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Key challenge

Central challenge in many computational
modeling and design efforts

Computational time

This is caused by

v Large problems

V' Non-linearity

v Open domains

v/ Requirement for high accuracy
v/ Long time integration

V' Small cells
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Overview of talk

Three different ways to combat this problem

v Recall DG-FEM

v Part |: A new basis well suited for open domains

v Part ll: Local time-stepping

Vv Part lll: GPU acceleration of DG-FEM

Mistake - several talks in one - Sorry !
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Recall DG-FEM (for EM)

Consider Maxwell’s equations
8&E—V><Hz—j, ,u@tH—l—VxE:O,

Write it on conservation form as
— 4+ V- F=—-J F=
ot
0 = ZDk QN—Zqua :
and assume

dq —ex H | B
éex FE =1 H
Represent the solution as
an B A .
5, +V -Fy—Jy|L(x)dx= ¢ Li(x)n- |[Fy — F] dx.
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Recall DG-FEM (for EM)

On each element we then define

Mij = DLl'Lj dx, SU = /DVLJLZ dx7 Fl] = %Lll’] dx,
oD

With the numerical flux given as

e [ Gnox (B~ (B) o
F-r {nanx[BME]), Q=0 -0

To obtain the local matrix based scheme

Sl S . A 5
Z+S-F—MJ:F;%-[F—F],

et
d

One then typically uses an explicit Runge-Kutta
or a LeapFrog method to advance in time

Thursday, July 23, 2009



Recall DG-FEM

The advantages of this approach are many
and the scheme is well understood :

v/ High-order, geometrically flexible, robust,
explicit etc

V' Well understood

v/ Generalizes to broad class of problems

... but a central criticism is speed - or lack of it !
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Part I: Unbounded problems

The need to numerically solve problems on
semi-infinite/infinite domains arises in many
applications:

= Acoustic/Electromagnetic/Elastic scattering
= Kinetic/Boltzmann models
= Computational chemistry
= Molecular dynamics ——

= Numerical relativity
- etc Mie Scattering,

small particle

Mie Scattering,
large particle
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Introduction

= Approximate/absorbing boundary conditions
= Typically problem dependent

= Domain truncation
= \Where to truncate ?

= |nfinite expansions
= Hermite/Laguerre polynomials/functions
= Expensive/inflexible - require exp(-|x|)
... but O(N) spectrum
= Rational/mapped Chebyshev methods (Boyd)
Amenable to FFT
= ....but O(N*N) spectrum
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Objective

What we seek is a new basis set with the properties
Controllable asymptotic decay of basis
The FFT can be used to evaluate
The spectrum is O(N) for |st order operator

..but is it possible ?

Motivation - Wiener(‘49) proposed the rational basis

o) s — (1 i) n € Ny X —, |x| — 00

Il
(Lt iz)n T 2

= Orthonormal (and can be made complete)
= Fourier transform of Laguerre functions
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Some previous work

Several authors have considered this basis

= Higgins (1977) considered even/odd real basis and
proved L2-completeness of complex basis

= Christov (1982 and later) extended some of this and
also applied the basis to solve PDE'’s

= Boyd (1990) offers some comparison with mapped
functions

= VWWeideman (1992) consider basic properties of
operators
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Let’s sketch how this is possible ...

Several of the requirements suggest we take off from
the Fourier basis

Y(0) = ™.
Rewrite this as (Szego’30)
ekl = cos(kb) + i sin(k6)
- cos(|k| 6) + i sgn(k) sin(|k| 0)
- T4/ (cosb) +  isgn(k)sin(0) Up_1(cos 0)

— \/7 [P‘( X 1/2 _1/2)((:03 0) + isgn(k) sin(0) P‘(k1|/211/2)( 9)}

Even Odd
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Let’s sketch how this is possible ...

