Fair Threads in C

F. Boussinot
EMP-CMA/INRIA - MIMOSA Project
2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

Frederic.Boussinot@sophia.inria.fr
June 4, 2002

Abstract

FairThreads offers a very simple framework for concurrent and parallel programming. Basically, it defines
schedulers which are synchronization servers, to which threads can dynamically link or unlink. All threads
linked to the same scheduler are executed in a cooperative way, at the same pace, and they can synchronize
and communicate using broadcast events. Threads which are not linked to any scheduler are executed by
the OS in a preemptive way, at their own pace. FairThreads offers programming constructs for linking and
unlinking threads. FairThreads is fully compatible with the standard Pthreads library and has a precise
and clear semantics for its cooperative part; in particular, systems exclusively made of threads linked to one
unique scheduler are actually completely deterministic. Special threads, called automata, are provided for
short-lived small tasks or when a large number of tasks is needed. Automata do not need the full power of
a native thread to execute and thus consume less resources.

1 Introduction

Threads are generally considered to be well adapted for systems made of heavy-computing tasks run in a
preemptive context and needing few communications and synchronizations. This is typically the case of Web
servers, in which a thread (usually picked out from a pool of available threads) is associated to each new
request. In such contexts, advantages of threads are clear:

e Modularity is increased, as threads can be naturally used for coding independant sub-parts of the
system.

e Programs can be run by multiprocessors machines without any change. Thus, multithreaded systems
immediately take benefit from SMP architectures, which become now widely available.

e Blocking I/Os do not need special attention of any kind. Indeed, as the scheduler is preemptive, there
is no risk that a thread blocked forever on an I/O operation will also block the rest of the system.

Difficulties of Threads

The benefit of using threads is less clear for systems made of tasks needing strong synchronizations or a lot
of communications. Indeed, in a preemptive context, to communicate or to synchronize generally implies the
need to protect some data involved in the communication or in the synchronization. Locks are often used
for this purpose, but they have a cost and are error-prone (possibilities of deadlocks).

Pure cooperative threads (sometimes called green-threads) are more adapted for highly communicating tasks.
Indeed, data protection is no more needed, and one can avoid the use of locks. Moreover, cooperative threads

have clear and simple semantics, and are thus easier to program and to port. However, while cooperative
threads can be efficiently implemented at user level, they cannot benefit from multiprocessor machines.
Moreover, they need special means to deal with blocking I/0.

Actually, programming with threads is difficult because threads generally have very “lose” semantics. This
is particularly true with preemptive threads because their semantics strongly relies on the scheduling policy.
The semantics of threads also depends on others aspects, as, for example, the way threads priorities are
mapped at the kernel level.

Threads take time to create, and need a rather large amount of memory to execute. Moreover, the number
of native threads than can be created is often limited by the system. Several techniques can be used to get
round these problems, specially when large numbers of short-lived components are needed. Among these
techniques are thread-pooling, to limit the number of created threads, and the use of small pieces of code,
sometimes called ”chores” or ”chunks”, which can be executed in a simpler way than threads are.

The Fair Threads Proposal

FairThreads proposes to overcome the difficulties of threads by giving users the possibility to chose the
context, cooperative or preemptive, in which threads are executed.

More precisely, FairThreads defines schedulers which are cooperative contexts to which threads can
dynamically link or unlink. All threads linked to the same scheduler are executed in a cooperative way, and
at the same pace. Threads which are not linked to any scheduler are executed by the OS in a preemptive
way, at their own pace. An important point is that FairThreads offers programming constructs for linking
and unlinking threads.

FairThreads has the following main characteristics:

e It allows programs to benefit from multiprocessors machines. Indeed, schedulers and unlinked threads
can be run in real parallelism, on distinct processors.

o It allows users to stay in a purely cooperative context by linking all the threads to the same scheduler.
In this case, systems are completely deterministic and have a simple and clear semantics.

e Blocking I/Os can be implemented in a very simple way, using unlinked threads.

o It defines instants shared by all the threads which are linked to the same scheduler. Thus, all threads
linked to the same scheduler execute at the same pace, and there is an automatic synchronization at
the end of each instant.

e It introduces events which are instantaneously broadcast to all the threads linked to a scheduler; events
are a modular and powerful mean for threads to synchronize and communicate.

e It defines automata to deal with small, short-lived tasks, which do not need the full power of native
threads. Automata have lightweight implementation and are not submitted to some limitations that
native threads have.

This paper describes FairThreads in the context of C, implemented on top of the Pthreads library.

The rest of the paper is organized as follows: section 2 presents rationale for the design of FairThreads. An
overwiew of the API of FairThreads is given in section 3. Section 4 contains the full API. Some examples
are described in section 5. Related work is considered in section 6. Finally, section 7 concludes the paper.
Man pages of FairThreads are given in annex.

2 Rationale

In FairThreads, schedulers can be seen as synchronization servers, in which linked threads automatically
synchronize at the end of each instant. However, in order to synchronize, linked threads must behave
fairly and cooperate with the other threads by returning the control to the scheduler. Thus, linked threads
are basically cooperative threads. Schedulers can also be seen as event servers as they are in charge of

broadcasting generated events to all the linked threads. In this way, a fair scheduler defines a kind of
synchronized area made of cooperative threads running at the same pace, and communicating through
broadcast events.

Synchronized Areas

A synchronized area can quite naturally be defined to manage some shared data that has to be accessed by
several threads. In order to get access to the data, a thread has first to link to the area, and then it becomes
scheduled by the area and can thus get safe access to the data. Indeed, as the scheduling is cooperative,
there is no risk for the thread to be preempted during an access to the data. The use of a synchronized area
is, in this case, an alternative to the use of locks.

A synchronized area can also play the role of a location that threads can join when some kind of com-
munication or synchronization is needed.

