
Junior Rewrite Semantics∗

Frédéric Boussinot† Jean-Ferdy Susini‡

Draft - October 9, 2000

Abstract

This paper describes the basic formal semantics of Junior, a formalism for
reactive programming in Java. Semantics consists in rewriting rules given for
Junior reactive instructions.

1 Introduction

Junior[2] is a formalism for reactive programming in Java. This paper describes
a formal semantics for it. One adopts some simplifications with Jr, the Junior
API[3]; the followings are not considered:

• Events identifiers others than constant strings. Thus, no identifiers nor wrap-
pers are considered, only strings.

• The possibility to dynamically add new programs in machines. Thus, the add
method of Machine is not considered.

• Simplified forms of Jr constructors, where Jr.Nothing() replaces an absent
parameter.

• Means for interfacing with Java, except atoms. Thus, the Link instruction is
not considered.

One first defines the abstract syntax of Junior; then, rewriting rules are given
for each reactive instruction.

∗With support from France-Telecom R&D, and from EC (PING IST Project)
†EMP/CMA-INRIA
‡EMP/CMA-INRIA

1

2 Syntax

Formal semantics uses abstract syntax instead of concrete one.

2.1 Abstract Syntax

In the abstract syntax, a is an action, t and u are terms, n is an integer, S is an
event, and C is a configuration.

• For the following instructions, abstract syntax coincides with concrete one:

– Nothing

– Stop

– Atom(a)

– Loop(t)

– Repeat(n, t)

– Generate(S)

– Await(C)

– When(C, t, u)

– Control(S, t)

– Seq(t, u)

• In abstract syntax, the Par operator holds the termination flags (defined later
in section 2.3) of its two branches (α is the termination flag of t and β is the
one of u):

– Parα,β(t, u)

• Abstract syntax adds a new form to the preemption Until operator. In this
new form, written Until∗, the body has already reacted but decision of actual
preemption is still pendant:

– Until(C, t, u)

– Until ∗ (C, t, u)

• An auxiliary information is added to local event declarations, to store local
event values:

– Local − (S, t)

– Local + (S, t)

In these terms, sign + indicates that the local event is generated, and sign −
that it is not.

• As with Until, abstract syntax adds a new form to the Freezable operator. In
this new form, written Freezable∗, production of the residual is still pendant:

2

– Freezable(S, t)

– Freezable ∗ (S, t)

• One defines a new top-level instruction Instant to cyclically run an instruction
t while suspended, and to detect the end of the current instant:

– Instant(t)

• The abstract syntax for a reactive machine with program t is:

– ExecContext(t)

2.2 Translation from Concrete to Abstract Syntax

The translation function tr from concrete to abstract syntax is recursively defined
as follows:

• tr(Jr.Nothing()) = Nothing

• tr(Jr.Stop()) = Stop

• tr(Jr.Atom(a)) = Atom(a)

• tr(Jr.Seq(t, u)) = Seq(tr(t), tr(u))

• tr(Jr.Par(t, u)) = ParSUSP,SUSP (tr(t), tr(u))

• tr(Jr.Loop(t)) = Loop(tr(t))

• tr(Jr.Repeat(n, t)) = Repeat(n, tr(t))

• tr(Jr.Generate(S)) = Generate(S)

• tr(Jr.Await(C)) = Await(C)

• tr(Jr.When(C, t, u)) = When(C, tr(t), tr(u))

• tr(Jr.Until(C, t, u)) = Until(C, tr(t), tr(u))

• tr(Jr.Control(S, t)) = Control(S, tr(t))

• tr(Jr.Local(S, t)) = Local − (S, tr(t))

• tr(Jr.Freezable(S, t)) = Freezable(S, tr(t))

• tr(Jr.Machine(t)) = ExecContext(tr(t))

In the abstract parallel operator, the two termination flags are initially set to
SUSP (see 2.3).Iin local declarations, the local event is initially not generated (cor-
responding to sign −).

3

2.3 Format of Rewritings

The basic semantics of Junior has the standard format of conditional rewriting
rules[4]. It is called REWRITE. One writes:

t, E
α−→ t′, E′

which means that:

• t′ is the instruction which remains to be executed after executing t in the
environment E. t′ is called the residual of t, and one says that t rewrites in t′.

• E′ is the new environment after execution of t.