Can we generalize the Fourier basis by combining
Jacobi polynomials in a special way:

Maintain orthogonality of the basis

Maintain connection to Fourier basis for FFT

Szego solved it (at least in spirit)

Theorem 2.2. (Szego, [3]|) For any v > — %, the functions

)
L]50(_1/2’7_1/2)((:089), =10
() V2

0, (60) = 4

I

Sl ) 5 . 5(1/2, 1/2
| §[P|§€| /2.7 /)(COSQ)—|—zsgn(k)811r1(9)P|(,€|/_17Jr / )(COSQ)], k=0

are complete and orthonormal in L2([— (B wé%o))

wi'90) = WP (r(8)) = (1+cos8) (1 —cos )’
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Let’s sketch how this is possible ...

Let’s ort

honormalize them

,
/0 (7,0)
D0 p-12a-1/2)

cosf),

k=0
(7) 0) — V2
' (0) =<
* wé’y,O) 3 -
‘ [P|(k_|1/2,v—1/2)(cos 0) +isgn(k) sin(@)P|§€1|/_2’17+1/2)(cos 9)}, k+#0
\
0.6 — e ‘ -
04} *' - .

Re {12}

Note: Decay as

0 @

GO —
2

Im {y®}

for

0 — +m
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Let’s sketch how this is possible ...

Taking it to the unbounded domain involves

cosf = 1;?, (1—cosf) = 9522—93—21’
sinf = :1322—7—:1’ (1+cosf) = inl.
Leading to
o) (x) == wPTI(0) y=s8—1
( \}_15( 1/2,8—3/2>G;_i2>’ k=0

2
(—1/2,5—3/2)( 1 =@ 2ixsgn(k) 5(1/2,s—1/2)( 1 —a”
[p| <1+x2>+ 21 ki 15a2) ) 7O

\

Note: Still Chebyshev-like Jacobi polynomials
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Let’s sketch how this is possible ...

The orthonormal basis is

o) = Yuwl? o) (x)

(

2(T'>PO(1/2,53/2)(1—332>, _—
(z —1)° 1+x
= X

2(%_1) »(—=1/2,5-3/2) 1—$2 2i:csgn(k)~(1/2’s_1/2) 1—5[32
(fv—i)slplk (1+$2)+ 21 ki 722 )| 7O
\

Note

(1 —2x)"

iV2 ) () = nlw) = Jr(1 +iz)n L n € No

So we have generalized the Wiener rational basis
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Let’s sketch how this is possible ...

What about the decay rate ?

Proposition 2.5. For any s > %, the functions q),gs)(x) are complete and orthonormal in L2(IR,

C; wg(f’o)). The functions qb,(j)(x) are complete and orthonormal in L*(R, C). Furthermore, the

decay rate of these functions can be characterized as

0.6

0471

—~ 027
S

Parametrized
decay rates

= 00

Q
02

047

—0.6

0.6 : : ‘ — : 1
04} l
—04}

—0.6
-0.8

s=4, k=1..4
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What about efficiency !

Recall

(s) . %/, (50) g(s) —

&=l 6 () s=1: Chebysheyv -

ey FFT is possible
2\ 2 ~(—1/2,5—3/2) 1 — 22 k=0
(z—i)s" " 1+22 ) -
= X

2(%‘1) 2 s 1 — 2 21 k) ~ s— 1 — 22
(x_i)s[Pl(kll/z 3/2)(1+i2)+ z;sinl( )P|(kl|/_2,1 1/2)<ﬁi2)], k= 0.

Recall also the connections

ACOBEALI]_ e o)

n,—1"n

BB _ B)paptD) | (0.a)pmp)
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What about efficiency !

We can clearly use the connection coefficients to
connect the different families as

r) = Z féa,ﬁ)pqga,ﬁ) (ry —  f(r Z f (a+A 5+B)p(a+A ﬁ+B)( ),
n=0

n=0

If (A,B) are integer one has the (non-trivial) result

A+B
f(O{—|—A O Z )\n n+m (Ot 3) :

Note: One “could” compute connection coefficients
directly -- but is better not to
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What about efficiency !

