Accelerating high-order accurate computational methods for solving PDE's

Jan S Hesthaven Brown University Jan.Hesthaven@Brown.edu

Thanks!

Stephane Lanteri
You for taking the time!
Collaborators:
Tim Warburton (Rice)
Andreas Kloeckner (Brown)
Akil Narayan (Brown)
Lucas Wilcox (ICES, UT Austin)
Nico Godel (Hamburg, Germany)
Funding agencies:
AFOSR, NSF, Nvidia

Key challenge
Central challenge in many computational modeling and design efforts

Computational time

This is caused by

Overview of talk

Three different ways to combat this problem
$\sqrt{ }$ Recall DG-FEM
\checkmark Part I:A new basis well suited for open domains
$\sqrt{ }$ Part II: Local time-stepping
$\sqrt{ }$ Part III: GPU acceleration of DG-FEM

Mistake - several talks in one - Sorry !

Recall DG-FEM (for EM)

Consider Maxwell's equations

$$
\varepsilon \partial_{t} E-\nabla \times H=-j, \quad \mu \partial_{t} H+\nabla \times E=0
$$

Write it on conservation form as

$$
\frac{\partial q}{\partial t}+\nabla \cdot F=-J \quad F=\left[\begin{array}{c}
-\hat{e} \times H \\
\hat{e} \times E
\end{array}\right] \quad q=\left[\begin{array}{c}
E \\
H
\end{array}\right]
$$

Represent the solution as

$$
\Omega=\sum_{k} D^{k} \quad q_{N}=\sum_{i=1}^{N} q\left(\mathbf{x}_{i}, t\right) L_{i}(\mathbf{x})
$$

and assume

$$
\int_{D}\left(\frac{\partial \boldsymbol{q}_{N}}{\partial t}+\nabla \cdot \boldsymbol{F}_{N}-\boldsymbol{J}_{N}\right) L_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\oint_{\partial D} L_{i}(\boldsymbol{x}) \hat{\boldsymbol{n}} \cdot\left[\boldsymbol{F}_{N}-\boldsymbol{F}^{*}\right] \mathrm{d} \boldsymbol{x} .
$$

Recall DG-FEM (for EM)

On each element we then define

$$
\hat{M}_{i j}=\int_{D} L_{i} L_{j} \mathrm{~d} \boldsymbol{x}, \quad \hat{S}_{i j}=\int_{D} \nabla L_{j} L_{i} \mathrm{~d} \boldsymbol{x}, \quad \hat{F}_{i j}=\oint_{\partial D} L_{i} L_{j} \mathrm{~d} \boldsymbol{x},
$$

With the numerical flux given as

$$
\hat{\boldsymbol{n}} \cdot\left[\boldsymbol{F}-\boldsymbol{F}^{*}\right]=\left\{\begin{array}{l}
\boldsymbol{n} \times(\gamma \boldsymbol{n} \times[\boldsymbol{E}]-[\boldsymbol{B}]), \\
\boldsymbol{n} \times(\gamma \boldsymbol{n} \times[\boldsymbol{B}]+[\boldsymbol{E}]),
\end{array} \quad[Q]=Q^{-}-Q^{+}\right.
$$

To obtain the local matrix based scheme

$$
\hat{M} \frac{\mathrm{~d} \hat{\boldsymbol{q}}}{\mathrm{~d} t}+\hat{S} \cdot \hat{\boldsymbol{F}}-\hat{M} \hat{\boldsymbol{J}}=\hat{F} \hat{\boldsymbol{n}} \cdot\left[\hat{\boldsymbol{F}}-\hat{\boldsymbol{F}}^{*}\right],
$$

One then typically uses an explicit Runge-Kutta or a LeapFrog method to advance in time

Recall DG-FEM

The advantages of this approach are many and the scheme is well understood :
\checkmark High-order, geometrically flexible, robust, explicit etc

Well understood

Generalizes to broad class of problems
... but a central criticism is speed - or lack of it !