• α is a termination flag with 3 possible values:

– TERM means that execution is terminated for the current instant and that
nothing remains to do for the next instant.

– STOP means that execution is terminated for the current instant but that
something remains to do at next instant.

– SUSP means that execution is not terminated for the current instant and
thus must be resumed during it.

2.4 Environments

An environment E is made of the following components:

• A set containing present events.

• A boolean flag eoi(E) which is true if the end of the current instant has been
decided, and false otherwise.

• A boolean flag move(E) which is set to true to indicate that some change has
appeared in the system; in this case, the end of the current instant must be
dalayed to let the system possibility to react to this change.

• A table used to store the instructions which are frozen during the instant.

The following notations are defined:

• To note that an event S is present in E, one simply writes S ∈ E.

• E+S is the environment equal to E except that event S is added to it; E−S
is equal to E except that S is removed from it. E[move = b] is equal to E
except that flag move is set to b. E[eoi = b] is equal to E except that flag eoi
is set to b.

• E/F [S] is equal to E + S if S ∈ F , and is equal to E − S otherwise; E/F [S]
is thus equal to E, except for S which is determined by F .

• γ(α, β) equals SUSP if either α or β is equal to SUSP ; it equals TERM
if both α and β are equals to TERM ; it equals STOP in all other cases;
actually, it is defined by the array:

4

SUSP STOP TERM
SUSP SUSP SUSP SUSP
STOP SUSP STOP STOP
TERM SUSP STOP TERM

• δ1(α, β) equals SUSP if α is STOP and β is STOP or TERM ; it equals α
otherwise. δ2(α, β) equals SUSP if β is STOP and α is STOP or TERM ; it
equals β otherwise.

• E{S := t} associates the frozen instruction t to event S; E{S} is the frozen
instruction associated to S.

3 Semantics of Basic Statements

3.1 Nothing

Nothing immediately terminates and does nothing. The rule is:

Nothing,E
TERM−→ Nothing,E (1)

3.2 Stop

The Stop statement stops execution for the current instant, and nothing remains to
be done at next instant:

Stop,E
STOP−→ Nothing,E (2)

3.3 Atoms

An atom immediately terminates after performing an action. The rule is:

Atom(a), E TERM−→ Nothing,E (3)

with the side-effect of executing atomically action a.

3.4 Sequence

The sequence is defined by two rules, depending on the termination of the first
branch.

If the first branch terminates, then the second one is immediately run:

t, E
TERM−→ t′, E′ u,E′ α−→ u′, E′′

Seq(t, u), E α−→ u′, E′′ (4)

If the first branch is not terminated, then so is the sequence:

t, E
α−→ t′, E′ α �= TERM

Seq(t, u), E α−→ Seq(t′, u), E′ (5)

5

3.5 Parallelism

Both branches are suspended

If both branches of the parallel operator are suspended (which is the initial situation
at each instant), then execution can nondeterministically chooses to execute one of
them, setting the move flag to indicate that end of instant must be postponed in
order to let the other branch a chance to be executed. The two corresponding rules
are:

t, E
α−→ t′, E′

ParSUSP,SUSP(t, u), E
SUSP−→ Parα,SUSP(t′, u), E′[move = true]

(6)

u,E
β−→ u′, E′

ParSUSP,SUSP(t, u), E
SUSP−→ ParSUSP,β(t, u′), E′[move = true]

(7)

If both branches of the parallel operator are suspended, execution can also ex-
ecute both. The rule which executes the first branch, then the second, is called
Merge:

t, E
α−→ t′, E′ u,E′ β−→ u′, E′′

ParSUSP,SUSP(t, u), E
γ(α,β)−→ Parδ1(α,β),δ2(α,β)(t′, u′), E′′

(8)

The second rule which executes the second branch, then the first one, is called
InvMerge:

u,E
β−→ u′, E′ t, E′ α−→ t′, E′′

ParSUSP,SUSP(t, u), E
γ(α,β)−→ Parδ1(α,β),δ2(α,β)(t′, u′), E′′

(9)

Only one branch is suspended

If only one branch is suspended, then it is simply run (and, in this case, the move
flag is left unchanged):

β �= SUSP t, E
α−→ t′, E′

ParSUSP,β(t, u), E
γ(α,β)−→ Parδ1(α,β),δ2(α,β)(t′, u), E′

(10)

α �= SUSP u,E
β−→ u′, E′

Parα,SUSP(t, u), E
γ(α,β)−→ Parδ1(α,β),δ2(α,β)(t, u′), E′

(11)

Note that, in all the rules of Par, production of a flag different from SUSP is
only possible when both branches have also produced a flag different from SUSP;
this reflects the synchronous characteristics of the parallel operator which, at each
instant, executes its two branches.