Using this to create connectivity operators, the FFT can
be used to evaluate/manipulate the new basis

N
512
800

1024
1600
2025
2916

"q:) .“ ConneCUVlt)’ Operators are sparse
M - It ~=0,6=0 y=1,0=1
T@ 3 | 20f7 - 20f7
E 4 0 ol
8 2 F' 4 0 “ 0
\F/ ’ i
@ 'l -10 -0
E 1 ,’ 2% 10 0 10 '.éo -20_5' -10 0 10 ;.6
g L \ . 7:2.15:2 . A,:3,15:3
0 . . 10 10
200 400 600 L
FET speedup (%) 10 -10
s—5|s—-6|ls=71s=81s=9]s=10 T2 00 10 20 20 10 0 10 20
2.4 2.3 2.2 1.9 1.9 1.8 5
56| 50| 48| 45| 41 37| Cost scales like
8.1 7.1 7.0 6.4 6.1 9.5
16.3| 153 | 135 129 | 120 11.2 (Q(N log N + (,y ik 1)N)
23.2 | 21.2 | 200 | 174 | 16.8 15.9
489 | 339 | 376 | 28.7 | 27.3 24 .4
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Other basic properties of basis

= Simple convolution (for s=1 only)

1 1 1 1 1

= Stiffness matrix is sparse and skew-symmetric

= Spectrum scales as N+Ks

s\ N 11 50 101 250 501
06 | 7.31 | 4376 | 91.50 | 237.60 | 483.75
1.0 | 799 | 4451 | 92.28 | 238.39 | 484.54
6.0 | 15.96 | 53.75 | 101.81 | 248.14 | 494.40

7 | 21.72 | 60.67 | 109.05 | 255.63 | 501.99
15.5 | 29.73 | 70.45 | 119.40 | 266.44 | 512.99
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What about accuracy !

i Tests of increasing regularity
04 . i 2 2
ol N, | fay(z) = sgn(z)e ™, fo)(z) = |z[e™™,
0 D ,,;'“”, = .2 2
02l RN ] f3)(x) = sgn(z)z?e ™", fuylz) = |z°|e™™.
-0.8 1 Function f;) . Function f(3)
a 10 ‘ 10 :
Close relation between 5
regularity and convergence o | | o | |
rate as expected. S P oo

Function f(3) Function fiy,

Approximation theory
closely related to classic
results
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What about accuracy !

_arctan(x + 3)

Clearly superior to
Hermite/Sinc

Function f)

10°

_______

Analysis is more involved here :
due to behavior at infinity | B

10' 10° 10" 10°
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Example: Nonlinear VWaves

We consider the |D KdV equation

U + Ugpy + Ouu, = 0, r € R

"

!.WNNM I |

!’ A

A
'"‘i‘.‘.’!w’-""’»?»&%?&““’a‘;‘M"WMWW‘W‘Wgf i

Tl
|

Exact 2-soliton solution \\\i\\\m\lm‘

Ni”nnm

il
i

Exponential
decay

5




Example: Nonlinear VWaves

Total evolution time, t = —3.5,....,3.5
N =50 N =100 N =150 N =200 N =300 N =400 N =500
Fourier 5.45e-01 | 4.53e+00 | 1.44e+01 | 3.47e+01 | 1.51e+02 | 3.92e+02 | 8.64e+02
Hermite 5.15e+00 | 4.88e+00 | 2.37e+01 | 7.05e+01 | 5.46e+02 | 2.13e+03 | 7.81e+03
Sinc 1.40e4+00 | 2.31e+01 | 1.24e+02 | 4.63e+02 | 3.38e+03 — —
Mapped Cheb. 8.90e-01 | 9.68e+00 | 3.72e+01 | 9.79e+01 | 3.60e4+02 | 9.95e4+02 | 2.65e+03
Wiener, s =1 9.43e-01 | 9.70e4+00 | 3.49e+01 | 8.88e+01 | 2.99e+02 | 7.25e+02 | 1.66e+03
Wiener, s =2 | 2.06e+00 | 2.03e+01 | 7.45e+01 | 1.71e+02 | 5.34e+02 | 1.26e4+03 | 2.81e4+03
Wiener, s =5 | 2.31e+00 | 2.33e+01 | 8.35e+01 | 1.91e+02 | 6.20e+02 | 1.51e4+03 | 3.18e+03
L? errors

