
IS
S

N
 0

24
9-

63
99

appor t
de r e c he rc he

1995

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The SL Synchronous Language

Frédéric Boussinot , Robert de Simone

N˚ 2510
Mars 1995

PROGRAMME 2

Calcul symbolique,

programmation

et génie logiciel

The SL Synchronous Language

Fr�ed�eric Boussinot , Robert de Simone

Programme 2 | Calcul symbolique, programmation et g�enie logiciel

Projet MEIJE

Rapport de recherche n�2510 | Mars 1995 | 36 pages

Abstract: We present a new synchronous programming language named SL based

on Esterel, in which hypothesis about signal presences or absences are not allowed.

Thus, one can decide that a signal was absent during one instant only at the end

of this instant, and so reaction to this absence is delayed. Esterel \causality

problems" are avoided at the price of replacing strong preemptions by weak ones.

An operational semantics based on rewriting rules is given and an implementation is

described which allows either to directly execute programs, or to produce automata.

Key-words: Parallelism, concurrency, synchronous programming languages, au-

tomata, reactive systems.

(R�esum�e : tsvp)

Unitéde recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)

Téléphone : (33) 93 65 77 77 – Te´lécopie : (33) 93 65 77 65

Le langage synchrone SL

R�esum�e : On pr�esente le langage de programmation SL qui est un nouveau

langage synchrone construit �a partir d'Esterel. En SL, on interdit toute hypoth�ese

sur la pr�esence ou l'absence des signaux. On ne peut donc d�ecider qu'un signal est

absent durant un instant, qu'�a la �n de cet instant, et ainsi la r�eaction �a l'absence

est report�ee �a l'instant suivant. Les \probl�emes de causalit�e" d'Esterel sont ainsi

�evit�es, mais seule la pr�eemption faible reste possible. Une s�emantique op�erationnelle

�a base de r�egles de r�e�ecritures est d�ecrite, ainsi qu'une impl�ementation qui permet

soit d'ex�ecuter directement les programmes, soit de produire des automates.

Mots-cl�e : Parall�elisme, concurrence, programmation synchrone, automate, sys-

t�emes r�eactifs

The SL Synchronous Language 3

Contents

1 Introduction 4

2 The Esterel Language 5

3 The SL Language 9

3.1 Syntax : 9

3.2 Relation to Esterel : 14

3.3 The Full Language : 14

4 SL Semantics 17

4.1 Environments and Transitions : 18

4.2 Rewrite Rules : 19

4.3 Examples : 22

4.4 Coherency and Determinism : 24

5 SL Implementation 25

5.1 The RC Language : 26

5.2 Translation into RC : 27

5.3 The sl2rc command : 29

5.4 Execution : 30

5.5 Separate Compilation : 31

5.6 Translation into Automata : 32

6 Conclusion 35

RR n�2510

4 Frederic Boussinot , Robert de Simone

1 Introduction

In reactive and synchronous languages, programs continuously react to activations

coming from the environment. A program reacts to a given environmental input

event by generating an output event, and this reaction de�nes what is called an

instant.

In \dataow" synchronous languages, such as Lustre[7] and Signal[9], reaction

of a program consists in the evaluation of a set of equations de�ning output variables

from input ones, and from previous instant variable values.

In \imperative" languages, a reaction starts from a set of \control points" and

�nishes by reaching a set of new \control points". \Reactive statements" are pro-

vided to control execution. For example, in RC[5] the Stop statement �nishes the

current reaction, and at the next instant, execution will restart from that point.

The Esterel[3] watching statement that \kills" its body as soon as a given signal

becomes present, is an example of a more complex reactive statement.

Synchronous languages are based on the assumption that the environment does

not interfere with the program during reactions[6]. For example, an input event

used by a program is not allowed to change before the end of the current reaction.

From the logical point of view, it is equivalent to consider that programs are always

ready to accept new input events, or in other words, that reactions \take no time".

This is the meaning of the \synchronous" word here: their outputs can be seen as

synchronous with their inputs. One other major characteristic of these languages is

that nondeterministic programs are rejected. Synchronous languages compilers use

\symbolic execution" techniques to produce from programs, deterministic automata

with the same input/output behaviors.

Very complex reactions can be expressed in the synchronous language Esterel,

but there is a price to pay for this expressivity:

� There exist incoherent programs, that are programs without any possible be-

haviour, or with many possible behaviours (nondeterminism). These programs

are said to exhibit \causality problems". The problem exists also for dataow

languages, when sets of equations cannot be sorted.

� Costly protocols are needed for distributed implementations, which are a natu-

ral concern for parallel languages. In particular, messages must be exchanged

not only for present signals, but also for absent ones (so \messages" do not

match \signals").

In this paper, we focus on imperative synchronous languages and consider a syn-

chronous language called SL that is in fact a restriction of Esterel. Expressive

power is weaken in order to avoid causality problems and to facilitate code distri-

bution. The guideline is to forbid (unlike Esterel) the possibility of deciding that

a given signal is absent during one instant, before the end of that instant. As a

consequence, only weak preemption remains possible, but not the strong preemption

induced by the watching statement.

INRIA

The SL Synchronous Language 5

The paper also describes an SL implementation allowing separate compiling and

automata generation. This implementation is a lightweight one and is based on a

translation into the reactive language RC.

2 The Esterel Language

Esterel provides a way to program parallel activities that communicate with broad-

cast signals. At each instant, a signal is present if it is in the input event, or if it is

emitted (by execution of an \emit" statement); otherwise, it is absent. Broadcast

means that at each instant a signal has one and only one presence status: either it

is present, or it is absent during the instant. Thus, all those that are listening to

a signal (by execution of a \present S then ... end" statement) have the same

coherent information about its presence.

Here is an intuitive analogy: several people are placed in a room and can freely

speak aloud and listen to other people. When everybody agrees, the current instant

is declared terminated and the next instant can start. During one instant, people

can have full dialogs (called also \instantaneous dialogs"). For example, people A

may ask a question; people B hearing that question, may answer; according to the

response, A may ask a new question, and so on. Notice that we do not describe a

\client/server" communication: B may respond and also ask a new question that A

may respond to. If A has spoken during one instant, then nobody can say that A

has been mute during that instant (this is broadcast).

For example, consider the �rst instant of the following parallel statement:

present S then emit T end

||

emit S

||

present T then emit U end

As the second branch of the parallel operator (written \k") emits S, it is present,

thus, the \then" part of the �rst branch is executed, and T and U are both emitted.

Therefore, the three signals S, T and U are all emitted during the �rst instant. Notice

that signal broadcast implies that there is no other coherent solution.

The basic Esterel semantics (called \behavioral semantics"[8]) allows both

signal presence and absence hypothesis.

