
IS
S

N
 0

24
9-

63
99

appor t
de r e c he rc he

1995

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Two Semantics for a Language of Reactive
Objects

Frédéric Boussinot , Cosimo Laneve

N˚ 2511
Mars 1995

PROGRAMME 2

Calcul symbolique,

programmation

et génie logiciel

Two Semantics for a Language of Reactive Objects

Fr�ed�eric Boussinot , Cosimo Laneve

Programme 2 | Calcul symbolique, programmation et g�enie logiciel

Projet MEIJE

Rapport de recherche n�2511 | Mars 1995 | 23 pages

Abstract: We are studying semantics of a small object-based language, with the

following main characteristics: parallelism, dynamicity, high order parameters, no-

tion of a global instant, and reactivity. We give formal semantics using two re-

lated formalisms , namely �-calculus and the so-called \Chemical Abstract Ma-

chine" (CHAM). These formalisms are both powerful enough to express dynamicity

and high order parameters, but they give distinct insights into the language. In �-

calculus, emphasis is put on communications through channels; on the other hand,

in CHAM, emphasis is put on more abstract and general interactions between pro-

gram parts. We �nally prove adequacy of the �-calculus semantics w.r.t. the CHAM

semantics.

Key-words: Parallelism, objects, reactive approach, pi-calculus, chemical abstract

machine.

(R�esum�e : tsvp)

Unitéde recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)

Téléphone : (33) 93 65 77 77 – Te´lécopie : (33) 93 65 77 65

Deux s�emantiques pour un langage �a objets r�eactifs

R�esum�e : On �etudie la s�emantique d'un petit langage \bas�e objets", ayant les

principales caract�eristiques suivantes : parall�elisme, cr�eation dynamique, param�etres

d'ordre sup�erieur, notion d'instant global et r�eactivit�e. La s�emantique formelle du

langage est donn�ee en utilisant deux formalismes : le �-calcul et l'approche par

\machine chimique" (CHAM). Ces formalismes sont tous deux assez puissants pour

exprimer la cr�eation dynamique et les param�etres d'ordre sup�erieur, mais ils don-

nent des visions di��erentes du noyau du langage. En �-calcul, l'accent est mis sur la

communication �a travers des canaux, tandis qu'en CHAM, il est mis sur les inter-

actions de plus haut niveau entre les composants parall�eles. On prouve �nalement

l'ad�equation de la s�emantique en �-calcul par rapport �a celle en CHAM.

Mots-cl�e : Parall�elisme, objets, approche r�eactive, pi-calcul, machine chimique.

Two Semantics for a Language of Reactive Objects 3

Contents

1 Introduction 5

2 The language 6

2.1 Intuition : 6

2.2 Syntax : 7

3 The CHAM Semantics 8

3.1 Declarations : 8

3.2 Statements : 9

3.2.1 Programs : 9

3.2.2 Instants : 9

3.2.3 Clones : 11

3.2.4 Adding a method : 11

3.2.5 Calls : 11

3.2.6 Values : 11

4 The �-Calculus Semantics 12

4.1 Objects : 12

4.1.1 Adding a Method : 13

4.1.2 Calls : 13

4.1.3 Clones : 13

4.2 Methods : 14

4.2.1 Parameters : 14

4.2.2 Bodies : 14

4.2.3 Initial Body : 16

4.3 Statements : 16

5 Adequacy of the �-Calculus Encoding 17

6 Conclusion 21

RR n�2511

4 Frederic Boussinot , Cosimo Laneve

A The �-Calculus 22

B Finite and Unbounded Stores 23

INRIA

Two Semantics for a Language of Reactive Objects 5

1 Introduction

In this paper, we are studying semantics of a small object-based language, with the

following main characteristics:

� Parallelism: object methods are executed concurrently when called; method

calls are asynchronous: after a call, the called method and the caller executes

in parallel.

� Dynamicity: objects are dynamically created, and new method instances can

be dynamically added to objects.

� High order parameters: method names can be passed as arguments during

calls. As in the actor model[1], this feature is essential to allow objects to

synchronize when only asynchronous method calls are allowed.

� Instants: there is a notion of an instant global to all methods, and the same

method cannot be executed more than once in the same instant; thus, the

current instant is �nished when all methods called during that instant have

been executed once.

� Reactivity: when called, a method continues to execute, starting from the point

where it was stopped at the previous call, and reaching a new control point,

which is the starting point for the next call (at a later instant).

This language that we call from now Lro , is the kernel of a new formalism under

design with the support of France T�el�ecom1.

Presence of instants, we call this the reactive approach, is the main novelty of

the proposed language. To briey illustrate the interest of such an approach, just

consider two graphical objects O1 and O2 that we want to consider as a linked couple

when moved. There is a very simple solution to link together the two objects: each

object, on reception of a move order, send the same order to the other object. The

well known problem is thus to avoid loops where for instance, O1 send the move

order to O2, which in return, send back the same order to O1, and so on. Notice

that these loops do not exist anymore if the move method cannot be executed more

than once during one instant: when receiving for the second time the move order,

O1 simply rejects it, as it has already moved. Thus, presence of instants allows to

give a very simple and symmetrical solution to the problem. We will not give more

justi�cations on the approach, as, in this paper, we focus on semantics.

To be able to give Lro a formal semantics, we choose to use two related forma-

lisms, namely �-calculus[4] and the so-called \Chemical Abstract Machine" (CHAM)[2].

These formalisms are both powerful enough to express dynamicity and high order

parameters, but they give distinct insights into the language. In �-calculus, emphasis

is put on communications through channels; on the contrary, in CHAM, emphasis

is put on more abstract and general interactions between program parts.