Part I: Unbounded problems

The need to numerically solve problems on semi-infinite/infinite domains arises in many applications:
\Rightarrow Acoustic/Electromagnetic/Elastic scattering
\Rightarrow Kinetic/Boltzmann models
\Rightarrow Computational chemistry Molecular dynamics
\Rightarrow Numerical relativity
\square etc

Introduction

\Rightarrow Approximate/absorbing boundary conditions
\Rightarrow Typically problem dependent
\Rightarrow Domain truncation
\Rightarrow Where to truncate ?
\Rightarrow Infinite expansions
\Rightarrow Hermite/Laguerre polynomials/functions
\Rightarrow Expensive/inflexible - require $\exp (-|x|)$
.... but $\mathrm{O}(\mathrm{N})$ spectrum
\Rightarrow Rational/mapped Chebyshev methods (Boyd)
\Rightarrow Amenable to FFT
\Rightarrow.... but $\mathrm{O}\left(\mathrm{N}^{*} \mathrm{~N}\right)$ spectrum

Objective

What we seek is a new basis set with the properties
Controllable asymptotic decay of basis The FFT can be used to evaluate The spectrum is $\mathrm{O}(\mathrm{N})$ for Ist order operator .. but is it possible?

Motivation - Wiener('49) proposed the rational basis

$$
\phi_{n}(x)=\frac{(1-i x)^{n}}{\sqrt{\pi}(1+i x)^{n+1}}, \quad n \in \mathbb{N}_{0}
$$

$$
\propto \frac{1}{|x|}, \quad|x| \rightarrow \infty
$$

Orthonormal (and can be made complete)
\leftrightarrows Fourier transform of Laguerre functions

Some previous work

Several authors have considered this basis
\Rightarrow Higgins (1977) considered even/odd real basis and proved L2-completeness of complex basis
\curvearrowleft Christov (I982 and later) extended some of this and also applied the basis to solve PDE's
\Rightarrow Boyd (1990) offers some comparison with mapped functions
\Rightarrow Weideman (I992) consider basic properties of operators

Let's sketch how this is possible ...

Several of the requirements suggest we take off from the Fourier basis

$$
\psi_{k}(\theta)=e^{i k \theta}
$$

Rewrite this as (Szego'30)

$$
\begin{array}{rccc}
e^{i k \theta} & = & \cos (k \theta) & + \\
& = & i \sin (k \theta) \\
& = & \cos (|k| \theta) & + \\
& T_{|k|}(\cos \theta) & + & i \operatorname{sgnn}(k) \sin (|k| \theta) \\
& =\sqrt{\frac{\pi}{2}}\left[\tilde{P}_{|k|}^{(-1 / 2,-1 / 2)}(\cos \theta)\right. & +i \operatorname{sgn}(\theta) U_{|k|-1}(\cos \theta) \\
\text { Even } & & \text { Odd } \left.(\theta) \tilde{P}_{|k|-1}^{(1 / 2,1 / 2)}(\cos \theta)\right] .
\end{array}
$$

Let's sketch how this is possible ...

Can we generalize the Fourier basis by combining Jacobi polynomials in a special way:

Maintain orthogonality of the basis
Maintain connection to Fourier basis for FFT
Szego solved it (at least in spirit)
Theorem 2.2. (Szegö, [3]) For any $\gamma>-\frac{1}{2}$, the functions

$$
\Psi_{k}^{(\gamma)}(\theta)= \begin{cases}\frac{1}{\sqrt{2}} \tilde{P}_{0}^{(-1 / 2, \gamma-1 / 2)}(\cos \theta), & k=0 \\ \frac{1}{2}\left[\tilde{P}_{|k|}^{(-1 / 2, \gamma-1 / 2)}(\cos \theta)+i \operatorname{sgn}(k) \sin (\theta) \tilde{P}_{|k|-1}^{(1 / 2, \gamma+1 / 2)}(\cos \theta)\right], & k \neq 0\end{cases}
$$

are complete and orthonormal in $L^{2}\left([-\pi, \pi], \mathbb{C} ; w_{\theta}^{(\gamma, 0)}\right)$.

$$
w_{\theta}^{(\gamma, \delta)}(\theta)=w_{r}^{(\delta, \gamma)}(r(\theta))=(1+\cos \theta)^{\gamma}(1-\cos \theta)^{\delta}
$$