Presence Hypothesis. In a presence hypothesis, a signal can be considered as

present, provided it is actualy emitted in the current instant. Intuitively, this corres-

ponds to anticipate one's speaking, for example as in: \as B will say that he agree

with me, I, A, say ...".

Consider the following statement:

RR n�2510

6 Frederic Boussinot , Robert de Simone

signal S in

present S then emit T end; emit S

end

The \signal S in ... end" statement declares a local signal S whose scope is

restricted to \...". In Esterel semantics, this statement emits both S and T. Al-

though S is emitted in sequence after the test of its presence, the presence hypothesis

is lawful as S is actualy emitted. However, Esterel compilers reject such solutions

as they detect a causal dependency between the presence test of S and its emission1.

Absence Hypothesis. In an absence hypothesis, a signal can be considered as

absent, provided it is not actualy emitted in the current instant. One major Este-

rel characteristic is the possibility to immediately react to the absence of a signal.

Intuitively, this corresponds to sentences like: \as B is mute, I say ..." where one

declares that someone is mute during one instant, before the end of the instant.

Consider the following program that tests for the absence of a signal S (using

the \present S else ... end" statement):

signal S in

present S else emit T end

end

An absence hypothesis on S is justi�ed as no emission of it can be done. Thus T

is emitted. Notice that a presence hypothesis on S would be invalid and that an

absence hypothesis on S is mandatory to give the statement a semantics.

Incoherent programs may result from signal hypothesis that cannot be justi�ed.

Intuitively for signal absences, this means that as far as one says that B is mute

during the current instant, B must not begin to speak during that instant.

For example, consider:

signal S in

present S else emit S end

end

If one makes an absence hypothesis, it would be invalidated since then, the signal

has to be emitted and is thus present. On the other hand, if one makes a presence

hypothesis it would also be in�rmed (as no emission of S would take place). The

program \has no solution" and is an example of an incoherent program. Notice that

there exist a causal dependency between the presence test of S and its emission in

the \else" branch.

Nondeterminism may result from the possibility at a given point, to make several

distinct hypothesis leading to distinct behaviors. For example, consider:

1
Esterel compilers are based on a semantics called \computational semantics", that does not

exactly coincide with the behavioral semantics. See for example [8] for more details.

INRIA

The SL Synchronous Language 7

signal S in

present S then

emit S;

emit T

else

emit U

end

end

If a presence hypothesis is made on S, then T is emitted as the hypothesis is justi�ed

by S emission. On the other hand, if an absence hypothesis is made on S, then U

is emitted as the hypothesis is justi�ed because there is no emission of S. Thus,

this statement is nondeterministic: for the same input, it has two possible distinct

behaviours. Notice that now, there exist a causal dependency between the presence

test of S and its emission in the \then" branch.

Avoiding Presence Hypothesis From a computational point of view, it may

seem that signal presence hypothesis should be avoided. A strategy that consider

a signal as present only after it is emitted is in fact implemented in the present

Esterel v3 compiler. Unfortunately, to avoid presence hypothesis does not forbid

incoherent nor nondeterministic programs. For example, consider:

present S else emit T end

||

present T else emit S end

Two distinct absence hypothesis leading to distinct behaviors are possible: if S is

considered as absent, then T is emitted; on the other hand, if T is considered as absent,

then S is emitted. Both solutions are valid and the program is thus nondeterministic.

Notice that there is a causal dependency between S and T in the �rst branch, and a

causal dependency between T and S in the second branch.

Implementations. An important point in Esterel is that, by only statically

inspecting signal causal dependencies, it is possible to reject all incoherent or non-

deterministic programs. This technique is used by present Esterel compilers. The

v3 implementation[1] allows an absence hypothesis on a given signal only after ve-

rifying that this signal cannot be emitted from that point (when needed during

symbolic execution, it computes \potentials" to determine what are the signal that

remain potentially emitted [8]). Thus in this approach, absence hypothesis cannot

be invalid. On the other hand, the v4 implementation[2] �rst translates programs

into sets of equations (very similar to Lustre programs) and then sorts these sets

in a way that variables de�ning signal emissions are evaluated before being tested.

Thus, sorting implies absence of causality cycles.

Several problems arise with the causality cycles approach:

RR n�2510

8 Frederic Boussinot , Robert de Simone

1. Due to weaknesses of control ow analysis, detection of causality cycles is not

exact. Thus, there exists programs with one unique behaviour that are also

rejected (in this case, one speaks of \false causality cycles"). For example, in

v3 (and also in v4), the following program:

present T then

present S else

present T else emit S end

end

end

is rejected, although it has one unique solution that does not depend on S

status. On the other hand, in v4, exclusive control ow can produce cycles.

For example, v4 detects a cycle in:

if cond then

present S then emit T end

else

present T then emit S end

end

Also, v4 does not take care of instants for cycle detection. For example, it

rejects the following program:

await tick;

present S then emit T end

await tick;

present T then emit S end

The prede�ned signal tick is present at each instant (it de�nes the \basic

clock" of the program) and the await tick statement stops the reaction till

the next instant. This program, although rejected, has one unique solution.

2. It is a very di�cult task to interpret causality cycles. Several distant parts

of a program can be involved in several cycles and it has been proved a very

tedious task to understand from cycle informations, what is wrong with the

program.

3. Causality cycles may appear only in very late development phases, after termi-

nation of sub-parts coding, during integration. As a consequence, modularity

is di�cult to achieve (futhermore, Esterel provides no way to specify signal

dependencies when coding sub-parts of a program).

The question we address is thus the following: is there a possibility to avoid

causality cycles, for example by restricting the primitives used ? What would be

lost with such restrictions ? The SL language we are about to describe now is an

attempt to give an answer to that question.

INRIA

The SL Synchronous Language 9

3 The SL Language

The reader will certainly have the feeling that Esterel complexity is in a great

extend, a consequence of signal hypothesis. In fact, in SL we choose to forbid any

signal hypothesis, and this greatly simplify the synchronous model.

Forbidding Signal Hypothesis. In SL, presence hypothesis are forbidden: one

cannot decide that a given signal is present unless it has been emitted. On the

other hand, absence hypothesis are also forbidden: the only moment one can decide

that a signal is absent is the end of the current instant, as before that moment, the

signal could always be later emitted. Thus, reaction to a signal absence is necessarily

postponed to the next instant. In other words, unlike Esterel, SL forbids immediate

reactions to signal absences.

Intuitively, in SL, one can conclude that someone is mute during one instant,

only at the end of this instant. Consequently, one can react to this absence of spea-

king, only at the next instant. For example, one can say only things like: \as B has

been mute during the previous instant, I can conclude ...". It should be clear that

with this approach, every program has one and only one meaning, or in other words,

that there is no incoherent nor nondeterministic programs. However, broadcast and

instantaneous dialogs still exist. On the programming level, the di�erence with Es-

terel relies mainly on the absence of strong preemption, and on the fact that now,

a reaction may be split into several ones. What programming style does this implies,

is presently rather unclear.