N =50 | N =100 | order | N =150 | order

Fourier 1.36e+00 | 2.43e-03 9.13 | 2.00e-03 | 0.474

Hermite — | 3.29¢-02 | —— | 2.12e-03 6.76

Sinc 4.71e-02 | 1.74e-04 8.08 | 1.74e-04 | ——

Mapped Cheb. | 3.84e+00 | 5.74e-01 2.74 | 5.96e-02 5.59

Wiener, s =1 | 3.54e4+00 | 5.12e-01 2.79 | 5.57e-02 5.47
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Example: Nonlinear VWaves

Let’s consider a slightly modified equation

Solution “
107 |« + Sinc
u(x t) = —4 . S Hermite
| 4(£C o 6t)2 + 1 § ' -+=  Fourier
R 107 - = Mapped Chebyshev
= ’ — Wiener, s =1
Algebraic decay ol T D i I
N=150
107°
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Example: Vlasov equations

We consider the |.5D consistent problem

of ., 9f . a 9f _ 9f | _
ot +Us ox + m (B +vyBz) o +(By UmBz)@vy =0

aE{E 1 (9Bz_|_(9Ey_ IO(x?t) — /f(.f,’l},t) dvxdvy

ot :_5_0Jx Ot Ox =0
8Ey QaBz 1 8Ex 0 J:c(xat) = /Ua;f(x,v,t)dvxdvy
_—|—C _:—_Jy —
815 (933 €0 (933 €0

Jy(x,t) = [vy f(z,v,t)dv,dv,
Problem in kinetic plasma physics

DG-FEM in physical space,Wiener expansion in
velocity space
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Example: Vlasov solvers

Consider a two-stream T S
instability as test SV YN
fo(z,v,) = Kvg e~ e/ (14 e cos(mz)), i -

x10

»N
T

E-field energy

)
T

\ | | - .'4) |

E-field energy

0
0 5 10 15 20
time t

= Wiener
= PIC-1
===PIC-2
"""" PIC-3
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Example: Wave problem

Three dimensional wave problem

iltt — 02 A?I,

(z,1) € (I, [0,T]),

Assuming spherical symmetry yields semi-infinite problem

With solution

u(p,t) =cos(ct)i(p).

A

Un,1(p) =

un,Q(p) =

Utt — 02[ 2

Upp + —Up —

0

10°

n(n+1)

02

Parameter n =1

u .

10'

107

Number of modes, N

Parameter n = 11

10
Number of modes, N

10°

Parameter n =4

10'

10

Number of modes, N

Parameter n = 21

.......
C

-4 .
== Wiener

== Laguerre
vo Chebyshev

<
.,

$r
,
'
r
i
o

10’

10°

Number of modes, N
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Example: Wave problem

1072F

oy v s mime =TT

\\\\\\\ Mapped Chebyshev|>

6
10 N ‘
10° 10’ 10? 10°

0.2
0.15-
‘ .
D0 s

A Y

(N
0.05- .

Cost:

"= Laguerre method: 391 sec

=» Mapped Chebychev: 1019 sec
= Wiener method: 39 sec

Mapped Chebychev and
Wiener expansion clearly
superior

Due to FFT and much
larger time-step
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Summary on Part |

It seems that expansions based on these functions
have interesting properties

=) they are accurate

= the basis is flexible

= the evaluation is fast

= the spectral properties of operators are good

= other applications -- windowed Fourier series;
basis for infinite FEM elements etc
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Part |l: Local time-stepping

Problem: Small cells, even just one, cause a very small
global time-step in an explicit scheme.