Let's sketch how this is possible

Let's orthonormalize them

$$
\psi_{k}^{(\gamma)}(\theta)= \begin{cases}\frac{\sqrt[*]{w_{\theta}^{(\gamma, 0)}} \tilde{P}_{0}^{(-1 / 2, \gamma-1 / 2)}(\cos \theta),}{\sqrt{2}} & k=0 \\ \frac{*_{w_{\theta}^{(\gamma, 0)}}^{2}}{2}\left[\tilde{P}_{|k|}^{(-1 / 2, \gamma-1 / 2)}(\cos \theta)+i \operatorname{sgn}(k) \sin (\theta) \tilde{P}_{|k|-1}^{(1 / 2, \gamma+1 / 2)}(\cos \theta)\right], & k \neq 0\end{cases}
$$

Note: Decay as

$$
\left(\cos \frac{\theta}{2}\right)^{\gamma}
$$

for

$$
\theta \rightarrow \pm \pi
$$

Let's sketch how this is possible

Taking it to the unbounded domain involves

$$
\begin{array}{ll}
\cos \theta=\frac{1-x^{2}}{1+x^{2}}, & (1-\cos \theta)=\frac{2 x^{2}}{x^{2}+1}, \\
\sin \theta=\frac{2 x}{x^{2}+1}, & (1+\cos \theta)=\frac{2}{x^{2}+1} .
\end{array}
$$

Leading to

$$
\begin{aligned}
\Phi_{k}^{(s)}(x) & :=\Psi_{k}^{(s-1)}(\theta) \\
& = \begin{cases}\frac{1}{\sqrt{2}} \tilde{P}_{0}^{(-1 / 2, s-3 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right), & k=0-1 \\
\frac{1}{2}\left[\tilde{P}_{|k|}^{(-1 / 2, s-3 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\frac{2 i x \operatorname{sgn}(k)}{x^{2}+1} \tilde{P}_{|k|-1}^{(1 / 2, s-1 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right], & k \neq 0\end{cases}
\end{aligned}
$$

Note: Still Chebyshev-like Jacobi polynomials

Let's sketch how this is possible ...

The orthonormal basis is

$$
\begin{aligned}
\phi_{k}^{(s)} & :=\sqrt[*]{w_{x}^{(s, 0)}} \Phi_{k}^{(s)}(x) \\
& = \begin{cases}\frac{2^{\left(\frac{s-1}{2}\right)}}{(x-i)^{s}} \tilde{P}_{0}^{(-1 / 2, s-3 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right), & k=0 \\
\frac{2^{\left(\frac{s}{2}-1\right)}}{(x-i)^{s}}\left[\tilde{P}_{|k|}^{(-1 / 2, s-3 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\frac{2 i x \operatorname{sgn}(k)}{x^{2}+1} \tilde{P}_{|k|-1}^{(1 / 2, s-1 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right], & k \neq 0\end{cases}
\end{aligned}
$$

Note:

$$
i \sqrt{2} \phi_{n}^{(1)}(x):=\phi_{n}(x)=\frac{(1-i x)^{n}}{\sqrt{\pi}(1+i x)^{n+1}}, \quad n \in \mathbb{N}_{0}
$$

So we have generalized the Wiener rational basis

Let's sketch how this is possible

What about the decay rate?

Proposition 2.5. For any $s>\frac{1}{2}$, the functions $\Phi_{k}^{(s)}(x)$ are complete and orthonormal in $L^{2}(\mathbb{R}$, $\left.\mathbb{C} ; w_{x}^{(s, 0)}\right)$. The functions $\phi_{k}^{(s)}(x)$ are complete and orthonormal in $L^{2}(\mathbb{R}, \mathbb{C})$. Furthermore, the decay rate of these functions can be characterized as

$$
\lim _{|x| \rightarrow \infty}\left|x^{t} \phi_{k}^{(s)}(x)\right|<\infty, \quad t \leq s
$$

Parametrized decay rates

$$
\phi_{k}^{(s)} \propto \frac{1}{|x|^{s}}, \quad|x| \rightarrow \infty
$$

What about efficiency ?