We are now going to describe the SL language. First, we introduce the language

kernel that de�nes the basic primitives, and we compare this kernel to Esterel.

Then we give some examples, and �nally we describe the whole language.

3.1 Syntax

SL syntax is very similar to Esterel syntax2.

The syntax and informal semantics are de�ned by:

� \nothing" Does nothing and terminates.

� \stop" Ends the execution ow for the current instant. Execution will restart

from that point at the next instant.

� \t1 ; t2" Behaves as t1, but when t1 terminates, it then behaves as t2.

� \t1 k t2" Splits the control ow and executes t1 and t2. The parallel termi-

nates when both t1 and t2 terminate.

2In fact, we consider here only the so-called \pure Esterel" where signals have no value associated

with.

RR n�2510

10 Frederic Boussinot , Robert de Simone

� \loop t end" Behaves as t, but when t terminates, it is immediately re-

executed. Important: tmust not terminate instantaneously, otherwise the loop

would never complete its reaction (such pathological loops are called \instan-

taneous loops")!

� \signal S in t end" Declares a local signal S in t and behaves as t.

� \emit S" Emits the signal S and terminates.

� \when S then t1 else t2 end" Tests for S presence. If S is present, the ins-

truction behaves as t1. If S is absent, the instruction behaves as \stop;t2".

� \wait S" Terminates as soon as S becomes present.

� \do t kill S" Behaves as t, but after executing it and if t is not terminated,

it tests for the presence of S and, if S is present, it becomes stop.

Rationale for the kill primitive. As a consequence of forbidding signal hypo-

thesis, the strong preemption Esterel watching primitive cannot be allowed in SL.

Indeed, a watching executes its body in case a given signal is absent. Thus, body

execution is an example of immediate reaction to the absence of the watched signal.

Noticed that watching may introduce incoherency, as for example in the following

Esterel statement:

signal S in

do

await T;

emit S

watching S

end

When T becomes present, hypothesis that S is emitted is invalid, as if it is the case,

the watching kills its body, and thus, S cannot be emitted. On the other hand,

hypothesis that S is absent is also invalid as then, execution of the watching would

emit S.

Thus, only \weak" preemptions primitives may be allowed in SL, in which the

body is always executed, even at the moment the killing signal becomes present.

Moreover, the killing action must be postponed to the next instant. Indeed, suppose

for a moment that we have a instantkill statement that kills its non terminating

body and terminate immediately, as soon as the killing signal becomes present. Then,

consider:

do

emit K

||

when S do emit T end

instantkill K;

emit S

INRIA

The SL Synchronous Language 11

Without the possibility to make a presence hypothesis on S, the body has to wait

for the end of the instant to know if T must be emitted. But as execution of the

body must be �nished for the instantkill to terminate, it cannot terminate before

the end of the instant, although K is present. That contradicts the instantkill

de�nition.

Now, let us see some examples, to show the expressive power, and also some

di�culties, of the language.

Example 1: Consider the following parallel statement:

when S then emit T end;

wait U;

emit V

||

emit S

||

wait T; emit U

Signal S is emitted in the �rst instant by the second branch. It is tested as

present by the �rst branch. So T is also emitted in the �rst instant. But now, in

the third branch, wait T terminates, and thus U is emitted. As U is present, wait

U terminates in the �rst branch, and V is emitted. Thus, signals S, T, U and V are

synchronous and are all emitted in the �rst instant.

This example exhibits an \instantaneous dialog" between the �rst and the third

branch.

Example 2: The following fragment emits signal U when signals S and T have been

both received:

[

wait S

||

wait T

];

emit U

Notice that if S and T are synchronous, that is present in the same instant, then

U is also emitted in that instant.

To let the same behaviour be cyclic, that is to emit U each time the two signals

S and T have been both received, we put an external loop:

loop

[

wait S

||

wait T

RR n�2510

12 Frederic Boussinot , Robert de Simone

];

emit U;

stop

end

Notice that a stop statement is mandatory, otherwise the loop would not �nish to

react when both S and T are present in the same instant (it would be an instantaneous

loop).

Example 3:

The following fragment emits signal U when the �rst of the two signals S and T

becomes present:

signal V in

do

wait S; emit V

||

wait T; emit V

kill V;

emit U

end

As in the previous example, if S and T are synchronous, that is, present in the same

instant, then U is also emitted in that instant. But now, if only one signal is present,

then emission of U will be delayed to the next instant.

Notice that the following program has exactly the same behaviour:

signal V,W in

do

do

wait S; emit V

||

wait T; emit V

kill V;

emit W

kill W;

emit U

end

If only one of S,T is present, emission of U is also delayed to the next instant, in

spite of the outer kill, as the body of the inner one becomes terminated.

The problem is that it is not so easy to obtain a cyclic behaviour, as emission

of U may be delayed or not. Thus, one has to force it to be delayed, and the code

becomes:

INRIA

The SL Synchronous Language 13

loop

signal V in

do

wait S; emit V

||

wait T; emit V

||

loop stop end

kill V;

emit U

end

end

The \loop stop end" forces the termination of the kill to be necessarily delayed

to the next instant after V is emitted. Notice that now, there is no need of a stop

statement to prevent the loop to be instantaneous.

Example 4: The following statement kills a P statement when a signal K becomes

present, and in addition, it begins to execute a Q statement in the same instant:

do

P;

emit K

kill K

||

await K;

Q

Notice that, at the very instant K becomes present, both P and Q are executed. This

code can be seen as de�ning a variant of the weak preemption, allowing to react

instantaneously to the killing signal.

Example 5: Consider now a statement corresponding to an Esterel incoherent

program:

when S else emit S end; emit U

If S is present in the �rst instant, then the when terminates instantaneously and U

is emitted in that instant. On the other hand, if S is absent in the �rst instant, then

S and U will be both emitted in the second instant.

Let us now change the else branch into a then one:

when S then emit S end; emit U

Now, if S is present in the �rst instant, then it is emitted again (which has no e�ect

at all) and U is also emitted in that instant. On the other hand, if S is absent in the

�rst instant, then the when statement will stop till the second instant. Then, at the

second instant, it will terminates and U will be emitted at that instant.

RR n�2510

14 Frederic Boussinot , Robert de Simone

3.2 Relation to Esterel

One could think to a correspondance between SL and Esterel,statements would

always begins with \await tick"3, and where the \strong watching" statement

would be replaced by a kind of \weak watching" statement de�ned as previously.

Unfortunately, this correspondance would not be satisfactoty to give SL a precise

semantics, as there exists SL programs whose correspondants are nondeterministic.