1March�e d'�etude France T�el�ecom-CNET, 93 1B 141, #506

RR n�2511

6 Frederic Boussinot , Cosimo Laneve

The paper has the following structure: in section 2 we describe the language Lro .

Then, we give in section 3 a CHAM semantics of Lro . The �-calculus semantics of

Lro is described in section 4. Finally, we prove in section 5 adequacy of the �-calculus

semantics w.r.t. the CHAM semantics.

2 The language

We �rst intuitively describe the language Lro , and then give syntax for it.

2.1 Intuition

An object de�nes data which are shared by all methods that are associated to it.

Methods are parallel and concurrent treatments on objects data. Systems are made

of objects that are run in parallel. There are three levels: system, objects in the

system, and methods associated to objects, and the same notion of an instant goes

through the three levels:

� Execution of a method is divided into instants: one can speak of the �rst

instant of the method, of the second instant, and so on. The same method

cannot be run several times during one instant.

� Execution of an object for the current instant is terminated when all its me-

thods have �nished their execution for that instant.

� Execution of a system for the current instant is terminated when all its objects

have �nished their execution for that instant.

Therefore, instants give systems a global synchronizing mechanism: the system, its

objects, and their methods all run to the rhythm of the same global clock, and no

component is free to take some advance on the others.

Method calls are asynchronous: the caller does not wait for the called method to

terminate, to continue its execution. Parameters may be transmitted during calls;

they may be of any sort and even be objects or methods.

Objects can be dynamically created. Methods can also be dynamically added to

objects. New objects are created as clones of existing ones. A clone of an object O

is a new object whose methods are copies of those of O.

There exists an initial objet, with only one method; this method is cyclicly

executed by the system and each execution of it de�nes a new instant. During one

instant, objects are created and methods are called; execution of called methods

can cause creation of new objects and calls of new methods, that will be executed

in the same way. The current instant is terminated when all called methods have

terminated their execution for that instant. Then, the initial method is called another

time, de�ning a new instant, and so on.

INRIA

Two Semantics for a Language of Reactive Objects 7

2.2 Syntax

One de�nes the abstract syntax (in BNF form) of the language Lro of reactive

objects in the following way:

Object and Method Declarations. Objects and method declarations have the
following syntax:

D ::= " j D D j object(O; fxO) j method(O;m; ex) B end

The declaration object(O; ex) introduces an object named O, having ex as t-uple

of �elds.

The declaration method(O;m; ea) B end introduces a method named m, associa-

ted to the object O, having ea as list of formal parameters, and B as body.

We assume that in D never two objects have the same name O and never two

methods have the same name m.

Method Bodies. A method body is made of a list of variable declarations C

followed by a statement S:

B ::= C S

C ::= " j var x = V ; C

It is assumed that the scope of a variable inside a method is exactly the body of

the method where it appears (variables are local to methods).

Programs. A program P of Lro is made of a list D of object and method decla-
rations, followed by the body B of the initial method:

P ::= D B

Statements. A statement S is de�ned by the following syntax:

S ::= stop j stop ; S j clone(O;O0
) ; S j add(O;m;P) ; S j send(O;P; ed) ; S j

�eld(x) := V ; S j x := V ; S j if B then S else S ; S j while B do S od ; S

Statement stop stops the execution for the current instant.

Statement clone(O;O0) creates a new object O0, which is a clone of object O.

O
0 get a new fresh copy of all the method O owns at the moment the statement is

executed. Names of methods of O0 are inherited from those of O; �elds of O0 are

unde�ned.

RR n�2511

8 Frederic Boussinot , Cosimo Laneve

Statement add(O;m;P) adds to object O a new fresh copy of method m named

P .

Statement send(O;P; ed) send the order to execute method known as P in O, with

parameters ed.
Statement �eld(x) := V assigns the value of the expression V to the �eld

named x belonging to the current object O to which the method is attached. Cor-

respondingly, x := V assigns value of V to the local variable x. Remark that V is

computed into the environment composed of the local variables of the method, its

formal parameters, and the �elds of O.

Statements if B then S else S and while B do S od are boolean test and loop.

3 The CHAM Semantics

A CHAM[2] solution is a �nite (multi-) set of items named molecules, that are

terms built according to a syntax. Solutions are of the form: fjm1; :::;mkjg. The

chemical rule is the basic rule; it says that molecule reactions can be performed

freely within any solution (there is no way to \inhibits" a reaction). Moreover, some

transformations of solutions are reversible (notation: *)).

The CHAM semantics of Lro consists in de�ning molecules accordingly to the

syntax, and rules expressing how these molecules reacts.

3.1 Declarations

Declaration composition. Each declaration can be added to, or extracted from
a solution:

D D *) D ; D

Object Declarations. The molecule associated to an object O is a triple of the

form hO
0
; '; fi where:

� O
0 is the name of the basic object of O, that is O itself if the molecule cor-

responds to an object declaration, or the object that has been copied from, if

the molecule corresponds to a clone operation. (O0 is used for type checking

purposes only).

� ' is a function that associate values to O �elds. We note ?ex the function that

associates the unde�ned value to �elds ex.
� f is a function that associates methods to names; more precisely, f(P) = (m; p)

means that a copy p of method m is known in O as P . We note ? the function

that is unde�ned for all names.

INRIA

Two Semantics for a Language of Reactive Objects 9

Declaration of an object O with �elds ex creates a new molecule whose name is also
O. The rule for object declaration is:

object(O; ex) ! O :: hO; ?ex; ?i

Method Declarations. Molecules associated to methods declarations are triple
of the form hO; S; eai where O is the object the method is belonging to, S is the
method body, and ea are the formal parameters. Declaration of a method m creates
a new molecule whose name is also m. The rule for method declaration is:

method(O;m;ea) B end ! m :: hO; B; eai

3.2 Statements

Executable molecules have the following form: hS;O; �; �i where S is a statement

which is the body of a method, O is the object to which the method belongs, � is a

function that associates values to the method formal parameters, and � is a function

that gives value for the method local variables.

