	Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
o o o o o o o o o o o o o o o o o o o					
00000 0 00					
00			00000		
			00		

Résolution des équations de Maxwell-Vlasov sur des maillages quelconques par une méthode de volumes finis

S. LAYOUNI Encadreur: P. OMNES Directeur: K.DOMELEVO

CEA Saclay, DEN/DANS/SFME/LMPE

21 Avril 2008

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
		00		

Table des matières

Introduction

Discretisation du système avec la nouvelle méthode

Discretisation de la loi de Faraday sur le maillage primal et dual Discretisation de la loi d'Ampere-Maxwell sur le maillage diamant Discrétisation de la divergence

Propriétés du schéma

Preservation de la divergence

Conservation d'une énergie électromagnétique discrète

Stabilité

Convergence

Reflections parasites

Couplage avec l'équation de Vlasov

Résolution par la méthode PIC

Interpolation des champs aux positions des particules

Calcul de la densité de charge et du courant

Résultats numériques

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
		00		

Système de Maxwell (mode T.M)

$rac{\partial B}{\partial t} + abla imes {\sf E}$	= 0	dans $[0, T] imes \Omega$
$rac{\partial \mathbf{E}}{\partial t} - c^2 \mathbf{ abla} imes B$	$=-rac{1}{\epsilon_0}{\sf J}$	dans $[0,T] imes \Omega$
$\alpha \mathbf{E} \cdot \mathbf{t} - \beta B$	= 0	dans $[0, T] imes \partial \Omega$
E (0,.)	$= \mathbf{E}^{0}$	dans Ω
B(0,.)	$=B^{0}$	dans Ω
avec $ abla \cdot \mathbf{E}$	$=\frac{\rho}{\epsilon_0}$	dans $[0, T] imes \Omega$

イロン 不得と 不良と 不良とう

æ

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
		00		
		o 00000 00		

Schéma de Yee

$$1/ \int_{C'_{i}} \left(\frac{\partial B}{\partial t} + \nabla \times \mathbf{E} = 0 \right)$$

$$\Rightarrow \int_{C'_{i}} \frac{\partial B}{\partial t} + \sum_{j \in AC'_{j}} \int_{A'_{j}} \mathbf{E} \cdot \mathbf{t}'_{j} = 0$$

$$\rightsquigarrow |C'_{i}| \frac{\partial B'_{i}}{\partial t} + \sum_{j \in AC'_{i}} |A'_{j}| \mathbf{E}_{j} \cdot \mathbf{t}'_{j} = 0$$

$$2/ \int_{A''_{j}} \left(\frac{\partial \mathbf{E}}{\partial t} - c^{2} \nabla \times B = -\frac{1}{\epsilon_{0}} \mathbf{J} \right) \cdot \mathbf{n}''_{j}$$

$$\Rightarrow \int_{A''_{j}} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathbf{n}''_{j} - c^{2} \int_{A''_{j}} \nabla B \cdot \mathbf{t}''_{j} = -\frac{1}{\epsilon_{0}} \int_{A''_{j}} \mathbf{J} \cdot \mathbf{n}''_{j}$$

$$\Rightarrow |A''_{j}| \frac{\partial \mathbf{E}_{j}}{\partial t} \cdot \mathbf{t}'_{j} - c^{2} (B'_{2} - B'_{1}) = -\frac{1}{\epsilon_{0}} |A''_{j}| \mathbf{J}_{j} \cdot \mathbf{n}''_{j}$$

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
	00			
		00000		

$$1/ |C'_{i}|\frac{\partial B'_{i}}{\partial t} + \sum_{j \in AC'_{i}} |A'_{j}|\mathbf{E}_{j} \cdot \mathbf{t}'_{j} = 0$$

$$2/ |A''_{j}|\frac{\partial \mathbf{E}_{j}}{\partial t} \cdot \mathbf{n}''_{j} - c^{2}(B'_{2} - B'_{1}) = -\frac{1}{\epsilon_{0}}|A''_{j}|\mathbf{J}_{j} \cdot \mathbf{n}''_{j}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

problème : $\mathbf{n}''_j \neq \mathbf{t}'_j$!

