
The SugarCubes
Tool Box

Frédéric BOUSSINOT, Jean-Ferdy SUSINI
INRIA EMP-CMA/Meije
2004 route des lucioles

F-06902 Sophia-Antipolis
fb@sophia.inria.fr, jfsusini@sophia.inria.fr

Abstract

The SugarCubes are a set of Java classes used to implement reacti-
ve, event based, parallel systems. The SugarCubes can be seen as a
low-level basis upon which more complex reactive formalisms can
be implemented. They also provide a convenient framework for pro-
totyping experimental extensions to various reactive formalisms.
The SugarCubes are freely available on the Web.

Keywords: Parallelism, Reactive Programming, Events, Java

1 Introduction
 In this paper, we consider software systems which are:

• Event based. In these systems, events are instantly broadcast. Communicat-
ing in thus like in radio transmissions, where emitters send information that
is instantaneously received by all receivers. This communication paradigm

The SugarCubes Tool Box

� � � �

gives a very modular way of system structuring. For example, adding new
receivers to a system is totally transparent for the existing components
(which is not the case with other communication mechanisms like mess pass-
ing or rendezvous).

• Parallel, but thread-less. Parallelism is a logical programming construct to
implement activities which are supposed to proceed concurrently and not one
after the other. Such parallel activities need not to be executed by distinct
threads, but instead can be automatically interleaved to get the desired re-
sult. This avoids well-known problems related to threads.

• Reactive. Reactive systems are systems which continuously interact with
their environment [HP]. A natural way of programming these systems is by
combining reactive instructions whose semantics are defined by reference to
activation/reaction couples identified to instants. The end of the reaction
provoked by an activation gives a natural way for determining stable states,
where a system is only waiting for the next activation to resume execution.
Please note that the existence of stable states is of major importance for
agent migration over the network.

The SugarCubes1 are a set of Java[GJS] classes for implementing these systems.
Basically, the SugarCubes add instants, parallelism and broadcast events to Java
in accordance with the reactive paradigm of which the description can be found
on the Web at the URL http://www.inria.fr/meije/rc/ .

Presently, two main applications are implemented using the SugarCubes:

• Rsi-Java which is the implementation of Reactive Scripts[BH] on top of Java.
Reactive scripts give a very flexible and powerful means to program over
the Internet.

• Icobjs (for icon objects) which define a new, fully graphical way of pro-
gramming. A demo based on icobjs is available on the Web at the URL
http://www.inria.fr/meije/rc/WebIcobj/.

The SugarCubes are freely distributed as a tool box for reactive programming in
Java.

In this paper we present the SugarCubes and give most part of the code for each
of them. Section 2 describes the main classes of reactive instructions and reac-
tive machines. The basic reactive instructions are given in section 3. Section 4
introduces event and related instructions. Finally, related works are considered
in section 5.

1 Why the name SugarCubes? Because many people like to add some sugar in their Java...

The SugarCubes Tool Box

� � � �

2 The Main Classes
The two main SugarCubes classes are Instruction and Machine . Instruction is
the class of reactive instructions which are defined with reference to instants,
and Machine is the class of reactive machines which run reactive instructions and
define their execution environments.

2.1 Instructions
An instruction can be activated (activ method), reset (reset method), or forced
to terminate (terminate method). Each activation returns TERM, STOP, or SUSP,
three return codes defined in the ReturnCodes interface:

• TERM (for terminated) means that execution of the instruction is completed.
Thus, activating it at following instants will have no effect and will again re-
turn TERM.

a c t i v TERM a c t i v TERM

• STOP (for stopped) means that execution of the instruction is stopped at a
stable state for the current instant, and could progress at the next instant
upon activation.

a c t i v STOP a c t i v

• SUSP (for suspended) means that execution of the instruction has not reached
a stable state for the current instant, and has to resume during that instant.
This is for example the case when awaiting for an event not yet generated
(see section 4.3): execution suspends to give other components the opportu-
nity to generate it.

a c t i v SUSP a c t i v

A call to the terminate method forces the instruction to completely terminate
and therefore to return TERM when activated. A call to the reset method resets
the instruction in its initial state.

The SugarCubes Tool Box

� � � �

Instruction implements Cloneable and thus instruction clones are available by
the clone method. Finally, Instruction implements the method toString to print
it. Actually, the printing format is the one of Reactive Scripts.

