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Dirichlet Principle

Dirichlet principle: The solution of Laplace’s equation

Au =0 on a bounded domain Q with Dirichlet boundary
conditions v = g on 0Q is the infimum of the Dirichlet
integral [, [Vv|? over all functions v satisfying the boundary
conditions, v = g on 0f2.
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H. A. Schwarz 1869:

“Die unter dem Namen Dirichletsches Prin-
cip bekannte Schlussweise, welche in gewis-
sem Sinne als das Fundament des von
Riemann entwickelten Zweiges der Theorie
der analytischen Functionen angesehen wer-
den muss, unterliegt, wie jetzt wohl all-
gemein zugestanden wird, hinsichtlich der
Strenge sehr begriindeten Einwendungen,
deren vollstindige Entfernung meines Wis-
sens den Anstrengungen der Mathematiker
bisher nicht gelungen ist”.
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Classical Alternating Schwarz Method e Hethods
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A method to proof that the infimum is attained !
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Classical Alternating Schwarz Method

A method to proof that the infimum is attained !

AU%:O in Ql
ui=g ondQNY

ul=0ud onl

disk with known solution
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A method to proof that the infimum is attained !
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Discrete

Q2

Aui=0 inQ
=g ondQNQ,
uy =ui only

rectangle with known solution



Classical Alternating Schwarz Method

A method to proof that the infimum is attained !

AU%ZO in Ql
=g ondQN

v =ul onTl

disk with known solution
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Classical Alternating Schwarz Method
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A method to proof that the infimum is attained !

Continuous

Discrete

0Q
Auz=0 inQ
us=g ondQNQ

— 2
uy =uj on s

rectangle with known solution
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Classical Alternating Schwarz Method
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A method to proof that the infimum is attained !

Continuous
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ul =g on 9Q N Qy ul =g ondQNQ
u{’:uglonrl uj =uf onTly

disk with known solution rectangle with known solution



Schwarz Methods

Classical Alternating Schwarz Method

Martin J. Gander

A method to proof that the infimum is attained !

Continuous

OSI ) B} Q,
\
o0
Auf =0 in Auf =0 in
ul =g on 02 Ny uj =g on dQNQH
u{’:uglonrl uj =uf onTly
disk with known solution rectangle with known solution

» Schwarz proved convergence in 1869 using the
maximum principle.
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. Schwarz Methods
lteration 1 e Heted
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Iteration #1
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Schwarz Methods

[teration 2
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Iteration #2
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Schwarz Methods

[teration 3
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Iteration #3

Continuous
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Iteration 4 Schwarz Methods

Martin J.
Iteration #4 rtin . Gander

Continuous
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Iteration #5
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Schwarz Methods

[teration 6
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Iteration #6
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lteration 7
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Iteration #7

Continuous
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[teration 8
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Iteration #8
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[teration 9
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Iteration #9
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Iteration #10
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Iteration #11
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[teration 12
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Iteration #12
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Schwarz Methods

Convergence Result with Fourier Analysis

For the model problem Lu:=(n— A)u=0on Q = R?,
Q) =(—o0,L) xR and Qp = (0,00) X R,

Martin J. Gander

Continuous

(m—A)uf =0 in Qy, (n—A)uf =0 in Qy,

uf = ud™t on x =L, uf =uf onx=0,

we obtain after a Fourier transform in y

w .
ul(x, k) = F(u}) ::/ e_’kyuf'(x, y)dy, keR,

e L[
u(xy) = F (j)::E/_ooeyuj(X’k)dk’

the Schwarz iteration in the Fourier domain (note how
derivatives in y become multiplications by ik)

(kP> =00)0] =0 inQq,  (1Hk>—0x )8 =0 in Qo,
ol = o871 on x=L, 08 = o7 on x=0.