Consider for example, the following program:

signal S in

when S then

emit S;

emit U

end

end

This statement has one unique solution, where U is not emitted. Consider now its

correspondant in Esterel:

signal S in

present S then

emit S;

emit U

else

await tick

end

end

This Esterel statement is rejected as being nondeterministic: in one solution U

is emitted and the statement terminates, in the other, it U is not emitted and the

statement is stopped.

Thus, we have to give SL a proper semantics, that will be done in section 4.

3.3 The Full Language

Syntactical extensions must be added to help in writing programs. Mainly, we in-

troduce the notion of a module, and possibility to mix SL code and C code. This

section ends with the example of a small reex game program.

Modules. SL programs are structured into modules. A module declares input

and output signals, and has a body that is a statement. For example, the following

module M has two input signals I1 and I2, and one output signal O. It �rst waits for

I1, then for I2, and then O is emitted. After that, module M is terminated.

3In the new version of Esterel, await tick has been replaced by stop.

INRIA

The SL Synchronous Language 15

module M:

input I1,I2;

output O;

wait I1;

wait I2;

emit O;

end module

A main module can be executed; it is introduced by the main keyword. For

example:

main module M:

input I1,I2;

output O;

...

end module

External modules de�ned in other �les are declared as extern. For example, the

following declaration declares two module M1 and M2:

extern module M1, M2;

Module bodies can be considered as statements using the run keyword. Interface

signals must be given as parameters. For example:

run M(Inp1,Inp2,Out)

runs module M body with Inp1 and Inp2 as input signals, and Out as output signal.

C Statements and Extensions. C code can be used freely to de�ne objects, or

as simple instantaneously terminating statements, or as if conditions. To be used,

C code must be enclosed between \-[" and \]-".

A repeat loop executes its body only a limited number of times, de�ned as a C

expression.

A \timeout" part added to a kill is executed only in case the body is not

terminated while the watched signal becomes present.

The Reex Game. The game we use is described in [4, 5]. It consists in measu-

ring the time needed to an user to react to a light ash. There are three successive

phases:

1. Waiting for the user to press a READY button.

2. After a random time, lightning on a GO lamp.

RR n�2510

16 Frederic Boussinot , Robert de Simone

3. Counting time needed for the user to press a STOP button.

An error is detected, and a TILT lamp is light on, if the user abandon, or in case

of cheating, when the user presses STOP before GO is light on. A bell rings when the

user confuses the two buttons READY and STOP.

PHASE1 waits for READY and terminates when it becomes present. During the

waiting, RING BELL is emitted each time STOP is pressed, and the ABANDON procedure

that detects abandon is executed:

module PHASE1:

input MS,READY,STOP;

output RING_BELL,ERROR;

do

loop wait STOP; emit RING_BELL; stop end

||

run ABANDON(MS,ERROR)

kill READY

end module

Notice that execution of ABANDON is terminated when READY appears.

The ABANDON procedure uses a repeat construct and is:

extern module DATA;

module ABANDON:

input MS;

output ERROR;

repeat -[LIMIT_TIME]- times wait MS; stop end;

emit ERROR

end module

The LIMIT TIME variable is a C variable de�ned in the external DATA module.

PHASE2 waits a random number of time and emits GO. During the waiting, it

detects an error if STOP is pressed:

module PHASE2:

input MS,STOP;

output GO,ERROR;

do

repeat -[Random()]- times wait MS; stop end

kill STOP timeout emit ERROR end;

emit GO

INRIA

The SL Synchronous Language 17

end module

PHASE3 counts the time, using the C variable TIME, while STOP is not pressed. It

also detects abandon:

module PHASE3:

input MS,STOP;

output DISPLAY,ERROR;

-[TIME = 0;]-;

do

loop wait MS; -[TIME++;]- ; stop end

||

run ABANDON(MS,ERROR)

kill STOP;

emit DISPLAY

end module

Module PLAY is a main module that can be executed. It schedules the three

phases, and emits TILT in case of error:

main module PLAY:

input MS,READY,STOP;

output DISPLAY,RING_BELL,GO,GAME_OVER,TILT;

signal ERROR in

do

run PHASE1(MS,READY,STOP,RING_BELL,ERROR);

[

loop wait READY; emit RING_BELL; stop end

||

run PHASE2(MS,STOP,GO,ERROR);

run PHASE3(MS,STOP,DISPLAY,ERROR)

]

kill ERROR

timeout emit TILT end;

emit GAME_OVER;

end module

4 SL Semantics

We are going to give a formal semantics to the SL kernel described in section 3.1.

The approach we use comes from [11] and is called Structural Operational Semantics.

RR n�2510

18 Frederic Boussinot , Robert de Simone

The basic idea is to build the meaning of a program fragment, called term, from the

meanings of its sub-terms.

The meaning of a term t depends on a signal environment which sets the signal

values. We are going to describe how the environment is changed by executing t,

and adopt an \arrow" notation t; E ! t
0
; E

0. It means that the reaction of t in the

environment E transforms it into E
0, and that \what remains to be done" is t0.

Thus, in such a notation, t and E are \inputs" and t
0 and E

0 are \outputs". We

shall say that t; E ! t
0
; E

0 is a transition, and that \t rewrites in t
0".

In a transition t; E ! t
0
; E

0, values of t0 and E
0 may depend on the way some

sub-terms of t rewrite, or on the values of some signals in E or in F . To express

dependency, we use deduction rules of the form:

:::

t; E ! t
0
; E

0

It is read as: \if what is above the bar is veri�ed, then what is under the bar is

true". Thus, \..." is the assumption, and what is under the bar is the conclusion.

For example, here is a rule that (partially) de�nes a binary operator written \#":

t1; E ! u; F P (F)

t1#t2; E ! u#t2; F

It means that if the sub-term t1 rewrites in u and changes E into F , and if F veri�es

predicate P , then one can conclude that the term t1#t2 rewrites in u#t2, and also

changes E into F .

When no assumption is needed in a rule, the bar is omitted, and the rule is

called an axiom. We are now going to de�ne what environments are, and give a set

of rewrite rules that de�nes SL semantics.

4.1 Environments and Transitions

Environment are sets of signals. A signal put in an environment is considered as

present. We are going now to introduce two kinds of transitions: micro-transitions

and macro-transitions.

Micro Transitions. Micro-transitions are elementary steps of the semantics com-

puting. We distinguish two kinds of micro-transitions: for �nished micro-transitions,

all that remains to be done is to be done at the next instant; for un�nished micro-

transitions, what remains to be done is to be continued in the current instant. Two

special values Term and Stop, called termination status, are used for �nished micro-

transitions: Term indicates termination of the term, and Stop indicates that the term

is not terminated. If T1 and T2 are two termination status, T1 � T2 is de�ned to be

Term if both are Term, otherwise it is Stop.