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
	00			
		00000		

Discretisation de la loi de Faraday sur le maillage primal et dual

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référ
		00	00	
	00			
		00000		

Discretisation de la loi d'Ampere-Maxwell sur le maillage diamant

$$\int_{C_j^{\diamond}} \left(\frac{\partial \mathbf{E}}{\partial t} - c^2 \nabla \times B = -\frac{1}{\epsilon_0} \mathbf{J} \right)$$

$$\sim |C_j^{\diamond}| \frac{\partial \mathbf{E}_j^{\diamond}}{\partial t} + c^2 \left((B_2' - B_1') |A_j'| \mathbf{t}_j' + (B_2' - B_1') |A_j''| \mathbf{t}_j'' \right) = -\frac{1}{\epsilon_0} |C_j^{\diamond}| \mathbf{J}_j^{\diamond}$$

$$\sim \frac{\partial \mathbf{E}_j^{\diamond}}{\partial t} - c^2 \left(\nabla^{\diamond} \times B'^{n} \right)_j = -\frac{1}{\epsilon_0} \mathbf{J}_j^{\diamond}$$

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
		00		

Discretisation de la loi d'Ampere-Maxwell sur le maillage diamant

$$B^{\prime n+1} = B^{\prime n} - \Delta t \nabla^{\prime} \times \mathbf{E}^{\diamond n+1/2}$$

$$B^{\prime n+1} = B^{\prime n} - \Delta t \nabla^{\prime} \times \mathbf{E}^{\diamond n+1/2}$$

$$\mathbf{E}^{\diamond n+1/2} = \mathbf{E}^{\diamond n-1/2} + c^{2} \Delta t \nabla^{\diamond} \times B^{\prime \prime \prime n} - \frac{\Delta t}{\epsilon_{0}} \mathbf{J}^{\diamond n}$$

Pour un maillage cartésien \Downarrow

$$B_{i}^{\prime n+1} = B_{i}^{\prime n} - \frac{\Delta t}{|C_{i}^{\prime}|} \sum_{j \in \partial AC_{i}^{\prime}} |A_{j}^{\prime}| \mathbf{E}_{j}^{\diamond n+1/2} \cdot \mathbf{t}_{ij}^{\prime}$$

$$B_{i}^{\prime n+1} = B_{i}^{\prime n} - \frac{\Delta t}{|C_{i}^{\prime \prime}|} \sum_{j \in AC_{i}^{\prime \prime}} |A_{j}^{\prime \prime}| \mathbf{E}^{\diamond n+1/2}_{j} \cdot \mathbf{t}_{ij}^{\prime \prime}$$

$$\mathbf{E}_{j}^{\diamond n+1/2} \cdot \mathbf{t}_{ij}^{\prime} = \mathbf{E}_{j}^{\diamond n-1/2} \cdot \mathbf{t}_{ij}^{\prime} - \frac{c^{2}\Delta t}{|A_{j}^{\prime \prime}|} \left(B_{ij}^{\prime} - B_{i}^{\prime}\right) - \frac{\Delta t}{\epsilon_{0}} \mathbf{J}_{j}^{\diamond n} \cdot \mathbf{t}_{ij}^{\prime}$$

$$\mathbf{E}_{j}^{\diamond n+1/2} \cdot \mathbf{t}_{ij}^{\prime} = \mathbf{E}_{j}^{\diamond n-1/2} \cdot \mathbf{t}_{ij}^{\prime} - \frac{c^{2}\Delta t}{|A_{j}^{\prime}|} \left(B_{ij}^{\prime} - B_{i}^{\prime \prime}\right) - \frac{\Delta t}{\epsilon_{0}} \mathbf{J}_{j}^{\diamond n} \cdot \mathbf{t}_{ij}^{\prime}$$