Schwarz Methods

Convergence Result with Fourier Analysis
Now the ordinary differential equations

(77 + k2 - axx)ajn = 0 Continuous

Martin J. Gander

can easily be solved:
"(X k) \/n—f—k X—I—Bn —\/n—i—k2
On domain €y, squtlons must stay bounded at —oo, hence
00 (x, k) = AleVrtkex
and on domain 25, solutions must stay bounded at oo,

05 (x, k) = Bfe~Vtkix,
To determine the constants AJ’-' and Bj’, we use the
transmission conditions
By (L, k) = 0571 (L, k),  05(0, k) = (0, k),
which give

Ale k2L _ = B~ 1o—V/ntieL _ Af‘le_ k2L



Schwarz Methods

Convergence Result with Fourier Analysis

After one iteration of the alternating Schwarz method, we
obtain the convergence factor

Martin J. Gander

Continuous

An
9(77, k; L) = nil = 672 n+k2L.
Al
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Classical Parallel Schwarz Method Sehwarz Hethods

Martin J. Gander

P-L. Lions 1988:

The final extension we wish to consider concerns
“parallel” versions of the Schwarz alternating method

u,”+1 is solution of —Au' = f in Q; and
"+1 = u? on 0Q; N Q.

Continuous

Lu=1finQ Q T >r1 Q

o2

Lot f,in Lus™ f,in Q
n+1

uy = uj, onl, u5+1 = uf, only



Schwarz Methods

Comparison of Alternating and Parallel Schwarz
two subdomains many subdomains

Martin J. Gander

n
uj

Continuous

(o3 Q,
» The alternating Schwarz methods needs a coloring
strategy in order to be useful on a parallel computer.

» Sometimes the alternating Schwarz method produces a
subset of the iterates of the parallel Schwarz method.



The Multiplicative Schwarz Method (MS) Schvarz Methods

Martin J. Gander

The discretized PDE leads to the linear system
Au = f. Discrete
With the restriction operators

1 1
R = R> = -
1 1

and A; = RjARjT the multiplicative Schwarz method is

utz = w4 RIATIR(f — Au”)
utl = w4 RTASIRy(F — Aunti).
Questions:

» Is MS a discretization of a continuous Schwarz method?
» How is the algebraic overlap related to the physical one?



Schwarz Methods

Relation with Alternating Schwarz
If the R; are non-overlapping, and we partition accordingly

A — [ A1 A12 :| — ( f1 ) Discrete
An A |’ fa )7

we obtain from the first relation of MS, i.e.

Martin J. Gander

1
u"2 = u" + R AR (f — Au")
an interesting cancellation:

Rl(f — Au") = f1 — Alui’ — A12u§'
AR (F— Au") = A[Y(f — Apul) —uf

a1
u1+2 > B ( uf ) N ( ATYH(fL — Appud) —uf )
nt3 N uj 0
u, 2 2

AT (FL — Arpug)
uj



Relation with Alternating Schwarz e Hethods

Martin J. Gander
Similarly, from the second relation of MS, i.e.

un—|—1 — un—|—% T R2TA2_1R2(f o Aun—|—%) Discrete

()= (adomd),
uptt Y(f2 — Agul™h)

which can be rewritten in the equivalent form

we obtain

Alu"+1 = f1 — Alzug, A2Un+1 = f2 — A21u"+1

and is therefore a discretization of the alternating Schwarz
method from 1869,

£UH—|—1

f+1 = uf, onT

f,in Q Luf™ = £, inQ
g+1 = Uf+1, on F2



MS iS also a bIOCk Gauss Se|de| methOd Schwarz Methods

. . . . Martin J. Gander
MS is also equivalent to a block Gauss Seidel method, since : e

n+1

n+1

_ n n+1
= f1 — A12u2, A2u2 1

= fg — A21u

Discrete

leads in matrix form to the iteration

Al 0 uptt 0 —Ap ]| ( uf f;
n+1 = n +
A21 A2 u2 0 0 U2 f2
So why the complicated R; notation ?

» With R;, one can also use overlapping blocks.
» With R;, there is a global approximate solution u”.