INRIA

The SL Synchronous Language 19

The rewrite formats we use are, for an un�nished micro-transition:

t; E ! t

0
; E

0

and for a �nished micro-transition whose termination status is T 2 fTerm; Stopg:

t; E

T
�! t

0
; E

0

Macro Transitions. A macro-transition is made from a sequence of micro-

transitions, whose last one is �nished. One writes the macro-transition:

t; E

T
=) t

0
; E

0

if there exists a sequence:

t; E ! t1; E1 ! :::! tn; En

T
�! t

0
; E

0

4.2 Rewrite Rules

We now give for each SL operator, a set of rewrite rules that de�nes its semantics.

Axioms. nothing does nothing and terminates.

nothing; E
Term
�! nothing; E (1)

stop does nothing, stops, and rewrites in nothing.

stop; E
Stop
�! nothing; E (2)

Signal Emission. A emit statement adds the signal to the environment and

simply rewrites in nothing.

emit S; E ! nothing; E [fSg (3)

Notice that to emit an already emitted signal has no e�ect) and that emit delays

its termination to the one of nothing.

Signal Test. A when statement on a present signal simply rewrites in its \then"

branch.
S 2 E

when S then t1 else t2 End; E ! t1; E

(4)

A when statement on an absent signal stops, and rewrites in its \else" branch.

S 62 E

when S then t1 else t2 End; E
Stop
�! t2; E

(5)

RR n�2510

20 Frederic Boussinot , Robert de Simone

Sequence. When the left branch of a sequence performs an un�nished transition,

so does the sequence.
t1; E ! t

0

1
; F

t1; t2; E ! t
0

1
; t2; F

(6)

When the left branch of a sequence stops, so does the sequence.

t1; E
Stop
�! t

0

1
; F

t1; t2; E
Stop
�! t

0

1
; t2; E

(7)

When the left branch of a sequence terminates, the sequence simply rewrites in

the right branch.

t1; E
Term
�! t

0

1
; F

t1; t2; E ! t2; E

(8)

Loop. A loop simply rewrites in a sequence whose left part is the loop body, and

whose right part is the loop itself.

loop t end; E ! t; loop t end; E (9)

Parallelism. The parallel can behave as its right or left branch provided it per-

forms an un�nished transition.

t1; E ! t
0

1
; F

t1 k t2; E ! t
0

1
k t2; F

(10)

t2; E ! t
0

2
; F

t1 k t2; E ! t1 k t
0

2
; F

(11)

When both branches perform �nished transitions, so does the parallel. The termi-

nation status is Term only if both branches status are also Term. The environment is

left unchanged, and the parallel rewrites into the parallel of the two rewritings.

t1; E
T1
�! t

0

1
; F t2; E

T2
�! t

0

2
; G

t1 k t2; E
T1�T2
�! t

0

1
k t

0

2
; E

(12)

Notice that distributed termination of parallel components comes from this rule.

INRIA

The SL Synchronous Language 21

Waiting A wait statement rewrites in nothing when the awaited signal is present.

S 2 E

wait S; E ! nothing; E

(13)

A wait statement stops and rewrites in itself when the awaited signal is absent.

S 62 E

wait S; E
Stop
�! wait S; E

(14)

Kill If its body performs an un�nished transition, so does the kill.

t; E ! t
0
; F

do t kill S; E ! do t
0
kill S; F

(15)

If its body terminates, the kill simply rewrites in nothing.

t; E

Term
�! t

0
; F

do t kill S; E ! nothing; E

(16)

If its body stops, and if the watched signal is absent, the kill stops and rewrites

in itself.
t; E

Stop
�! t

0
; F S 62 F

do t kill S; E
Stop
�! do t

0
kill S; E

(17)

If its body stops, and if the watched signal is present, the kill stops and rewrites

in nothing.

t; E

Stop
�! t

0
; F S 2 F

do t kill S; E
Stop
�! nothing; E

(18)

Signal Declaration The syntax is slihtly extended (in the spirit of [3]) by allowing

statements the form signal E in ... end where E is either the empty set, either

a singleton fSg whose element is a signal. This extra information is needed to store

the status the signal have outside the scope of the declaration.

First, a signal statement stores the value of the de�ned signal to be able to

restore it if the body terminates in the current instant.

signal S in t end; E ! signal (E \ fSg) S in t end; E � S (19)

When its body performs an un�nished transition, so does the signal statement.

t; E ! t
0
; F

signal X S in t end; E ! signal X S in t
0
end; F

(20)

RR n�2510

22 Frederic Boussinot , Robert de Simone

When its body terminates, the signal statement rewrites in nothing and res-

tores the signal if it was present.

t; E

Term
�! t

0
; F

signal X S in t end; E ! nothing; E [X

(21)

When its body stops, the signal statement also stops and rewrites in itself.

t; E

Stop
�! t

0
; F

signal X S in t end; E
Stop
�! signal S in t

0
end; E

(22)

Notice that the only choice that exists in using these rules, concern the parallel

operator that can interleave un�nished execution of its branches (rules 11 and 10).

4.3 Examples

Here are some examples to show how the semantics works.

Example 6: Consider the following fragment t1:

signal S in

when S else emit S end

end

We have:

t1; �! t2; �

where t2 is:

signal_� S in

when S else emit S end

end

Now as:

when S else emit S end; �
Stop
�! emit S; �

we have:

t2; �
Stop
�! t3; �

where t3 is:

signal S in

emit S

end

INRIA

The SL Synchronous Language 23

Thus, we have shown that:

t1; �
Stop
=) t3; �

Notice that this is the only provable transition.

Example 7: In the same way, one can show that:

u1; �
Stop
=) u2; �

where u1 is:

signal S in

when S then emit S end

end

and u2 is:

signal S in

nothing

end

Example 8: Consider v:

when S then emit T end

||

emit S

||

wait T; emit U

The only possible transition is: v; �! v1; fSg where v1 is:

when S then emit T end

||

nothing

||

wait T; emit U

Then one has: v1; fSg ! v2; fSg where v2 is:

emit T

||

nothing

||

wait T; emit U

Then one has: v2; fSg ! v3; fS; Tg where v3 is:

nothing

||

nothing

||

wait T; emit U

RR n�2510

24 Frederic Boussinot , Robert de Simone

And then: v3; fS; Tg ! v4; fS; Tg where v4 is:

nothing

||

nothing

||

emit U

And �nally: v4; fS; Tg ! v5; fS; T; Ug where v5 is:

nothing

||

nothing

||

nothing

Thus we have shown that: v; �
Term
=) v5; fS; T; Ug

4.4 Coherency and Determinism

We are now going to show that there is no incoherent or nondeterministic SL pro-

gram.