3.2.1 Programs

A program \D C S" creates two new molecules. The �rst one is de�nitions D; the
second one is the 4-uple \hS; INIT; ?;; �Ci", where we note �C is the store obtained
from C:

D C S *) D ; pINIT :: hS; INIT; ?;; �Ci

Remark that the initial method is marked by the process name pINIT, and belongs

to the initial object, also called INIT.

3.2.2 Instants

Initial method. When the initial method is terminated for the current instant

(body of the form \stop ; S"), a new molecule is created; this new molecule is a set,

called \termination set", and the initial method is put into it:

pINIT :: hstop ; S;O; �; �i ! stop � fpINIT :: hS;O; �; �ig

Next instant. When the solution is completely absorbed into the termination

set (\stop � S"), one can go to the next instant, by simply removing the stop:

fj stop � S jg ! fj S jg

RR n�2511

10 Frederic Boussinot , Cosimo Laneve

Absorption of objects and methods. Let H be any molecule of the form

m :: hO; C;S; eai or O :: hO; '; fi: Then H can be absorbed into the termination

set:

stop � S ; H ! stop � (S [fHg)

Absorption of processes. A process which has terminated to execute for the

current instant (stop;S), is absorbed into the termination set; but the code becomes

guarded (stop . S) to prevent the process to be automatically executed at the next

instant. The . operator means that a send statement must be performed before the

process be executed:

stop � S ; p :: hstop;S;O; �; �i ! stop � (S [fp :: hstop . S;O; �; �ig)

There is a special case for completely �nished processes (of the form stop); these

processes are absorbed into the termination set.

stop � S ; p :: hstop; O; �; �i ! stop � (S [fp :: hstop . stop; O; �; �ig)

A guarded process can be absorbed in the termination set. However, it can also

be extracted from the termination set if needed:

stop � S ; p :: hstop . S;O; �; �i *) stop � (S [fp :: hstop . S;O; �; �ig)

Accepted Calls. To call a method, one simply catenate the arguments to the

method (see 3.2.5). The call is accepted if the method is waiting to be called (stop.S).

Then, the call is performed by associating the arguments to the method formal

parameters (we note [ex 7! ea] the function that pointwise associates ea to ex).
p :: hstop . S;O; �ex; �i[ea] ! p :: hS;O; [ex 7! ea]; �i

Refused Calls. A call is refused if the called method is not waiting to be called
(that is, the method has already been called during the current instant). Then, the
arguments are simply thrown away.

p :: h�;S;O; �; �i[ea] ! p :: h�;S;O; �; �i

Calls to completely �nished processes are also systematically rejected.

p :: hstop; O; �; �i[ea] ! p :: hstop; O; �; �i

INRIA

Two Semantics for a Language of Reactive Objects 11

3.2.3 Clones

Assume that dom(fO) = fP1; � � � ; Pkg and f(Pi) = (mi; pi). One de�nes fO] such
that fO](Pi) = (mi; p

0
i), where p

0
i are fresh names. Let also �Ci be the store created

by the declaration Ci. Then:

p :: hclone(O;O]
) ; S;O00; �; �i ; O :: hO0; 'ex; fOi ; m1 :: hO0; C1 S1; ea1i ; � � � ; mk :: hO0; Ck Sk; faki

#

p :: hS;O00; �; �i ; O :: hO0; 'ex; fOi ; m1 :: hO0; C1 S1; ea1i ; � � � ; mk :: hO0; Ck Sk; faki
O]

:: hO0; ?ex; fO]i ; p01 :: hstop . S1; O
]; ?ea1 ; �C1i ; � � � ; p0k :: hstop . Sk; O

]; ?eak ; �Ck
i

3.2.4 Adding a method

Let f be a function; f [x 7! a] is the function de�ned by:

f [x 7! a](y) =

�
a if x = y

f(y) otherwise

Then:

p :: hadd(O;m;P) ; S;O00; �; �i ; O :: hO0; '; fi ; m :: hO0; C S0; eai
#

p :: hS;O00; �; �i ; O :: hO0; '; f [P 7! (m; p0)]i ; m :: hO0; C S0; eai ; p0 :: hstop . S0; O; ?ea; �Ci
where p0 is a fresh name.

3.2.5 Calls

To call a method, one simply catenate the arguments to the called method. Assume
that f(P) = (m; p0) then:

p :: hsend(O;P; ed) ; S;O00; �; �i; O :: hO0; '; fi ; p0 :: hS;O; �0; �0i

#

p :: hS;O00; �; �i ; O :: hO0; '; fi ; p0 :: hS;O; �0; �0i[[[ed]]]

3.2.6 Values

In a method body, evaluation of expressions may depend on three domains: the

method variables �, the object's �elds 'ex, and the method's parameters �ey. We note

[[V]]('ex; �ey; �) the value of V according to these domains.