Recall

$$
\begin{aligned}
& \phi_{k}^{(s)}:=\sqrt[*]{w_{x}^{(s, 0)}} \Phi_{k}^{(s)}(x) \\
& = \begin{cases}\frac{2^{\left(\frac{s-1}{2}\right)}}{(x-i)^{s}} \tilde{P}_{0}^{(-1 / 2, s-3 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right), & k=0 \\
\frac{2^{\left(\frac{e}{2}-1\right)}}{(x-i)^{s}}\left[\tilde{P}_{|k|}^{(-1 / 2, s-s-3 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\frac{2 i x s \operatorname{sgn}(k)}{x^{2}+1} \tilde{P}_{|k|}^{(1 / 2, s-1 / 2)}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right], & k \neq 0 .\end{cases}
\end{aligned}
$$

Recall also the connections

$$
\begin{aligned}
& \tilde{P}_{n}^{(\alpha, \beta)}=\nu_{n, 0}^{(\alpha, \beta)} \tilde{P}_{n}^{(\alpha+1, \beta)}-\nu_{n,-1}^{(\alpha, \beta)} \tilde{P}_{n-1}^{(\alpha+1, \beta)} \\
& \tilde{P}_{n}^{(\alpha, \beta)}=\nu_{n, 0}^{(\beta, \alpha)} \tilde{P}_{n}^{(\alpha, \beta+1)}+\nu_{n,-1}^{(\beta, \alpha)} \tilde{P}_{n-1}^{(\alpha, \beta+1)}
\end{aligned}
$$

What about efficiency?

We can clearly use the connection coefficients to connect the different families as

$$
f(r)=\sum_{n=0}^{\infty} \hat{f}_{n}^{(\alpha, \beta)} \tilde{P}_{n}^{(\alpha, \beta)}(r) \longrightarrow f(r)=\sum_{n=0}^{\infty} \hat{f}_{n}^{(\alpha+A, \beta+B)} \tilde{P}_{n}^{(\alpha+A, \beta+B)}(r),
$$

If (A, B) are integer one has the (non-trivial) result

$$
\hat{f}_{n}^{(\alpha+A, \beta+B)=} \sum_{m=0}^{A+B} \lambda_{n, n+m}^{P} \hat{f}_{n+m}^{(\alpha, \beta)}
$$

Note: One "could" compute connection coefficients directly -- but is better not to

What about efficiency ?

Using this to create connectivity operators, the FFT can be used to evaluate/manipulate the new basis

$$
\begin{aligned}
& \text { 完 } \\
& \text { FFT speedup }\left(\frac{T_{\text {direct }}}{T_{\text {fit }}}\right) \\
& \text { Connectivity operators are sparse } \\
& \mathcal{O}(N \log N+(\gamma+1) N)
\end{aligned}
$$

Other basic properties of basis

\Rightarrow Simple convolution (for $s=1$ only)

$$
\phi_{k}^{(1)} \times \phi_{l}^{(1)}=\frac{1}{4 \sqrt{\pi}}\left[\phi_{k+l+1}^{(1)}-\phi_{k+l}^{(1)}\right],
$$

\Rightarrow Stiffness matrix is sparse and skew-symmetric
\Rightarrow Spectrum scales as $\mathrm{N}+\mathrm{Ks}$

$\mathrm{s} \backslash \mathrm{N}$	11	50	101	250	501
0.6	7.31	43.76	91.50	237.60	483.75
1.0	7.99	44.51	92.28	238.39	484.54
6.0	15.96	53.75	101.81	248.14	494.40
π^{2}	21.72	60.67	109.05	255.63	501.99
15.5	29.73	70.45	119.40	266.44	512.99

What about accuracy?

Close relation between regularity and convergence rate as expected.

Approximation theory closely related to classic results

Tests of increasing regularity

$$
\begin{aligned}
& f_{(1)}(x)=\operatorname{sgn}(x) e^{-x^{2}}, \quad f_{(2)}(x)=|x| e^{-x^{2}} \\
& f_{(3)}(x)=\operatorname{sgn}(x) x^{2} e^{-x^{2}}, \quad f_{(4)}(x)=\left|x^{3}\right| e^{-x^{2}}
\end{aligned}
$$

What about accuracy?