Lemma 1 Suppose t; E
Term
�! t

0
; E

0 and E � F . Then, t; F
Term
�! t

0
; F .

Suppose t; E ! t
0
; E

0 and E � F . Then, t; F ! t
0
; E

0
[F .

Proof by structural induction on t. 2

Proposition 1 There is no incoherent program:

8t; E; 9T; t
0
E

0
; t; E

T
=) t

0
; E

0

Proof by structural induction on t.

Two cases are of interest. The �rst one concerns the sequence operator. Suppose t

is u; v. By induction, we have u;E
T1
=) u1; E1. If T1 = stop, then we have u; v;E

T1
=)

u1; v;E1. Suppose now that T1 = term. Then, by induction one has v;E1

T2=) v1; E2.

But then u; v;E
T2
=) v1; E2.

Consider now, the case where t is u k v. Then, by lemma 1, we can construct a

maximal sequence t; E0 ! ::: ! tn; En. Now in one step, one gets tn; En

T
�! t

0
; F ,

and the result follows. 2

Lemma 2 If t; E ! t1; E1, then there exist no t2 such that t; E
T
�! t2; E2. Conver-

sely, if t; E
T
�! t2; E2, then there exist no t1 such that t; E ! t1; E1.

Moreover, there is only one way to �nish one instant:

t; E

T1
�! t1; E1 and t; E

T2
�! t2; E2 implies t1 = t2, T1 = T2, and E1 = E2.

Proof by structural induction on t. 2

INRIA

The SL Synchronous Language 25

Lemma 3 The rules are strongly conuent:

Suppose t; E ! t1; E1, and t; E ! t2; E2. Then, 9t
0
; E

0 such that t1; E1 ! t
0
; E

0

and t2; E2 ! t
0
; E

0.

Proof by structural induction on t.

Two cases are of interest. The �rst one concerns the sequence operator. Suppose

t is u; v and t; E ! t1; F1 and t; E ! t2; F2. Then, by lemma 2, there are only two

cases: �rst, t1 = t2 = v and E1 = E2 = E, and the result follows; second, t1 = u1; v

and t2 = u2; v. Then, by hypothesis, one has: u1; F1 ! w;H and u2; F2 ! w;H.

Then, u1; v; F1 ! w; v;H and u2; v; F2 ! w; v;H.

The second case concerns parallelism. Suppose t1 k u1; E ! t2 k u1; F and

t1 k u1; E ! t1 k u2; G, with t1; E ! t2; F and u1; E ! u2; G. By lemma 1, one

has u1; F ! u2; F [G and t1; G ! t2; G [F . So, t2 k u1; F ! t2 k u2; F [G and

t1 k u2; G! t2 k u2; F [G. 2

Proposition 2 SL programs are deterministic:

t; E

T1
=) u1; F1 and t; E

T2
=) u2; F2 implies u1 = u2, T1 = T2 and F1 = F2.

Suppose we have the situation: t; E ! ::: ! t1; E1 and t1; E1

T1
�! u1; F1, and

t; E ! :::! t2; E2 and t2; E2

T2
�! u2; F2. Then, by successive applications of lemma

3, one has t1; E1 ! ::: ! t2; E2. Then, by lemma 2, one must have t1 = t2 and

E1 = E2, and thus, u1 = u2, T1 = T2 and F1 = F2. 2

Corollary: There is no incoherent nor nondeterministic SL program.

5 SL Implementation

In this section, we describe an implementation of SL. SL programs are �rst translated

into RC, then, compiled to be either executed or to produce automata.

Execution consists in a sequence of micro steps in which decisions concerning

signal absences are delayed as far as possible. In fact, it exactly corresponds to what

is done in proof of proposition 1. Of course, there is no problem to delay absence

decisions, as immediate reactions to signal absences are not possible in SL. The

RC suspend primitive allows to have micro steps and thus, it provides the way to

delay absence decisions: an execution ow that has to test a signal which is not

emitted, becomes suspended. Thus, the signal may be emitted by other sub parts

of the program. When all execution ows are suspended or �nished, all signals that

are not already emitted can be considered as absent. Thus, execution may resume

and the current instant may complete.

SL modules are translated into RC reactive procedures. Reactive procedures

have a way to store their environments, that is where execution ows are stopped,

and values of persistent variables (whose values are preserved from one instant to

RR n�2510

26 Frederic Boussinot , Robert de Simone

the next). Thus, to make a reactive procedure react means to execute it in its

environment. Reactive procedure environments give a way to produce automata:

states are environment values, and transitions are environment changes resulting

from procedure activations.

We are going �rst to overview the RC language, then describe more precisely

how SL programs are translated into RC.

5.1 The RC Language

RC has been design to allow a reactive programming style in C. The basic notion

is that of execution of piece of code up to reach stop statements that �nishes the

current reaction. Execution will restart at the next activation, from these stop

statements.

Reactive Procedures. Reactive procedures are the reactive counterpart of C

functions, but they maintain an environment to store control points from where

execution starts. Control points can be seen as local static variables that keep their

values from an instant (that is a reaction) to the next. For example, consider the

following reactive procedure R:

rproc void R(){

printf("first reaction\n");

stop;

printf("second reaction\n");

stop;

printf("termination of R\n");

}

The rproc keyword introduces reactive procedures. R has no parameter and does not

return any result. When executed for the �rst time, it prints \first reaction" and

stops on the �rst stop statement that de�nes the �rst control point value. At the

second instant, execution starts from the �rst stop, prints \second reaction", and

stops on the second stop statement. At the third activation, \termination of R"

is printed and the procedure is terminated. The value of the control point becomes

the end of the procedure and it will not change anymore during next activations.

The activate statement allows to execute a reactive procedure in its actual

environment. On the contrary, the exec statement creates an new copy of the envi-

ronment of a procedure, before executing it from the beginning.

Variable that have to keep their values from one activation to the next must be

declared as rauto. These variables are also stored in environments. Notice that they

are local to reactive procedures, on the contrary to static variables.

Reactive Statements. Reactive statements are used to code reactions to acti-

vations. The stop statement is of course the basic reactive statement.

INRIA

The SL Synchronous Language 27

Another important reactive statement is the rif statement that chooses at each

activation, a statement to execute, accordingly to a boolean condition. For example,

consider:

rproc void R(int i){

rif(i)

for(;;){ printf("True."); stop; }

else

for(;;){ printf("False."); stop; }

}

Each time it is called, R chooses to continue the �rst branch of the rif statement

if i is true, or the second branch otherwise. Thus, \True." or \False." is printed

accordingly to the parameter value.

The \merge t1 t2" statement allows to make t1, then t2, both react in the

same instant. For example, consider:

rproc void R(){

merge

for(;;){ printf("True."); stop; }

for(;;){ printf("False."); stop; }

}

Then \True.False." is printed at each activation. Notice that order of merge

branches execution is syntactically �xed. The merge operator is of course essential

to implement parallelism.