Note that even the algebraically non-overlapping case above
implies overlap at the PDE level:

Ry R
[ 1 [ 1
1 a b n
o —@ 0 0 0 0 0 0 0 0  — X
0 a B 1




The Additive Schwarz Method (AS) D il

Martin J. Gander

M. Drjya and O. Widlund 1989:

The basic idea behind the additive form of the algorithm is
to work with the simplest possible polynomial in the
projections. Therefore the equation

(P1+ P>+...+ Pn)us = g is solved by an iterative method.

Discrete

Using the same notation as before, the preconditioned
system is

(RFATRL + R AS1Ry))Au = (RTATIRy + R A1 R))f
Writing this as a stationary iterative method yields
u" =u"t + (RIATIR + RIASIR)(F — Au™)

Question: Is AS equivalent to a discretization of Lions
parallel Schwarz method ?



Schwarz Methods

Algebraically non-overlapping case
If the R; are non-overlapping, we obtain now

( ujtt ) _ ( A (1 — Arpu) )
ujtt ASY(Fy — Agru}) )7

which can be rewritten in the equivalent form

Martin J. Gander

n+1

n+1

=f1 — Appug, Asuy ™ = fr — Asjuf.

This is a discretization of Lions’ parallel Schwarz method
from 1988,

Luf™ = f,ind Luf™ = f,inQ

u™ = uf onTy ud™ = wuP, on T,

In the algebraically non-overlapping case, AS is also
equivalent to a block Jacobi method,

A 0 uytt 0 —Ap u? fq
n+1 = n +
0 A2 u2 —A21 0 u2 f2



Schwarz Methods

What happens if the R; overlap 7

Martin J. Gander
If the R; overlap, the cancellation is more complicated:

A—l(f —A un)_un 0 Discrete
n+l_ ..n 1 1 12Us 1
v +< 0 )+(A21(f2—Azluf)—U5)'

In the overlap, the current iterate is subtracted twice, and a
new approximation from the left and right solve is added.
Remarks:

» One can show that the spectral radius of the AS
iteration operator equals 1 for two subdomains.

» The method converges outside of the overlap for two
subdomains.

» For more than two subdomains with cross points the
method diverges everywhere.

AS is thus not equivalent to a discretization of Lions parallel
Schwarz method for more than minimal physical overlap.



Schwarz Methods

An Example for 2 Subdomains

Martin J. Gander

450 T T T T T T T T I
JE—
— I»11 Continuous
L 1 Di
400 —_ uz iscrete
—_—d
/\ 4
- u
350 = < Overlap Required
Convergence Speed
300 -
Continuous
| i Examples
250 Discrete
== Example
200 b
150 b
100 b
50F -
o 1 1 1 1 1 1 1 1 1
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Example for Many Subdomains

Schwarz Methods
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Schwarz Methods

[teration 2
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Discrete
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Schwarz Methods

[teration 3
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~

Continuous
Discrete

4
Overlap Required
34 No Convergence
Convergence Speed
24
14 : Continuous
Examples
0d Discrete
Example
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Schwarz Methods

[teration 4
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Discrete
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Fundamental Convergence Result
M. Drjya and O. Widlund 19809:

Including a coarse grid correction in the additive Schwarz
preconditioner,

n
— T a-1p. T p-1
Mys = ZRJ- A'R; + RJ Ay Ro
j=1
with characteristic coarse mesh size H and overlap §, one
can show

Theorem
The condition number of the additive Schwarz
preconditioned system satisfies

K(MasA) < C (1 + g) ,

where the constant C is independent of § and H.

Schwarz Methods

Martin J. Gander

Discrete



Schwarz Methods

Restricted Additive Schwarz (RAS)
X. Cai and M. Sarkis 1998:
While working on an AS/GMRES algorithm in an Euler
simulation, we removed part of the communication routine Discrete

and surprisingly the “then AS” method converged faster in
both terms of iteration counts and CPU time.