FairThreads allows programmers to decompose complex systems in several threads and areas to which
threads can link dynamically, following their needs. Moreover, a thread can be unlinked, that is totally free
from any synchronization provided by any schedulers defined in the system. Of course, unlinked threads
cannot benefit from broadcast events. Unlinked threads are run in the preemptive context of the OS, and
are thus just standard preemptive threads. Data shared by unlinked threads have to be protected by locks,
in the standard way.

Cooperative Scheduling

Basically, a linked fair thread is a cooperative thread which can synchronize with other fair threads using
events and can communicate with them through values associated to these events. The scheduler to which
the fair thread is linked gives it the possibility to get the processor. All threads linked to the scheduler
get equal right to execute. More precisely, fair schedulers define instants during which all threads linked
to it run up to their next cooperation point. There are only two kinds of cooperation points: explicit ones
which are calls to the cooperate() function, and implicit ones where threads are waiting for events. A fair
scheduler broadcasts events to all fair threads linked to it. Thus, all threads linked to the same scheduler see
the presence and the absence of events in exactly the same way. Moreover, values associated to events are
also broadcast. Actually, events are local to the scheduler in which they are created, and are non-persistent
data which are reset at the beginning of each new instant.

Modularity

Events are a powerful synchronisation and communication mean which simplifies concurrent programming
while reducing risks of deadlocks. Events are used when one wants one or more threads to wait for a
condition, without polling a variable to determine when the condition is fulfilled. Broadcast is a mean to
get modularity, as the thread which generates an event has nothing to know about potentially receivers of
it. Fairness in event processing means that all threads waiting for an event always receive it during the same
instant it is generated; thus, a thread leaving control on a cooperation point does not risk to loose an event
generated later in the same instant.

Determinism

Cooperative frameworks are less undeterministic than preemptive ones, as in cooperative frameworks pre-
emption cannot occurs in an uncontrolled way. Actually, FairThreads puts the situation to an extreme
point, when considering linked threads: linked threads are chosen for execution following a strict round-robin
algorithm which leads to deterministic systems. This can be a great help in programming and debugging.

No Priorities

Priorities are meaningless for linked threads which always have equal rights to execute. Absence of priorities
also contributes to simplify programming.

Preemptive Scheduling

Basically, unlinked threads are standard native preemptive threads. They are introduced in FairThreads
for two main reasons. First, using unlinked threads, users can program non-blocking I/Os in a very simple
way. Without this kind of I/Os, programming would become problematic. Second, unlinked threads can be
run by distinct processors. The use of unlinked threads is a plus in multiprocessors contexts.

Automata

FairThreads proposes automata to deal with auxiliary tasks, such as waiting for an event to stop a thread,
that do not need the full power of a dedicated native thread to execute. An automaton is a special linked
fair thread which executes using the native thread of the scheduler to which it is linked. Thus, an automaton
does not have its own execution stack that it could use to store its execution state. As a consequence, it can
be implemented more efficiently than threads are.

Basically, automata are lists of states which are elementary pieces of sequential code. The current state is
stored by the automaton and execution starts from it at the begining of the instant. Execution leaves the
current state when an explicit jump to another state is executed. When the state terminates without any
explicit jump, execution automatically proceeds to the next state. Execution of the automaton terminates
when the last state is exited. Thus, the fine-grain sequentiality of execution inside states is not memorized
by automata, only the coarse-grain sequentiality of states execution is.

Events can be used without restriction in automata. There is a special state to await an event: execution
stays in this state until the event is generated.

3 API Overview

3.1 Creation
Schedulers

FairThreads explicitely introduces schedulers, of type ft_scheduler t. Before being used, a scheduler
must be created by calling the function ft_scheduler create.

In order to be executed, a scheduler must be started by a call to the function ft_scheduler_start. Note
that several schedulers can be used without problem simultaneously in the same program.

Threads

Fair threads are of type ft_thread_t. The call ft_thread create(s,r,c,a) creates a thread in the scheduler
s. The thread is automatically started as soon as it is created. The function r is executed by the thread,
and the parameter a is transmitted to it.

The function c is executed by the thread if it is stopped (by ft_scheduler_stop). The parameter a is
also transmitted to it, if this happens.

Events
Events are of the type ft_event_t. An event is created by calling the function ft_event_create which takes
as parameter the scheduler in charge of it.

Automata

Automata are fair threads of the type ft_thread t created with the function ft_automaton create. The
thread returned by ft_automaton create(s,r,c,a) is executed as an automaton by the scheduler s. The
function r executed by the automaton must be defined with the macro DEFINE_AUTOMATON.

3.2 Orders
Control of Threads

The call ft_scheduler_stop(t) gives to the scheduler which executes the thread t the order to stop it. The
stop will become actual at the begining of the next instant of the scheduler, in order to assure that t is in a
stable state when stopped.

The call ft_scheduler suspend(t) gives to the scheduler which executes t the order to suspend t.
The suspension will become actual at the begining of the next instant of the scheduler. The function
ft_scheduler_resume is used to resume execution of suspended threads.

Broadcast of Events

The function ft_scheduler broadcast(e) gives to the scheduler of the event e the order to broadcast it to
all threads running in the scheduler. The event will be actually generated at the begining of the next instant
of the scheduler. The call ft_scheduler broadcast_value(e,v) associates the value v to e (v can be read
using ft_thread get_value).

3.3 Basic Primitives

Cooperation

The call ft_thread cooperate() is the explicit way for the calling thread to return control to the scheduler
running it. The call ft_thread cooperaten(i) is equivalent to a sequence of i calls ft_thread_cooperate().
Termination

The call ft_thread join(t) suspends the execution of the calling thread until the thread t terminates
(either normally or because it is stopped). Note that t needs not to be linked or running in the scheduler of
the calling thread. With ft_thread_join n(t,i) the suspension takes at most i instants.