N2
I At < C\/euAx ~ 01«/€,LLT

A significant problem for large scale complex applications

Old idea: take only time-steps required by local restrictions.

Old problems: accuracy and stability
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Local time-stepping

Substantial recent work by
Cohen, Grote, Lanteri, Piperno, Gassner, Munz etc

Most of the recent work is based on LF-like schemes,
restricted to 2nd order in time.

Layout for multi-rate local time-stepping

tn+1 tn+ |
tn+3/ 4

tn+ 1/2

tn+ 1/4

t t

At 2 At 4 At
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Local time-stepping

Challenge: Achieving this at high-order accuracy

tI‘H‘ 1 tl’H‘ 1

t1n

t, @ -_— t

t1n

tn' 1 tn— 1
tn-2

, , At
For all interior cells «..=u, +E[23F(un)—16F(un_1)+5F(un_z)]

. At
At interface cells U,y = U, +E[17F (u,)=TF (u, )+ 2F(u,.,)]

This generalizes to many levels and arbitrary time-step fractions
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Local time-stepping

4.0

w
(<)

Normalized Execution Time
n
o

—
o

0.0

Local Time-Stepping Levels

Four Time-Level Local Time-Stepping

Bistatic RCS for Ogive (nose-on)

-40

RCS (dB)

— 2levels, 2At

1level, At

3 levels, 4At
4 levels, 8At

0 90
One time level:

- N, = 23742

Two time levels:

- N_ = 151 (<1
= 23591 (99

%
%

I
2
|

)

Three time levels:

- N, = 151 (<1%)
- N, = 1959 (8%)
- N, = 21632 (91%)

Four time levels:

- N, = 151 (<1%)
- N, = 1959 (8%)
- N, = 12622 (53%)
- N, = 9010 (38%)

180 270 360
Azimuth (deg)

Computations by
HyperComp Inc
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Local time-stepping

Segmentation is done in preprocessing

Level distribution 3D cavity

250
200
150
100
50
0

Level distribution airplane

Elements

35000
30000
25000
20000+

. 15000+
|deally suited for local DG scheme 10000-

5000+
0

2
c
@
£
3
11}

1 2 3 4 65 6 7 8 9
Known problems:

No known stability proof
Time-step is not optimal (about 80%)
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Extension to plasma physics/PIC

Basic approach -
Vv Do fields as fast scale
V' Particles as slow scale

DB: pic-0200.silo
Cycle: 200 Time:7.73034e-11

Mesh
var: mesh

var: =

-—I 7726400 M) w
— 1.3202407 r_,

—
—_— )
8610006 x;-.«Ml
-~
-Iq.m-ﬂ':“\)"?"
— 1.430e406 T .Zﬂ(;ﬂ»mﬁ"
1.25%
1.772e407
Min: 1255
o’ 5 /
L//
T~ -~ xig (v 0
i
—
e
—
.
o ~—J
Y 4 ///
I ~

~—] //;ser: andreas
Mon Jul 20 12:51:55 2009

Particle Energy []]

0.04600

0.04595

0.04590

RK4/MR-AB3 Particle Energy [KV Beam]

0.04585F i

0.045801 i

0.04575} |

o.0as70l| — RK4 |
' —  10x multi-rate AB3
— 20x multi-rate AB3

0'04568.0 0.5 1.0 1.5 2.0 2.5
Simulation time [s] le-10

Simulated seconds per CPU second

le-13

RK4/MR-AB3 PIC Run-Time [KV Beam]

2.0

RK4
10x multi-rate AB3
20x multi-rate AB3

0'%.0 0.5 1.0 1.5
Simulation time

2.0 2.5

le-10
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Extension to plasma physics/PIC

These are initial results

Significant potential for problems where :
v Hyperbolic cleaning is used

v Significant grid induced stiffness
v Cost dominated by particle push

This is often the case for complex applications
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Part lll: CPUs vs GPUs