Martin J. Gander

u™ = u" + (RUATYRy + R ARy (F — Au™)

Ry ! 'Ry
r ‘ R2
R ‘1 a | b n
o € e e e o o o o e | -
0 o B 1
(921 Q>
Remarks:

» RAS is equivalent to a discretization of Lions parallel
Schwarz method (Efstathiou, G. 2003)

» the preconditioner is non symmetric, even if A; is
symmetric



Schwarz Methods

An Example for 2 Subdomains

Martin J. Gander

400 T T T T T T T T I
—_—0
— I»11 Continuous
350 — 2 Discrete
—_—d
—
s00k i Overlap Required
Convergence Speed
20r i Continuous
Examples
Discrete
:=200 - - Example
150 b
100 b
50 b
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Schwarz Methods

Problems of classical Schwarz: Overlap Necessary

P-L. Lions 1990:
However, the Schwarz method requires that the
subdomains overlap, and this may be a severe
restriction - without speaking of the obvious or intuitive
waste of efforts in the region shared by the subdomains. Overlap Required

Martin J. Gander

Lu=finQ Q r Q5

\
o0

Lui=f iny Lui=f in
((9,,1+p1)uf:((9,,1-|—p1)u§’_1 on I (On,4p2)ul=(0n,+p2)uf on T

P-L. Lions 1990:
First of all, it is possible to replace the constants in the
Robin conditions by two proportional functions on the
interface, or even by local or nonlocal operators.



Schwarz Methods
Other Problem: Lack of Convergence e Hethod

Martin J. Gander
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B. Després 1990:

L'objectif de ce travail est, aprés construction d’une
méthode de décomposition de domaine adaptée au
probléme de Helmholtz, d’en démontrer la convergence.



Schwarz Methods
Further Problem: Convergence Speed s Hethes

Martin J. Gander

T. Hagstrom, R. P. Tewarson and A. Jazcilevich 1988:
Numerical experiments on a domain decomposition
algorithm for nonlinear elliptic boundary value problems

In general, [the coefficients in the Robin transmission (Cermerzne e
conditions] may be operators in an appropriate space of

function on the boundary. Indeed, we advocate the use

of nonlocal conditions.

W.-P. Tang 1992: Generalized Schwarz Splittings

In this paper, a new coupling between the overlap[ping]
subregions is identified. If a successful coupling is
chosen, a fast convergence of the alternating process
can be achieved without a large overlap.



Comparison of Classical Schwarz with Multigrid

Comparison of MS with two subdomains as an iterative
solver and a preconditioner for a Krylov method, with a
standard multigrid solver:

10°

residual norm

= Classical Schwarz

- Classical Schwarz with Krylov
—— Multigrid without Krylov.

1

20 40 60 80 100 120 140
iterations

160

Schwarz Methods
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Convergence Speed



Continuous Optimized Schwarz Methods Seare Hethods

Martin J. Gander

Lu=finQ T )Fl Q
\
] o0
Instead of the classical alternating Schwarz method
Continuous
Lul = f,in{y Lul = f,in
] = ult onTy uf = uf,onl,

one uses transmission conditions adapted to the PDE,
Biup = Blug_l, only Byui = DBouf, onTly
Remarks:
» optimal choice for B; is 05, + S; with Sj = DtN;
> good approximation is B; = O, + pj + 1;0r + qjOrr

» method can converge even without physical overlap



Schwarz Methods

How to Choose the Parameters

Martin J. Gander

For the model problem Lu:=(n— A)u=0on Q =R?,
Ql = (—OO,L) x R and Qz = (0, OO) x R,

(m—A)u] = 0 in Q,
(Ox +S1)u] = (O + ‘S'l)ug_1 on x =1L,
(n—A)ug = 0 in Q,

Continuous

(0x — So)uf = (0x —So)uf on x =0,

we obtain as before after a Fourier transform in y the new
Schwarz iteration in the Fourier domain

(n+ k%> —0u)0f = 0 in Q1,
(Ox +01)i = (Ox+o)ud ! onx=L,

N+ k> —0x)08 = 0 in Qy,
(0x —02)08 = (0x — 02)0f on x =0,

where g; is the Fourier symbol of the operator §;.