3.4 Managing Events
Generating Events

The call ft_thread generate(e) generates the event e in the scheduler which was associated to it, when
created. The call ft_thread generate value(e,v) adds v to the list of values associated to e during the
current instant (these values can be read using ft_thread get_value).

Awaiting Events

The call ft_thread await (e) suspends the execution of the calling thread until the generation of the event
e. Execution is resumed as soon as the event is generated. With ft_thread_await n(e,i), the waiting takes
at most i instants.

Selecting Events

The call ft_thread select (k,array,mask) suspends the execution of the calling thread until the generation
of one element of array which is an array of k events. Then, mask, which is an array of k boolean values,
is set accordingly. With ft_thread select n(k,array,mask,i), the waiting takes at most i instants.

Getting Events Values

The call ft_thread get_value(e,i,r) is an attempt to get the ith value associated to the event e during
the current instant. If such a value exists, it is returned in r and the call immediately terminates. Otherwise,
the value NULL is returned at the next instant. The return code of the call indicates if the call was sucessful
or not.

3.5 Linking
Link and Unlink

The call ft_thread unlink() unlinks the calling thread t from the scheduler in which it was previously
running. Then, t will no longer synchronize, instant after instant, with other threads linked to the scheduler.
Actually, after unlinking, t behaves as a standard native thread.

The call ft_thread link(s) links the calling thread to the scheduler s. The calling thread must be
unlinked when executing the call. The linkage becomes actual at the begining of the next instant of s.
Locks

In presence of unlinked threads, locks can be needed to protect data shared between unlinked and linked
threads. Standard mutexes are used for this purpose. The call ft_thread mutex lock(p), where p is a
mutex, suspends the calling thread until the moment where p can be locked. The lock is released using
ft_thread mutex_unlock. Locks owned by a thread are automatically released when the thread terminates
definitively or is stopped.
3.6 Automata
Automata are coded using macros. Here are the macros to define the automaton structure:

e AUTOMATON (aut) declares the automaton aut.

e DEFINE AUTOMATON (aut) starts definition of the automaton aut.

e BEGIN_AUTOMATON starts the state list.

o END_AUTOMATON ends the state list.

The following macros start the state whose number is num:

e STATE(num) introduces a standard state.

e STATE AWAIT(num,event) and STATE_AWAIT N(num,event,delay) are states to await event.

e STATE JOIN(num,thread) and STATE_JOIN N(num,thread,delay) are states to join thread.

e STATE STAY (num,n) is a state which keeps execution in it for n instants.

e STATE GET_VALUE (num,event,n,result) is a state to get the nth value associated to event.

e STATE_SELECT (num,n,array,mask) and STATE_SELECT _N(num,n,array,mask,delay) generalise
STATE_AWAIT and STATE_AWAITN to an array of events of length n.

Going from state to state is possible with:

e GOTO(num) blocks execution for the current instant and sets the state for the next instant to be state
num.

e GOTONEXT blocks execution for the current instant and sets the state for the next instant to be the
next state.

e IMMEDIATE (num) forces execution to jump to state num which is immediately executed.
e RETURN immediately terminates the automaton.

Finally, the following macros define some special variables:

e SELF is the automaton.

e SET_LOCAL(data) sets the local data of the automaton.

e LOCAL is the local data of the automaton.
e ARGS is the argument that is passed at creation to the automaton.

e RETURN_CODE is the error code set by macros run during automaton execution.

3.7 Miscelaneous
Current Thread

The calling thread is returned by ft_thread self ().

Current Scheduler

The scheduler of the calling thread is returned by ft_thread scheduler().

Pthread

The call ft_pthread(t) returns the native pthread which executes the fair thread t. This function gives
direct access to the Pthreads implementation of FairThreads. In the rest of the paper, native thread and
pthread will be considered as synonymous.

Exiting

The function ft_exit is equivalent to pthread_exit. The basic use of ft_exit is to terminate the pthread
which is running the function main, without exiting from the whole process.

4 API
Constructors

ft_scheduler_t ft_scheduler_create (void);
ft_thread_t ft_thread_create (ft_scheduler_t scheduler,
void (*runnable) (voidx*),
void (*cleanup) (void#*),
void *args);
ft_thread_t ft_automaton_create (ft_scheduler_t,
void (*automaton) (ft_thread_t),
void (*cleanup) (voidx),

void *args);

ft_event_t ft_event_create (ft_scheduler_t scheduler);

Starting a Scheduler

int ft_scheduler_start (ft_scheduler_t scheduler);

Control of Threads

int ft_scheduler_stop (ft_thread_t thread);
int ft_scheduler_suspend (ft_thread_t thread);
int ft_scheduler_resume (ft_thread_t thread);

Broadcast of Events

int ft_scheduler_broadcast (ft_event_t event);
int ft_scheduler_broadcast_value (ft_event_t event,void *value);

Cooperation

int ft_thread_cooperate (void) ;
int ft_thread cooperate.n (int num);

Termination

int ft_thread_join (ft_thread_t thread);
int ft_thread_joinn (ft_thread_t thread,int timeout);

Generating Events

int ft_thread_generate (ft_event_t event);
int ft_thread generate_value (ft_event_t event,void *value);

Waiting Events

int ft_thread_await (ft_event_t event);
int ft_thread_await.n (ft_event_t event,int timeout);

Selecting Events

int ft_thread_select (int len,ft_event_t *array,int *mask);
int ft_thread select.n (int len,ft_event_t *array,int *mask,int timeout);

Getting Generated Values

int ft_thread get_value (ft_event_t event,int num,void **result);

Link and Unlink

int ft_thread_link (ft_scheduler_t scheduler);
int ft_thread_unlink (void);

Current Thread and Scheduler

ft_thread_t ft_thread_self (void);
ft_scheduler_t ft_thread_scheduler (void);

Exit

void ft_exit (void);

Locks

int ft_thread mutex lock (pthread mutex_t *mutex) ;
int ft_thread mutex_unlock (pthread mutex_t *mutex) ;