Fields.

p :: h�eld(y) := V ; S;O; �; �i ; O :: hO0; '; fi ! p :: hS;O; �; �i ; O :: hO0; '[y 7! [[V]]('; �; �)]; fi

RR n�2511

12 Frederic Boussinot , Cosimo Laneve

Assignments.

p :: hz := V ; S;O; �; �i ; O :: hO0; '; fi ! ! p :: hS;O; �; �[z 7! [[V]]('; �; �)]i

Tests.

p :: hif B then S1 else S2 ; S;O; �; �i ; O :: hO0; '; fi ! p :: hS1;S;O; �; �i
if [[B]]('; �; �) = true

p :: hif B then S1 else S2 ; S;O; �; �i ; O :: hO0; '; fi ! p :: hS2;S;O; �; �i
if [[B]]('; �; �) = false

Loops.

p :: hwhile B do S0
od ; S;O; �; �i ; O :: hO0; '; fi ! p :: hS0

;while B do S0
od ; S;O; �; �i

if [[B]]('; �; �) = true

p :: hwhile B do S0
od ; S;O; �; �i ; O :: hO0; '; fi ! p :: hS;O; �; �i

if [[B]]('; �; �) = false

4 The �-Calculus Semantics

The �-calculus we use is de�ned in appendix A. In this section, we give the semantics

of Lro by means of a semantics function S which we are going to describe now.

4.1 Objects

Declarations. The semantics function S is de�ned for objects declarations in the

following way:

For each declaration of an object O, three interface channels aO; sO; cO are crea-
ted: aO is used to add methods to O, sO to send method execution orders and cO
to clone O.

S(object(O; fxO);D;B) = (aO ; sO; cO) (OBJfxO (aO ; sO; cO) j S(D;B))

The process OBJ which triggers objects is made of �ve parts put in parallel.

� Methods added to O are processed by ADD.

� The function that associates O methods to names, is implemented by STORE.

� Calls to O methods are processed by SEND.

� Clone orders are processed by CLONE.

� Objects �elds are processed by DATA.

INRIA

Two Semantics for a Language of Reactive Objects 13

Three channels wr, vl, and cp are created: wr is used to register a new method in
STORE; vl is used to get the internal name of a called method; cp is used to get
all methods names when a cloning operation is to be performed.

OBJfxO (aO ; sO; cO) = (wr ; vl ; cp) (ADD(aO ;wr)

j STORE(wr ; vl ; cp)
j SEND(sO ; vl)

j CLONEfxO (cO ; cp)
j DATA(fxO)

)

4.1.1 Adding a Method

The name m with its external name x are received with each add order aO. Then,

a new internal name p is created and the triple x;m; p is sent to STORE, to be

registered. Finally, p is sent to method m, to create a new instance of method m,

known internally as p.

ADD(aO;wr) = aO(x;m):wr [x;m; (p)]: (m[p] j ADD(aO ;wr))

The STORE process is described in appendix B, and the DATA process de�nition

is left as an exercise.

4.1.2 Calls

Three parameters x, ed, and sync are received with each send order sO: x is the

external name of the method called, ed are the arguments, and sync is a channel used

for synchronization (see 4.2.2). Then, the internal name p associated to x is asked

to STORE through channel vl; the reply is got from a new channel ct. Finally, ed
and sync are sent to p, for the call to be performed.

SEND(sO ; vl) = sO(x; ed; sync): vl [x; (ct)]: ct(x;m; p): p[ed; sync]:SEND(sO ; vl)

4.1.3 Clones

Four parameters are associated to a cloning order cO sent to O: aO0 ; sO0 ; cO0 are

interface channels for the new object O0, and t is used to indicate the termination

of the cloning process (when all method have been added in O
0). Then, the new

object O0 is created (with the same �elds list), and in parallel, the order is given on

channel cp, to the STORE of O, to give its current methods. For that purpose, two

channels ans and end are created: ans is used to receive the list items and end to

indicate the end of the list.

CLONEfxO(cO ; cp) = cO(aO0 ; sO0 ; cO0 ; t): (OBJfxO (aO0 ; sO0 ; cO0)

j cp[(ans); (end)]:CONTfxO (ans ; end ; t; aO0 ; cO; cp))

RR n�2511

14 Frederic Boussinot , Cosimo Laneve

For each reply of STORE through ans, the corresponding method is added to O0

through aO0 . When the list is exhausted, STORE send end and thus, the t channel

can be sent, as the cloning process is terminated; then, the CLONE process is

recursively re-executed.

CONTfxO (ans ; end ; t; aO0 ; cO ; cp) = ans(x;m; p): aO0 [x;m]: CONTfxO (ans ; t; aO0 ; cO ; cp)

+ end []: t[]:CLONEfxO (cO; cp)

4.2 Methods

For each declaration of a method m a channel of the same name is created; it is used

to create new instances of the method.

S(method(O;m; ex) B end ; D C S) = (m) (MTDB(m; ex) j S(D C S))

4.2.1 Parameters

For each method formal parameter, one creates a cell which stores its value (initially

unde�ned).

MTDB(m;x1; � � � ; xk) = m(p): (MTDB(m;x1; � � � ; xk)
j (� � � ; rxi ; wxi ; � � �)(S

p
x1;���;xk(B) j � � � j CELL(rxi ; wxi ;?) j � � �)

De�nition of cell is standard:

CELL(rx; wx; d) = rx[d]:CELL(rx; wx; d) + wx(d
0
):CELL(rx; wx; d

0
)

4.2.2 Bodies

The function S
pex is de�ned on method bodies in the following way:

A cell is created to hold the value of each local variable.

Spex(var x = V ; C S) = (rx; wx) (CELL(rx; wx; [[V]]) j Spex(C S))

We leave unde�ned the process [[V]]. Informally it computes the value V in the

environment consisting of the local data of the method, plus the parameters with

which the method is called, and the data of the object to which the method is

attached.

For the statement S, two channels stop and app are �rst created:

� app is used to get information about calls performed during execution of the

method: a synchronizing channel is send on app each time a send statement

is executed.

INRIA

Two Semantics for a Language of Reactive Objects 15

� stop is emitted by the method when it terminates to execute for the current

instant, that is when it reaches a stop statement. Moreover, it is also used to

control execution of the method: the method waits for a stop signal to start

execution.

Then, two processes are put in parallel:

� [[S]]stop
app

is the translation of statement S, de�ned in 4.3.