Schwarz Methods

Convergence Result with Fourier Analysis

As before, the solution of the ordinary differential equations
are

Martin J. Gander

0] (x, k) = AfeVmkix  po(x k) = Bje V1tkix,

To determine the constants AJ’-’ and Bf’, we use the
transmission conditions
(8X + 0'1)1\11 (L’ k) - (8X + Ul)agil(l-a k)7
(0x —02)03(0,k) = (0x — 02)7(0, k),

which give
(/1 + k2+oq)eVITRL = Bi Y (/1 + k2+oy1)e” k2L
and

By (—v/n+ k2 —a3) = ATH (Vi + k2 — o).



Schwarz Methods

Convergence Result with Fourier Analysis

After one iteration of the optimized Schwarz method, we
obtain the convergence factor

_ Vot kK —oivntk —o2 /e
Vn+k*+o1/n+ k> + o2

» If the symbols are gj := /1 + k2, then the convergence  continsous
factor vanishes identically: convergence after one
double step, even without overlap !

Martin J. Gander

p(lrlﬂ ka L501702) :

» This result can be generalized to convergence after /
steps for | subdomains, provided the subdomain
connections have no loops.

» This choice is optimal, but not convenient in practice,
since the operator associated with the symbol /7 + k2
is non-local (it represents the DtN operator for the
equation)

> One is therefore interested in local approximations.



Zeroth Order Approximation

We approximate the symbols o; by a constant, o; := p,
p € R. The transmission conditions are therefore

(0x +P)uf(L,y) = (0x+p)us (L,y),
(0x — pP)u3(0,y) = (Ox — p)ui(0,y).
17
08 -
0.6
04 -
02 1

o L N B T
20 40 P60 80 100

Schwarz Methods

Martin J. Gander

Continuous



Schwarz Methods

Second Order Approximation
We approximate the symbols o; by a second degree
polynomial in ik, oj := p — gk?, p,q € R. The transmission
conditions are therefore
(Ox + P+ qoy)ui(L,y) = (Oxtp+ qayy)ug_l(La}’)a
(Ox =P — g0y )u3(0,y) = (8x—p—q0yy)uf(0,y).
0.1

Martin J. Gander

0.08

0.06 7

0.04 1

0.02 1




HOW to Choose the Parameters in General Schwarz Methods

Martin J. Gander
Contraction factor using Fourier analysis:

_ (3@ = fe0e(2))? e
plz;5) = (s(z) +fPDE(Z)> )

> z related to the Fourier parameters
Continuous

> s polynomial with coefficients to be optimized.
» fppe symbol of the DtN of the PDE to be solved.

For a fast algorithm, we need to minimize p, i.e.

i sup [o(z,9)
SEPH zeEK

» P, set of complex polynomials of degree < n

» K is a bounded or unbounded set in the complex plane



Best Approximation Problems

Chebyshev (1854): Théorie des mécanismes connus sous le
nom de parallélogrammes.

Soit f(x) une fonction donnée, U un poly-
nome du degré n avec des coefficients ar-
bitraires. Si I'on choisit ces coefficients de
maniére 3 ce que la différence f(x) — U,
depuis x = a— h, jusque a x = a+ h, reste
dans les limites les plus rapprochées de 0,
la différence f(x) — U jouira, comme on le
sait, de cette propriété:

Parmi les valeurs les plus grandes et les plus
petites de la différence f(x) — U entre les
limites x = a— h, x = a+ h, on trouve au
moins n+ 2 fois la méme valeur numérique.

