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History Multiple Shooting
Parallel time stepping

Space-Time Parallel Methods

Evolution Problems
Systems of ordinary differential equations v’ = f(u),

or partial differential equations % = L(u)+f.

space
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to 1 tn—1 tn time

To what degree can the far future be predicted, before the near
future is known accurately ?
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History of Time Parallel Algorithms

J. Nievergelt, Parallel Methods for Integrating Ordinary
Differential Equations. Comm. of the ACM, Vol 7(12), 1964.

“For the last 20 years, one has tried to speed up numerical computation mainly by providing ever faster
computers. Today, as it appears that one is getting closer to the maximal speed of electronic components,

phasis is put on allowing operations to be performed in parallel. In the near future, much of numerical
analysis will have to be recast in a more “parallel” form.”
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Multiple shooting for boundary value problems
H. Keller, Numerical Methods for Two-Point Boundary Value

Problems 1968.
For the model problem

u" = f(u), u(0)=1d® u(l)=1d, x €[0,1]

one splits the spatial interval into subintervals [0, 1], [3, 2], [3, 1],

and then solves on each subinterval

u(l), = f(UO)a uil = f(ul)’ Ug = f(u2)a
up(0) = U, U1(%) = U, Uz(g) = U,
u(0) = U, u(z) = U, uy(3) = Uy,

together with the matching conditions

UOZUOa U1:U0(1,U0,U6), U2:U1(2,U1,U{),
Uizué(i’ Vo, U(I))’ Uézui(ia U, Ui)a U1:U2(17 Uz, Ué)

! ! T
<~ FU)=0, U= (U, U, U, Uy, U;,U5)" .
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Example: first iteration

u
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Example: second iteration

u
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Example: third iteration

u
U,
Ui
Uy u(x)
i % —= X
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Multiple shooting for initial value problems

For the model problem
o =f(u), wu(0)=1d’ tel0,1]

one splits the time interval into subintervals [0, 3], [1, 2], [3, 1],
and then solves on each subinterval

U6 = f(uo)a Ui = f(ul)a Ué = f(u2)7
u(0) = U, uw(3) = Ui, n(3) = U,

together with the matching conditions
1
Up =1 U= Uo(§, Uo), U= U1( , U)
— FU)=0, U= (U, U, Ux)T.
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Example: first iteration

u

Ur
L7

u(t)

Uo

; : —
0 1/3 2/3 1

Martin J. Gander Time-parallel methods



History Multiple Shooting
Parallel time stepping

Space-Time Parallel Methods

Example: second iteration

u

Ur
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Example: third iteration

u
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Using Newton's Method
Solving F(U) = 0 with Newton leads to

-1
k+1

U9(11 U(I); Oug 11 k k U(I)(_luo k
) G TR, ot )
ukrt)  \Us _om (2 uky 1| \UE- (3, UF)

Multiplying through by the matrix, we find the recurrence

Uk—|—1 — uO

U = wo(3, U§) + 5t (5, US(UG™ — Uf),

Ut = w3 U + 556 U - U,
General case with N intervals, t, = nAT, AT =1/N

Oup

Unfi = un(tas1, Up) + 5 a0 (1, UK)(UEHL — UK.
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Parallel time stepping

W. Miranker and W. Liniger, Parallel Methods for the
Numerical Integration of Ordinary Differential Equations.
Math. Comp., Vol 21, 1967.

“It appears at first sight that the sequential nature of the numerical methods do not permit a parallel
computation on all of the processors to be performed. We say that the front of computation is too narrow
to take advantage of more than one processor... Let us consider how we might widen the computation
front.”

v =f(u), wu(0)=u
predict /T\ predict

correct correct

th—1 tn tht1 th— ¥ tn thil
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Space-Time lterative Methods

» Waveform Relaxation
E. Lelarasmee, A.E. Ruehli, A.L. Sangiovanni-Vincentelli. The Waveform Relaxation Method for
Time-Domain Analysis of Large Scale Integrated Circuits, IEEE Trans. on CAD of IC and Syst. 1982.
» Windowed Relaxation
J. Saltz, V. Naik, D. Nicol. Reduction of the effects of communication delays in scientific algorithms on
message passing MIMD architectures. SISC 8(1), 1987.
» Parallel Time Stepping

D. Womble. A time-stepping algorithm for parallel computers. SISC 11(5), 1990.

3 A

time
time

space space
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A Negative Result for Parallel Time Stepping

Deshpande, Malhotra, Douglas, Schultz, Temporal Domain
Parallelism: Does it Work ? Tech report 1993, SISC 1995

Results:

» if a good solver is used on each time step, no parallel speedup
is possible.

> if a very slow solver is used on each time step, a small parallel
speedup can be achieved.

Quote from the tech report:

“We show that this approach is not normally useful”.
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Parabolic Multigrid Methods

Applying a multigrid algorithm on the space-time mesh

» rapid information propagation forward in time, by means of a
(set of) coarse meshes

> very few iterations before convergence.

Three examples:

» Time-parallel multigrid (Hackbusch, 1984; Bastian,
Burmeiser, Horton, 1990; Oosterlee, 1992;...)

» Multigrid waveform relaxation (Lubich and Ostermann,
1987; Vandevalle and Piessens,1988;...)

» Space-time multigrid (Horton and Vandevalle, 1995)
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A Time-Multigrid Algorithm

Linear model problem:

Discretization with Forward Euler:
Fine grid problem:

Unt1 = Um + alAtum, =: aptlm,
Coarse grid problem:

Un+1 =U,+aATU, =: apTU,.
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Using Matrix Notation
Fine grid: Mu = b, coarse grid: Ma7TU = ba T, where

1

bo
M = — QA 1 s b = 0 s
1 ug

, bar = 0

Time multigrid algorithm: starting with an initial guess u®
i = uk +S(b—Mu¥), Marer? =137 (b—Mi*), ot =k +iRfeR
Nonlinear problems: Multigrid Full Approximation Scheme
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A new Algorithm!?
The Parareal Algorithm How does it work?