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
		00		
Discrétiontion	de la diversence			

Discrétisation de la divergence sur le maillage primal et dual

$\frac{1}{ C_i' } \int_{C_i'} \nabla \cdot \mathbf{E}$	=	$\frac{1}{ C_i' } \sum_{j \in AC_i'} \int_{A_j'} \mathbf{E} \cdot \mathbf{n}_j'$
	\simeq	$rac{1}{ \mathcal{C}_i' } \sum_{j \in \mathcal{AC}_i'} \mathcal{A}_j' \; \mathbf{E}_j^\diamond \cdot \; \mathbf{n}_{ij}'$
	:=	$(\nabla' \cdot \mathbf{E}^{\diamond})_i$
$\frac{1}{ C''_i } \int_{C''_i} \nabla \cdot \mathbf{E}$	=	$\frac{1}{ C"_i } \sum_{j \in AC"_i} \int_{A"_j} \mathbf{E} \cdot \mathbf{n}''_j$
	\simeq	$\frac{1}{ C''_i } \sum_{j \in AC''_i} A''_j \mathbf{E}_j^{\diamond} \cdot \mathbf{n}''_{ij}$
	:=	$(\nabla \cdot \mathbf{E}^{\diamond})_{i}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
	00			
		00000		

Propriétés des opérateurs discrets :

•
$$\nabla' \cdot (\nabla^{\diamond} \times B''') = 0$$

•
$$\nabla'' \cdot (\nabla^{\diamond} \times B''') = 0$$

•
$$\langle \nabla''' \times \mathbf{E}^{\diamond}, B''' \rangle_{'''} = \langle \mathbf{E}^{\diamond}, \nabla^{\diamond} \times B''' \rangle_{\diamond} + \langle \mathbf{E}^{\diamond} \cdot \mathbf{t}', B''' \rangle_{\partial\Omega}$$

ou,

$$\langle H''', B''' \rangle_{i''} := \frac{1}{2} \left(\sum_{i=1}^{N'} |C'_i| H'_i B'_i + \sum_{i=1}^{N''} |C''_i| H''_i B''_i \right)$$

$$\langle \mathbf{E}^{\diamond}, \mathbf{H}^{\diamond} \rangle_{\diamond} := \sum_{i=1}^{N^{\diamond}} |C_i^{\diamond}| \mathbf{E}_i^{\diamond} \cdot \mathbf{H}^{\diamond}$$

$$\langle H^{\diamond}, B''' \rangle_{\partial\Omega} := \frac{1}{4} \sum_{A'_j \subset \partial\Omega} |A'_j| H^{\diamond}_j (B''_{j2} + B''_{j1} + 2B'_j)$$

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		•0		
		00000		
		00		
Preservation	de la divergence			

.Discrétisation adéquate de ρ etJ .Condition initiales satisfaisant la \Rightarrow loi de Gauss discrète

Loi de Gauss discrète satisfaite à chaque instant

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

$$\nabla' \cdot \mathbf{E}^{\diamond n+1/2} = \frac{\rho'^{n+1/2}}{\epsilon_0}$$
$$\nabla'' \cdot \mathbf{E}^{\diamond n+1/2} = \frac{\rho''^{n+1/2}}{\epsilon_0}$$

Discrétisation adéquate \leftrightarrow Conservation de l'équation de charge discrète

$$\frac{\rho^{\prime n+1/2} - \rho^{\prime n-1/2}}{\Delta t} + \nabla^{\prime} \cdot \mathbf{J}^{\diamond n} = 0$$

$$\frac{\rho^{\prime n+1/2} - \rho^{\prime n-1/2}}{\Delta t} + \nabla^{\prime \prime} \cdot \mathbf{J}^{\diamond n} = 0$$