$f_{(5)}=\frac{1}{\sqrt[4]{x^{4}+1}} \quad f_{(6)}=\frac{x^{5}}{x^{6}+1}$
$f_{(7)}=\frac{1}{\left(x^{2}+1\right)^{7 / 8}} \quad f_{(8)}=\frac{\log \left(x^{2}+2\right)}{x^{2}+1}$.
Analysis is more involved here due to behavior at infinity

$$
f(x)=\frac{\arctan (x+3)}{x^{4}+1}
$$

Clearly superior to Hermite/Sinc

Example: Nonlinear Waves

We consider the ID KdV equation

$$
u_{t}+u_{x x x}+6 u u_{x}=0, \quad x \in \mathbb{R}
$$

Exact 2-soliton solution

Exponential decay

Example: Nonlinear Waves

Total evolution time, $t=-3.5, \ldots, 3.5$

	$N=50$	$N=100$	$N=150$	$N=200$	$N=300$	$N=400$	$N=500$
Fourier	$5.45 \mathrm{e}-01$	$4.53 \mathrm{e}+00$	$1.44 \mathrm{e}+01$	$3.47 \mathrm{e}+01$	$1.51 \mathrm{e}+02$	$3.92 \mathrm{e}+02$	$8.64 \mathrm{e}+02$
Hermite	$5.15 \mathrm{e}+00$	$4.88 \mathrm{e}+00$	$2.37 \mathrm{e}+01$	$7.05 \mathrm{e}+01$	$5.46 \mathrm{e}+02$	$2.13 \mathrm{e}+03$	$7.81 \mathrm{e}+03$
Sinc	$1.40 \mathrm{e}+00$	$2.31 \mathrm{e}+01$	$1.24 \mathrm{e}+02$	$4.63 \mathrm{e}+02$	$3.38 \mathrm{e}+03$	-	-
Mapped Cheb.	$8.90 \mathrm{e}-01$	$9.68 \mathrm{e}+00$	$3.72 \mathrm{e}+01$	$9.79 \mathrm{e}+01$	$3.60 \mathrm{e}+02$	$9.95 \mathrm{e}+02$	$2.65 \mathrm{e}+03$
Wiener, $s=1$	$9.43 \mathrm{e}-01$	$9.70 \mathrm{e}+00$	$3.49 \mathrm{e}+01$	$8.88 \mathrm{e}+01$	$2.99 \mathrm{e}+02$	$7.25 \mathrm{e}+02$	$1.66 \mathrm{e}+03$
Wiener, $s=2$	$2.06 \mathrm{e}+00$	$2.03 \mathrm{e}+01$	$7.45 \mathrm{e}+01$	$1.71 \mathrm{e}+02$	$5.34 \mathrm{e}+02$	$1.26 \mathrm{e}+03$	$2.81 \mathrm{e}+03$
Wiener, $s=5$	$2.31 \mathrm{e}+00$	$2.33 \mathrm{e}+01$	$8.35 \mathrm{e}+01$	$1.91 \mathrm{e}+02$	$6.20 \mathrm{e}+02$	$1.51 \mathrm{e}+03$	$3.18 \mathrm{e}+03$

L^{2} errors					
	$N=50$	$N=100$	order	$N=150$	order
Fourier	$1.36 \mathrm{e}+00$	$2.43 \mathrm{e}-03$	9.13	$2.00 \mathrm{e}-03$	0.474
Hermite	-	$3.29 \mathrm{e}-02$		$2.12 \mathrm{e}-03$	6.76
Sinc	$4.71 \mathrm{e}-02$	$1.74 \mathrm{e}-04$	8.08	$1.74 \mathrm{e}-04$	-
Mapped Cheb.	$3.84 \mathrm{e}+00$	$5.74 \mathrm{e}-01$	2.74	$5.96 \mathrm{e}-02$	5.59
Wiener, $s=1$	$3.54 \mathrm{e}+00$	$5.12 \mathrm{e}-01$	2.79	$5.57 \mathrm{e}-02$	5.47

Example: Nonlinear Waves

Let's consider a slightly modified equation

$$
u_{t}+6(u+1)^{2} u_{x}+u_{x x x}=0, \quad x \in \mathbb{R} .
$$

Solution

$$
u(x, t)=\frac{-4}{4(x-6 t)^{2}+1} .
$$

Algebraic decay

$$
N=150
$$

Example: Vlasov equations

We consider the I.5D consistent problem

$$
\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}+\frac{q}{m}\left[\left(E_{x}+v_{y} B_{z}\right) \frac{\partial f}{\partial v_{x}}+\left(E_{y}-v_{x} B_{z}\right) \frac{\partial f}{\partial v_{y}}\right]=0 .
$$

$$
\frac{\partial E_{x}}{\partial t}=-\frac{1}{\varepsilon_{0}} J_{x}
$$

$$
\frac{\partial B_{z}}{\partial t}+\frac{\partial E_{y}}{\partial x}=0
$$

$$
\rho(x, t)=\int f(x, v, t) \mathrm{d} v_{x} \mathrm{~d} v_{y}
$$

$$
\frac{\partial E_{y}}{\partial t}+c^{2} \frac{\partial B_{z}}{\partial x}=-\frac{1}{\varepsilon_{0}} J_{y} \quad \frac{\partial E_{x}}{\partial x}=\frac{\rho}{\varepsilon_{0}}
$$

$$
J_{x}(x, t)=\int v_{x} f(x, v, t) \mathrm{d} v_{x} \mathrm{~d} v_{y}
$$

Problem in kinetic plasma physics

$$
J_{y}(x, t)=\int v_{y} f(x, v, t) \mathrm{d} v_{x} \mathrm{~d} v_{y}
$$

DG-FEM in physical space,Wiener expansion in velocity space

Example: Vlasov solvers

Consider a two-stream instability as test

$f_{0}\left(x, v_{x}\right)=K v_{x}^{2} e^{-v_{x}^{2} / 2}(1+\varepsilon \cos (\pi x))$,

Example:Wave problem

Three dimensional wave problem

$$
\tilde{u}_{t t}=c^{2} \Delta \tilde{u}, \quad(x, t) \in(\Gamma,[0, T])
$$

Assuming spherical symmetry yields semi-infinite problem

$$
u_{t t}=c^{2}\left[u_{\rho \rho}+\frac{2}{\rho} u_{\rho}-\frac{n(n+1)}{\rho^{2}} u\right]
$$

With solution

$$
\begin{gathered}
u(\rho, t)=\cos (c t) \hat{u}(\rho) \\
\hat{u}_{n, 1}(\rho)=j_{n}(\rho)=\sqrt{\frac{\pi}{2 \rho}} J_{n+1 / 2}(\rho) \\
\hat{u}_{n, 2}(\rho)=y_{n}(\rho)=\sqrt{\frac{\pi}{2 \rho}} Y_{n+1 / 2}(\rho),
\end{gathered}
$$

Example:Wave problem

Cost:
Laguerre method: 391 sec Mapped Chebychev: 1019 sec
\Rightarrow Wiener method: 39 sec

Mapped Chebychev and Wiener expansion clearly superior

Due to FFT and much larger time-step

Summary on Part I

It seems that expansions based on these functions have interesting properties
\Rightarrow they are accurate
\Rightarrow the basis is flexible
\Rightarrow the evaluation is fast
the spectral properties of operators are good
\Rightarrow other applications -- windowed Fourier series; basis for infinite FEM elements etc

Part II: Local time-stepping

Problem: Small cells, even just one, cause a very small global time-step in an explicit scheme.

$$
\Delta t \leq C \sqrt{\varepsilon \mu} \Delta x \simeq C_{1} \sqrt{\varepsilon \mu} \frac{N^{2}}{h}
$$

A significant problem for large scale complex applications

Old idea: take only time-steps required by local restrictions.
Old problems: accuracy and stability

Local time-stepping

Substantial recent work by Cohen, Grote, Lanteri, Piperno, Gassner, Munz etc

Most of the recent work is based on LF-like schemes, restricted to 2nd order in time.