Pthreads

pthread_t ft_pthread (ft_thread_t thread);

Macros for Automata

AUTOMATON (name)
DEFINE_AUTOMATON (name)
BEGIN_AUTOMATON
END_AUTOMATON

STATE (num)

STATE_AWAIT (num,event)
STATE_AWAIT_N(num,event,delay)
STATE_GET_VALUE (num,event ,n,result)
STATE_STAY (num,delay)
STATE_JOIN(num,thread)
STATE_JOIN_N(num,thread,delay)
STATE_SELECT (num,n, array ,mask)
STATE_SELECT_N (num,n,array ,mask,delay)

GOTO (num)
GOTO_NEXT
IMMEDIATE (num)
RETURN

SELF

SET_LOCAL (data)
LOCAL

ARGS
RETURN_CODE

5 Examples
5.1 Hello World!

The following code is a complete example, made of two threads run in the same scheduler.

#include "fthread.h"
#include <stdio.h>

void h (void *id)
{
while (1) {
fprintf (stderr,"Hello ");
ft_thread_cooperate ();

void w (void *id)

{
while (1) {
fprintf (stderr,"World!\n");
ft_thread_cooperate ();
}
}

int main (void)
{
ft_scheduler_t sched = ft_scheduler_create ();

ft_thread_create (sched,h,NULL,NULL);
ft_thread_create (sched,w,NULL,NULL);

ft_scheduler_start (sched);

ft_exit ();
return 0;

The program outputs Hello World! cyclically. Note the call of ft_exit to prevent the program to
terminate before executing the two threads. Execution of linked fair threads is round-robin and deterministic:
messages Hello and World! are always printed in this order.

Here is the typical way to produce executable code:

gcc -D_REENTRANT -o test test.c -1lfthread -lpthread

5.2 Blocking I/0

The following function ft_thread read implements a non-blocking read I/0, using the standard blocking read
function. The calling thread first unlinks from the scheduler, then performs the read, and finally re-links to
the scheduler:

ssize_t ft_thread read (int fd,void *buf,size_t count)

{
ft_scheduler_t sched = ft_thread_scheduler ();

ssize_t res;
ft_thread_unlink ();
res = read (fd,buf,count);

ft_thread_link (sched);
return res;

5.3 Producer/Consumer

One implements a producer/consumer example. There are 2 files, in and out, and a pool of threads that
take data from in, process them, and then put results in out. A scheduler and an event are associated to
each file; the event is generated to indicate that a new value is produded in the associated file.

file in = NULL, out = NULL;
ft_scheduler_t in_sched, out_sched;
ft_event_t new_input, new_output;

10

Processing Values

In order to process a value v, the calling thread first unlinks from in_sched. After processing, it links to
out_sched in order to put the result in out, and finally, it re-links to in_sched. The procedure for processing
a value is the following (for simplicity, values are of type int):

void process_value (int v)

{
ft_thread_unlink ();
< process v >
ft_thread_link (out_sched);
put (v,&out);
ft_thread_generate (new_output);
ft_thread_unlink ();
ft_thread_link (in_sched);

The function run by the processing threads is:

void process (void *args)

{
while (1) {
if (size(in) > 0) {
process_value (get (&in));
} else {
ft_thread_await (new_input);
if (size (in) == 0) ft_thread_cooperate ()
}
}
}

The event new_input is used to prevent polling when no value is available from in. However, to test it as
present does not necessary implies that a value is available: it could have been consumed by another thread.
Thus, a call to ft_thread_cooperate is needed to avoid an infinite loop during the same instant, if new_input
is tested as present while no value is actually available.

Main Function

Two threads are added to the system: one for producing new values, and the other for consuming results.
The main function is the following:

int main (void)
{
int i;
ft_thread_t thread_array [MAX_THREADS]

in_sched ft_scheduler_create ();

out_sched = ft_scheduler_create ();

new_input ft_event_create (in_sched);

new_output = ft_event_create (out_sched) ;
for (i=0; i<MAX_THREADS; i++) {

thread array[i] = ft_thread create (in_sched,process,NULL,NULL);
}

ft_thread_create (in_sched,produce,NULL,NULL) ;
ft_thread_create (out_sched,consume,NULL,NULL);

11

ft_scheduler_start (in_sched);
ft_scheduler_start (out_sched);

ft_exit ();
return O;

5.4 Automata

Preemption by an Event

Here is the example of a one-state automaton, named killer, that preempts a thread when an event is
present. The thread and the event are accessible with the macro ARGS.

DEFINE_AUTOMATON (killer)

{
void **args = ARGS;
ft_event_t event = args[0]
ft_thread t thread = args[1]
BEGIN_AUTOMATON
STATE_AWAIT (0,event)
{
ft_scheduler_stop (thread);
}
END_AUTOMATON
}

A fair thread is created by:
ft_thread t a = ft_automaton create (sched,killer,NULL,args);

The difference with a standard thread created by ft_thread_create is that no new pthread is actually
created by ft_automaton_create. The automaton is simply run by the scheduler’s pthread. Thus, no
pthread context switch is needed and execution is more efficient.

Two Threads Run in Turn

The following automaton switches control between two threads, according to the presence of an event. The
automaton switch_aut has three states. The first state resumes the first thread to run (initially, both threads
are suspended). The switching event is awaited in the second state, and then the threads are switched. The
third state is similar to the second, except that the threads are exchanged.

DEFINE_AUTOMATON (switch_aut)

{
void **args = ARGS;

ft_event_t event args [0]
ft_thread_t threadl = args[1]
ft_thread_t thread? args[2]

BEGIN_AUTOMATON

STATE (0)
{
ft_scheduler_resume (threadl);

}

12

STATE_AWAIT (1,event)

{
ft_scheduler_suspend (threadl);
ft_scheduler_resume (thread?2);
GOTO(2);

}

STATE_AWAIT (2,event)

{
ft_scheduler_suspend (thread2);
ft_scheduler_resume (threadl);
GOTO(1);

}

END_AUTOMATON
}

If a standard thread were used instead of an automaton, one supplementary pthread would be needed to
perform the same task.