De la Vallée Poussin (1910): Existence, Uniqueness and
Equioscillation.

min max |f(x) — p(x)|

peP, xeK

Schwarz Methods

Martin J. Gander

Continuous



Schwarz Methods

More General Chebyshev Approximation

Martin J. Gander

Meinardus and Schwedt (1961): Nicht-lineare
Approximationen
1. Existiert fiir jede stetige Funktion f(x) eine
Minimallésung ?
2. Gibt es zu jedem f(x) genau eine Minimallésung ?
3. Wodurch wird die Minimallosung charakterisiert ?

Continuous
Overview of known results:
1. Linear and finite dimensional: compactness
2. Linear and finite dimensional:
real: Haar criterion Haar (1918)
complex: Kolmogoroff (1948)
3. Real functions of a real variable:
equioscillation, Rice (1960)
nonlinear, complex rational approximation:
equioscillation, Meinardus and Schwedt (1961)



Schwarz Methods

Homographic Best Approximation

Martin J. Gander

s(z) = f(2) __if(z)

min sup | ) (2)

s€Pn zeK

Theorem (Bennequin, G, Halpern 2005)

If L =0 and K is compact, then for every n > (0, there exists  continious
a unique solution s}, and there exist at least n+ 2 points
z1,+++ ,Zng2 in K such that

sa(zi) —f(zi)| _||sn—f
si(zi)+f(z)|  |si+7lloo

Theorem (Local Minima)

If s, is a strict local minimum, then it is the global minimum.



Schwarz Methods
Case L >0 e

Martin J. Gander
Without assuming that K is compact, one can show
(Bennequin, G, Halpern 2006):
Theorem (Existence)

Let K be a closed set in C, containing at least n + 2 points.
Let f satisfy Rf(z) > 0 and

Continuous

Rf(z) — +o00 as z —> oo in K.

Then for L small enough, there exists a solution.

Theorem (Equioscillation)

Under the same assumptions, if s} is a solution for L > 0,

then there exist at least n+ 2 points z1, -+ ,zpy2 in K such
that i i

Sn( ) (Z,) —Lf(z) — Sn — fe—Lf

si(zi) + f(z0) s+ |l




i ni Schwarz Methods
Uniqueness, Local Minima and Symmetry warz Method

Martin J. Gander

Theorem (Uniqueness)

With the same assumptions, and if K is compact, and L
satisfies
(5,,(L)e Lsup,¢c ik Rf(2) <1,

where 0,(L) is the minimum, then the solution is unique. S

Theorem (Local Minima)

If K is compact, and L is small, then if s} is a strict local
minimum, then it is the global minimum.

Theorem (Symmetry = real coefficients)
If K is compact and symmetric with respect to the x-axis,

and f(z) = f(z) in K, then for L small, s} has real
coefficients.



Optimized Parameters for a Model Problem
For the self adjoint coercive problem

Lu=n—Au=fFf

the asymptotically optimal parameters are (G 2006)

P . q
v (kgin +m)'*
000 ey 0
(kr%in + 77)1/3
/A2, + ) h/t
002 21/2p1/4 21/271.3/4(&31in + 77)1/8
k2. 2/5 h)3/5
23/5(Ch)l/5 2U/5(k2, +n)t/®
TOO i 0
1
TO2 —
\/ﬁ 2\/,,7
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[teration 1

Schwarz Methods

Martin J. Gander

Iteration #1

Continuous



Schwarz Methods

[teration 2
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Schwarz Methods

[teration 3
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Iteration #3
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[teration 4
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Iteration #4
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Comparison of Optimized Schwarz with Multigrid

Comparison of MS as an iterative solver, as a preconditioner,
multigrid, and an optimized Schwarz methods used
iteratively and as a preconditioner:

— Classical Schwarz
= Classical Schwarz with Krylov
3 = Multigrid

10 F —— Optimized Schwarz

—— Optimized Schwarz with Krylov

residual norm

0 2 4 6 8 10 12 14 16 18 20

iterations
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Optimized Schwarz Application