6

3.6 Loop

A loop executes its body and rewrites in a sequence if it does not terminate imme-
diately:

t, E
α−→ t′, E′ α �= TERM

Loop(t), E α−→ Seq(t′, Loop(t)), E′ (12)

When the loop body terminates immediately, the loop is restarted:

t, E
TERM−→ t′, E′ Loop(t), E α−→ u,E′′

Loop(t), E α−→ u,E′′ (13)

3.7 Repeat

Repeat terminates immediately if the counter is less or equal to zero:

n ≤ 0

Repeat(n, t), E TERM−→ Nothing,E
(14)

Otherwise, the semantics is the one of a sequence:

n > 0 Seq(t, Repeat(n− 1, t)), E α−→ u,E′

Repeat(n, t), E α−→ u,E′ (15)

4 Event Statements

4.1 Configurations

A configuration is either:

• A positive configuration, that is an event S.

• A negative configuration, that is the negation not C of a configuration.

• A conjunction C1 and C2 of two configurations.

• A disjunction C1 or C2 of two configurations.

Two functions fixed and eval are defined for configurations. A configuration
can be evaluated (function eval) only when it is fixed (function fixed):

Fixed

fixed(C,E) is true when configuration C can be evaluated in the environment E:

• fixed(S,E) ≡ S ∈ E or eoi(E)

• fixed(not C,E) ≡ fixed(C,E)

•
fixed(C1 and C2, E) ≡ fixed(C1, E) and fixed(C2, E)

or fixed(C1, E) and eval(C1, E) = false
or fixed(C2, E) and eval(C2, E) = false

7

•
fixed(C1 or C2, E) ≡ fixed(C1, E) and fixed(C2, E)

or fixed(C1, E) and eval(C1, E)
or fixed(C2, E) and eval(C2, E)

Note that in the basic case of an event S, fixed(S,E) is true if S is present or
if the end of instant is set; this last case means that S is absent.

Eval

eval(C,E) returns the value of configuration C in the environment E:

• eval(S,E) ≡ S ∈ E

• eval(not C,E) ≡ not eval(C,E)

• eval(C1 and C2, E) ≡ eval(C1, E) and eval(C2, E)

• eval(C1 or C2, E) ≡ eval(C1, E) or eval(C2, E)

Auxiliary Functions

Three auxiliary functions are also defined:

• sat(C,E) ≡ fixed(C,E) and eval(C,E)

• unsat(C,E) ≡ fixed(C,E) and eval(C,E) = false

• unknown(C,E) ≡ fixed(C,E) = false

Note that unknown(C,E) is true if and only if sat(C,E) and unsat(C,E) are
both false. Note also that in the basic case of an event S, one has:

• sat(S,E) = true means that S is in E: S is present;

• unsat(S,E) = true means that S is not in E and that eoi(E) is true: S is
absent.

4.2 Generate

AGenerate statement adds the generated event in the environment and immediately
terminates:

Generate(S), E TERM−→ Nothing, (E + S)[move = true] (16)

4.3 Events Tests

The “then” branch is executed if the configuration is satisfied; execution is imme-
diate if satisfaction occurs before the end of the current instant, and is delayed to
the next instant otherwise:

sat(C,E) eoi(E) = false t, E
α−→ t′, E′

When(C, t, u), E α−→ t′, E′ (17)

8

sat(C,E) eoi(E) = true

When(C, t, u), E STOP−→ t, E
(18)

The “else” branch is chosen if the configuration is not satisfied; execution is
immediate if unsatisfaction occurs before the end of the current instant, and is
delayed to the next instant otherwise:

unsat(C,E) eoi(E) = false u,E
α−→ u′, E′

When(C, t, u), E α−→ u′, E′ (19)

unsat(C,E) eoi(E) = true

When(C, t, u), E STOP−→ u,E
(20)

Note that the two previous rules returning STOP when eoi(E) is false basically
forbid immediate reaction to events absences.