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00		
	00			
		00000		
		00		
Preservation	de la divergence			

Exemple d'une discrétisation adéquate de ρ et J :

$$\rho_{i}^{\prime n+1/2} = \frac{1}{|C_{i}^{\prime}|} \int_{C_{i}^{\prime}} \rho(\mathbf{X}, t^{n+\frac{1}{2}}) d\mathbf{X}$$

$$\rho_{i}^{\prime n+1/2} = \frac{1}{|C_{i}^{\prime}|} \int_{C_{i}^{\prime}} \rho(\mathbf{X}, t^{n+\frac{1}{2}}) d\mathbf{X}$$

$$\mathbf{J}_{i}^{\diamond n} \cdot \mathbf{n}_{i}^{\prime} = \frac{1}{\Delta t} \int_{t^{n-1/2}}^{t^{n+1/2}} \frac{1}{|A_{i}^{\prime}|} \int_{A_{i}^{\prime}} \mathbf{J} \cdot \mathbf{n}_{i}^{\prime} d\mathbf{X} dt$$

$$\mathbf{J}_{i}^{\diamond n} \cdot \mathbf{n}_{i}^{\prime} = \frac{1}{\Delta t} \int_{t^{n-1/2}}^{t^{n+1/2}} \frac{1}{|A_{i}^{\prime}|} \int_{A_{i}^{\prime}} \mathbf{J} \cdot \mathbf{n}_{i}^{\prime} d\mathbf{X} dt$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● 画 ● の Q ()

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	0	00	00	
	00	0		
		00000 00		
Conservation	d'une énergie électromagnétique discrète			

Conservation d'une énergie électromagnétique discrète :

$$\mathbb{E}^{n} := \frac{\epsilon}{2} \left(\left| \mathbf{E}^{\diamond n+1/2} \right|_{\diamond}^{2} + c^{2} \left\langle B^{\prime \prime \prime \prime n}, B^{\prime \prime \prime \prime n+1} \right\rangle_{\prime \prime \prime} \right)$$
$$= \mathbb{E}^{0}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
		00		
Sea billeá				

Stabilité :

Schéma stable sous une condition CFL

$$c\Delta t < \min_{i} \min_{\substack{A_{j}' \subset \partial C_{i}' \smallsetminus \partial \Omega}} \sqrt{\frac{2|A''_{j}||C_{i}'|\sin\theta_{j}}{(1+|\cos\theta_{j}|)|\partial C_{i}'|}}$$

condition CFL pour un maillage cartésien

$$\frac{c\Delta t}{h} \leq \frac{1}{\sqrt{2}}$$

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

 \Rightarrow CFL du schéma de Yee

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	0	00	ဝဝ	
	0			
		•0000 00		

Convergence

Pour des fonctions régulières

$$||er^{n}|| := \sqrt{\left|er^{\diamond n+1/2}\right|_{\diamond}^{2} + \frac{1}{2}\left(|er'^{n}|_{r}^{2} + |er''^{n}|_{r}^{2}\right)} \le K(h + \Delta t^{2})$$

Ou,

$$er^{n} := \left(er'^{n}, er'^{n}, er^{\diamond n+1/2}\right)$$
$$er^{\diamond n+1/2} := \mathbf{E}^{\diamond n+1/2} - \Pi^{\diamond n+1/2} \mathbf{E}$$
$$er'^{n} := B'^{n} - \Pi'^{n} B$$
$$er'^{n} := B^{"n} - \Pi^{"n} B$$

 $\Pi^{\circ n+1/2} \mathbf{E}$:Projection du champs électrique exact sur le maillage diamant $\Pi^{'n}B$:Projection du champs magnétique exact sur le maillage primal $\Pi^{''n}B$:Projection du champs magnétique exact sur le maillage dual

(日) (同) (日) (日) (日)