Suspension. RC give a way to break one instant into several micro-instants. The

suspend statement stops the control, but on the contrary to stop, execution can be

resumed (using a close statement) during the same instant. Thus, to suspend one

branch of a merge statement, allows the other to react, but execution of the �rst

branch may be resumed in the same instant.

When the name of reactive statement that tests a condition at each instant, is

terminated by susp, the statement also performs the test at each micro-instant. For

example, the rifsusp statement corresponding to rif, chooses a branch to continue,

accordingly to a boolean condition evaluated at each micro-instant.

5.2 Translation into RC

Execution proceeds as follows: parallel statements are executed as far as possible;

control leaves one branch for the next when either, is has �nished for the current

instant (Stop), or it has terminated, or when it has to test a signal which is not

already emitted. In this last case, execution will be continued either when the signal

will be emitted, or at the end of the instant, and in this case, the signal will be

considered as absent. The end of the current instant is detected when, after executing

all parallel statements, there is no new signal emitted.

RR n�2510

28 Frederic Boussinot , Robert de Simone

Signals. Each signal is translated into a \rauto int*" variable. To emit signal

i means to change the corresponding value to 1, and to set a global variable move

used to detect the end of the current instant: ((*i)=1, move=1). To reset signal i

simply means (*i)=0. The macro PRES returns 1 if a signal is present, and 0 if it

is not.

The following reactive procedure Fix tests for the presence of a signal: it termi-

nates as soon as the signal is present, or at the end of the current instant; otherwise

it suspends its execution:

rproc void _Fix(s)

int *s;

{

for(;;){

if(_PRES(s)||_endOfInstant)break;else suspend;

}

}

Instants. The following reactive procedure resets the two global variables endOfInstant

and move at the beginning of each instant.

rproc void _InitInstants(){

for(;;){

_endOfInstant = _move = 0;

stop;

}

}

The TerminateInstants reactive procedure detects end of instants by setting

endOfInstant when move remains unset after the program being executed. When

move is set, the procedure unsets it and suspends its execution to let the program

reexecute. When move is unset, the procedure sets endOfInstant and suspends

its execution so the program can consider as absent signals on which execution was

blocked.

rproc void _TerminateInstants(){

rifsusp (_move)

for(;;){ _move = 0; suspend; }

else

for(;;){ _endOfInstant = 1; suspend; stop; }

}

Reactive Statements. SL statements are easily translated into RC statements.

For example:

� SL stop statement is translated into RC stop, run into exec, and k into

merge.

INRIA

The SL Synchronous Language 29

� \when S then t1 else t2 end" is translated into:

{

exec _Fix(S);if(_PRES(S)){t1}else{stop;t2}

}

First, signal status is �xed, then presence test is performed and the correspon-

ding branch is chosen.

� The kill case is a little more complex and uses the RC trap construct. Trans-

lation of \do t kill S" is:

catch("E"){

catch("TO"){

merge

{t; raise "E";}

for(;;){exec _Fix(S);if(_PRES(S))raise "TO";stop;}

}handle stop;

}

Notice that using merge to implement parallelism corresponds in the semantics,

to always perform left micro-transition rules before right ones. Proposition 2 assures

that this is a valid strategy to get the result. This shows an example of a commutative

parallel implementation using merge.

5.3 The sl2rc command

Now we describe the implementation by means of a small example. Consider the

following module TST1 put in a �le named test1.sl:

main module TST1:

input I;

output O;

wait I;

emit O

end module

Translation into RC is obtained by the command:

sl2rc < test1.sl > test1.rc

Now, �le test1.rc contains:

RR n�2510

30 Frederic Boussinot , Robert de Simone

#include "/p4/rc/fb/SL/7/sl.h"

rproc void TST1(I,O)

int *I,*O;

{

for(;;){_FORK(I);exec _Fix(I);if(_PRES(I)) break; stop;}

_EMIT(O);

}

The FORK(I) statement is used for automata production and will be explained

later. The EMIT(O) statement correspond to O emission. Notice that the only way

to emit O is to test I as present, after I status being �xed.

As TST1 is a main module, a �le named TST1.comp.rc has also been produced by

the sl2rc command. It contains the main reactive procedure that allows to execute

the module. Its contents is:

extern int I,O;

rproc void rmain(){

rauto int *I__,*O__;

close

merge

terminate(((*I__)=I,0)) activate _InitInstants();

merge

exec TST1(I__,O__);

do

activate _TerminateInstants();

terminate((_RST(I__),O=(*O__),_RST(O__),0));

}

5.4 Execution

An environment to execute the program is to be given by the user. It could be simply

the following env.rc �le:

int I=0, O=0;

extern rprocType rmain;

main(){

int i;

for(i=1; i<5; i++){

I = (i==2);

printf("* ");

react rmain();

if (O){ printf("O!");O=0; }

printf("\n");

INRIA

The SL Synchronous Language 31

}

}

The main function calls the global program rmain (using the SL react primitive)

four times, with I present at the second instant.

Now, executable code is obtained by:

rcc -c test1.rc

rcc -c TST1.comp.rc

rcc -c env.rc

rcc -o test1 test1.o env.o TST1.comp.o -lsl

As expected, execution of test1 gives:

fisher$ tst1

*

* O!

*

*

5.5 Separate Compilation

Separate compilation is available using .o codes generated from .sl �les. As example,

consider the reex game program described in section 3.3. One can compile it by:

sl2rc<basic.sl>basic.rc

rcc -c basic.rc

rcc -c PLAY.comp.rc

rcc -o basic basic.o PLAY.comp.o env.o data.o -lsl

Then, suppose we want to use the previous basic program within a more complex

one that calls it several times:

Extern Module PLAY;

main module GAME:

input COIN,MS,READY,STOP;

output DISPLAY,RING_BELL,GAME_OVER,TILT;

-[PrintOut("Put a coin to start.");]-;

wait COIN;

stop;

loop

do

do

RR n�2510

32 Frederic Boussinot , Robert de Simone

repeat -[4]- times

signal OVER in

run PLAY(MS,READY,STOP,DISPLAY,RING_BELL,OVER,TILT);

end

end

kill TILT;

-[PrintOut("Put a coin to start.");]-;

halt

kill COIN timeout Stop end

end

end module

Now, we can compile the new program using basic.o, by:

sl2rc<game.sl>game.rc

rcc -c game.rc

rcc -c GAME.comp.rc

rcc -o game game.o GAME.comp.o basic.o env.o data.o -lsl

Notice that parallelism \remains" in the .o �les produced, as it is translated

into merge statements. Thus, the suspension mechanism and the signal absence

hypothesis delay are executed at run time.