6 Related Work

Thread Libraries in C

Several thread libraries exist for C. Among them, the Pthreads library [17] implements the POSIX standard
for preemptive threads. LinuxThreads [4] is an implementation of Pthreads for Linux; it is based on
kernel-level threads. Quick Threads [14] provides programmers with a minimal support for multithreading
at user-space level. Basically, it implements context-switching in assembly code, and is thus a low-level
solution to multithreading.

Gnu Portable Threads [11] (GNU Pth) is a library of purely cooperative threads which has portability
as main objective. The Next Generation POSIX Threading project [5] proposes to extend GNU Pth to the
M:N model, with Linux SMP machines as target.

Java Threads

Java introduce threads at language level. Actually, threads are generally heavily used in Java, for example
when graphics or networking is involved. No assumption is made on the way threads are scheduled (coopera-
tive or preemptive scheduling) wich makes Java multithreaded systems difficult to program and to port [13].
This difficulty is pointed out by the suppression from the recent versions of the language of the threads
primitives to gain fine control over threads [3]. A first version of FairThreads has been proposed in the
context of the Java language [7] in order to simplify concurrent programming in Java.

Threads in Functional Languages

Threads are used in several ML-based languages such as CML [18]. CML is preemptively scheduled and
threads communication is synchronous and based on channels. Threads are also introduced in CAML [2];
they are implemented by time-sharing on a single processor, and thus cannot benefit from multiprocessors
machines.

FairThreads has been recently introduced in the Bigloo [1] implementation of Scheme. The present
version only supports linked threads, and special constructs are introduced to deal with non-blocking I/Os.

Reactive Approach

FairThreads actually comes out from the so-called reactive approach [6]. In this approach, one basically
has instants and broadcast events. As opposite to synchronous languages [12] such as Esterel, the absence
of an event during one instant cannot be decided before the end of this very instant. As a consequence, the

13

reaction to the absence of one event is delayed to the next instant. This is a way to solve so-called ” causal-
ity problems” which are raised with synchronous languages, and which are obstacles to modularity. The
Reactive-C [8] language was the first proposal for reactive programming in Cj; in this respect, FairThreads
can be considered as a descendant of it.

Chores and Filaments

Chores [10] and filaments [15] are small pieces of code that do not have private stack and are never preempted.
Chores and filaments are designed for fine-grain parallelism programming on shared-memory machines.
Chores and filaments are completely executed and cannot be suspended nor resumed. Generally, a pool
of threads is devoted to execute them. Chores and chunk-based techniques are described in details in the
context of the Java language in [9] and [13]. Automata in FairThreads are close to chores and filaments,
but give programmers more freedom for direct coding of states-based algorithms. Automata are also related
to mode automata [16] in which states capture the notion of a running mode in the context of the synchronous
language Lustre.

7 Conclusion

Multiprocessing

In FairThreads, users have control on the way threads are scheduled. Fair threads which are linked to a
scheduler are scheduled in a cooperative way by it.

When a fair thread unlinks from a scheduler, it becomes an autonomous native thread which can be run
in real parallelism, on a distinct processor.

An important point is that FairThreads provides users with programming primitives allowing
threads to dynamically link to schedulers and to dynamically unlink from them.

Precise Semantics

Linked threads have a precise and clear semantics (which can be formally given). The point is that systems
exclusively made of threads linked to one unique scheduler are completely deterministic.

Simplicity

FairThreads offers a very simple framework for concurrent and parallel programming. Simple cooperative
systems can be coded in a simple way, without the need of locks to protect data. Instants give automatic
synchronizations that can also simplify programming in certain situations.

Compatibility with Pthreads

FairThreads is fully compatible with the standard Pthreads library. Indeed, unlinked fair threads are
actually just pthreads. In this respect, FairThreads is an extension of Pthreads, which allows users to
define cooperative contexts with a clear and simple semantics, in which threads execute at the same pace
and events are instantaneously broadcast.

Automata

Auxiliary tasks can be implemented using automata instead of standard fair threads. Implementation of an
automaton is lightweight and does not require a dedicated native thread. Automata are useful for short-lived
small tasks or when a large number of tasks is needed. Automata are an alternative to standard techniques
such as ”chunks” or ”chores”, sometimes used in thread-based programming.

14

Implementation

A first implementation of FairThreads is available (under the GNU General Public License (http:/-
/www.gnu.org) as a library called fthread [6] which must be used with the standard Pthreads library.

References

[1] Bigloo Web Site — http://www.inria.fr/mimosa/fp/Bigloo.
[2] CAML Web Site — http://caml.inria.fr/ocaml/.

[3] Java Web Site — http://java.sun.com.
(4]

(5]

LinuxThreads Web Site — http://pauillac.inria.fr/~xleroy/linuxthreads/.

Next Generation POSIX Threading Web Site — http://oss.software.ibm.com/developerworks—
/opensource/pthreads.

[6] Reactive Programming Web Site — http://www.inria.fr/mimosa/rp.
[7] Boussinot, F. — Java Fair Threads — Inria research report, RR-4139, 2001.

[8] Boussinot, F. — Reactive C: An Extension of C to Program Reactive Systems — Software-Practice and
Ezxperience, 21(4), 1991.

[9] Christopher, Thomas W. and Thiruvathukal, George K. — High Performance Java Platform Computing;:
Multithreaded and Networked Programming — Sun Microsystems Press Java Series, Prentice Hall, 2001.

[10] Eager, Derek L. and Zahorjan, John — Chores: Enhanced run-time support for shared memory parallel
computing — ACM Transaction on Computer Systems, 11(1), 1993.

