The SugarCubes Tool Box
RSI-JAVA Implementation

FREDERIC BOUSSINOT, JEAN-FERDY SUSINI
INRIA EMP-CMA /Meije
2004 route des lucioles
F-06902 Sophia-Antipolis

fb@sophia.inria.fr, jfsusini@sophia.inria.fr

May 13, 1997

Contents

1

Introduction
1.1 Behaviors L e e e e e e e e e
1.2 Objects. . . . o o i e e e e e e e e e e e e

Behaviors
2.1 Behavior Class o v v i i e e e e e e e e e e e e
2.2 Behavior Environments L. 00000 e e e

Runs

Objects
4.1 The RsiObject Class o o o o it e e e e e e

Machines
5.1 RsiMachine e e e e
5.2 OInterpretor L L. Lol e e e e e e e e e

External Instructions

6.1 External class L e e s e e e e e e
6.2 Extern Node o L e e e e e e e
6.3 IfInstruction L e e e e e e e e e e e e

Grammar

Conclusion

1 Introduction

Reactive scripts provide a flexible approach, allowing parallelism, distribution,
object orientation, and preemption primitives.

The language contains an original combination of event-driven synchronous
programming with broadcast communication and object based programming,
including dynamic creation of objects.

Here are the basic commands of reactive scripts (see [1] for a full description):

e await E waits for event E to be generated. (events need not be declared
before being used). Event configurations extend this to more general situ-
ations where one waits for the simultaneous occurrence of several events,
the occurrence of one amongst several events, or for the absence of an
event (resp. and, or, and not constructs).

e generate E generates event E. Generation of an event concerns only the
current reaction, and is lost for the future (events are not persistent).
Events are broadcast that is, execution of generate E fires all the await
E commands that are stored in the interpretor. Finally, generation of an
already generated event has no effect.

An important point however is that the action controlled by the absence of
an event will be delayed to the next reaction, following the absence decision
principle which states that reaction to absence is always postponed to the
next instant. The end of the reaction is the precise moment one is sure
the event is definitely absent and not to delay reactions to event absences
would cause trouble (often called “causality problems”), as in:

await not E;generate E

where E would be generated during the same reaction it is absent. This
would violate the basic broadcast hypothesis of reactive scripts, which
states that the presence/absence of an event is the same in the whole
System.

¢ External statements like assignments, procedure calls or printing state-
ments are always put between “{” and “}”. In this paper, of course we use
Java syntax.

e Commands are grouped in blocks : they are executed in sequence when
separated by “;” and in parallel when separated by “| |” ; a parallel block
terminates when all its branches do (parentheses are used for precedence

purposes).

o The stop command defines the end of instant in a sequence for the current
interpretor reaction. It is the new starting point for the next reaction. The

stop command is needed to trigger execution of a command by several
occurrences of the same event. For example, the following command prints
message Two! after two occurrences of E:

await E;stop;await E;{Out.println("Two!"}

The next command forces the interpretor to execute the next reaction as
soon as the current one is over.

Cyclic behaviors are defined using the loop operator. The loop body
is run as soon as the command is entered, and when it terminates it is
automatically restarted.

A problem would appear if a loop body would terminate in the same
reaction it is started (one speaks of an “instantaneous loop”), as in:

loop {System.out.println("0K!")} end

Execution would cycle producing infinitely many 0K!, and would prevent
the interpretor to terminate the current reaction.

Instantaneous loops are detected at run time.

There are two test commands: if which tests for boolean conditions, and
when which tests for events. Tests of events always obey the absence
decision principle. For example, consider:

when E then
generate F
else
generate G
end

Event F is generated if E occurs in the current reaction; otherwise, G is
generated in the next reaction.

The until statement is the basic preemption operator of reactive scripts.
It executes its body and terminates for two reasons: either because the
body terminates, and in this case termination of the until is immediate;
or because a given event occurs (the case of actual preemption), and then
termination of the until depends on the body, accordingly to the absence
decision principle. For example consider the command:

do

await E;{System.out.println("E!")}
[

await F;{System.out.println("F!")}
until G;
{Out.println("Terminated!")}

If G does not occurs before both E and F does, then all works as if the
until command was not there: E! is printed as soon as E occurs, F! is
printed as soon as F occurs, and Terminated! is printed simultaneously
with the last event, as then the body of the until terminates. On the
contrary, if G occurs while E or F have not yet occurred, then the until
command is exited at the next reaction and Terminated! is printed at
that time.

An “actual” part can be added to a until command, to be executed only
in case of actual preemption.

e Execution of a command can be controlled by the occurrence of an event,
using the control operator. Actually, the body of a control command
is executed only during reactions where the controlling event occurs. For
example, the following command prints a message only when E occurs:

control
loop {System.out.println("0K!")};stop end
by E

1.1 Behaviors

A behavior is a declaration which associates a name to a command (or com-
mand block). For example the following behavior associates the name B to the
command that waits for E to print OK!:

behavior B
await E;{System.out.println("0K!")}
end

A new fresh copy of the behavior B is started every time a run B command
is executed, and thus several runs of the same behavior can coexist without
interference. The binding between a run B command and the behavior B is
established dynamically, when the command run is executed. A behavior can
be re-declared with the following rules:

e Re-declaration does not erase existing bindings. Previous runs continue
their execution without change.

e The effect of a declaration only takes place at the next reaction.

o Multiple declarations of the same behavior during a single reaction are re-
jected (they have no effect) as they could generate unclear non-deterministic
situations.

New statements can be dynamically added to a behavior, to be executed in
parallel with it. The syntax to add a statement i to a behavior b is “add i

to b”. Like for behavior redeclarations, the effect of adding a statement to a
behavior is postponed to the next instant.
Finally, note that behaviors can have event parameters (see [1] for details).

1.2 Objects

Traditionally, objects encapsulate data which are processed by their methods. In
reactive scripts we put the focus on behavioral aspects, and the task of defining
and using variables and data is transferred to Java.

An object combines a body statement which is automatically executed at
each instant, with attached methods which must be explicitly called to be exe-
cuted. It has the syntax:

object O
body
methods
M1 ... Mn
end

This statement defines an object 0 with attached methods M1 ... Mn, whose
semantics is:

do
body
|| control run M1 by 0-M1
...
|| control run Mn by 0-Mn
until O-destroy

Event 0-destroy is used to destroy the object; see below. Note that, as opposed
to behavior declarations, objects are statements which are immediately run.
The syntax to call the method M of an object 0 is send M to 0, and its
semantics is simply generate 0-M.
These semantics definitions have several consequences:

e Because of the control statement, a method M of 0 is given one reaction
each time the statement send M to 0 is executed, and is not executed
otherwise. Moreover, execution is immediate: once a method is called
during a reaction, it runs during this reaction.

e The send command terminates immediately (as the generate statement),
and does not wait for the called method to start to execute. It is a “send
and forget” order in which the caller can immediately continue to exe-
cute (thus, this is an asynchronous call). Note that non-determinism can
occur, as to send two orders in sequence during the same reaction does
not prevent the second one to be processed before the first (see [1] for an
example).

o Methods are “one shot”: only the first call to a method is actual, the
others having no effect (because generating the same event several times is
equivalent to generating it once). The “one shot” property is important to
prevent objects to enter into interblocking situations where, for example,
two objects call each other for ever.

Objects are removed from the interpretor by destroying them, using the
destroy command. The removal of an object does not prevent it to execute for
the current reaction: the removal becomes effective only at the next reaction.

This presentation shows that objects and methods enter in a rather natural
way into the broadcast event driven approach, although different in spirit from
it as method calls are not broadcast but sent to precise targets. Reactive scripts
give both ways of programming in an unified framework.

In this paper we describe the implementation of reactive scripts on top of
Java, using SUGARCUBES defined in the companion paper:

e The SUGARCUBES Tool Box - Definition

Actually, we directly use SUGARCUBES for most part of the language. The main
items to implements are behaviors, runs, and objects.

2 Behaviors

2.1 Behavior Class

Behavior extends Atom and its action is to register itself in the RsiMachine
(defined in section 5.1) which executes it.

A behavior has a body which is an instruction, and it can have event para-
meters.

New instructions can be put in parallel into a behavior using the add method.