Heating problem in our former apartment in Montreal:

Schwarz Methods

Martin J. Gander

Classical Schwarz

Continuous
Discrete

Problems of

Classical Schwarz

Overlap Required

NN/ No Convergence
G Speed
° =\ /] VN N\ E (=2
/. N 4 Optimized Schwarz
4 % = ¥ Continuous
é Discrete
3 / i N Eroph
2 % VINANNNNN NN VNV fz
/ %
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Optimized Schwarz Application

Result of a non-overlapping optimized Schwarz method with
Robin transmission conditions:

VAVAVA Vvl v AVAYAYA.
VA VA AN AN AN AN A YAYAYAYd
AVAYAY

1/

-20 -15 -10 -5 0 5 10 15 20 25

With the optimal parameter p* from the two subdomain
theory, the convergence factor ratio is in the iterative case
32/25 = 1.28 ~ 21/3 = 1.26, as predicted by the two
subdomain theory.

Schwarz Methods
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Continuous
Discrete

Overlap Required
No Convergence
Convergence Speed

Continuous
Examples
Discrete
Example



Results for other PDEs Sehwarz Hethods

Martin J. Gander
Such formulas are also available for advection-reaction-

diffusion (Japhet 1998, Dubois and G. 2007), Helmholtz
(Chevalier 1998, G., Magoules, Nataf 2001), Heat (G.
Halpern 2003), Wave (G., Halpern, Nataf 2003),
Cauchy-Riemann and Maxwell’s equations (Dolean, G.,
Gerardo-Giorda 2007)

with overlap, L = h without overlap, L = 0 -
Case 14 parameters 14 parameters
1 1— vkt — w?h none 1 none
1 1 1
11 3 3 1
_octh3 _ a3 _ V3 _ veed
2 1-2C8h p " 1 7 vh P="r%
11 2 ;w2)% V(K2 —w2)% VT(K2 —w2)%
3 |1-2(k2 —w?)6h3 | p= T 1— + vH p= +
+ ohs VC V2vh
: Pl
C, cS-c4
2 11 pL= 7T, o1 PL= =1
4 1—-25C0h5 25 .p5 1- S pa %'“3
B ca _c8.ck
p = g7 p2 = —“>—
25 .45 %
2 3 1
(k2 —w?)5 (k2 -w?)8.c¥
5 Lol = 1> (kz_WQ)% 1 pL=——1"">
5 [1-25(k2 —w?)10h5 25 .h5 1 T hi 2-h4
(K2 —w?)5 ca (K2 -w?)8.c?
p2 = P2 =
25 .45 ha




Large Scale Optimized Schwarz Computations Semare Hthods

Martin J. Gander

» Heating a chicken in our Whirlpool Talent Combi 4
microwave oven (with V. Dolean):

ntinuou
Examples
iser

mple

e a5
T ee um 0as

015 02

o, oes 01

5000

35
5000 .
4000 s
20
3000
5
2000
0
oo e 025 1000
01 o015 02 I




Discrete Optimized Schwarz Methods Schwars Methods

Martin J. Gander
How does one have to change the RAS
Mpis = (R AR + Ry ASTR,)
and the MS preconditioner
J
Myt = | 1-]1 (/ _ RjTAJfleA) AL
j=1

to obtain an optimized method 7

Simply replace A; by a slightly modified /Z\j !

(St-Cyr, G and Thomas, 2007)



A n EXa m p I e Schwarz Methods

Martin J. Gander
Lu=(n—A)u=f, in(0,1)

Finite volume discretization leads to

T, -1 nh? + 4 -1
A= | =1 Ty | Ty=| =1 kP44 | o

The classical subdomain matrices are A; = R;AR].
The optimized ,Z\J. are obtained from A; by simply replacing
the interface diagonal block T, by

o 1
T'=3Ty+phl + %(To —20),  To= Tyly=0,

where p and g are solutions of the associated min-max
problem.