The Instruction class has the following structure:

abstract public class Instruction implements ReturnCodes, Cloneable
{
 protected boolean terminated = false;
 public void reset(){ terminated = false; }
 final public void terminate(){ terminated = true; }
 final public boolean isTerminated(){ return terminated; }
 ...
 abstract public String toString();
 abstract protected byte activation(Machine machine);

 final public byte activ(Machine machine)
 {
 if (terminated){ return TERM; }
 byte res = activation(machine);
 if (res == TERM){ terminated = true; }
 return res;
 }
}

Note that activ calls activation which is abstract and must be defined in derived
classes. Note also that activ and activation have a parameter which is the re-
active machine running the instruction. Reactive machines are described in sec-
tion 2.2.

UnaryInstruction is an abstract class which extends Instruction and has a body
which is also an instruction. It is used for example to define loops in section 3.5.

abstract public class UnaryInstruction extends Instruction
{
 protected Instruction body;
 public void reset(){ super.reset(); body.reset(); }
 ...
}

Similarly, BinaryInstruction is an abstract class which extends Instruction
and has two components left and right which are also instructions. It is used to
define sequence and parallelism in sections 3.2 and 3.3.

The SugarCubes Tool Box

� � � �

2.2 Machines
A reactive machine of the Machine class runs a program which is an instruction.
Initially a program is the Nothing instruction (defined in section 3.1) which does
nothing and terminates instantaneously. New instructions added to the machine
(see below) are put in parallel with the previous program (using Merge defined in
section 3.3).

Basically, Machine detects the end of the current instant, that is when all parallel
instructions of the program are terminated or stopped. The behavior is as fol-
lows:

• The program is cyclically activated while there are suspended instructions in
it (that is, while activations return SUSP).

• The end of the current instant is effective when all the parallel instructions
in the program are terminated or stopped (no suspended instruction remains).

• At the end of each program activation, the machine tests if some new events
where generated during this execution. If it was not the case, then there is
no hope that future program activations will change the situation, and the end
of the current instant can be safely decided. Then, a flag is set to let suspen-
ded instructions stop, knowing from that point that awaited events are ab-
sent.

Two variables move and endOfInstant are used to implement this behavior (see
the method activation of Machine below):

while ((res = program.activ(this)) == SUSP){
 if (move) move = false; else endOfInstant = true;

}

Two methods are used to manage the two flags move and endOfInstant : newMove
which sets the move flag to indicate that something new happens in the program
(thus, the end of instant has to be postponed), and isEndOfInstant which tests
the endOfInstant flag.

The add method adds a new instruction to the program; this new instruction is
run in parallel with the previous program, using the Merge parallel instruction
defined in section 3.3:

public void add(Instruction inst){
 program = new Merge(program,inst);
 newMove();

The SugarCubes Tool Box

� � � �

}

Note that newMove is called to let the new instruction execute during the current
instant.

Machine contains an environment named eventEnv to deal with events (events are
described in section 4).

Machine extends Instruction , and to execute its program for one instant simply
means to activate the machine.

The class Machine has the following structure:

public class Machine extends Instruction
{
 public Instruction program = new Nothing();
 protected EventEnv eventEnv = new EventEnv();
 protected int instant = 1;
 protected boolean endOfInstant = false, move = false;

 public void newMove() { move = true; }
 public int currentInstant() { return instant; }
 public boolean isEndOfInstant() { return endOfInstant; }
 ...
 public void add(Instruction inst){
 program = new Merge(program,inst);
 newMove();
 }

 public Event getEvent(String name){ ... }
 public boolean isGenerated(String name){ ... }
 public void generate(String name){ ... }
 public void putEvent(String name,Event event){ ... }

 protected byte activation(Machine machine){
 ...
 endOfInstant = move = false;
 while ((res = program.activ(this)) == SUSP){
 if (move) move = false; else endOfInstant = true;
 }
 instant++;
 ...
 }
}

3 Basic Instructions
In this section we introduce the basic instructions to stop and suspend execution

The SugarCubes Tool Box

� � � �

for the current instant, the sequence and parallel instructions, atoms to execute
Java statements, and loop instructions.