[11] Engelschall, Ralf S. — Portable Multithreading — Proc. USENIX Annual Technical Conference, San Diego,
California, 2000.

[12] Halbwachs, Nicolas — Synchronous Programming of Reactive Systems — Kluwer Academic Publishers,
New York, 1993.

[13] Hollub, A. — Taming Java Threads — Apress, 2000.

[14] Keppel, D. — Tools and Techniques for Building Fast Portable Threads Packages — Technical Report
UWCSE 93-05-06, University of Washington, 1993.

[15] Lowenthal, David K and Freech, Vincent W. and Andrews, Gregory R. — Efficient Support for Fine-Grain
Parallelism on Shared-Memory Machines — TR 96-1, University of Arizona, 1996.

[16] Maraninchi, F. and Remond, Y. - Running-Modes of Real-Time Systems: A Case-Study with Mode-
Automata — Proc. 12th Euromicro Conference on Real-Time Systems, Stockholm, Sweden, 2000.

[17] Nichols, B. and Buttlar, D. and Proulx Farrell J. — Pthreads Programming — O’Reilly, 1996.
[18] Reppy, John H. - Concurrent Programming in ML - Cambridge University Press, 1999.

8 Man Pages

8.1 ft_scheduler_create
SYNOPSIS

#include <fthread.h>
ft_scheduler_t ft_scheduler_create (void);

int ft_scheduler_start (ft_scheduler_t sched);

DESCRIPTION

ft _scheduler_create returns a new scheduler that will run the threads created in it, using ft_thread_create.
The new scheduler sched starts running when the function ft_scheduler_start is called.

15

RETURN VALUES

On success ft_scheduler_create returns the new scheduler; NULL is returned otherwise. On success the
value 0 is returned by ft_scheduler_start and a non-zero error code is returned otherwise.

ERRORS
NULL The scheduler cannot be created.

BADCREATE The scheduler sched is not correctly created when started.

SEE ALSO
ft_thread_create (3).

8.2 ft_thread_create
SYNOPSIS

#include <fthread.h>

ft_thread_t ft_thread create (ft_scheduler_t sched,
void (*runnable) (void*),
void (*cleanup) (voidx*),
void *args);

DESCRIPTION

ft_thread_create returns a new thread of control and links it to the scheduler sched. While linked in
sched, the new thread will execute concurrently with the other threads linked in it.

Actual starting of the new thread is asynchronous with the creation.

The new thread applies the function runnable passing it args as first argument. The new thread
terminates when it executes ft_exit or when it returns from the runnable function.
When stopped (by ft_scheduler_stop), the new thread applies the function cleanup, if it is not NULL,
passing it args as first argument.
A pthread is created with each fair thread. This pthread is initially attached. It can be detached using
ft_pthread and pthread_detach.
RETURN VALUES

On success, ft_thread_create returns a new thread; NULL is returned otherwise.

ERRORS

NULL The thread cannot be created, or the scheduler sched is not correctly created.

SEE ALSO
ft_exit (3), ft_scheduler_create (3), ft_scheduler_stop (3), ft_pthread (3).

8.3 ft_event_create

SYNOPSIS

#include <fthread.h>

ft_event_t ft_event_create (ft_scheduler_t sched);

16

DESCRIPTION

ft_event_create returns a new event which is created in the scheduler sched. The event can be generated
by ft_event_generate or ft_scheduler_broadcast, and it can awaited by ft_event_await.

RETURN VALUES

On success, the new event is returned and set to absent; NULL is returned otherwise.

ERRORS

NULL The event cannot be created or the scheduler sched is not correctly created.

SEE ALSO
ft_event_generate (3), ft_scheduler_broadcast (3), ft_event_await (3).

8.4 ft_scheduler_stop
SYNOPSIS

#include <fthread.h>
int ft_scheduler_stop (ft_thread_t th);
int ft_scheduler_suspend (ft_thread t th);

int ft_scheduler_resume (ft_thread_t th);

DESCRIPTION

ft _scheduler_stop asks the scheduler running the thread th to force termination of it. Nothing special
happens if the thread is already terminated. Otherwise, at the begining of the next instant, th executes the
function cleanup if it exists, or otherwise terminates immediately.

ft _scheduler_suspend asks the scheduler running the thread th to suspend execution of it. The suspension
will become actual at the beginning of the next instant of the scheduler.

ft _scheduler_resume asks the scheduler running the thread th to resume execution of it. The resume will
become actual at the beginning of the next instant of the scheduler. Suspension has higher priority than
resume: if a thread is suspended and resumed during the same instant, then the thread will be suspended.
A suspended thread which is stopped is first resumed.

RETURN VALUES

On success, the value 0 is returned. On error, a non-zero error code is returned.

ERRORS

BADCREATE The thread th is not correctly created.

BADLINK The thread th is unlinked.

BADMEM Not enough memory (the order cannot be stored by the scheduler).

SEE ALSO
ft_thread_create (3), ft_scheduler_create (3).

17

8.5 ft_scheduler_broadcast

SYNOPSIS

#include <fthread.h>

int ft_scheduler_broadcast (ft_event_t evt);

int ft_scheduler_broadcast_value (ft_event_t evt,void *val);

DESCRIPTION

ft _scheduler_broadcast asks the scheduler of the event evt to broadcast it. The event will be gen-
erated during the next instant of the scheduler. The value val is associated to evt when the function
ft_scheduler_broadcast_value is used.

RETURN VALUES

On success, the value 0 is returned. On error, a non-zero error code is returned.
ERRORS

BADCREATE The event evt is not correctly created.

BADMEM Not enough memory (the scheduler cannot store the broadcast order).

SEE ALSO

ft_event_create (3).

8.6 ft_thread_cooperate
SYNOPSIS

#include <fthread.h>

int ft_thread cooperate (void);
int ft_thread_cooperaten (int n);

DESCRIPTION

ft_thread_cooperate makes the calling thread cooperate by returning the control to the scheduler in which
it is running.
The call ft_thread_cooperate n (k) is equivalent to for (i=0;i<k;i++) ft_thread_cooperate ().