ReSUIt fOr the Example Schwarz Methods

Martin J. Gander
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Atmospheric General Circulation Model (GCM) seharz Mithods

Martin J. Gander
Held Suarez test, temperature field, at the surface of the
planet after 200 days of simulation (with A. St-Cyr) Continuous

Discrete

T at level = 19 time=200 days

S0ON Overlap Required

No Convergence
Convergence Speed

60N

Continuous
30N

Examples
Discrete

Example

308

608

908
180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180

266.225 275.493 284.76 294.028 303.295

(6144 spectral subdomains on the IBM Blue Gene)



What if one does not know the PDE ? Sehwarz Hethods

. Coe . . . Martin J. Gander
After a bandwidth minimization reordering, we partition the : e

matrix algebraically and identify interface blocks:

0
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0 50 100 150 200 250 300 350 400

nz = 1920



Schwarz Methods

Algebraic Optimization

. . Martin J. Gander
Using the notation

Discrete

the iteration operator squared has the structure

Ty

T




Schwarz Methods

Analysis
If the small matrices E; are replaced by D; in the new Martin J: Gander

subdomain matrices Z\j, an algebraic analysis reveals
Ti=Y(D;'=Y,)"H(Z+D;1 ' Bi1Zs)(D; - Z; 1) D5 ' Bae e 4]

To=2Z(D;*=2Z) " (Ypa+D5 By Yo o) (D7 =Y, 1) D Brey) +e/ ]

where
(X ... X Y] ] [ Zi X ... X | e
: : : 7 :
ATl = Yoo |, A= Z
: . Yn—l : .
| X ..o XY, ] | Z» X ... X ]

Hence we can make T2 small in norm, if we can make
D12, + Bi1Z3 DyYo_1+ ByYno2

small in norm.



Schwarz Methods

Algebraic Optimization Problems

Martin J. Gander

Choosing the Frobenius norm, we need for a given sparsity
pattern P; and P; to solve the minimization problems

min ||D122—|—B]_Z3||F, min ||D2Yn—1+B2Yn—2HF7
D1eP1 D2ePs

which decouples into smaller least squares problems, for g
example
> If the sparsity pattern is diagonal, we get scalar least
squares problems.
> If the sparsity pattern is tridiagonal, we get least
squares problems with 3 unknowns each.

> If we allow complete fill-in in D;, we can obtain 7; =0



Performance with Modified Matrix Entries

We obtain for the unknown example (which was an

advection diffusion equation with rotating velocity) the
convergence curves

T T
— non-overlapping
— overlapping
— 00
—— Optimal

10
iteration

12

14

16

18

20

Schwarz Methods
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Example



Clustering of the

Spectra of T

o8 06
os *
04
04 *
r=0.87
* 02
02
T * 7
I )
E z
E * H
02|
* 02
0 *
04
o] *
08| 08
0 oz o4 o6 o8 1 12 14 16 18 2 0z o4 o6 T 14 15 18
Re(lambda) Re(lambda)
x10°
25
04
2 *
15
02 *
B * * * / 1=2.77e-08
os
g g * e
D HID
H H
05 * W
o
-0z * ok ok K
s
-2
o4
25
n o5 16 1 1

1
Reflambda)

Schwarz Methods

Martin J. Gander

Continuous

No Co

Convergence S

ontinuous

camples

C



. Schwarz Methods
Conclusions
» Discrete Schwarz methods are in most cases
discretizations of continuous Schwarz methods
(exception: AS with overlap!)

Martin J. Gander

» Optimized Schwarz Methods use transmission
conditions adapted to the underlying PDE, which can
greatly improve their convergence rate

» Replacing classical subdomain matrices A; by optimized
ones, leads to optimized MS, RAS and AS (on an
augmented system)

Conclusions

Important current problems: (2008)
> Algebraically optimized Z\j
» Coarse grid corrections for optimized Schwarz

» General convergence proof for overlapping optimized
Schwarz