The test is suspended if the configuration is unknown:

unknown(C,E)

When(C, t, u), E SUSP−→When(C, t, u), E
(21)

4.4 Await

Await terminates if the configuration is satisfied; termination is immediate if sat-
isfaction occurs before the end of the current instant, and is delayed to the next
instant otherwise :

sat(C,E) eoi(E) = false

Await(C), E TERM−→ Nothing,E
(22)

sat(C,E) eoi(E) = true

Await(C), E STOP−→ Nothing,E
(23)

Await stops if the configuration is unsatisfied:

unsat(C,E)

Await(C), E STOP−→ Await(C), E
(24)

Await is suspended if the configuration is unknown:

unknown(C,E)

Await(C), E SUSP−→ Await(C), E
(25)

4.5 Control

The body is executed if the controlling event is present:

sat(S,E) t, E
α−→ t′, E′

Control(S, t), E α−→ Control(S, t′), E
(26)

Control stops if the event is absent:

9

unsat(S,E)

Control(S, t), E STOP−→ Control(S, t), E
(27)

Control is suspended if the event is unknown:

unknown(S,E)

Control(S, t), E SUSP−→ Control(S, t), E
(28)

4.6 Until

Until behaves as the body if it does not stop:

t, E
α−→ t′, E′ α �= STOP

Until(C, t, u), E α−→ Until(C, t′, u), E′ (29)

If the body stops, Until behaves as the auxiliary instruction Until∗ (considered
in 4.7):

t, E
STOP−→ t′, E′ Until ∗ (C, t′, u), E′ α−→ v,E′′

Until(C, t, u), E α−→ v,E′′ (30)

Note that the body t is executed in both rules; preemption of Until is said to
be weak, by contrast with the strong preemption used in the synchronous approach,
which basically implies instantaneous reaction to absence.

4.7 Until*

The rules for Until∗ are the following:
The handler is immediately executed if the configuration is satisfied before the

end of instant:

sat(C,E) eoi(E) = false u,E
α−→ u′, E′

Until ∗ (C, t, u), E α−→ u′, E′ (31)

Until∗ stops and rewrites in the handler, if the configuration is satisfied while
end of instant is true:

sat(C,E) eoi(E) = true

Until ∗ (C, t, u), E STOP−→ u,E
(32)

Until∗ stops and rewrites in Until, if the configuration is unsatisfied:

unsat(C,E) eoi(E) = true

Until ∗ (C, t, u), E STOP−→ Until(C, t, u), E
(33)

Until∗ is suspended while the configuration is unknown:

unknown(C,E)

Until ∗ (C, t, u), E SUSP−→ Until ∗ (C, t, u), E
(34)

10

4.8 Local

The local event is not generated in Local− and present in Local+. The local event
is set to the appropriate value before body execution, and it is saved after. The
value of the event is always left unchanged in the external environment.

If the body suspends, then the value of the local event value is stored in the
produced term:

t, E − S
SUSP−→ t′, E′ S �∈ E′

Local − (S, t), E SUSP−→ Local − (S, t′), E′/E[S]
(35)

t, E − S
SUSP−→ t′, E′ S ∈ E′

Local − (S, t), E SUSP−→ Local + (S, t′), E′/E[S]
(36)

t, E + S
SUSP−→ t′, E′

Local + (S, t), E SUSP−→ Local + (S, t′), E′/E[S]
(37)

When the body terminates or stops, then the local event is reset for the next
instant:

t, E − S
α−→ t′, E′ α = TERM or α = STOP

Local − (S, t), E α−→ Local − (S, t′), E′/E[S]
(38)

t, E + S
α−→ t′, E′ α = TERM or α = STOP

Local + (S, t), E
alpha−→ Local − (S, t′), E′/E[S]

(39)

4.9 Freezable

The semantics of Freezable is close to the one of Until. Freezable behaves as the
body if it does not stops:

t, E
α−→ t′, E′ α �= STOP

Freezable(S, t), E α−→ Freezable(S, t′), E′ (40)

If the body stops, Freezable behaves as the auxiliary instruction Freezable∗
(considered in 4.10):

t, E
STOP−→ t′, E′ Freezable ∗ (S, t′), E′ α−→ v,E′′

Freezable(S, t), E α−→ v,E′′ (41)

Note that the body t is executed in both rules; As Until, Freezable performs
weak preemption.