Original Convergence Result

The Parareal Algorithm
J-L. Lions, Y. Maday, G. Turinici, A “Parareal” in Time
Discretization of PDEs, C.R.Acad.Sci. Paris, t.322, 2001.
The parareal algorithm for the model problem
v = f(u)
is defined using two propagation operators:
1. G(t1, to,u1) is a rough approximation to u(tz) with initial
condition u(t;) = vy,
2. F(t1, ty, u1) is a more accurate approximation of the solution
u(tp) with initial condition u(t;) = u.
Starting with a coarse approximation U9 at the time points

t1, t,..., ty, parareal performs for k = 0,1,... the correction
iteration

UII:—_I—Fll = G(tn+1a tn, Url1(+1) + F(tn+1a tn, Url:) - G(tn-l—la th, Url:)
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A new Algorithm!?
The Parareal Algorithm How does it work?

Original Convergence Result

How does it work?
Url,(j_—j:[l = G(tn—I—la tna Ur’1(+1) + F(tn—|—17 tna U,’,() - G(tn—l—la tm Urly()

th—1 th tn—|—1

K
G(tnt1, tn, Up) iteration k

iteration k + 1

k+1 k41 k+1
Un_1 u, U"Jrl

Dominant part of the computation (F) is parallel (in time) !
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A new Algorithm!?
The Parareal Algorithm How does it work?

Original Convergence Result

Original Convergence Result for Parareal

Theorem (Lions, Maday, and Turinici, 2001)

If thy1 —ta = AT, G is O(AT) and F is exact, then at iteration
k the error for a linear problem is O(AT*1).

Example

v'=—u+sint, u(ty)=1.0, t €[0,30], trapezoidal rule,

AT =1.0 and At =0.01

"
time
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Parareal is a Multiple Shooting Method
Parareal is a Time Multigrid Method

Algorithmic Equivalences and Convergence Analysis Convergence Analysis for Linear Problems

Interpretation of Parareal

In the multiple shooting method

du,

Upfi = un(tas1, Un) + 5 a0 (1, UK)(UET - Ub).

one needs to compute or approximate the Jacobian. From the
differential equation

uh = f(uy), un(tn) = U,.

we obtain the linear equation satisfied by the terms in the Jacobian:

Oup '_ , Oup Oup B
<8Un) —f(Un)a—(jn, B—Ljn(tn)_l
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Algorithmic Equivalences and Convergence Analysis Convergence Analysis for Linear Problems

Multiple Shooting
Theorem (Chartier and Philippe 1993)

If the initial guess U° is close enough to the solution, then under
appropriate regularity assumptions, the multiple shooting algorithm
converges quadratically.

Result (G, Vandevalle 2003)
Approximation of the Jacobian on a coarse time grid leads from

Bu,,

Uk+1 - un(tn+15 Uk) (tn+17 Uk)(Uk+1 UII;)
to

U,I:i—% — (tn—|—1a tna U[I‘)() + G(tn—i—la tna U,I:—H) - G(tn—l—la tna Ull:)a

which is the parareal algorithm.
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Parareal is a Time Multigrid Method

Theorem (G, Vandewalle, 2003)

Let F be method ¢ doing m steps and G be method ®, and let
I8 be the selection operator at 1,/ + 1,2+ 1,... and IRL be
the extension operator with 1 and any values in between.

If in the time multigrid algorithm

» a block Jacobi smoother is used, S = EMjgcl, where
Mjac + Njac = M, and E is the identity, except for zeros at
positions (1,1), (m+1,m+1), (2m+1,2m+1) ...

» The initial guess u® contains U from the parareal initial guess

at positions1, m+1,2m+1 ...

then it coincides with the parareal algorithm.
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Algorithmic Equivalences and Convergence Analysis Convergence Analysis for Linear Problems

Convergence Results for Linear Problems
For the linear model problem v’ = —au, u(0) = vo, R(a) > 0.

Theorem (Superlinear Convergence)

Let F(tni1,ts, UX) denote the exact solution at t,,1 and
G(tni1, ta, UX) = BUX be a one step method. If the method is in
its region of absolute stability, || < 1, then at iteration k, we have

aAT _

1k |e g0
lgmn?N u(ty) — Usl < H(N  max, | (tn) — Uyl.

If the local truncation error is bounded by CATP1, then

max |u(t) — 0¥ < (ET)

AT — Uyl
1<n<N k! 1<maX u(ta) = Ua]
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Convergence Results for Linear Problems

Theorem (Linear Convergence)

Let F(tni1,ts, UX) denote the exact solution at t,,1 and

G(tni1, ta, UX) = BUKX be a one step method. If AT is such that
the method is in its region of absolute stability, then at iteration k,
we have

k e AT — B\ " 0
sup|u(tn) — Uy| < | ———5— ] sup|u(ta) — U,|-
n>0 1- ‘IB| n>0

If the local truncation error is bounded by CATPTL, then for AT
small, we have

CATP k
sup u(tn) — UK| < )

n>0 (W sup |u(ta) — USI.

n>0
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Convergence Analysis for Linear Problems

Contraction Factors for the Fully Discrete Case

R(—a)
G: Backward Euler

25 -2

F: exact

Martin J. Gander
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G: Backward Euler F: BE 10 steps
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Contraction Factors for the Fully Discrete Case
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R(—a) - R(-a)
G: Backward Euler F: Trapezoidal G: Backward Euler F: Radau
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