3.1 Nothing, Stop, and Suspend
Nothing does nothing: it is introduced only as the initial program value:

public class Nothing extends Instruction
{
 final public String toString(){ return "nothing"; }
 final protected byte activation(Machine machine){return TERM;}
}

Stop stops execution for the current instant by returning STOP. However, the
instruction terminates, thus activation will return TERM at the next instant:

public class Stop extends Instruction
{
 final public String toString(){ return "stop"; }
 final protected byte activation(Machine machine){
 terminate(); return STOP;
 }
}

Suspend suspends execution for the current instant by returning SUSP. The code
is similar to the one of Stop except that return code STOP is changed by SUSP.

3.2 Sequencing
Class Seq extends BinaryInstruction and implements sequencing. First, instruc-
tion left is activated; if it terminates, then control immediately goes to right :

public class Seq extends BinaryInstruction
{
 public Seq(Instruction left, Instruction right){
 super.left = left; super.right = right;
 }
 final public String toString(){ return left + "; " + right; }

 final protected byte activation(Machine machine)
 {
 if (left.isTerminated()) return right.activ(machine);
 byte res = left.activ(machine);
 if (res != TERM) return res;
 return right.activ(machine);
 }
}

The SugarCubes Tool Box

� � � �

3.3 Parallelism
Class Merge extends BinaryInstruction and implements basic parallelism: at
each instant the two instructions left and then right are both activated in this
order. It terminates when both left and right do terminate. The return code of
the method activation is determined by the following array:

TERM

STOP

SUSP

STOP SUSP

TERM

STOP

STOP

STOP

SUSP SUSP

SUSP

SUSP

SUSP

TERMle f t
r ight

The class Merge has the following structure:

public class Merge extends BinaryInstruction
{
 private byte leftStatus = SUSP, rightStatus = SUSP;

 public Merge (Instruction left, Instruction right){
 super.left = left; super.right = right;
 }
 public void reset(){
 super.reset(); leftStatus = rightStatus = SUSP;
 }
 final public String toString(){
 return "(" + left + " || " + right + ")";
 }
 final protected byte activation(Machine machine)
 {
 if (leftStatus == SUSP) leftStatus = left.activ(machine);
 if (rightStatus == SUSP) rightStatus = right.activ(machine);
 if (leftStatus == TERM && rightStatus == TERM) return TERM;
 if (leftStatus == SUSP || rightStatus == SUSP) return SUSP;
 leftStatus = rightStatus = SUSP;
 return STOP;
 }

}

The SugarCubes Tool Box

� � � �

3.4 Atoms
The Atom abstract class extends Instruction and defines instructions that exe-
cute actions which are Java statements and terminate immediately.

abstract public class Atom extends Instruction
{
 abstract protected void action(Machine machine);

 final protected byte activation(Machine machine){
 action(machine); return TERM;
 }
}

Class PrintAtom extends Atom to print a string.

public final class PrintAtom extends Atom
{
 private String msg;
 public PrintAtom(String msg) { this.msg = msg; }
 final public String toString(){
 return "{System.out.print(\"" + msg + "\");}";
 }
 final protected void action(Machine machine){
 System.out.print(msg);
 }

}

3.5 Loops
The SugarCubes provide two kinds of loops: infinite loops and finite ones which
both extend UnaryInstruction .

When the body of an infinite loop of class Loop is terminated, it is automatically
and immediately restarted.

A loop is said to be instantaneous when its body terminates completely in the
same instant it is started. Instantaneous loops are to be rejected because they
would never converge to a stable state closing the instant. The Loop class de-
tects instantaneous loops at run time, when the end of the loop body is reached
twice during the same instant. In this case, the loop stops its execution for the
current instant instead of looping for ever during the instant.

public class Loop extends UnaryInstruction
{
 protected boolean endReached = false;

The SugarCubes Tool Box

	 � � �

 public Loop(Instruction body){ super.body = body; }
 final public String toString(){ return "loop " + body + " end"; }
 public void reset(){ super.reset(); endReached = false; }

 final protected byte activation(Machine machine)
 {
 byte res;
 for(;;){
 res = body.activ(machine);
 if (res == TERM){
 if (endReached){
 System.out.println("warning: instantaneous loop detected");
 res = STOP;
 break;
 }
 endReached = true;
 body.reset();
 }else break;
 }
 if (res == STOP){ endReached = false; }
 return res;
 }

Note the use of the method reset to restart the loop body after termination.

