fig. 4. The optimum timestep ratio
is 4, separating the mesh into 2737 fine and 127 676 coarse
elements. The fine elements are situated at the engine intake.
The global GPU computation was accelerated by a factor
of 44.8 compared to the CPU implementation and could be
further accelerated by a factor of 3.3 using the multirate
scheme as presented in Table I. The electric field at the surface
of the scattering object (y-component) is presented in Fig. 5.

Fig. 5. Electric field of a scatterer hit by a TEM wave, computed with
15.6 · 106 unknowns at 52 043 microsteps.

V. CONCLUSION

A multirate GPU accelerated DG-FEM algorithm was pre-
sented. The multirate timestepping scheme can further accel-
erate GPU computations, especially when high aspect ratios
of multiscale problems are of concern. The full paper will
provide more detailed information about the theory as well as
the stability and accuracy of the timestepping scheme.
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Nodal DG on GPU’s

Several GPU cards can be coupled over MPI at minimal 
overhead (demonstrated). Lets do the numbers

      One 700GFlop/s/4GB mem card costs ~$8k

      So $250k will buy you 16-18TFlop/s sustained

      This is the entry into Top500 Supercomputer list !

... at 5%-10% of a CPU based machine

This is a game changer -- and the local nature of DG-FEM 
makes it very well suited to take advantage of this
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Concluding remarks

While high order methods in general and DG-FEM in 
particular are widely used, there are still things to be 
done. 

Combining
✓ New non-polynomial basis functions
✓ Old time-stepping methods in new ways
✓ Understanding and exploiting the interplay 
       between algorithms and new architectures

can lead to substantial computational advances.

Changing the methods from toys to tools
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Thank you !

Jan.Hesthaven@Brown.edu
http://www.cfm.brown.edu/people/jansh/
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