At creation, the actual parameter vector is copied into the array formal-
Params for efficiency.

public class Behavior extends Atom
{
protected String behavName;
protected Instruction body;
protected Param[] formalParams = null;

public Behavior (String behavName,Vector paramList,
Instruction body)
{
this.behavName = behavName;
this.body = body;
if (paramList != null){

formalParams = new Param[paramlist.size()];
paramlList.copyInto(formalParams) ;
}
}

public Instruction body(){ return body; }
public Param[] formalParams(){ return formalParams; }

public void add(Instruction inst){
body = new Merge(body,inst);
}

final public String toString(){ ... }

public Object clone()

{
Behavior inst = (Behavior)super.clone();
inst.body = (Instruction)body.clone() ;
return inst;

}

final protected void action(Machine machine){
((RsiMachine)machine) .behavEnv.newBehav (behavName,this) ;

}
}

2.2 Behavior Environments

A behavior environment of the class BehavEnv associates behaviors to names in
the behavEnv hash table.

The newBehavs hash table contains the behaviors which are defined during
current instant, and the definitions of which will only take effect at next instant.

Vector addToBehav contains the instructions which are added to the behavior
during the current instant.

The transferBehavs method is called at the beginning of each instant, in
order to transfer behavior definitions made during last instant. First, behaviors
are transferred from newBehavs, then instructions from addToBehav (NamedInst
is an auxiliary class to link together an instruction and a name).

newBehav method changes a behavior declaration for next instant. There
must be only one definition during current instant, otherwise the effect is to set
the behavior body to nothing.

addToBehav method adds an instruction to a behavior; this will take place
at next instant.

behavNamed method returns the behavior associated to a name.

public class BehavEnv

{

private Hashtable behavEnv = new Hashtable();
private Hashtable newBehavs = new Hashtable();
private Vector addToBehav = new Vector();

public void transferBehavs()
{
Enumeration nameEnum = newBehavs.keys();
while (nameEnum.hasMoreElements())
{
String name = (String)nameEnum.nextElement();
Instruction body = (Instruction)newBehavs.remove(name) ;
behavEnv.put (name,body) ;
}
for (int i = 0; i < addToBehav.size(); i++)
{
NamedInst ¢ = (NamedInst)addToBehav.elementAt(i);
Behavior behav = behavNamed(c.name());
if (behav != null) behav.add(c.inst());
}
addToBehav = new Vector();

}

void newBehav(String name,Behavior behav)
{
if (newBehavs.containsKey(name)){
System.out.println("behavior "+name+
" defined twice in the same instant");
newBehavs.put (name ,new Nothing());
}
newBehavs.put (name,behav) ;

}

public void addToBehav(String name,Instruction inst){
addToBehav.addElement (new NamedInst(name,inst));

}

public Behavior behavNamed(String name)
{
Behavior i = (Behavior) behavEnv.get (name) ;
if (i==null){
System.out.println("behavior "+name+" does not exist");

}

return i;
}
}

3 Runs

Run instructions are the way to call behaviors. They extends UnaryInstruction
and have parameters, whose types are defined in the ParamTypes interface:

public interface ParamTypes

{

final public byte IN_PARAM = 1; // input
final public byte OUT_PARAM = 2; // output
final public byte INOUT_PARAM = 3; // inputoutput
final public byte LOCAL_PARAM = 4; // local

At creation, an object of class Run copies its actual parameter vector in the
array paramlList.

The bindParams method checks that there is the same number of actual
and formal parameters, and if it is the case, for each parameter, it changes
the instruction body into an InputDecl, and OutputDecl, or an InQutDecl,
according to the parameter type.

The activation method first tests that the number of runs created during
current instant is not exceeded, then it gets the actual behavior and binds the
parameters. Finally, it executes the body.

public class Run extends UnaryInstruction implements ParamTypes
{

public String name;

private Param [] formalParams = null;

private String [] actualParams = null;

/** Number of formal parameters (initially 0). */

private int len = 0;

private boolean bindingDone = false;

public Run(String name) {
this.name = name; body = new Nothing();

}

public Run(String name,Vector paramList)

{

this.name = name;

body = new Nothing();

if (paramList != null){
len = paramlList.size();
actualParams = new String[len];
paramList.copyInto(actualParams) ;

}
}

public void reset(){ super.reset(); bindingDone = false; }
final public String toString(O{ ... }
public boolean equals(Instruction inst) { ... }

private void bindParams(Machine machine)
{
int formallen =
formalParams == null ? 0 : formalParams.length;
if (len != formallen){
System.out.println(
"bad arg number (expected: "+formallLen+")");
body = new Nothing();
return;
}
for (int i = 0; i<len; i++){
String internal = formalParams[i].name;
int kind = formalParams[i].kind;

if (kind == IN_PARAM){
body = new InputDecl(internal,actualParams[i],body);
}else if (kind == OUT_PARAM){
body = new OutputDecl(internal,actualParams[i],body) ;
}else if (kind == INOUT_PARAM)A{
body = new InQutDecl(internal,actualParams[i],body);
}
}
}

final protected byte activation(Machine mach)
{
RsiMachine machine = (RsiMachine)mach;
if (!bindingDone){
if (machine.number0OfRuns++ >= machine.maxNumberOfRuns){
System.out.println(

10

"too much runs in the same instant (max is " +
machine.maxNumberOfRuns + ")");
return STOP;
}
Behavior beh = machine.behavEnv.behavNamed(name) ;
if (beh == null) return TERM;
bindingDone = true;

body = (Instruction)beh.body().clone();

formalParams = beh.formalParams();
bindParams (machine) ;

}
return body.activ(machine);
}
}
4 Objects

Reactive script objects are implemented by the class RsiObject. A Java object
can be associated to a reactive script object and association is by name: both
objects are referenced by the same name in the reactive interpretor. Inside a
RsilObject, the keyword this references the Java object associated with. For
example, the external statement “{this.meth(...)}” appearing in an object x
calls the method meth of the associated Java object x.

Call redirections to Java objects is implemented by the Selector interface:

public interface Selector

{
public String select(String methodName, Vector args);
public Selector getObjectInSelectorContext(String name) ;
X

A full description of the External class to handle Java calls is in section 6.

4.1 The RsiObject Class

RsiObject extends UnaryInstructionand implements Selector. The activa-
tion method sets this to the appropriate Java object before running the body
and restores the old binding on return. The method select retransmits method
calls to the Java object with same name.

Object fields (managed in a Hashtable) can be dynamically added to RsiObject
instances, using the setField and getField methods.

11

public class RsiObject extends UnaryInstruction
implements Selector

{

protected String name;

protected External externalContext = null;

protected Hashtable objectVar = new Hashtable();

public void setExternalContext(External eC){
externalContext = eC;

}

public RsiObject(String name,Instruction body,External eC)
{

this.name = name;

this.body = body;

externalContext = eC;

}

public String toString(){
return "object " + name + " " + body + " end";

}

public String select(String methName,Vector args){
if (methName.equals("getName")) return name;
if (methName.equals("setField")) return setField(args);
if (methName.equals("newField")) return newField(args);
if (methName.equals ("removeField")) return removeField(args);
return externalContext.getExternObject(name) .
select (methName,args) ;

public Selector getObjectInSelectorContext(String name)
{

return (Selector)objectVar.get(name) ;

}

final protected byte activation(Machine machine)

{
Selector sel = externalContext.getThisContext();
externalContext.setThisContext (this) ;
byte res = body.activ(machine);
externalContext.setThisContext (sel);
return res;

12

According to the semantics defined in 1.2, an object x whose body is instruc-
tion body, with methods m1,...,mk, is expanded into:

do
body
|| control ml by x_ml
...
|| control mk by x_mk
until x-destroy

The following methods are used at parsing to build the corresponding RsiObject
instruction:

private Instruction objectShell(String name,Instruction body){
return new RsiObject(name,new Until(name + "-destroy",body));

}

public Instruction object(String name,Instruction body,
Vector list)
{
Instruction res = body;
for(int i = 0; i<list.size();it++){

Run run = (Run)list.elementAt(i);

res = new Merge(res,new Control(name + "-" + run.name,run));
}
return objectShell (name,res);

}

public Instruction object(String name,Instruction body){
return objectShell (name,body) ;
}

5 Machines

We first define the class RsiMachine which extends the class Machine of SUG-
ARCUBES, then we use it to define Interpretor which is the main class of
RSI-JAVA.