RETURN VALUES

On success, the value 0 is returned. On error, a non-zero error code is returned.

ERRORS
BADLINK The calling thread is unlinked.

18

8.7 ft_thread_join

SYNOPSIS

#include <fthread.h>

int ft_thread_join (ft_thread_t th);

int ft_thread_joinn (ft_thread t th,int n);

DESCRIPTION

ft_thread_join suspends the execution of the calling thread until the thread th terminates (either by reaching
the end of the function it run, or by executing ft_exit) or is stopped (by ft_scheduler_stop). If th is already
terminated, the call immediately terminates.

ft thread_join n (th,i) waits for at most i instants for termination of th.

RETURN VALUES

On success, the value 0 is returned. On error, a non-zero error code is returned.
ERRORS

BADCREATE The thread th is not correctly created.

BADLINK The calling thread is unlinked.

TIMEOUT The timeout is reached before the thread is joined.

SEE ALSO
ft_thread_create (3), ft_exit (3), ft_scheduler_stop (3).

8.8 ft_thread_generate
SYNOPSIS

#include <fthread.h>
int ft_thread_generate (ft_event_t evt);

int ft_thread generate_value (ft_event_t evt,void *val);

int ft_thread_await (ft_event_t evt);

int ft_thread_await.n (ft_event_t evt,int n);

int ft_thread_select (int len,ft_event_t *array,int #*mask);

int ft_thread_select._n (int len,ft_event_t *array,int *mask,int timeout);
DESCRIPTION

ft_thread_generate generates the event evt for the current instant of the scheduler in which the calling
thread is running. The event is thus present for this instant; it will be automatically reset to absent at the
begining of the next instant.

The value val is associated to evt when ft_thread_generate_value is used.

19

ft_thread _await suspends the calling thread until evt becomes generated in the scheduler in which it
is running. The waiting takes as many instants as the generation of evt takes.

ft_thread_await_n (evt,k) is similar to ft_thread_await (evt) except that the waiting of evt lasts at
most k instants.
ft _thread_select suspends the calling thread until one element of array becomes generated in the scheduler
in which the thread is running; array should be of length k. On resumption, mask which is an array of k
integers, is set accordingly: mask][i] is 1 if array[i] was generated; mask][i] is 0, otherwise.

ft_thread_select_n (k,array,mask,p) is similar to ft_thread_select (k,array,mask) except that the
waiting lasts at most p instants.

RETURN VALUES

On success the value 0 is returned and a non-zero error code is returned on error.
ERRORS
BADCREATE The exist an event (either evt or an element of array) which is not correctly created.

BADLINK Either the calling thread is unlinked, or the scheduler of the calling thread and the one of a
considered event (evt or an element of array) are different.

BADMEM Not enough memory (can only occur with ft_thread_generate_value).
TIMEOUT The timeout is reached.

SEE ALSO
ft_event_create (3), ft_thread_get_value (3).

8.9 ft_thread_get_value

SYNOPSIS

#include <fthread.h>

int ft_thread get_value (ft_event_t evt,int n,void **result);

DESCRIPTION

ft_thread_get_value returns the nth value associated during the current instant to the event evt through

calls of ft_event_generate_value or ft_scheduler_broadcast_value. If such a value exists, ft_thread_get_value
sets result with a reference to it and terminates immediately (that is, during the current instant). Otherwise,

it terminates at the next instant (returning NEXT) and result is then set to NULL.

RETURN VALUES

On success, the value 0 is returned (during the current instant). Otherwise, a non-zero error code is returned.
ERRORS
BADCREATE The event evt is not correctly created.

BADLINK Either the calling thread is unlinked, or the scheduler of the calling thread and the one of evt
are different.

NEXT Less than n values where actually associated to generations of evt during the previous instant.

20

SEE ALSO
ft_thread_generate_value (3), ft_scheduler_broadcast_value (3).

8.10 ft_thread_link

SYNOPSIS

#include <fthread.h>

int ft_thread_unlink (void);

int ft_thread_link (ft_scheduler_t sched);

DESCRIPTION

ft_thread_unlink unlinks the calling thread from the scheduler which is running it. Execution of the
thread suspends until the begining of the next instant of the scheduler. At that point, the thread turns into
a standard thread, not linked to any scheduler, and it resumes execution autonomously.
Initialy, a fair thread is automatically linked to the scheduler in which it is created (by ft_thread_create).
ft_thread_link links the calling thread to the scheduler sched. The thread must be unlinked. Execution
suspends until sched gives the control to the thread; then, the thread resumes execution, being scheduled
by sched.

RETURN VALUES

On success, the value 0 is returned. On error, a non-zero error code is returned.
ERRORS
BADCREATE The scheduler sched is not correctly created.

BADLINK The calling thread is already linked while running ft_thread_link, or it is unlinked while
running ft_thread_unlink.

BADMEM Not enough memory (the scheduler cannot store the link/unlink order).

SEE ALSO
ft_thread_create (3).

8.11 ft_thread_self
SYNOPSIS

#include <fthread.h>
ft_thread_t ft_thread_self (void);

ft_scheduler_t ft_thread_scheduler (void);

DESCRIPTION
ft _thread_self returns the calling thread. ft_thread_scheduler returns the scheduler of the calling thread.

21

ERRORS

The value NULL is returned by ft_thread_self when the calling thread is not correctly created, or by
ft _thread_scheduler when the calling thread is not correctly created or is unlinked.

8.12 ft_thread_mutex_lock
SYNOPSIS

#include <fthread.h>
int ft_thread mutex_lock (pthread mutex_t *mutex);
int ft_thread mutex_unlock (pthread mutex_t *mutex);

DESCRIPTION

For unlinked threads, ft_thread _mutex_lock is like pthread _mutex_lock and ft_thread mutex_unlock
is like pthread _mutex_unlock.