э

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
		00000		
		00		

Convergence

$$\frac{\prod^{n+1}B-\prod^{n}B}{\Delta t} + \nabla' \times \prod^{\diamond n+1/2} \mathbf{E} = r'^{n}$$
$$\frac{\prod^{n+1}B-\prod^{n}B}{\Delta t} + \nabla'' \times \prod^{\diamond n+1/2} \mathbf{E} = r'^{n}$$
$$\frac{\prod^{\diamond n+1/2}\mathbf{E}-\prod^{\diamond n-1/2}\mathbf{E}}{\Delta t} - c^{2} \nabla^{\diamond} \times \Pi''^{n}B + \frac{1}{\epsilon_{0}} \mathbf{J}^{\diamond n} = r^{\diamond n}$$

۰.	r	
	•	

$$\frac{\frac{er'^{n+1}-er'^{n}}{\Delta t} + \nabla' \times er^{\diamond n+1/2}}{\frac{er'^{n+1}-er'^{n}}{\Delta t} + \nabla'' \times er^{\diamond n+1/2}} = r'^{n}$$

$$\frac{er^{\diamond n+1/2}-er^{\diamond n-1/2}}{\Delta t} - c^{2} \nabla^{\diamond} \times er'^{n} = r^{\diamond n}$$

₩

$$er^{n+1} = \mathcal{M}_h er^n + \Delta t \ r^n = \mathcal{M}_h^{n+1} er^0 + \Delta t \sum_{k=0}^n \mathcal{M}_h^{n-k} r^k$$

■ のへで

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
Convergence				

$$||er^{n}|| \leq ||\mathcal{M}_{h}^{n+1}er^{0}|| + \Delta t \sum_{k=0}^{n} ||\mathcal{M}_{h}^{n-k}r^{k}|| \leq K \left(||er^{0}|| + \Delta t \sum_{k=0}^{n} ||r^{k}|| \right)$$

Projection de la solution exacte :

$$(\Pi^{\circ n+1/2} \mathbf{E})_{j} \cdot \mathbf{t}'_{j} := \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \frac{1}{|A'_{j}|} \int_{A'_{j}} \mathbf{E} \cdot \mathbf{t}'_{j}$$

$$(\Pi^{\circ n+1/2} \mathbf{E})_{j} \cdot \mathbf{t}''_{j} := \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \frac{1}{|A''_{j}|} \int_{A''_{j}} \mathbf{E} \cdot \mathbf{t}''_{j} \Rightarrow \frac{||r^{n}||}{|er^{0}||} \leq \kappa(h + \Delta t^{2})$$

$$(\Pi'^{n}B)_{i} := \frac{1}{\Delta t} \int_{t^{n-1/2}}^{t^{n+1/2}} B(C'_{i}, .)$$

$$(\Pi'^{n}B)_{i} := \frac{1}{\Delta t} \int_{t^{n-1/2}}^{t^{n+1/2}} B(C''_{i}, .)$$

S. LAYOUNI

Intro duction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
Convergence				

Etude de convergence sur des maillages non conformes

æ

→ < ∃ →</p>

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
		00000		
		00		

Convergence

Convergence

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
		•0		
D (1) (1				

Onde rentrante avec sortie absorbante

S. LAYOUNI

Résolution des équations de Maxwell-Vlasov sur des maillages quelconques par une méthode de volumes finis

э

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
	00			
		00000		
		00		

Reflections parasites

 \Rightarrow La non conformité du maillage n'amlifie pas les reflexions parasites.

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
		00		

Equation de Vlasov

$$\frac{\partial f}{\partial t} + \mathbf{V} \cdot \boldsymbol{\nabla}_{\mathsf{x}} f + \frac{q}{m} \left(\mathbf{E} + \mathbf{V} \times \mathbf{B} \right) \cdot \boldsymbol{\nabla}_{\mathsf{v}} f = 0$$

Couplage avec Maxwell

$$ho(\mathbf{X}, t) = q \int_{\mathbb{R}^3} f(\mathbf{X}, \mathbf{V}, t) d\mathbf{V}$$

 $\mathbf{J}(\mathbf{X}, t) = q \int_{\mathbb{R}^3} \mathbf{V} f(\mathbf{X}, \mathbf{V}, t) d\mathbf{V}$

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
			•0	
		00000		
		00		
Résolution na	ur la méthode PIC			

Méthode PIC

Approximation de la fonction de distribution :

$$\tilde{f}(\mathbf{X}, \mathbf{V}, t) = \sum_{p=1}^{N_p} \omega_p \delta\left(\mathbf{X} - \mathbf{X}_p(t)\right) \delta\left(\mathbf{V} - \mathbf{V}_p(t)\right)$$

avec,

Np : nombre de particules numériques ω_p : poids numérique de la particule p

$$\begin{array}{lll} \displaystyle \frac{\partial \mathbf{X}_{p}(t)}{\partial t} & = & \mathbf{V}_{p}(t) \\ \displaystyle \frac{\partial \mathbf{V}_{p}(t)}{\partial t} & = & \displaystyle \frac{q}{m} \left(\mathbf{E}(\mathbf{X}_{p}(t),t) + \mathbf{V}(\mathbf{X}_{p}(t),t) \times \mathbf{B}(\mathbf{X}_{p}(t),t) \right) \end{array}$$

• • = • • = •

э

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
			00	
	00			
		00000		
Résolution pa	ar la méthode PIC			

 \rightarrow Initialisation : distribution initiale \Rightarrow positions et vitesses initiales des particules

f٦

Technique appliquée :quiet start (quasi monte Carlo)

- \hookrightarrow Interpolation des champs aux positions des particules
- \hookrightarrow Calcul des vitesses et des positions : pousseur de Boris

$$\frac{\mathbf{V}_{k}^{n+1} - \mathbf{V}_{k}^{n}}{\Delta t} = \frac{q}{m} \left(\mathbf{E}_{k}^{n+1/2} + \frac{\mathbf{V}_{k}^{n+1} + \mathbf{V}_{k}^{n}}{2} \times \frac{\mathbf{B}_{k}^{n+1} + \mathbf{B}_{k}^{n}}{2} \right)$$
$$\frac{\mathbf{X}_{k}^{n+1/2} - \mathbf{X}_{k}^{n-1/2}}{\Delta t} = \mathbf{V}_{k}^{n}$$

→ Calcul de la densité du charge et du courant
 → Calcul des champs électromagnétiques : Maxwell

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
		00000		
Interpolation	des champs aux positions des particules			

Interpolation des champs aux positions des particules

Pour
$$\mathbf{X}_{k}^{n+1/2} \in C_{i_{k}}^{\circ} \cap C_{i_{k}}^{\prime} \cap C_{i_{k}}^{\prime\prime}$$

 $\mathbf{E}_{k}^{n+1/2} = \mathbf{E}_{i_{k}}^{\circ n+1/2}$
 $E_{k}^{n+1/2} = \frac{1}{2}(E_{i_{k}}^{\prime n+1/2} + E_{i_{k}}^{\prime\prime n+1/2})$
 $\mathbf{B}_{k}^{n} = \mathbf{B}_{i_{k}}^{\circ n}$
 $B_{k}^{n} = \frac{1}{2}(B_{i_{k}}^{\prime n} + B_{i_{k}}^{\prime\prime n})$

S. LAYOUNI

Résolution des équations de Maxwell-Vlasov sur des maillages quelconques par une méthode de volumes finis