Notice the following

120 0K GTZ00
G‘H:I HYIDHA GPL
Tira i 11zl CPLI R0 a2
o o a n - g0 Ultza
~ GEEH‘_,--*"’ ~~
A / N =
(D a0 ;”; O G71
@)
c T - %0 3.2 GHz
-t | o7l _ff' N3 . 3.0 GHz Harpertown
B y O L
= / v o ——e »
N®) Fd (4] Jan Jun Apr Jun Mar Nov May Jun
cC NVa0 7 o 2003 2004 2005 2006 2007 2008
EE% E#F Harpertown R
20 | NV30_~~ 3 Woodcrest GT200 = GeForce GTX 280 71 = GeForce 7500 6TX WV35 = GeForce FX 5950 Ultra
P 2 Prescott EE G82 = GeForoe 800 GTX G70 = GeForce 7800 GTX N30 = GaFarce £ 5800
" o= G&0 = GeForoe 8800 GTX W4l = GaForoe 600 Uitra
[

200%F 2004 2005 200a 2007

The memory bandwidth and the peak performance on Graphics
cards (GPU’s) is developing MUCH faster than on CPU’s

At the same time, the mass-marked for gaming drives the
prices down -- we have to find a way to exploit this !
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But why is this ?

Target for CPU:
v Single thread very fast
v Large caches to hide latency

v Predict, speculate etc

Lots of very complex logic
to predict behavior
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But why is this ?

For streaming/graphics cards it is very different
v Throughput is what matters

v' Hide latency through parallelism

v' Push hierarchy onto programmer

Units

Sl Much simpler logic with
s A1 a focus on performance
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GPUs 101

GPU layout

Instruction

4

4

GPU = 30 MPs

MP has | IU,8 SP, | DP
MP has |6KiB shared and
32 KiB Register memory

v'240 (512) threads
v Dedicated RAM at 140GB/s
v Limited caches

SEEEEEEE EEEEEEEN
SEEEEEEE EEEEEEEN
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GPUs 101

Gains Losses

@ Memory Bandwidth @ Recursion

(140 GB/s vs. 12 GB/s) @ Function pointers

@ Compute Bandwidth @ Exceptions

(Peak: 1 TF/s vs. 50 GF/s, @ |EEE 754 FP compliance
Real: 200 GF/s vs. 10 GF/s) @ Cheap branches (i.e. ifs)

Already here it is clear that programming models/codes
may have to undergo substantial changes -- and that not
all will work well
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GPUs 101

Computational Grid

v Genuine multi-tiered parallelism
Vv Grids
v blocks
V threads

v Only threads within a block can talk
Vv Blocks must be executed in order

v Grids/blocks/threads replace loops

v Until recently, only single precision

v Code-able with CUDA (C-extension)
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GPUs 101

Shared Memory Shared Memory

Registers Registers Registers Registers

Global
I I I

Constant

Texture

Memory model:

v Registers
Vv Local shared
v Global
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GPUs 101

Shared Memory

v Lots of multi-processors (about 30)

Registers Registers

... communicate through global mem

v Registers, shared memory, and
threads communicate with low latency

Local

... but memory is limited (16-32 KiB) 11—

Global
I B

Constant

Texture
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GPUs 101

v Global memory (4GiB/GPU) is
plentiful

... but latency is high (512 bit bus)
...and stride one is preferred

v Texture is similar to global memory

... allows more general access patterns
... but it is read only

Type Per Access Latency
Registers thread R/W 1
Local thread R/W 1000
Shared block  R/W 2
Global grid R/W 1000

Constant  grid R/O 1-1000
Texture grid R/O 1000

Shared Memory

Registers Registers

Local

Global
I B
Constant

Texture
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Let’s consider an example

Matrix transpose

afaz]arfar
1 &3 1
E1 B3 B3 1
o fanfafar

B 31 3
BB &3 B8
BBl 51 B8
o fa ] o

Memory bandwidth will be a limit here
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Let’s consider an example