For linked threads, ft_thread _mutex_lock suspends the calling thread until mutex can be locked. Thus,
while mutex is unavailable, other threads in the scheduler can continue to run (this would not be the case
if pthread_mutex_lock where used instead of ft_thread mutex_lock). All locks owned by a thread are
automatically released when it terminates or when it is stopped.

RETURN VALUES

On success ft_thread_mutex_lock and ft_thread_mutex_unlock both return the value 0. On error, a
non-zero error code is returned.

ERRORS

Errors returned are the ones returned by pthread_mutex_lock and pthread _mutex_unlock.

SEE ALSO
ft_thread_link (3), ft_thread_unlink (3).

8.13 ft_exit
SYNOPSIS

#include <fthread.h>

void ft_exit (void);

DESCRIPTION

ft_exit forces the calling thread to terminate.

RETURN VALUES

The function ft_exit never returns.

22

8.14 ft_pthread
SYNOPSIS

#include <fthread.h>

pthread_t ft_pthread (ft_thread_t thread);

DESCRIPTION
The function ft_pthread returns the pthread on which the fair thread thread is built.

8.15 ft_automaton_create

SYNOPSIS

#include <fthread.h>

ft_thread_t ft_automaton_create (ft_scheduler_t sched,
void (*automaton) (ft_thread_t),
void (*cleanup) (voidx*),
void *args);

AUTOMATON (name)
DEFINE_AUTOMATON (name)
BEGIN_AUTOMATON
END_AUTOMATON

STATE (num)

STATE_AWAIT (num,event)

STATE_AWAIT N(num,event,delay)
STATE_GET_VALUE (num,event ,n,result)
STATE_STAY (num,delay)
STATE_JOIN(num,thread)
STATE_JOIN_N(num,thread,delay)
STATE_SELECT (num,n, array,mask)
STATE_SELECT_N(num,n,array,mask,delay)

GOTO (num)
GOTO_NEXT
IMMEDIATE (num)
RETURN

SELF

SET_LOCAL (data)
LOCAL

ARGS
RETURN_CODE

DESCRIPTION

Automata Creation

ft_automaton_create is very similar to ft_thread_create except that a new automaton is returned.
The automaton does not have its own pthread to execute, but it is run by the one of the scheduler.

The automaton applies the function automaton. Argument args can be accessed in the automaton
definition with the macro ARGS.

23

Macros
e AUTOMATON (name) declares the automaton name.
e DEFINE AUTOMATON (name) starts definion of the automaton name.
e BEGIN_AUTOMATON starts the state list.
e END_AUTOMATON ends the state list.

e STATE(num) starts state num description. States must be numbered consecutively, starting from 0.
State 0 is the initial state.

e STATE AWAIT (num,event) awaits event. It is the counterpart of ft_thread await for automata.
Execution stays in this state until event is generated.

e STATE AWAIT N(num,event,n) awaits event during at most n instant. It is the counterpart of ft_thread await n.

e STATE GET_VALUE (num,event,n,result) is used to get the nth value generated with event. It is the
counterpart of ft_thread_get_value.

e STATE_JOIN(num,thread) is used to join thread. It is the counterpart of ft_thread_join.

e STATE_JOIN N(num,thread,n) is an attempt to join thread during at most n instants. It is the
counterpart of ft_thread_join n.

e STATE_STAY(num,n) let the automaton stay for n instants in the state.

e STATE SELECT (num,k,array,mask) awaits elements of array which is an array of events of length k.
It is the counterpart of ft_thread_select for automata. Execution stays in this state until at least
one element of array is generated; the presence of events is recorded in mask which is an array of
integers of length k.

e STATE SELECT N(num,k,array,mask,n) awaits elements of array during at most n instant. It is the
counterpart of ft_thread_select n.

e GOTO(num) blocks execution for the current instant and sets the state to be executed at the next instant
to be state num.

e GOTO_NEXT blocks execution for the current instant and sets the state for the next instant to be the
next state.

e IMMEDIATE (num) forces execution to jump to state n which is immediately (that is, during the same
instant) executed.

e RETURN forces immediate termination of the automaton.

e SELF is the automaton. It is of type ft_thread_t.

e LOCAL is the local data of the automaton. The local data is of type voidx*.

e SET_LOCAL (data) sets the local data of the automaton.

e ARGS is the argument that is passed at creation to the automaton. It is of type voidx.

e RETURN_CODE is the error code set by macros run by the automaton. As usual, 0 means success.

Note that there is no counterpart of ft_thread_link and ft_thread_unlink for automata, as an automa-
ton always remains linked to the scheduler in which it was created.

24

RETURN VALUES

On success, ft_automaton_create returns a new thread; NULL is returned otherwise.

When an error is encountered during execution of a macro, RETURN_CODE is set accordingly, with
one of the error values BADMEM, TIMEOUT, NEXT, BADLINK, or BADCREATE.
ERRORS

NULL The automaton cannot be created, or the scheduler sched is not correctly created.

EXAMPLE
The following automaton switches control between two threads, according to the presence of an event.

DEFINE_AUTOMATON (switch_aut)

{
void **args = ARGS;

ft_event_t event args [0]
ft_thread_t threadl args[1]
ft_thread t thread2 = args[2]

BEGIN_AUTOMATON

STATE (0)
{
ft_scheduler_resume (threadl);
}
STATE_AWAIT (1,event)
{
ft_scheduler_suspend (threadl);
ft_scheduler_resume (thread2);

GOTO(2);
}
STATE_AWAIT (2,event)
{

ft_scheduler_suspend (thread2);
ft_scheduler_resume (threadl);
GOTO(1);

}

END_AUTOMATON
}

SEE ALSO
ft_thread_create (3), ft_thread_await (3), ft_thread_get_value (3), ft_thread_join (3).

25