� SYNC performs the synchronization for instant processing. The algorithm

for distributed termination used to synchronize all called methods on the end

of instant, procceeds as follows: when it terminates the current instant, each

method send a �rst \near termination" sync signal to its caller; then, the

method waits for the termination of all method called by it; �nally, the it

sends a second \true termination" sync to its caller.

Spex(S) = (stop; app) (stop(): [[S]]stop
app

j SYNCex(p; app; stop))

SYNC De�nition. SYNC �rst waits for the method internal name p; when

received, it send write orders to cells that hold parameters, and it send the stop

signal to start execution of the method body. Then, two processes EG and LIST

are put in parallel.

SYNCx1;���;xk(p; app ; stop) = p(d1; � � � ; dk; sync): wx1 [d1]: � � � : wxk [dk]: stop[]:

(eg)(EG(p; eg) j (`; `0)(LISTx1;���;xk(`; `
0; p; app; stop; sync; eg) j `(): `0[]))

EG De�nition. EG rejects all calls to the method until the next instant; De-

�nition of EG is straight forward. Notice however that two emissions of sync are

performed to assure that LIST will not be blocked, as in the synchronization of

stop, methods whose requests have been rejected are also involved.

EG(p; eg) = eg() + p(ed; sync): (sync[]: sync[] j EG(p; eg))

LIST De�nition. LIST stores in a list all the sync channels of called methods.

When a stop signal is received from the method, LIST begins to emit its own \near

termination" sync signal, and waits for the \near termination" sync, then for the

\true termination" sync from all channels stored in the list; �nally, when all these

receptions have been performed, the EG part is reset and the \true termination"

sync signal is emitted. De�nition of LIST implementing a kind of dynamic list, is

as follows:

RR n�2511

16 Frederic Boussinot , Cosimo Laneve

LISTex(`; `0; p; app; stop; sync; eg) = app(s): (`1; `
0

1) (LISTex(`1; `01; p; app; stop; sync; eg)
j `(): (`1[] j s(): `

0

1(): (`
0[] j s()))

)

+ stop(): (sync[] j `[]: `0(): (eg [] j sync[]:SYNCex(p; app ; stop)))

4.2.3 Initial Body

For the initial method body, S de�nition is:

S(var x = V ; C S) = (rx; wx) (CELL(rx; wx; [[V]]) j S(C S))

S(S) = (stop; app) ([[S]]stop
app

j LIST(app ; stop))

The process LIST used for encoding the initial method is a simpli�ed version of

LISTex (there is no caller for the initial method).

LIST(app; stop) = (`; `0)(LIST0
(`; `0; app ; stop) j `(): `0[])

LIST
0
(`; `0; app; stop) = app(s): (`1; `

0

1) (LIST
0
(`1; `

0

1; app ; stop)

j `(): (`1[] j s(): `
0

1(): (`
0[] j s()))

)

+ stop(): `[]: `0(): stop[]:LIST(app ; stop)

The following proposition shows that we have implemented what was expected

for LIST processes.

Proposition 4.1 1. (app ; stop)(LIST(app; stop) j app[s1]: � � � : app [sk]: stop [])
�1
=)

�2
=),

where �1 and �2 are permutations of (s1; � � � ; sk);

2. let P = (`; `0; app; stop)(LISTex(`; `0; p; app ; stop ; sync; eg) j `(): `0[] j app [s1]: � � � : app[sk]: stop []).
Then P

�1
=)

�2
=), where �1 is a permutation of (sync; s1; � � � ; sk) and �2 is a per-

mutation of the t-uple (sync; s1; � � � ; sk; eg)

4.3 Statements

The format for translating a statement S is [[S]]stop
app

, where app is the channel used

to signal method calls, and stop is used to control execution and to signal the end

of the method in which S appears.

Translation of a �nal stop (that is, followed by no statement), is simply the null

process O of the �-calculus.

[[stop]]
stop

app
= O

INRIA

Two Semantics for a Language of Reactive Objects 17

For a stop followed by a statement S, one �rst send stop to signal the termination

of the method for the current instant, then, waits for stop to continue at a later

instant.

[[stop;S]]stop
app

= stop[]: stop(): [[S]]stop
app

To clone an object O0 from an object O, one creates three interface channel

names aO0 ; sO0 ; cO0 and a channel t used to synchronize, at the end of the cloning

process, when all copies of O methods have been added to O0.

[[clone(O;O0
);S]]stop

app
= cO[(aO0); (sO0); (cO0); (t)] : t() : [[S]]stop

app

To add to O a method m with name P , one just send P;m on aO.

[[add(O;m;P);S]]stop
app

= aO(P;m): [[S]]stop
app

To call method P of O with arguments ed, one creates a new channel sync and

send P , the evaluation of the arguments [[ed]], and sync on sO; sync is also sent on

app.

[[send(O;P; ed);S]]stop
app

= sO(P; [[ed]]; (sync)): app [sync]: [[S]]stopapp

5 Adequacy of the �-Calculus Encoding

Let us show the adequacy of the �-calculus implementation w.r.t. the CHAM-

semantics of Lro . Starting from (; �), where is a state of the CHAM transition

system and � is a state of the �-calculus transition system, we shall prove that

every CHAM-transition !
0 is mirrored by a sequence of �-calculus transitions

�

�

�!
�
�
0. To this aim the CHAM-solution is too abstract to be put in correspon-

dence with a �-calculus state. In particular the problem is due to the strategy used

by the �-calculus implementation for coding the stop. Namely, exactly the processes

which are active along one instant synchronize at the end of it (in the CHAM, all

the molecules of the solution synchronize). Hence we consider couples made of a

solution and a function �, which associate to a process name p both the list of the

process names that have called p, and the set of the process names that p has called.