Layout for multi-rate local time-stepping

$$
\begin{aligned}
& t_{n+1} \quad \longrightarrow \quad t_{n+1} \\
& t_{n+3 / 4}
\end{aligned}
$$

$$
\begin{aligned}
& t_{n+1 / 2} \\
& t_{n+1 / 4}
\end{aligned}
$$

Local time-stepping

Challenge:Achieving this at high-order accuracy

For all interior cells $\quad u_{n+1}=u_{n}+\frac{\Delta t}{12}\left[23 F\left(u_{n}\right)-16 F\left(u_{n-1}\right)+5 F\left(u_{n-2}\right)\right]$

At interface cells $\underset{u_{n+12}}{ } \quad u_{n+1 / 2}=u_{n}+\frac{\Delta t}{12}\left[17 F\left(u_{n}\right)-7 F\left(u_{n-1}\right)+2 F\left(u_{n-2}\right)\right]$
This generalizes to many levels and arbitrary time-step fractions

Local time-stepping

Four Time-Level Local Time-Stepping Bistatic RCS for Ogive (nose-on)

- One time level:
- $\mathrm{N}_{\mathrm{o}}=23742$
- Two time levels:
- $\mathrm{N}_{\circ}=151(<1 \%)$
$-N_{1}=23591$ (99\%)
- Three time levels:
- $\mathrm{N}_{\mathrm{o}}=151(<1 \%)$
- $\mathrm{N}_{1}=1959$ (8\%)
- $N_{2}=21632$ (91\%)

Computations by HyperComp Inc

- Four time levels:
- $\mathrm{N}_{0}=151(<1 \%)$
- $N_{1}=1959$ (8\%)
- $N_{2}=12622$ (53\%)
$-N_{3}=9010(38 \%)$

Local time-stepping

Segmentation is done in preprocessing

Extension to plasma physics/PIC

Basic approach \checkmark Do fields as fast scale Particles as slow scale

Extension to plasma physics/PIC

These are initial results
Significant potential for problems where :
$\sqrt{ }$ Hyperbolic cleaning is used
$\sqrt{ }$ Significant grid induced stiffness
$\sqrt{ }$ Cost dominated by particle push

This is often the case for complex applications

Part III: CPUs vs GPUs

Notice the following

The memory bandwidth and the peak performance on Graphics cards (GPU's) is developing MUCH faster than on CPU's

At the same time, the mass-marked for gaming drives the prices down -- we have to find a way to exploit this !

But why is this?

Target for CPU:

\checkmark Single thread very fast
\checkmark Large caches to hide latency
Predict, speculate etc

Lots of very complex logic to predict behavior

But why is this?

For streaming/graphics cards it is very different

Throughput is what matters
\checkmark Hide latency through parallelism
Push hierarchy onto programmer

Much simpler logic with a focus on performance

GPUs I0I

GPU layout

\checkmark I GPU $=30 \mathrm{MPs}$ \checkmark I MP has I IU, 8 SP, I DP \checkmark I MP has 16 KiB shared and 32 KiB Register memory $\checkmark 240$ (5I2) threads \checkmark Dedicated RAM at $140 \mathrm{~GB} / \mathrm{s}$ \checkmark Limited caches

GPUs IOI

Gains	Losses
\oplus Memory Bandwidth	〇 Recursion
$(140 \mathrm{~GB} / \mathrm{s}$ vs． $12 \mathrm{~GB} / \mathrm{s})$	〇 Function pointers
\oplus Compute Bandwidth	〇 Exceptions
（Peak： $1 \mathrm{TF} / \mathrm{s}$ vs． $50 \mathrm{GF} / \mathrm{s}$,	〇lEEE 754 FP compliance
Real： $200 \mathrm{GF} / \mathrm{s}$ vs． $10 \mathrm{GF} / \mathrm{s}$ ）	© Cheap branches（i．e．ifs）

Already here it is clear that programming models／codes may have to undergo substantial changes－－and that not all will work well

GPUs 101

$\sqrt{ }$ Genuine multi-tiered parallelism $\sqrt{ }$ Grids
$\sqrt{ }$ blocks threads
$\sqrt{ }$ Only threads within a block can talk $\sqrt{ }$ Blocks must be executed in order
$\sqrt{ }$ Grids/blocks/threads replace loops
$\sqrt{ }$ Until recently, only single precision
$\sqrt{ }$ Code-able with CUDA (C-extension)

GPUs 101

Memory model:

$\sqrt{ }$ Registers
 $\sqrt{ }$ Local shared \checkmark Global

GPUs IOI

$\sqrt{ }$ Lots of multi-processors (about 30)
... communicate through global mem
$\sqrt{ }$ Registers, shared memory, and threads communicate with low latency
... but memory is limited ($16-32 \mathrm{KiB}$)

GPUs IOI

\checkmark Global memory (4GiB/GPU) is plentiful

Let's consider an example

Matrix transpose

Memory bandwidth will be a limit here

Let's consider an example

Using just global memory

As CPU

Reading from global mem:

stride: $1 \rightarrow$ one mem.trans.

Writing to global mem:

Let's consider an example

Using just texture(read)+global(write) memory

Getting better

Let's consider an example

Transpose block-by-block in shared memory -

 this does not care about strides

Let's consider an example

Additional improvements are possible for small matrices - bank conflicts in shared memory

A factor of 7-8 over CPU

CPUs vs GPUs

The CPU is mainly the traffic controller ... although it need not be
$\sqrt{ }$ The CPU and GPU runs asynchronously
$\sqrt{ }$ CPU submits to GPU queue
$\sqrt{ }$ CPU synchronizes GPUs

$\sqrt{ }$ Explicitly controlled concurrency is possible

GPUs overview

\checkmark GPUs exploit multi-layer concurrency
The memory hierarchy is deep
Memory padding is often needed to get optimal performance

Several types of memory must be used for performance
\checkmark First factor of 5 is not too hard to get
\checkmark Next factor of 5 requires quite some work
\checkmark Additional factor of 2-3 requires serious work

Nodal DG on GPU's

So what does all this mean ?
$\sqrt{ }$ GPU's has deep memory hierarchies so local is good \Rightarrow The majority of DG operations are local
$\sqrt{ }$ Compute bandwidth >> memory bandwidth \Rightarrow High-order DG is arithmetically intense
$\sqrt{ }$ GPU global memory favors dense data

- Local DG operators are all dense

With proper care we should be able to obtain excellent performance for DG-FEM on GPU's

Nodal DG on GPU's

Nodes in threads, elements in blocks

Other choices:
\checkmark D-matrix in shared, data in global (small N) \checkmark Data in shared, D-matrix is global (large N)

Nodal DG on GPU's

DG-FEM on four GPU one card

DG-FEM on one GPU

GPU and CPU Flop Rates and Speedups: 4 Nodes

Nodal DG on GPU's

Where you need it most

Also in double precision
... and for larger and larger grids

Nodal DG on GPU's

Utilization of resources where they matter most

Nodal DG on GPU's

Similar results for DG-FEM Poisson solver with CG

Note: No preconditioning

Combined GPU/MPI solution

MPI across network

Good scaling when problem is large

Example - a Mac Mini

$K=201765$ elements 3 rd order elements

Example: Military aircraft

Computation by N. Godel

	CPU global	$29 \mathrm{~h} 6 \min 46 \mathrm{~s}$	1.0
	GPU global	39 min 1 s	44.8
	GPU multirate	11 min 50 s	147.6

Nodal DG on GPU's

Not just for toy problems

228K elements
5th order elements 78 m DOF
68k time-steps
Time ~ 6 hours

711.9 GFlop/s on one card

Computation by N. Godel

Nodal DG on GPU's

Several GPU cards can be coupled over MPI at minimal overhead (demonstrated). Lets do the numbers

One 700GFlop/s/4GB mem card costs $\sim \$ 8 \mathrm{k}$
So $\$ 250 \mathrm{k}$ will buy you 16-18TFlop/s sustained
This is the entry into Top500 Supercomputer list !
... at 5\%-10\% of a CPU based machine

This is a game changer -- and the local nature of DG-FEM makes it very well suited to take advantage of this

Concluding remarks

While high order methods in general and DG-FEM in particular are widely used, there are still things to be done.

Combining
\checkmark New non-polynomial basis functions
Old time-stepping methods in new ways Understanding and exploiting the interplay between algorithms and new architectures
can lead to substantial computational advances.
Changing the methods from toys to tools

Thank you!

Jan.Hesthaven@Brown.edu http://www.cfm.brown.edu/people/jansh/