4.10 Freezable*

The rules for Freezable∗ are the following:
The instruction immediately terminates if the freezing event is present before

the end of instant:

S ∈ E eoi(E) = false

Freezable ∗ (S, t), E TERM−→ Nothing,E{S := Par(t, E{S})}
(42)

11

Note that the residual instruction t is put in parallel in the frozen instructions
table.

The instruction terminates at next instant if the freezing event is present while
the end of instant is set:

S ∈ E eoi(E) = true

Freezable ∗ (S, t), E STOP−→ Nothing,E{S := Par(t, E{S})}
(43)

Freezable∗ stops and rewrites in Freezable, if the freezing event is absent:

S �∈ E eoi(E) = true

Freezable ∗ (S, t), E STOP−→ Freezable(S, t), E
(44)

Freezable∗ is suspended while the freezing event is unknown:

S �∈ E eoi(E) = false

Freezable ∗ (S, t), E SUSP−→ Freezable ∗ (S, t), E
(45)

5 Execution Context

Execution context rewritings have the form e
b=⇒ e′ meaning that reaction of the

execution context e leads to the new execution context e′; b is a boolean which is
true if the execution context e′ is completely terminated.

5.1 Execution Context

An execution context executes one instant of its program in a new fresh environment.

Instant(t), F resh α−→ Instant(t′), E

ExecContext(t) b=⇒ ExecContext(t′)
(46)

In this rule:

• Fresh is the environment with an empty event set and such that eoi(Fresh)
and move(Fresh) are both false, and with an empty frozen instructions table.

• b is true if α is TERM, and false otherwise.

5.2 Instant

Execution of an instruction during one instant means cyclic execution while it is
suspended. Moreover, when execution suspends, end of instant is detected if no new
move setting was performed.

The instant is terminated when the instruction is stopped or terminated:

t, E
α−→ t′, E′ α �= SUSP

Instant(t) α−→ Instant(t′), E′ (47)

Execution is immediately restarted if SUSP is returned and end of instant is
set if no new move setting was performed:

12

t, E
SUSP−→ t′, E′ move(E′) = false Instant(t′), E′[eoi = true] α−→ u,E′′

Instant(t) α−→ u,E′′ (48)

Execution is immediately restarted if SUSP is returned and move is reset if a
move appeared:

t, E
SUSP−→ t′, E′ move(E′) = true Instant(t′), E′[move = false] α−→ u,E′′

Instant(t) α−→ u,E′′

(49)

6 Conclusion

Junior is a kernel model for reactive programming. It basically defines concurrent
reactive instructions communicating with broadcast events. At the basis of Junior
is the rejection of immediate reaction to absence, which is one of the major difference
with synchronous formalisms[1].

The Par parallel operator in Junior is basically non-deterministic. This is
the main difference with SugarCubes[5] which has a deterministic Merge parallel
operator.

References

[1] N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer Aca-
demic Pub., 1993.

[2] L. Hazard, J-F. Susini, F. Boussinot, The Junior reactive kernel, Inria Research
Report 3732, July 1999.

[3] L. Hazard, J-F. Susini, F. Boussinot, Programming In Junior, 2000.

[4] G. Plotkin, A Structural Approach to Operational Semantics, Report DAIMI
FN-19, Aarhus University, 1981.

[5] F. Boussinot, J-F. Susini, The SugarCubes Tool Box - A reactive Java frame-
work, Software Practice & Experience, 28(14), 1531-1550, 1998.

13

Contents

1 Introduction 1

2 Syntax 2
2.1 Abstract Syntax . 2
2.2 Translation from Concrete to Abstract Syntax 3
2.3 Format of Rewritings . 4
2.4 Environments . 4

3 Semantics of Basic Statements 5
3.1 Nothing . 5
3.2 Stop . 5
3.3 Atoms . 5
3.4 Sequence . 5
3.5 Parallelism . 6
3.6 Loop . 7
3.7 Repeat . 7

4 Event Statements 7
4.1 Configurations . 7
4.2 Generate . 8
4.3 Events Tests . 8
4.4 Await . 9
4.5 Control . 9
4.6 Until . 10
4.7 Until* . 10
4.8 Local . 11
4.9 Freezable . 11
4.10 Freezable* . 11

5 Execution Context 12
5.1 Execution Context . 12
5.2 Instant . 12

6 Conclusion 13

14