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
	00			
			l •	
		00000		

Calcul de la densité de charge et du courant

NGP(Nearest Grid Point)

$$\rho_{i}^{\prime n+1/2} = \frac{q}{|C_{i}^{\prime}|} \sum_{p=1}^{N_{p}} \omega_{p} \mathbf{1}_{C_{i}^{\prime}} (\mathbf{X}_{p}^{n+1/2})$$

$$\rho_{i}^{\prime n+1/2} = \frac{q}{|C_{i}^{\prime}|} \sum_{p=1}^{N_{p}} \omega_{p} \mathbf{1}_{C_{i}^{\prime}} (\mathbf{X}_{p}^{n+1/2})$$

$$\mathbf{J}_{j}^{\circ n+1/2} \cdot \mathbf{n}_{j}^{\prime} = \frac{q}{\Delta t |A_{j}^{\prime}|} \sum_{p=1}^{N_{p}} \omega_{p} \frac{\mathbf{V}_{p}^{n} \cdot \mathbf{n}_{j}^{\prime}}{|\mathbf{V}_{p}^{n} \cdot \mathbf{n}_{j}^{\prime}|} \mathbf{1}_{A_{j}^{\prime}} (\mathbf{X}_{p}^{n-1/2}, \mathbf{X}_{p}^{n+1/2})$$

$$\mathbf{J}_{j}^{\circ n+1/2} \cdot \mathbf{n}_{j}^{\prime} = \frac{q}{\Delta t |A_{j}^{\prime}|} \sum_{p=1}^{N_{p}} \omega_{p} \frac{\mathbf{V}_{p}^{n} \cdot \mathbf{n}_{j}^{\prime}}{|\mathbf{V}_{p}^{n} \cdot \mathbf{n}_{j}^{\prime}|} \mathbf{1}_{A_{j}^{\prime}} (\mathbf{X}_{p}^{n-1/2}, \mathbf{X}_{p}^{n+1/2})$$

$$\mathbf{J}_{j}^{\circ n+1/2} \cdot \mathbf{n}_{j}^{\prime} = \frac{q}{\Delta t |A_{j}^{\prime}|} \sum_{p=1}^{N_{p}} \omega_{p} \frac{\mathbf{V}_{p}^{n} \cdot \mathbf{n}_{j}^{\prime}}{|\mathbf{V}_{p}^{n} \cdot \mathbf{n}_{j}^{\prime}|} \mathbf{1}_{A_{j}^{\prime}} (\mathbf{X}_{p}^{n-1/2}, \mathbf{X}_{p}^{n+1/2})$$

$$\mathbf{U}$$
Conservation de l'équation de charge discrète

æ

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00	00	
		00000		
		00		

Résultats numériques

Convergence en fonction du nombre des particules

S. LAYOUNI

Introduction	Discretisation du système avec la nouvelle méthode	Propriétés du schéma	Couplage avec l'équation de Vlasov	Référe
		00000		
		00		

- K. S. Yee. IEEE Trans. Antennas and propag. 14. pp. 302-307. 1966
- F. Hermeline. J. Comput. Phys., 106, pp.1-18, 1993.
- R. A. Nicolaides et D.-Q. Wang. Math. comput. 65. pp. 947-963. 1998.
- L. Fezoui, S. Lanteri, S. Lohrengel et S. Piperno. M2AN. Vol.39, N 6, 2005, pp. 1149-1176.
- K. Domelevo. et P. Omnes M2AN. Vol.39, N 6, 2005, pp. 1203-1249.
- S. Delcourte, K. Domelevo et P. Omnes. SIAM journal on numerical analysis. 45(3),pp. 1142-1174, 2007.
- C. K. Birdsall et A. B. Langdon. Plasma physics via computer simulations (1991).
- J. Villasenor et O. Buneman. Computer phys. com. 69(1992) 306-316.
- R. Barthelmet. Le problème de conservation de la charge dans le couplage des équations de Vlasov et de Maxwell.
- F. Hermeline, S. Layouni et P. Omnes. A finite volume method for the approximation of Maxwell's equations in two space dimensions on arbitrary meshes. Soumis au J. Comput. Phys.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○