De�nition 5.1 Let � be the proof of the CHAM-transition fjMjg ! fjM
0
jg and

let � be a function from process names to a pair whose elements are lists of process

RR n�2511

18 Frederic Boussinot , Cosimo Laneve

names. Then fjMjg�! fjM
0
jg� if no instance of the rewriting rule fjstop�Sjg ! fjSjg

or send rule of 3.2.5 appears in �.

If the rewriting rule fjstop � Sjg ! fjSjg appears in � then fjstop � Sjg�! fjSjg;.

Otherwise, let p be the process name of the process calling p0 in the (unique)
instance of rule 3.2.5 in � and let �0 be the function

�0
(x) =

8>><
>>:

(proj1(�(x)); proj2(�(x)) � p
0
) if x = p

(proj1(�(x)) � p; proj2(�(x))) if x = p0

�(x) otherwise

Then fjMjg�! fjM
0
jg�

0

In the de�nition below, if L is a list of names, we note p 2 L if the name p occurs

as element of L.

De�nition 5.2 Let F be the function from fjMjg� to a �-calculus state such that

F(fjm1; � � � ;mkjg�) = (�)(F�(m1) j � � � j F�(mk)) � =
S
1�i�k fn(F�(mi)

F�(stop � fm1; � � � ; pINIT :: hS; INIT; �; �i; � � � ;mkg) = F�(m1) j � � �

j F�(pINIT :: hstop;S; INIT; �; �i)

j � � � j F�(mk)

and

F�(O :: hO0
; 'fxO ; fOi) = OBJfxO(aO; sO; cO)

where DATA and STORE contain the same informations of 'fxO and fO;

F�(m :: hO;C;S; exi) =MTDC;S(m; ex)
F�(pINIT :: hS; INIT; �; �i) = (stop; app ; � � � ; rxi ; wxi ; � � �)([[S]]

stop

app
j � � � j CELL(rxi ; wxi ; di) j � � � j

j CALLED(proj2(�(pINIT)); app ; stop)

)

where the variables xi are those of the store � (namely the local variables of pINIT)

and �(xi) = di. Moreover, let proj2(�(pINIT)) = p1 � : : : �pn and si be the channel sent

by pINIT to pi for the synchronization at the end of the instant. CALLED(proj2(�(pINIT)); app ; stop)

is the process obtained by evaluating LIST(app; stop) j app[s1]: � � � : app [sk] (and al-

ways synchronizing over the channel app).

Let T = �;S or T = stop. Then:

F�(p :: hT;O; �; �i) = (stop ; app; � � � ; rxi ; wxi ; � � �) ([[T]]stop
app

j � � � j CELL(rxi ; wxi ; di) j � � � j

j CALLED0(�(p); app ; stop)

)

F�(p :: hstop . S;O; �; �i) = (stop ; app; � � � ; rxi ; wxi ; � � �) (stop[]: stop(): [[S]]stop
app

� � � j CELL(rxi ; wxi ; di) � � �

j CALLED0(�(p); app ; stop)

)

INRIA

Two Semantics for a Language of Reactive Objects 19

where the variables xi are those of the interface � and the store � and if xi is a va-
riable of the interface, �(xi) = di otherwise �(xi) = di. Moreover, let �(p) = (q1 �
: : : �qk; p1 � : : : �pn) and si (resp. ri) be the channel sent by qi (resp. p) to p (resp. pi)
for the synchronization at the end of the instant. Then CALLED0(�(p); app ; stop)
is the process obtained by evaluating

(eg ; `; `0) (LISTex(`; `0; p; app; stop; s1; eg) j app[r1]: � � � : app [rn] j
j s2[]: s2[] j � � � j sk[]: sk[] j EG(p; eg) j `(): `0[]
)

(and always synchronizing the communications concerning app)

F�(p :: hT;O; �; �i[ed]) = F�(p :: hT;O; �; �i) T = �;S or T = stop

F�(p :: hstop . S;O; �; �i) = (stop ; app; � � � ; rxi ; wxi ; � � �) (stop(): [[S]]stop
app

� � � j CELL(rxi ; wxi ; di) � � �

j SYNCey(p; app; stop)
)

where xi is a variable of the interface (ey) or of the local store �. Their value is consis-
tent with � and �.

Finally F�(p :: hstop . S;O; �; �i[ed]) is the process obtained by evaluating F�(p ::

hstop . S;O; �; �i) j p[ed; s].
Theorem 5.3 (the adequacy theorem) Assume that two di�erent declarations

in the solution fjMjg have di�erent names. Then, fjMjg�! fjM
0
jg�

0 implies F(fjMjg�)
�

�!
�

F(fjM0
jg�

0).

Proof: The theorem is proved by a case analysis on the reduction fjMjg� !

fjM
0
jg�

0.

The cases when the reduction is due to a declaration is easy.

(add) Let M contain the three molecules: p :: hadd(O;m;P) ; S; �; �i, O ::

hO
0
; 'fxO ; fOi and m :: hO0

; C S
0
; ex0i. Let fjMjg� ! fjM

0
jg�

0 due to the evalua-

tion of the add. Hence the above molecules of M are replaced in M0 by

p :: hS; �; �i; O :: hO0; 'fxO ; fO[P 7! (m; p0)]i; m :: hO0; C S0; ex0i; p0 :: hstop . S0; �ex; �Ci
Let us show that F(fjMjg�)

�

�!
�
F(fjM0

jg�) (remark that � = �
0, in this case).

To this aim we write the part of the term F(fjMjg�) which is concerned by the
reduction. Namely:

::: aO(x;m):wr [x;m; (p0)]: (m[p0] j ADD(aO;wr))

j STORE(wr ; vl ; cp)

j m(p0): (MTDC;S(m; ey) j (� � � ; rxi ; wxi ; � � �)(S
p0ey (C S) j � � �)

j aO [x; P]: [[S]]stop
app

j � � �

Due to the de�nition of STORE, it is clear that we obtain F(fjM0
jg�) by evaluating

the above term.

RR n�2511

20 Frederic Boussinot , Cosimo Laneve

(send) Let the rule fjMjg�! fjM
0
jg�

0 be due to the following transition

p :: hsend(O;P 0; ed) ; S; �; �i; O :: hO0; 'fxO ; fOi ; p0 :: hS0; �ex0
; i

(fO(P
0
) = (m0; p0))

p :: hS; �; �i ; O :: hO0; 'fxO ; fOi ; p0 :: hS0; �ex0
; i[ed]

Remark also that � 6= �
0, since �0(p) = (proj1(�(p)); proj2(�(p)) [fp

0
g) and that

�
0(p0) = (proj1(�(p

0)) �p; proj2(�(p))). Here is the part of the term F(fjMjg�) concer-
ned by the above reduction:

::: sO(P
0;ea; s): vl [P; (ct)]: ct(P 0;m; p0): p0[ea; (s)]:SEND(sO ; vl

j STORE(wr ; vl ; cp) j LISTex(`; `0; p; app ; stop; sync; eg)
j sO[P

0; [[ed]]; (s)]: app [s]: [[S]]stop
app

j � � �
j F�(p

0
:: hS0; �ex0

; i)

The output p0[ea; (s)] in the �rst line will synchronize with the dual input in F�(p
0 ::

hS
0
; �ex0

; i. It depends on the body S0, if the call p0[ea; (s)] is refused or accepted. In

particular, if S0 = �;S00 (or S0 = stop), then

1. by de�nition of F�, p0[ea; (s)] will synchronize with an input in the process

EG of F�(p
0 :: hS0

; �ex0
; i). This means that the call is refused and s[]: s[] is

created in parallel with EG;

2. the output app[s] synchronizes with the dual statement in LISTex, that is the
number of processes with whom p synchronizes at the end of the instant is

increased by p0 (and the synchronizing channel will be s).

Remark that 1 and 2 are exactly the changes of �0 w.r.t. �. We leave to the reader

the check that F(fjM0
jg�

0) coincides with the resulting process.

If S0 = stop . S
00 (and p0 has not been called during the current instant, namely

8q: p
0
62 proj2(�(q))) then p

0[ea; (s)] is served by the subprocess SYNCex of F�(p
0 ::

hS; �ex0
; i). This means that the call is accepted. The theorem can be proved as in

the previous case.

(clone) Let fjMjg� ! fjM
0
jg�

0 be due to the execution of a clone (remark that

�
0 = � in this case). Then fjMjg contains the molecule p :: hclone(O;O]);S; O0

; �; �i,
the de�nition of the object O :: hO0

; 'fxO ; fOi and that of the methods mi ::

hO
0
; Ci;Sii; eyii used by O (and whose name is recorded in fO). Then F(fjMjg�)

contains the process

cO[(aO]); (sO]); (cO]); (t)]: t(): [[S]]stop
app

j OBJfxO (aO ; sO; cO) j � � � jMTDCi;Si(mi; eyi) j � � �
The output cO[(aO]); (sO]); (cO]); (t)] synchronizes with the dual input inCLONEfxO(cO; cp)
in OBJfxO which, in turn, triggers the request cp[(ans); (end)] for reading the store

(namely the methods which are active for O). At the same time, the new object

OBJgx
O]
(aO] ; sO] ; cO]) is created (without any active method). The inheritance of

the methods of O is performed as the subprocess STORE of OBJfxO answers (on

the channels ans and end). When the cloning terminates (i.e. communication over

end), there happens the synchronization on the channel t between the process p and

CONTfxO . Hence, the resulting process is exactly equal to F(fjM0
jg�).

INRIA

Two Semantics for a Language of Reactive Objects 21

(stop) There is still one case: when M = stop � S. Then fjstop � Sjg� ! fjSjg�
0.

According to the CHAM-semantics, the solution fjstop � Sjg can be reached through
coolings, provided that all the processes have terminated their instant (i.e. those
that have been called have reached a stop). Remark that these operations of cooling
do not change the term F(M�). By de�nition of F and Proposition 4.1, if �(p) =
(q1 � : : : � qk; p1 � : : : � pn) and si is the synchronizing channel between p and qi and ri
the one between p and pi, then F(M�) contains the subprocess

p = pINIT (proj1(�(p)) = ;) P (P
r{1 ��� r{n
=)

r|1 ��� r|n
=))

p 6= pINIT s2[]: s2[] j � � � j sk[]: sk[] j P (P
r{1 ��� r{n+1

=)
r|1 ��� r|n+2

=))

where r{1 � � � r{n and r|1 � � � r|n are permutations of (r1; � � � ; rn) and r{1 � � � r{n+1

is a permutation of the t-uple (s1; r1; � � � ; rn) while r|1 � � � r|n+2 is a permutation of

(s1; r1; � � � ; rn; egp).

It is a tedious check verifying that all such communications are accomplished.

In particular, the output egp) forces the termination of the subprocess EG of

F�(p :: hS;O; �; �i). As a consequence, the state of F�(p :: hS;O; �; �i) after all

these communications is F;(p :: hS;O; �; �i). This implies the theorem.

6 Conclusion

We have described the kernel of a reactive objects language, and gave two semantics

for it, the �rst one in CHAM and the second one in �-calculus. In the CHAM

semantics, instants are processed in a very simple and abstract way. On the contrary,

a distributed termination algorithm is used in the �-calculus semantics. Finally, we

prove the adequacy of the more concrete �-calculus semantics to the more abstract

CHAM semantics. The CHAM reects the simplicity of the language, although the

�-calculus semantics express how to implement it (it would be an interesting task

to directly implement the �-calculus semantics, for example in PICT[6]).

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, 1986.

[2] G. Berry and G. Boudol. The Chemical Abstract Machine. TCS, 96:217{248,

1992.

[3] D. Walker. �-calculus semantics for object-oriented programming languages. In

Springer-Verlag, editor, Proc. TACS'91, volume 526 of LNCS, pages 452{547,

1991.

[4] R. Milner. The Polyadic �-Calculus: A Tutorial. Technical Report ECS-LFCS-

91-180, University of Edinburgh, October 1991.

[5] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes. Informa-

tion and Computation, 100(1):1{77, 1992.

RR n�2511

22 Frederic Boussinot , Cosimo Laneve

[6] B.C. Pierce. Programming in the Pi-Calculus, an Experiment in Programming

Language Design. Technical report, University of Edinburgh, 1993.

A The �-Calculus

We consider the �-calculus as de�ned in [4], that is the polyadic �-calculus together
with an axiomatization over terms. The syntax is:

P ::= 0 j x[ey]: P j x(ey): P j P j Q j (y)P j [x = y]P P j P + P

There are two forms of binding: x(ey) and (y). The variable x is free in x(ey): P . We

use fn(P) for the free names of P , bn(P) for the bound names of P and n(P) for all

the names occurring in P .

Terms are quotiented by the structural congruence � de�ned by:

� P � Q if P is �-convertible to Q;

� let � 2 fj;+g then P � 0 � P , P � Q � Q � P and P � (Q � R) �

(P � Q) � R;

� !P � P j !P ;

� (x) 0 � 0, (x)(y)P � (y)(x)P , (x)(P j Q) � P j (x)Q and (x)(P + Q) �

P + (x)Q, if x 62 fn(P).

The evaluation relation is:

x(ey): P x(ey)
�! P x[ey]: P x[ey]

�! P x[ey]: P j x(ez): Q �
�! P j Q[ey=ez]

P
�
! P 0

P +Q
�
! P 0

x = y P
�
! P 0

[x = y]P Q
�
! P 0

x 6= y Q
�
! Q0

[x = y]P Q
�
! Q0

P
x[ez]
�! P 0

(y)P
x#y(ez)
�! P 0

x 6= y
P

�
�! P 0

(y)P
�
�! (y)P 0

y 62 n(�)
P

�
�! P 0

P j Q
�
�! P 0 j Q

bn(�) \ fn(Q) = ;

Q � P P
�
�! P 0 P 0 � Q0

Q
�
�! Q0

where #y(z1; � � � ; zk) = [#y(z1); � � � ; #y(zk)] and

#y(z) =

�
(y) if z = y

z otherwise

We don't use the \bang" operator \!", but instead, admit recursive de�nitions of
processes. Let A be a process name, then:

A(ex) = P P [
ed=ex] �

! P 0

A(ed) �
! P 0

INRIA

Two Semantics for a Language of Reactive Objects 23

B Finite and Unbounded Stores

We are going to describe in �-calculus stores which are �nite but unbounded. To this
purpose we shall use lists, encoded by means of ephemeral cells, as suggested in [?].
Remark that, in this respect, our description departs from Walkers's one (see [?]),
since stores are bounded there. Stores interact with the environment through three
channels: wr is used for writing a value m into a cell x, vl for asking the content of
a cell x and cp allows to perform the copy of the store.

STORE(wr ; vl ; cp) = (`;nc)(RWC`(wr ; vl ; cp;nc) j (m; `0) EC(`; nil;m; `0) j CELL(nc))

Remark that ` is the pointer to the head of the list representing the store). The
processRWC` accepts a request for reading or writing of a value or copy the content
of the store. Accordingly it serves such requests.

RWC`(wr ; vl ; cp;nc) = wr(x; em):W`(`; x; em;wr ; vl ; cp;nc)
+ vl(x; ct): R`(`; x;wr ; vl ; cp;nc; ct)

+ cp(ans ; end): C`(`; ans ; end ;wr ; vl ; cp;nc)

The function CELL is called in order to create a new cell of the memory.

CELL(nc) = nc(`0; x): ((`00;m)EC(`; x;m; `0) j CELL(nc))

where EC is the encoding of an ephemeral bu�er:

EC(`; x;m; `0) = `[x;m; `0]: `(y;m0; `00): EC(`; y;m0; `00)

Finally, the encodings of W` and R` are in order:

W`(`; x; em;wr ; vl ;nc) = `(y;m0; `0): ([y = x] `(x; em; `0): RWC`(wr ; vl ; cp;nc)

([y = nil] (`(x; em; `0):RWC`(wr ; vl ; cp;nc)

j nc(`0; nil))

W`(`
0; x; em;wr ; vl ;nc))

)

R`(`
0; x;wr ; vl ; cp;nc; ct) = `0(y; em; `00): `0(y; em; `00) ([y = x] ct [x; em]: RWC`(wr ; vl ; cp;nc)

([y = nil] RWC`(wr ; vl ; cp;nc)

R`(`
00; x;wr ; vl ;nc; ct))

)

C`(`
0; ans ; end ;wr ; vl ; cp;nc) = `0(y; em; `00): `0(y; em; `00): ([y = nil] end []:RWC`(wr ; vl ; cp;nc)

ans [y; em]:C`(`
0; ans; end ;wr ; vl ; cp;nc))

RR n�2511

Unité de recherche INRIA Lorraine, Technopoˆle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LE`S NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhoˆne-Alpes, 46 avenue Fe´lix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