Finite loops of the Repeat class execute their body a fixed number of times. Unli-
ke infinite loops, an instantaneously terminating body is not a problem, as it does
not prevent the loop to terminate. Therefore, there is no detection of instanta-
neously terminating bodies of Repeat instructions.

3.6 An Example
The little example we consider consists of running three instants of a machine.
First, one defines the machine and an instruction using Stop , Seq , Merge , and
PrintAtom ; then, the instruction is added to the machine; finally, three machine
activations are provoked.

class Example
{
 public static void main (String argv[])
 {
 Machine machine = new Machine();

 Instruction inst =
 new Seq(
 new Merge(

The SugarCubes Tool Box

�
 � � �

 new Seq(new Stop(),new PrintAtom("left ")),
 new PrintAtom("right ")),
 new PrintAtom("end "));

 machine.add(inst);

 for (int i = 1; i<4; i++){
 System.out.print("instant "+i+": ");
 machine.activ(machine);
 System.out.println("");
 }
 }
}

Execution of this class gives:

instant 1: right
instant 2: left end
instant 3:

Note that termination of Merge only occurs at the second instant because of the
Stop instruction in the first branch. Note also that printing of end occurs in the
second instant: sequencing is instantaneous, that is control goes to the second
component of the sequence as soon as the first one terminates.

A call to the method toString of instruction inst would produce the following
Reactive Script, which is a more readable form of the instruction:

 (
 stop;{System.out.print("left ")}
 ||
 {System.out.print("right ")}
);
 {System.out.print("end ")}

4 Event Programming
Event based programming is achieved in SugarCubes with the Event class of
events, and with the class Config of event configurations which are boolean ex-
pressions of events.

4.1 Events
The SugarCubes provide the notion of an event with the following characteris-

The SugarCubes Tool Box

� � � � �

tics:

• events are automatically reset at the beginning of each instant; thus, events
are not persistent data across instants.

• events can be generated by the generate method. This determines the event's

presence for the current instant. Generating an event which is already pre-
sent has no effect.

• an event is perceived in the same way by all parallel components: events are

broadcast.

• events can be tested for presence, waited for, or used to preempt a reactive
statement.

• one cannot decide that an event is absent during the current instant before
the end of this instant (this is the only moment one is sure that the event has
not been generated during the instant). Thus, reaction to absence is always
postponed to the next instant. This is the basic principle of the reactive ap-
proach.

To indicate that an event is generated during the current instant, one sets its ge-

nerated field to this instant number. In that way all events are automatically re-
set at the beginning of each new instant.

The value (present or absent) of an event can only be known safely as soon as it
is generated, or otherwise at the end of the current instant. Event presence va-
lues are defined in the EventConsts interface.

public interface EventConsts
{
 final byte PRESENT = 1;
 final byte ABSENT = 2;
 final byte UNKNOWN = 3;
}

The presence method returns PRESENT if the event is generated, ABSENT if it is
not (which is known only at the end of the current instant), and UNKNOWN other-
wise. Class Event is:

public class Event
implements ReturnCodes, EventConsts, Cloneable
{
 public String name;
 private int generated = 0;

 public Event(String name){ this.name = name; }

The SugarCubes Tool Box

� � � � �

 public boolean isPresent(Machine machine){
 return generated == machine.currentInstant();
 }

 public void generate(Machine machine){
 generated = machine.currentInstant();
 }
 ...
 public byte presence(Machine machine)
 {
 if (isPresent(machine)) return PRESENT;
 if (machine.isEndOfInstant()) return ABSENT;
 return UNKNOWN;
 }
}

4.2 Configurations
Event configurations of the class Config are boolean expressions of events: a
configuration is a simple event (class PosConfig), the negation not of an event
(class NegConfig), or the and or the or of two configurations.