Automata production described in the next section, is a way to avoid run time

overhead generated by parallelism.

5.6 Translation into Automata

Compilation of a SL program without giving any main entry point, produces a RC

program implementing an automaton. Automaton states are values of the program

environment, and the FORK macro is used to process both cases where an input

signal is emitted by the outside, and where it is not (to do such a job, FORK has to

make a copy of the program, that is to copy its environment using the RC rprocDup

function).

Automata format uses the following macros:

� state(n) de�nes a state numbered by n.

� next(n) completes the reaction. Next starting point is state n.

� over means that the program is terminated.

� go if absent(I,n) tests for the presence of I. If I is present, then execution

continues in sequence, otherwise it goes to state n.

For example, suppose the content of the tst2.sl �le is:

INRIA

The SL Synchronous Language 33

main module TST2:

input I;

output O;

signal S in

when I then emit S end

||

when S then emit O end

end

end module

Signals used are de�ned in �le tst2sig.rc whose content is:

int I=0, O=0;

Then, TST2 is compiled by the command:

sl2rc<tst2.sl>tst2.rc

rcc -o tst2 tst2.rc TST2.comp.rc tst2sig.rc -lsl

Executing tst2 produces an automaton whose body is the following C code:

_state(1)_go_if_absent(I,2);_emit(O);_over;

_state(2)_next(3);

_state(3)_over;

The initial state is always state 1. State 1 means simply to go in state 2 if I

is absent otherwise, to emit O is emitted and to terminate. If I is absent, then the

current reaction is �nished, and next reaction will start from state 3. In state 3 the

module simply terminates.

Notice that now, parallelism and communication through local signals have com-

pletely disapeared.

Minimality. As another example, consider the following module (the body of

which is considered in example 3):

main module TST3:

input S,T;

output O;

signal V in

do

wait S; emit V

||

RR n�2510

34 Frederic Boussinot , Robert de Simone

wait T; emit V

kill V;

emit O

end

end module

The automaton produced is:

_state(1)_go_if_absent(S,2);_go_if_absent(T,3);_emit(O);_over;

_state(2)_go_if_absent(T,4);_next(5);

_state(3)_next(6);

_state(4)_next(7);

_state(5)_emit(O);_over;

_state(6)_emit(O);_over;

_state(7)_go_if_absent(S,8);_go_if_absent(T,9);_emit(O);_over;

_state(8)_go_if_absent(T,10);_next(5);

_state(9)_next(6);

_state(10)_next(7);

By looking at this code, it is clear that automata produced are not minimal neither

in the number of states, nor in the number of transitions. In fact, one can distinguish

between micro states (e.g. 2) that correspond to un�nished transitions, and macro

states (e.g 5) corresponding to �nished transitions. More work has to be done to

eliminate micro states, and to identify similar macro states (identi�cation may have

the meaning of \bisimulation"[10]; for example, states 5 and 6 are equivalent in this

sense).

The game example. To show what is gained by automata production, consider

the basic reex game program of section 3.3. One can compile it by:

sl2rc<basic.sl>basic.rc

rcc -c basic.rc

rcc -c PLAY.comp.rc

rcc -o basic basic.o PLAY.comp.o env.o data.o -lsl

To play with, just type:

fisher$ basic

Press r.

Go!

score: 77

It's more fun to compete ...

fisher$

Now, to compile the game into an automaton, we just have to suppress the main

function that is in env.rc:

INRIA

The SL Synchronous Language 35

rcc -o basiccomp basic.o PLAY.comp.o data.o -lsl

Now basiccomp produces an automaton that is equivalent to PLAY. To see what is

gained, �rst replace the basic.rc code by the automaton:

basiccomp>basic.rc

Then compile the automaton:

rcc -c basic.rc

rcc -o basic basic.o PLAY.comp.o env.o data.o -lsl

Now, this is a session:

ress r.

Go!

score: 509

It's more fun to compete ...

fisher$

One sees that the automaton runs faster than the parallel code (supposing the same

user reaction time, the greater the score is, the faster the program runs).

6 Conclusion

We have presented a new synchronous language based on Esterel. In fact, language

design and precise syntax were not primary concerns. The idea was to study how

speci�c problems resulting from the synchrony hypothesis and known as causality

cycles, could be eliminated while preserving expressive power as far as possible. We

show that what has to be rejected are reactions in the current instant to signal

absences. The formal semantics given allows us to show that no incoherent nor non-

deterministic program does exist anymore. To forbid immediate reactions to signal

absences, also simpli�es implementation in a very large extend (the implementation

described is less than one thousand of RC lines).

Some main features of the synchronous approach still remains: parallelism, signal

broadcast, and instantaneous dialogs for example. However, what does rejection of

immediate reactions to absence imply for programming style, is not clear and has

to be investigated further.

RR n�2510

36 Frederic Boussinot , Robert de Simone

References

[1] R. Bernhard, G. Berry, F. Boussinot, G. Gonthier, A. Ressouche, J.P. Rigault,

and J.M. Tanzi. A quick survey of the Esterel v3 compiler. Rapport technique,

EMP, 1988.

[2] G. Berry. A hardware implementation of pure Esterel. Sadhana, Academy

Proceedings in Engineering Sciences, Indian Academy of Sciences, 17(1):95{

130, 1992. Rapport Centre de Math�ematiques Appliqu�ees de l'Ecole des Mines

de Paris, num�ero 06/91.

[3] G. Berry and G. Gonthier. The Esterel synchronous programming language: De-

sign, semantics, implementation. Science Of Computer Programming, 19(2):87{

152, 1992.

[4] F. Boussinot. Programming a reex game in Esterel v3 2. Rapport de recherche

07/91, Centre de Math�ematiques Appliqu�ees, Ecole des Mines de Paris, Sophia-

Antipolis, 1991.

[5] F. Boussinot. Reactive c: An extension of c to program reactive systems. Soft-

ware Practice and Experience, 21(4), 1991.

[6] F. Boussinot and R. de Simone. The Esterel language. Another Look at Real

Time Programming, Proceedings of the IEEE, 79:1293{1304, 1991.

[7] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a declarative language

for programming synchronous systems. In 14th ACM Symposium on Principles

of Programming Languages, january 1987.

[8] G. Gonthier. S�emantique et mod�eles d'ex�ecution des langages r�eactifs syn-

chrones; application �a Esterel. Th�ese d'informatique, Universit�e d'Orsay, 1988.

[9] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Programming real

time applications with signal. In IEEE, september 1991.

[10] R. Milner. Concurrent processes and their syntax, April 1979.

[11] G.D. Plotkin. A structural approach to operational semantics, September 1981.

INRIA

Unité de recherche INRIA Lorraine, Technopoˆle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LE`S NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhoˆne-Alpes, 46 avenue Fe´lix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