5.1 RsiMachine

RsiMachine extends Machine and has an environment of behaviors and a counter
number0fRuns to control how many runs are created at each instant (the max

13

value is set to 500). Activation means to reset number0fRuns to 0, to transfer
behaviors, and to activate the machine.

public class RsiMachine extends Machine

{

public BehavEnv behavEnv = new BehavEnv();

protected final int maxNumberOfRuns = 500;
protected int numberO0fRuns = 0;

protected byte activation(Machine machine)
{
number0fRuns = 0;
behavEnv.transferBehavs() ;
return super.activation(machine);

}
X

5.2 Interpretor

Interpretor extends RsiMachine and defines two flags next and runInterp.
To set next to true forces immediate reaction for the next instant, as soon as
current instant is over. To set runInterp to true forces the interpretor to run
the program.

The init method initializes the keyboard and the instantPrompt method
prompts the current instant number.

At creation, the extern node System is created to be able to print messages
(see section 6.2).

Activation creates a new parser to parse the input and then calls the oneStep
method which activates the machine.

The main loop creates an interpretor and activates it for ever.

public class Interpretor extends ExtendedRsiMachine

{
protected External externalContext = null;
public External getExternalContext() {return externalContext;}

protected boolean next = false;
public void next(){ next = true; }

protected boolean runInterp = false;
public void runInterp(){ runInterp = true; }

public Interpretor()

14

externalContext = new External(this);
new ExternNode("System",externalContext);
initQ;
instantPrompt () ;

}

protected void instantPrompt(){
System.out.print(instant + ": "); System.out.flush();
}

protected byte activation(Machine machine)
{
doq{
if (!'next) parseEntry(Q);
oneStep() ;
}while (next);
return STOP;
}

protected void oneStep()
{
if (next || runInterp){
next = runInterp = false;
super.activation(this);
instantPrompt () ;

}
}

public static void main (String argv[])
{
Interpretor interp = new Interpretor();
while (true){ interp.activation(interp); }
}
}

We end this section with the next instruction which forces the interpretor
to immediately execute the next instant as soon as the current one is over.
Next is like Nothing but it sets the next flag of the executing machine.

public class Next extends Instruction

{
final public String toString(){ return "next"; }

15

final protected byte activation(Machine machine){
((Interpretor)machine) .next();
return TERM;

6 External Instructions

Reactive Scripts “external statements” are used to interact with the external
system (for data management, graphic interactions, etc.). To implement this in
Java, we build a mechanism that allows Java objects to register themselves as
external objects on which reactive scripts can invoke methods through external
calls. Please remark that we do not take advantage of the new features of Java
1.1 such as introspection, to be able to use our package on Java 1.0 Virtual
Machines.

External statements are enclosed between braces and use a reduced Java-like
syntax, as in the following examples:

e {123} returns a number.
e {false} or {true} returns a boolean.
e {"string"} returns a string.

e {object.method([argument 1ist])} returns the result of a method in-
vocation on a Java registered object.

Invocation of a method on a registered object return one of the three basic
type results: an integer, a string or a boolean. The following examples show
how external statements are used:

e loop { registeredObjectName.getIterationNumber() } times stop
end
The external evaluation return an integer which is the number of loop
iterations.

e await {object.getAnEventName ()}
The external evaluation returns a string which is the name of the event to
await.

o if {rectangle.overlaps(10,10,100,100)} then...else...end

The external evaluation returns a boolean for the test.

16

6.1 External class

Each instance of Interpretor has a field which is an instance of External and
is used as an interface between reactive scripts and external Java objects. When
an external statement is encountered, the string between braces is passed to this
object as a parameter of the parseExpression method. While parsing, when
an identifier is found, the External object checks if this identifier references a
registered object (Java objects that implement the Selector interface have to
register themself to the External instance, through the register method) and
if so, calls the select method on this registered object with the method name
and its parameters as arguments. Each implementation of the select method is
responsible for the correct redirection to Java methods.

public class External implements Selector

{
private Hashtable objEnv = new Hashtable();
public Interpretor currentInterp = null;

public External(Interpretor anInterp)

{
currentInterp = anInterp;
register ("External",this);
}
public void setThisContext(Selector selObj){
{
if (selObj!=null) objEnv.put("this",sellbj);
else objEnv.remove("this");
}

public Selector getThisContext(){
return (Selector)objEnv.get("this");

}

public Selector getExternObject(String aName){
return (Selector)objEnv.get(aName) ;

}

public boolean unregister(String objectName)
{
if (objectName.equals("External")) {
System.out.println(
"Unable to remove the External object!");
return false;

17

objEnv.remove (objectName) ;
return true;

}

public boolean register(String objectName, Selector sel0Obj)
{
if (objectName.equals("this"))
{
System.out.println(
"no object can be registered as \"this\"");
return false;
}
Object o = objEnv.get(objectName) ;
if (o==null) objEnv.put(objectName,sellbj);
else{
System.err.println("already registered object: ");
return false;
}

return true;

6.2 Extern Node

ExternNode is a typical example of External use to interact with Java objects.
ExternNode implements Selector and has two methods, print and println.
It must be subclassed to implement other methods. The System object de-
fined in Interpretor is an instance of it (thus, System.out.println("") and
System.out.print("") calls are correct).

public class ExternNode
implements Selector

{
protected String name;
public ExternNode(String name){this.name = name;}

public String select(String methodName, Vector args)
{
if (methodName.equals ("print")){
if (args.isEmpty()) { System.out.print(""); return null; }
else System.out.print((String)args.firstElement());
return (String)args.firstElement();

}

18

if (methodName.equals ("println")){
if (args.isEmpty()) { System.out.println("");return null;}
else System.out.println((String)args.firstElement());
return (String)args.firstElement();

}

System.out.println("unknown method: "+methodName) ;

return null;

}

public Selector getObjectInSelectorContext(String name)

{
if (name.equals("out")) return this;
else return null;

6.3 If Instruction

The boolean test If extends BinaryInstruction and condition evaluation is
performed by calling the parseBooleanExpression method of External.

public class If extends BinaryInstruction

{
public String condition;
private boolean condEvaluated = false;
private boolean value;

public If(String cond, Instruction t, Instruction e)

{
condition = cond;
left = t;
right = e;

}

public void reset(){ super.reset(); condEvaluated = false; }

final public String toString(){
return "if "+condition+" then "+left+" else "+right+" end";

}

final protected byte activation(Machine machine)

{
if ('condEvaluated)q{
condEvaluated = true;

19

value = External.parseBooleanExpression(condition);
}
return value 7 left.activ(machine) : right.activ(machine);
}
X

7 Grammar

The grammar is given in CUP format (see http://www.cc.gatech.edu/gvu/-
people/Faculty/hudson/java_cup) which implements YACC in Java.

statement: :=
no_parallel_statement:s {: RESULT.inst = s.inst; :}
| parallel_statement:s {: RESULT.inst = s.inst; :}

B

no_parallel_statement::=
sequence:s {: RESULT.inst = s.inst; :}
| stat:s {: RESULT.inst = s.inst; :}

B

parallel_statement::=
no_parallel_statement:s1 PAR no_parallel_statement:s2
{: RESULT.inst = new Merge(sl.inst,s2.inst); :}

| no_parallel_statement:sl PAR parallel_statement_list:s2
{: RESULT.inst = new Merge(sl.inst,s2.inst); :}

parallel_statement_list::=
no_parallel_statement:sl1 PAR no_parallel_statement:s2
{: RESULT.inst = new Merge(sl.inst,s2.inst); :}

| parallel_statement_list:sl PAR no_parallel_statement:s2
{: RESULT.inst = new Merge(sl.inst,s2.inst); :}

sequence::=
pure_sequence:s {: RESULT.inst = s.inst; :}
| stat:s SEMI {: RESULT.inst = s.inst; :}
= :}

| pure_sequence:s SEMI {: RESULT.inst = s.inst;

B

pure_sequence: :=

stat:s1l SEMI stat:s2

{: RESULT.inst = new Seq(sl.inst,s2.inst); :}
| pure_sequence:sl SEMI stat:s2

20

{: RESULT.inst = new Seq(sl.inst,s2.inst);

stat::=

NOTHING

STOP

HALT

NEXT

LPAREN statement:s RPAREN
break:s

extcode:s

if:s

loop:s

repeat:s
event_declaration:s
in_declaration:s
out_declaration:s
inout_declaration:s
generate:s

when :s

until:s

await:s

control:s
behavior:s

add:s

run:s

send:s

object:s

destroy:s

J T S N s T T e T N o e S R S S N S S,

/* java code */

extcode::= EXTCODE:e {: RESULT.inst = new ExternAtom(e.str_val);

/* test statement */

if::= 1IF EXTCODE:cond then_branch:t else_branch:e END
{: RESULT.inst = new If(cond.str_val,t.inst,e.inst);

then_branch: :=

RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.
RESULT.

inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst
inst

/* Empty */ {: RESULT.inst = new Nothing();

| THEN statement:s {: RESULT.inst

B

else_branch::=

= s.inst;

/* Empty #/ {: RESULT.inst = new Nothing();

| ELSE statement:s {: RESULT.inst

= s.inst;

21

1}

1}

new Nothing();

new Stop();

:}

:}

new Loop(new Stop());

new Next();

1}

.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;
.inst;

n un n nnnnnnnnn9n9n®nnnnn 0o

1}

:}

L B S B e 2 S S S o W

1}

1}

1}

:}

/* event configurations */
config::=
basic_config:c {: RESULT.conf = c.conf; :}
| config:cl OR basic_config:c2
{: RESULT.conf = new OrConfig(cl.conf,c2.conf); :}
| config:cl AND basic_config:c2
{: RESULT.conf = new AndConfig(cl.conf,c2.conf); :}

basic_config::=

IDENTIFIER :i {: RESULT.conf new PosConfig(i.str_val); :}
| NOT IDENTIFIER:i {: RESULT.conf = new NegConfig(i.str_val); :}
| LPAREN config:c RPAREN {: RESULT.conf = c.conf; :}

B

/* event based statements */
await::= AWAIT config:c {: RESULT.inst = new Await(c.conf); :} ;

event_declaration::=
EVENT identifier_list:1 IN statement:s END
{: RESULT.inst = semActions.eventDecl(l.list,s.inst); :}

in_declaration::=
INPUT IDENTIFIER:intern IS IDENTIFIER:extern IN statement:s END
{: RESULT.inst =
new InputDecl(intern.str_val,extern.str_val,s.inst); :}

out_declaration::=
OUTPUT IDENTIFIER:intern IS IDENTIFIER:extern IN statement:s END
{: RESULT.inst =
new OutputDecl(intern.str_val,extern.str_val,s.inst); :}

inout_declaration::=
INPUTOUTPUT IDENTIFIER:intern IS IDENTIFIER:extern IN statement:s END
{: RESULT.inst =
new InOutDecl (intern.str_val,extern.str_val,s.inst); :}

generate::= GENERATE IDENTIFIER:i
{: RESULT.inst = new Generate(i.str_val); :} ;

when::= WHEN config:c then_branch:t else_branch:e END

22

{: RESULT.inst = new When(c.conf,t.inst,e.inst); :} ;

until::= DO statement:s UNTIL config:c actual:a
{: RESULT.inst = new Until(c.conf,s.inst,a.inst); :} ;

actual::=
/*Empty*/ {: RESULT.inst = new Nothing(); :}
| ACTUAL statement:s END {: RESULT.inst = s.inst; :} ;

control::= CONTROL statement:s BY IDENTIFIER:i
{: RESULT.inst = new Control(i.str_val,s.inst); :} ;

/* identifier lists */

identifier_list::=
IDENTIFIER:i {: RESULT.list.addElement(i.str_val); :}
| identifier_list:1 COLON IDENTIFIER:i
{: RESULT.list = semActions.addToIdentifierList(l.list,i.str_val); :}

/* loops */
loop::= LOOP statement:s END
{: RESULT.inst = new EventDecl("_break",new Until("_break",
new Loop(s.inst))); :}

break::= BREAK
{: RESULT.inst = new Seq(new Generate("_break"),new Stop()); :} ;

repeat::= LOOP EXTCODE:e TIMES statement:s END
{:
RESULT.inst = new EventDecl("_break",new Until("_break",
new Repeat(External.parseIntExpression(e.str_val),s.inst)));

1}

/% dkskokskokskokokokkokskokkokkokk behaviors skskoskskokskoskskokskoksk ok sk ok sk ok sk ok ok /
behavior::=
BEHAVIOR IDENTIFIER:i behavior_interface:l statement:s END
{: RESULT.inst = new Behavior(i.str_val,l.list,s.inst); :}

behavior_interface::= /% Empty #*/ {: RESULT.list = null; :}
| interface_list:1 {: RESULT.list = 1.1list; :}

B

interface_list::=

23

interface:i {: RESULT.list = i.list; :}
| interface_list:1 interface:i
{: RESULT.list = Param.concat(l.list,i.list); :}

interface::=
IN identifier_list:1 SEMI
{: RESULT.list = Param.convert(ParamTypes.IN_PARAM,1.list); :}
| OUT identifier_list:1 SEMI
{: RESULT.list = Param.convert(ParamTypes.QUT_PARAM,1.1list); :}
| INOUT identifier_list:1 SEMI
{: RESULT.list = Param.convert(ParamTypes.INOUT_PARAM,1.list); :}

call::=

IDENTIFIER:i {: RESULT.inst = new Run(i.str_val); :}
| IDENTIFIER:i LPAREN identifier_list:1 RPAREN

{: RESULT.inst = new Run(i.str_val,l.list); :}

RUN call:c {: RESULT.inst = c.inst; :} ;

run::

add::= ADD statement:s TO IDENTIFIER:i
{: RESULT.inst = new AddTo(i.str_val,s.inst); :} ;

[FFdkkkdkkkkkokkkkkkkk 0bJeCtS kikkkkokkkkkkkkkkokkok /

object::=
OBJECT IDENTIFIER:o statement:s END
{: RESULT.inst = semActions.object(o.str_val,s.inst); :}

| OBJECT IDENTIFIER:o object_behavior:s METHODS object_methods:1 END
{: RESULT.inst = semActions.object(o.str_val,s.inst,1l.1list); :}

object_behavior::=
/* Empty */ {: RESULT.inst = new Nothing(); :}
| statement:s {: RESULT.inst = s.inst; :}

B

object_methods::=
call:c {: RESULT.list.addElement(c.inst); :}
| object_methods:1 call:c
{: 1l.1list.addElement(c.inst); RESULT.list = 1.list; :}

send::= SEND IDENTIFIER:m TO IDENTIFIER:o
{: RESULT.inst = new Generate(o.str_val + "-" + m.str_val); :}

24

destroy::= DESTROY IDENTIFIER:o
{: RESULT.inst = new Generate(o.str_val + "-destroy"); :}

8 Conclusion

We have implemented the RSI-JAVA interpretor using SUGARCUBES in a straight-
forward way. Several sub-classes of Interpretor have also been defined mainly
to disconnect the keyboard from the interpretor, to be able to enter new com-
mands and new scripts while the interpretor is running.

We plan to add to the present RSI-JAVA implementation the following fea-
tures:

e The possibility to “freeze” an object that is to get, at the end of the current
instant, a script which represents “what remains to be done” for it.

e The way to send a script to a remote RSI-JAVA interpretor through the
network. In conjunction with the “freeze” operator, this would give us the
way to migrate reactive scripts.

o The possibility to “compile” a script to get sequential Java code.

The RSI-JAVA interpretor is used to implement the icobj programming demo
available at http://www.inria.fr/meije/rc/WebIcobj and described in the
companion paper:

e The SUGARCUBES Tool Box - Icobj Programming Implementation

References

[1] Frédéric Boussinot and Laurent Hazard. Reactive scripts. In Proc.
RTCSA’96, Seoul. IEEE, October 1996. Also as Inria Research Report RR-
2868.

25

Index

BehavEnv, 7 ParamTypes, 9
Behavior, 6

RsiMachine, 13

External, 17, 18 RsiObject, 11
ExternNode, 18 Run, 9
If, 19 Selector, 11, 17

Interpretor, 14, 17, 18

UnarylInstruction, 11
NamedInst, 7
Next, 15

26