A configuration is said to be fixed when its value can be evaluated safely. Abs-
tract class Config has the structure:

abstract public class Config implements ReturnCodes
{
 abstract public boolean fixed(Machine machine);
 abstract public boolean evaluate(Machine machine);
 ...
}

The two classes PosConfig and NegConfig are abstract classes which extend the
class UnaryConfig of unary configurations. An unary configuration is fixed when
the event method presence returns a value different from UNKNOWN.

abstract public class UnaryConfig extends Config implements EventConsts
{
 protected String eventName;
 public String name(){ return eventName; }
 ...
 public boolean fixed(Machine machine){
 return (machine.getEvent(eventName)).presence(machine) != UNKNOWN;
 }
}

Evaluation of a configuration of type PosConfig returns true if the event is gene-
rated in the machine. Evaluation of a configuration of type NegConfig returns true

The SugarCubes Tool Box

� � � � �

if the event is not generated in the machine.

Binary configurations are conjunctions (and) or disjunctions (or) of configura-
tions. The BinaryConfig abstract class has two fields c1 and c2 of type Config .

A conjunction of the class AndConfig is fixed as soon as one component is fixed
and evaluates to false: the other one does not need to be also fixed. Otherwise,
the conjunction is fixed when both components are. Evaluation returns the and of
the two components:

public class AndConfig extends BinaryConfig
{
 public AndConfig(Config c1, Config c2){ this.c1 = c1; this.c2 = c2; }
 public String toString(){ return "(" + c1 + " and " + c2 + ")"; }

 public boolean fixed(Machine machine)
 {
 boolean b1 = c1.fixed(machine);
 boolean b2 = c2.fixed(machine);
 if (b1 && !c1.evaluate(machine)) return true;
 if (b2 && !c2.evaluate(machine)) return true;
 return b1 && b2;
 }

 public boolean evaluate(Machine machine){
 return c1.evaluate(machine) && c2.evaluate(machine);
 }
}

The class OrConfig of configuration disjunction is not given here as it is very si-
milar to AndConfig .

4.3 Event Based Instructions
In this section we introduce four instructions related to events: generation of an
event, waiting for an event configuration, preemption of an instruction by an
event configuration, and local event declaration.

Event Generation

The Generate class extends Atom which means that event generation terminates
instantaneously. Generating an event in a machine calls the newMove method to in-
dicate that something new happens in the system; thus, instructions waiting for
the event (see next section) will have the possibility to see it as present during
the current instant.

The SugarCubes Tool Box

� � � � �

public class Generate extends Atom
{
 private String eventName;
 public Generate(String eventName){ this.eventName = eventName; }
 ...
 final public String toString(){ return "generate " + eventName; }

 final protected void action(Machine machine){
 Event event = machine.getEvent(eventName);
 machine.newMove();
 event.generate(machine);
 }
}

Waiting for Events

The Await class extends Instruction and contains a Config field. The activation
method returns SUSP while the configuration is not fixed, then it evaluates it. If
evaluation returns false, meaning that the configuration waited for is not satis-
fied, then the method stops. If evaluation returns true, meaning that the configu-
ration waited for is satisfied, then Await terminates and returns TERM if the end
of the current instant is not already reached, STOP otherwise. For example eva-
luation of the configuration corresponding to “not e ” returns true if e was not
generated, and activation returns STOP in this case. This is coherent with the
basic principle of 4.1 which states that the absence of an event cannot be decided
before the end of the current instant.

public class Await extends Instruction
{
 private Config config;

 public Await(Config config){ this.config = config; }
 final public String toString(){ return "await " + config; }
 ...
 final protected byte activation(Machine machine)
 {
 if (!config.fixed(machine)) return SUSP;
 if (!config.evaluate(machine)) return STOP;
 terminate();
 return machine.isEndOfInstant() ? STOP : TERM;
 }

}

The SugarCubes Tool Box

� � � � �

Preemption

Until extends BinaryInstruction and implements preemption: execution of left ,
called the body, is aborted when an event configuration becomes true. One says
then that left is preempted by the configuration and, in this case, control goes to
right which is called the handler.