Using just global memory

- [~—= Naive]
Of o N .
m
55 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrr O —® @ .-
Q 5
<
DAL S
: As CPU
3 e
>
@] 3
€ 2 s
) 3
= 1
| R ———.—=—.
0 .
10° 10’ 10°
Matrix size [Bytes]
Reading from global mem: Writing to global mem:
ot Lt v o
stride: 1 — one mem.trans. stride: 16 — 16 mem.trans.!
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Let’s consider an example

Using just texture(read)+global(write) memory

30

o—e Naive
o—e Textures

N
ul
T

N
o
T

Memory Bandwidth [GB/s]
= =
C? Ul

10° 10’ 10°
Matrix size [Bytes]

Getting better
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Let’s consider an example

Transpose block-by-block in shared memory -
this does not care about strides

w
o

N
Ul

3 *—e Naive
N e e—e Textures |
e—e Shared

=
Ul

=
o

Memory Bandwidth [GB/s]
N
o

Matrix size [Bytes]
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Let’s consider an example

Additional improvements are possible for small
matrices - bank conflicts in shared memory

B0
e—e Najve

] I B o—e Textures

y o] N S e—e Shared |
o—e Conflict-Free

Memory Bandwidth [GB/s]
=
ul

=
o

10° 10’ 10°
Matrix size [Bytes]

A factor of 7-8 over CPU
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CPUs vs GPUs

The CPU is mainly the traffic controller
... although it need not be

v The CPU and GPU runs
asynchronously

CPU

v/ CPU submits to GPU queue

v/ CPU synchronizes GPUs

v Explicitly controlled concurrency
is possible
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GPUs overview

v GPUs exploit multi-layer concurrency

The memory hierarchy is deep

v

v/ Memory padding is often needed to get optimal
performance

v

Several types of memory must be used for
performance

<

First factor of 5 is not too hard to get

<

Next factor of 5 requires quite some work

<

Additional factor of 2-3 requires serious work
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Nodal DG on GPU'’s

So what does all this mean ?

v/ GPU’s has deep memory hierarchies so local is good
The majority of DG operations are local

v Compute bandwidth >> memory bandwidth
High-order DG is arithmetically intense

v/ GPU global memory favors dense data

Local DG operators are all dense
’—> Flux Gather |- Flux Lifting —

uk OpuF

L F(u*) — Local Differentiation 1

With proper care we should be able to obtain excellent
performance for DG-FEM on GPU’s
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Nodal DG on GPU'’s

Nodes in threads, elements in blocks

| Map every
" DG-Element '!5/
to a =
CUDA Block| /<

Grid 0

Block (0, 0) | Block (1, 0) | Block (2, 0)

Block (0, 1) | Block (1, 1) | Block (2, 1)

Other choices:
v'D-matrix in shared, data in global (small N)
v'Data in shared, D-matrix is global (large N)
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Nodal DG on GPU'’s

300 1 ; ; 1 60
m GPU ; | ~—= Speedup |
mm CPU | | | 155
250[ N
150
200
" 145
a
OISO 40
)
135
100F /e
30
501
25
0 2 4 6 8 20
Polynomial Order N
DG-FEM on four GPU

one card

Speedup Factor

12O(()E-PU and CPU Flop Rates and Speedups: 4 Nodes

1000r

800

GFlops/s

400

200

DG-FEM on one GPU

600

o—e Speedup

Polynomial Order N

I
o
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w
o

N
o

~110

Speedup Factor
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Nodal DG on GPU'’s

Where you need it most ...and for larger and larger grids
20 | 250
OO ,,,,,,,,,,,,,,,,,,, 200f
5OF """" N N """""""""" @ 1500
§_40‘ """"""" A B B B B I gloo—
CEe B B B B B B e
50,
207” VVVVV : : :
% 5000 10000 15000 20000
10f (B B B B B B A K
70 1 ‘ 25
0 - HSpgedup |

Polynomial Order N 6ol ————— X ]
IS B W N SRR 20 .
et
O
G ° ° §_40 ,,,,,,,,,,,,,,,,,, | Llﬂ_j
Also in double precision s his s
CEf B B B B H B . o
Q.
w0
20f
10

=
o
T

o
N
H
(o)}
(oo}

Polvnomial Order N
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Nodal DG on GPU'’s

N
o
o

e—eo Gather
| e—e Lift
e—eo Diff
| o—o Assy.

=
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=
(@)
o

Efficient utilization of
memory bandwidth

|—I
o
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o
o
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o
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|_I
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o

100
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o
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Polynomial Order N 80¢
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; 401 1 Rk4

where they matter most

20}

2 4 6 8

Polynomial Order N
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Nodal DG on GPU'’s

Similar results for DG-FEM Poisson solver with CG

Performance: Single Precision Poisson Solver
Unpreconditioned CG with IP DG on K =18068 elements

350 ‘ ‘ 70
e—e Speedup

300

250

Performance: Double Precision Poisson Solver

()
g 200 Unpreconditioned CG with IP DG on K =18068 elements
'.g 350 T T T T 35
2 150 oo Speedup
300 130
100
250 125
50
5 200 120
s
° 5
Polynomial order N 3 150 115
100 110
. 141 1 50 15
Note: No preconditioning
0 18

Polynomial order N
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Combined GPU/MPI solution

MPI| across network

Flop Rates and Speedups: 16 GPUs vs 64 CPU cores

4000

3000

2000

GFlops/s

1000

N GPU o Speedup
cpul .............. ................ 425
20 _
2
O
2
15 o
>
o
]
)
104
1
0

2 4 6 8
Polynomial Order N

Good scaling when problem
is large

GPU/CPU Weak Scaling: DG Order 4
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Example - a Mac Mini

900 : : ' ‘ '
@ [14 GPUs - 960 SP cores| —GPU-CPU speedup <
o 800 IMCPU - 16 cores j ] ] X 0200 00500 0100 0250  0.400

fleld 1

& 700} ; I - B mE .

" 600}

=
o

& 500! | —
i 1
‘g 400r {/
@ :
o 300t

K=201765 elements
3rd order elements

o
GPU-CPU speedup

£ |
S 100f 5 | ]
0 I P . lo

2

(@]

Computation by N. Godel

3 4 5
Polynomial order
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Example: Military aircraft

K=130413 elements

e
LES
AL
SRARAAAD
RSN
i I
RS PSSO RIS
F S RV
ANANAN AN

Computation by N. Godel

CPU global 29h 6 min 46s | 1.0

GPU ¢global 39min 1s 44 .8

GPU multirate 11 min 50s 147.6
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Nodal DG on GPU'’s

Not just for toy problems

228K elements

5th order elements _
78m F)OF \
68k time-steps —

S

Time ~ 6 hours

S

711.9 GFlop/s on one card

Computation by N. Godel
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Nodal DG on GPU'’s

Several GPU cards can be coupled over MPI at minimal
overhead (demonstrated). Lets do the numbers

One 700GFlop/s/4GB mem card costs ~$8k
So $250k will buy you 16-18TFlop/s sustained

This is the entry into Top500 Supercomputer list !

e A€ 5%=-10% of a CPU based machine

This is a game changer -- and the local nature of DG-FEM
makes it very well suited to take advantage of this
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Concluding remarks

While high order methods in general and DG-FEM in

particular are widely used, there are still things to be
done.

Combining

v New non-polynomial basis functions

v/ Old time-stepping methods in new ways

v/ Understanding and exploiting the interplay
between algorithms and new architectures

can lead to substantial computational advances.

Changing the methods from toys to tools
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Thank you !

Jan.Hesthaven@Brown.edu
http://www.cfm.brown.edu/people/jansh/
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