The preemption implemented by Until is a weak one: the body is not prevented to
react at the very instant of preemption.

public class Until extends BinaryInstruction
{
 private Config config;
 private boolean activeHandle = false;
 private boolean resumeBody = true;

 public Until(Config config,Instruction body,Instruction handler){
 this.config = config; left = body; right = handler;
 }

 public Until(Config config,Instruction body){
 this.config = config; left = body; right = new Nothing();
 }
 ...
 final public String toString(){
 if (right instanceof Nothing) return "do "+left+" until "+config;
 return "do "+left+" until "+config+" actual "+right+" end";
 }

 final protected byte activation(Machine machine)
 {
 if (activeHandle) return right.activ(machine);
 if (resumeBody){ // body is to be executed
 byte res = left.activ(machine); // weak preemption !
 if (res != STOP) return res;
 resumeBody = false;
 }
 if (!config.fixed(machine)) return SUSP;
 if (config.evaluate(machine)){ // actual preemption
 activeHandle = true;
 if (machine.isEndOfInstant()) return STOP;
 return right.activ(machine);
 }
 resumeBody = true; // to re-execute the body at next instant
 return STOP;
 }
}

Note that “weakness” of the preemption is coherent with the basic principle of
4.1 which states that the absence of an event cannot be decided before the end of

The SugarCubes Tool Box

� � � � �

the current instant. On the contrary, strong preemption (such as provided by the
watching primitive of Esterel[BG]) does not let its body execute at all when the
preemption condition is true. Thus, execution of the body during one instant needs
to decide that the preemption condition is false at that very instant (that is, be-
fore its end).

Event Declaration

EventDecl extends UnaryInstruction and defines an event which is local to its
body. The local event is stored in the field internal of the class.

public class EventDecl extends UnaryInstruction
{
 private String internalName;
 private Event internal;

 public EventDecl(String internalName,Instruction body)
 {
 this.internalName = internalName;
 internal = new Event(internalName);
 this.body = body;
 }
 ...
 final public String toString(){
 return "event " + internalName + " in " + body + " end";
 }

 final protected byte activation(Machine machine)
 {
 Event save = machine.getEvent(internalName);
 machine.putEvent(internalName,internal);
 byte res = body.activ(machine);
 machine.putEvent(internalName,save);
 return res;
 }
}

An Example

In this example, one first adds to a machine an instruction which waits for an
event named e and then prints “e! ”. The machine is run and a copy of the pre-
vious instruction is also added to it. Then, the machine is run for the second time.
Finally, an instruction which generates e is added, and the machine is run for the
third time.

class Example1
{
 static int i = 1;

The SugarCubes Tool Box

� � � � �

 static void run(Machine machine){
 System.out.print("instant "+(i++)+": ");
 machine.activ(machine);
 System.out.println("");
 }

 public static void main (String argv[])
 {
 Machine machine = new Machine();
 Instruction inst =
 new Seq(new Await(new PosConfig("e")),new PrintAtom("e! "));
 machine.add(inst);
 run(machine);
 machine.add((Instruction)inst.clone());
 run(machine);
 machine.add(new Generate("e"));
 run(machine);
 }
}

Execution gives:

instant 1:
instant 2:
instant 3: e! e!

Note that the two Await instructions are both fired during the same third instant
when the event is generated (events are broadcast). Note also the use of the
method clone to get a copy of the instruction.

5 Related Works
Reactive-C and Synchronous Languages

The SugarCubes are actually a derivative of the Reactive-C language [Bo] which
extends the language C with reactive instructions. Amongst these instructions
are stop , suspend , merge , and loop which are also present in the SugarCubes. A
program in Reactive-C (the main function) correspond to a reactive machine in
SugarCubes.

Events are not primitive notions in Reactive-C as they are in SugarCubes. Ac-
tually, the notion of an event comes from the language Esterel[BG] which is a
member of the synchronous language family[HAL]. Esterel allows immediate re-
action to both presence and absence of events (called signals). The rejection of
the immediate reaction to event absence, in order to avoid Esterel causality pro-
blems, is at the basis of the SL synchronous language[BDS]. This rejection is also

The SugarCubes Tool Box

� � � � �

at the basis of SugarCubes, which adopts SL event based primitives (generate ,
await , and until).

Reactive Functional Programming

Reactive programming has been recently implemented in the functional language
Standard ML[MTHM] as a reactive library[PUC]. Actually, the central notion is
that of a reactive expression which is a SML expression which defines instants.
The basic reactive primitives include stop , suspend , and merge with a semantics
very close to the ones of Reactive-C and SugarCubes. The reactive library pro-
vides an opportunity to study the interaction of reactivity with higher-order
functions and to implement prototype extensions to existing reactive and syn-
chronous languages.

Reactive Systems in Java

Several attempts are under work to implement the reactive paradigm in Java.

The Reactive Java formalism[PPLS] defines a collection of Java classes to des-
cribe modules and their interconnections, and primitives to handle synchronous
and asynchronous communications. By contrast with SugarCubes, Reactive Java
uses a separate thread for each module. A separate thread is also used to imple-
ment preemption, to look at the watched event and to send an interrupt when it
arr ives.

A language, also named Reactive’Java, is currently developed by the company
Soft Mountain on top of Java to implement the reactive paradigm (informations
are available on the Web at URL http://www.soft-mountain.com).

Reactive Scripts and Nets of Reactive Pro-
cesses

Reactive Scripts[BH] are strongly related to SugarCubes. In Reactive Scripts,
instants are identified to interpreter reactions. Reactive Scripts are implemen-
ted on top of Java using the SugarCubes. Actually, Reactive Scripts can be seen
as the interpreted version of SugarCubes. They are described in a paper available
on the Web[BS1].

Nets of Reactive Processes are dataflow networks made of parallel processes
sharing the same global instants and communicating through FIFO channels. These
nets are an extension of Kahn’s networks[KMQ] in which the empty channel test
becomes possible. They are implemented using SugarCubes and are described in a

The SugarCubes Tool Box

� 	 � � �

paper available on the Web[BS2].

6 Conclusion
We have presented an overview of SugarCubes to program reactive instructions
(Instruction class) run in parallel by reactive machines (Machine class) and
communicating with broadcast events (Event class).

The SugarCubes can be seen as a low-level system upon which more complex re-
active formalisms, such as Reactive Scripts, can be implemented. They also pro-
vide a convenient framework for prototyping experimental extensions to various
reactive formalisms.

The SugarCubes (version 1) are freely available on the Web at the following URL
http://www.inria.fr/meije/rc/SugarCubes/.

Bibliography
[BG] G. Berry, G. Gonthier, The Esterel Synchronous Language: Design, Seman-
tics, Implementation, Science of Computer Programming, 19(2), 1992.

[BH] F. Boussinot, L. Hazard, Reactive Scripts, Proc. RTCSA’96, Seoul , IEEE,
1996.

[Bo] F. Boussinot, Reactive-C: An extension of C to program reactive systems ,
Software Practice and Experience, 21(4): 401-428, 1991.

[BDS] F. Boussinot, R. De Simone, The SL Synchronous Language, IEEE Trans.
Software Engineering, 22(4), 1996.

[BS1] F. Boussinot, J-F. Susini, The SugarCubes Tool Box - Rsi-Java Implemen-
tation, available on the Web at URL http://www.inria.fr/meije/rc/ SugarCubes/ .

[BS2] F. Boussinot, J-F. Susini, The SugarCubes Tool Box - Nets of Reactive
Processes Implementation, available on the Web at URL http://www.inria.fr/

meije/rc/ SugarCubes/ .

[GJS] J. Gosling, B. Joy, G. Steele, The Java Language Specification, Addison-
Wesley, 1996.

[HAL] N. Halbwachs, Synchronous Programming of Reactive System, Kluwer
Academic Pub., 1993.

The SugarCubes Tool Box

�
 � � �

[HP] D. Harel, A. Pnueli, On the Development of Reactive Systems , NATO ASI
Series F, Vol. 13, Springer-Verlag, 1985.

[KMQ] G. Kahn, D. B. MacQueen, Coroutines and Networks of Parallel Processes ,
Proc. IFIP Congress 74, 1977.

[PPLS] C. Passerone, R. Passerone, L. Lavagno, A. Sangiovanni-Vincentelli, Mo-
delling Reactive Systems in Java, IEEE International High Level Design Validation
and Test Workshop, Oakland,1997.

[PUC] R. R. Pucella, Reactive Programming in Standard ML, Report of Bell Labo-
ratories, Lucent Technologies, 1997.

[MTHM] R. Milner, M. Tofte, R. Halper, D. B. MacQueen, The Definition of Stan-
dard ML (Revised), The MIT Press, Cambridge, Mass., 1997.

The SugarCubes Tool Box

� � � � �

