
A Visual Reactive Framework for Dynamic Behavior
Creation

Christian Brunette
INRIA EMP-CMA/MIMOSA
2004 route des Lucioles BP 93

06902 F-Sophia Antipolis France
christian.brunette@sophia.inria.fr

October 17, 2002

Abstract

This paper presents Icobjs, a simple, Java-based, visual framework for the programming of reactive
applications. In the Icobjs (”Iconic Object”) formalism, graphical objects represent basic and hierar-
chically composed reactive behaviors that can be easily combined to produce more complex ones. The
reactive language, on which Icobjs is based, is called Junior. It provides parallelism and broadcast events
communication.

1 Introduction

This paper presents a way to visually create behaviors using a Java-based reactive approach called Icobjs.
Icobjs is based on graphical entities with reactive behaviors (the graphical aspect is not bound to any
specific modeling language). There are two kinds of icobjs: elementary icobjs which have an elementary
behavior and Icobjs builders which allow creating new icobjs by composing behaviors of elementary
icobjs using control instructions. Our goal is to give end-user a way to easily create behaviors for
entities in a game or more generally in virtual worlds. This paper presents works at the behavioral level
of what is studied in [1]. More precisely, a reactive programming and execution model is proposed that
fulfills the following features:

• There is a formal deterministic semantics for Junior, the reactive language with which the behav-
iors are coded. The semantics assures reproducible execution.

• It is expressive enough in order to allow fine control over behaviors and the definition of complex
synchronization constraints.

• It allows the construction of complex behaviors by the combination of more elementary ones. One
can re-use constructed behaviors to create more complex ones.

• Programs can be added at runtime.

• A large number of events and reactive programs can be executed.

The structure of this paper is as follows: section2 gives a brief overview of the work around Icobjs
and other visual languages allowing building visually autonomous entities. Section3 gives an overview
of the reactive approach and of Junior, the Java-based reactive language on which Icobjs is based. The
section4 describes the new version of Icobjs and the way it works. After presenting some elements of
the Icobjs API, we describe how to use Icobjs and how to create complex behaviors using elementary
ones.



2 Related Works

2.1 Different visual language

The aim of DSVL is obviously to help users to program applications more easily, more intuitively and/or
to hide the syntax of complex language. We will not be exhaustive on it, but only give some examples.
First example of this kind of languages, Icon Author allows to create multimedia applications in an
easy way. To program applications, one uses a visual environment with no programming or scripting
aspects. The language is based around a flowchart of ”parametrable” icons in a window system. Some
information on this product can be found at [2].
Java beans (cf. [3]) can be visually composed into composite components, applets, and applications
using visual application builder tools. All properties are visually accessible. One can modify java beans
(behaviors and appearances) without writing any line of code. The use of introspection mechanisms
allows this.
Squeak (cf. [4]), a graphical open language based on SmallTalk-80, provides powerful introspection
mechanisms due to its language specificities. It allows drawing entities (called morphs) and then to give
them some behaviors by drag-and-drop. There are too many useless features to each morph and this
limits the number of objects that can be put together in a simulation.
Finally, we can consider that Integrated Development Environments (IDEs) are DSVL too in a certain
way. An IDE indeed provides some features that help users. Visual languages, like Visual Basic, Visual
C++. . . provide some features that help people to design graphical interfaces and to help coding.

2.2 Previous work on Icobjs

There are several versions of Icobjs. The first one is based on reactive scripts built on top of C (see [5]).
Thereafter, several Java-based versions were realized to be able to use Icobjs on the Internet and to work
on a true object-oriented model (test [6]).
The main problem of those versions comes from the difficulty, for an object-based language, to add
dynamically new information, new fields to a class progressively with construction; this is certainly a
limitation to modularity. With these Java versions, some behaviors inherit other behaviors that are not
necessarily dependent. One falls into cases where icobjs have useless information and behavior parts.
A version of Icobjs, which is based on SugarCubes (cf. [6]), has been used to simulate physical systems
(cf. [7]). The goal was to represent complex systems by a set of linked but independent, elementary
entities sharing a common time. This gives a very modular model.

3 Reactive approach

The reactive approach proposes a flexible paradigm for programming reactive systems (cf. [8]), es-
pecially those that are dynamic (that is, the number of components and their connections can change
during execution). Reactive programming provides programmers with concurrency, broadcast events,
and several primitives for gaining fine control over reactive programs executions. At the basis of reac-
tive programming is the notion of a reaction: reactive programs are reacting to activations issued from
the external world. Program reactions are often called instants. The two main notions are reactive in-
structions whose semantics is bound to the notion of instants, and reactive machines whose purpose is
to execute reactive instructions in an environment made of instantaneously broadcast events.
SugarCubes and Junior [9] are Java-based languages for programming reactive behaviors. Junior is
a descendant of SugarCubes. In this paper, we focus on Junior. Basically, programming with Junior
means:

• writing a reactive instruction, which describes an application program.

• declaring a reactive machine, to run the program.

• adding the program into the machine.

• running the machine: this is usually performed using a non-terminating loop, which cyclically
makes the machine and the program react.



Programming in Junior has a dynamic aspect: machine programs can be increased by new reactive in-
structions added during machine execution. New instructions added to a machine do not have to wait for
the termination of the actual program, but are run concurrently with it.
Junior concurrent reactive instructions can communicate using broadcast events that are processed by
reactive machines. Broadcasting is a powerful and fully modular means for communication and syn-
chronization of concurrent components. Broadcasting in Junior has a strong coherency property: during
a machine reaction instant, the same event cannot be tested both present and absent, even by two distinct
concurrent instructions.
Junior is pure Java. It is provided via an API named Jr[10]. Using Jr, programmers can define reactive
instructions and reactive machines, and have possibility to run them. Junior can be seen as a Java pro-
gramming framework. From this point of view, Junior provides Java programmers with an alternative
to the standard threading mechanism. The benefit is that Junior gives solutions to some well-known
problems of Java threads (see [11] for a description of those problems, and [12] for a comparison of Java
threads with the related SugarCubes formalism).

3.1 Reactive instructions

Reactive instructions are state-based statements, activated by reactive machines. Some cyclic instruc-
tions are never ending across instants, while others are completely terminated after one or several acti-
vations. Reactive instructions are not reentrant, because they have a state. When they are added to the
reactive machine, they must be copied, in order to get new execution instances. Reactive instructions
are Java objects implementing theProgram interface. They are built using static methods of the class
Jr. Reactive instructions are composed from a small set of basic instructions, control instructions, event
instructions, instructions used to interface with Java and migration instructions.

Basic Instructions

• Nothing() does nothing. It is the beginning instruction of the reactive machine.

• Stop() stops the execution up to the next instant (only its execution branch, not all the program).

• Seq(A,B) puts two reactive instructions A and B in sequence. The second is executed when the
first is finished. TheSeq instruction is finished when the two instructions are terminated.

• Par(A,B) puts two reactive instructions A and B in parallel. The two instructions begin their
execution at the same instant. ThePar instruction is finished when the two instructions terminate.

• Repeat(n,A) andLoop(A) allow looping on a reactive instruction A, respectively n times or
infinitely.

Control instructions

• If(cond, A, B) tests cond. If it is true, then it executes A, else B.

• When(event, A, B) is like the If-instruction, but it tests the presence of one event.

• Until(event, A, B) executes A until the event arrives, and then branches to B.

• Control(event, A) executes A only during instants where event is present.

Instructions interfacing with Java

• Atom(action) executes a Java program that implements theAction interface. This is an
atomic action that possibly performs some interaction with the Java environment. It begins and
finishes at the same instant.

• Link(Object, A) links reactive instructions to a Java object.

Event instructions

• Generate(event) adds event to the environment for the current instant.



• Generate(event, value) adds event to the environment for the current instant and asso-
ciates a value to this generation.

• Await(event) stops the execution until the presence of event.

• Scanner(event, scanAction) executes, for each occurrence of event, the java action
scanAction (it is like anAction , except that it reacts to an event parameterized by the value
associated to the occurrence of event).

Migration instruction

• Freezable(event, A) allows freezing A when event is present. It stops the execution of A
and puts the residual of A out of the reactive machine. The extracted program can be retrieved and
put again in a reactive machine.

3.2 Reactive machine

The role of a reactive machine is to load and execute reactive instructions and to decide ends of instants.
The end of an instant is decided when all events are processed and when all programs in the reactive
machine are stopped, terminated or waited some events. Reactive instructions added to a machine are put
in parallel with the machine program. However, to simplify programming and reasoning about reactive
programs, an instruction added to a machine during the course of a reaction is not immediately run by
the machine; actual adding of the instruction to the machine program is delayed to thebeginning of the
next instant. Actually, this is quite a general attitude in Junior: to avoid interferences, program changes
issued by the external world are systematically delayed to the next instant.

3.3 Events

Events are non-persistent data with a binary statuspresentor absent, possibly changing at each instant.
An event becomes present during one instant as soon as it is generated. During one instant, the same
event cannot be tested as present by one component and as absent by another component. In other words:
events are broadcast. The absence of events is decided at the end of an instant, so the reaction to the
absence of an event is done at the next instant (see [3] for details).

4 Icobjs

Icobjs is a means to combine reactive behaviors in a visual way, using elementary behaviors and ”Icobjs
builders”. The way to create or to model the graphical aspect is not detailed here. The goal of our
work is rather to describe elementary behaviors, to make them as most modular as possible and to create
mechanisms to combine them easily.

4.1 The API

To solve the problems introduced in Section2.2, we have realized a new more modular version of the
Icobjs API. This version is based on the use of theExtensibleObject interface that gives the means
to dynamically add new fields (as for Java beans) and to avoid creating an inheritance tree for elementary
behaviors. To add and store dynamically new fields, we use a Java Hashtable. A hash table can contain
all types of object, which are accessible by a string identifier. This solution makes the various behaviors
much more modular. This solution allows adding, removing and modifying fields or information of
involved objects during execution.

public interface ExtensibleObject{
Object getValueOfField(String fieldName);
void setValueOfField(String fieldName,Object aValue);
void removeField(String fieldName);

}



Our aim is to define a minimal API as general as possible. We will not describe the whole API, but
only two main points: theIcobj class and theWorkspace interface. Both implementExtensibleObject
so everybody can add some new information and then the environment become more modular.Icobj
represents all entities in the simulation andWorkspace is the container of all Icobjs. Each icobj has
the following fields:

• a name to identify it.

• a reference towards the workspace that contains it. An icobj can only ”live” in one workspace at a
time.

• its zone and its appearance for the graphical part. The zone represents the position of the icobj in
the workspace and the area or volume it takes.

• for the behavioral part, two behavioral fields: the Cloneable behavior and the Not-Cloneable one.
We chose to make a difference to be more accurate in the description of behaviors. Icobjs builders
(cf. Section4.2) copy the Cloneable field and use it to create more complex behavior. The Not-
Cloneable describes a specific behavior that can’t be duplicated. This is useful to define appearance
in the behavior.

The second main notion is the Workspace Java interface. It represents the virtual world or the sim-
ulation. It is the interface with users; it manages and generates, for example, all mouse or keyboard
events. It adds or removes behaviors from the reactive machine and makes it react to execute all con-
tained behaviors. The workspace is also in charge of the graphical part. A workspace has the following
methods:

• getName() gives the identifier of the workspace.

• registerIcobj(Icobj) anddestroyIcobj(Icobj) to add or remove Icobjs.

• listOfOverlappingIcobj(Zone) gives the list of all icobjs present in the specified zone
of the workspace.

• getMachine() gives a link to the reactive machine.

• needToRender() andrenderScene() to refresh the graphical part.

• getDimensionNumber() gives the number of dimension of the simulated world (if it is a 2D
or 3D world and if the workspace uses X, Y and/or Z axes).

4.2 Building icobjs

There are two kinds of Icobjs: elementary ones and the Icobjs builders that are the means to create new
icobjs by composing behaviors of the others ones. All elementary icobjs and Icobjs builders form a kind
of toolbox to build new icobjs with a more complex behavior (see Figure 2).
Elementary icobjs are icobjs whose behavior is an atomic action. Constructed icobjs can be considered
as elementary icobjs, because they can be re-used for new construction. On the figure 1, two elementary
behaviors are represented: the behavior of the first one is to make the icobj move right and the other to
make it move down. The constructed icobj has a behavior, which makes the icobj move to the right and
then down.
Icobjs builders are the way to use Icobjs at the applicative level and thus to build complex behaviors
starting from the elementary ones. A builder is an icobj whose behavior allows building other behaviors,
to put elementary behaviors together and add some control structure in order to create a more complex
one. Here are detailed some builders with some related icobjs:

This represents the basic builder. It allows users to create new icobjs and to give them a
behavior. Figure1 and figure2 proposes an example of its using. At each click:

• If another icobjs is in the same zone as the builder (this means that the zone of the builder and the
zone of the icobj intersect), the builder clones the behavior of this icobj and puts it in sequence
with what it had previously cloned. Figure1 show a scenario where, first, the builder is put on



the icobj ”right” and clones its behavior (go right). Then it is put on the icobj ”down”, clones its
behavior (go down) and put it in sequence with the first cloned behavior. Finally, it goes on a space
where there is no icobj and create a new one whose behavior is to go right and then down.

Figure 1: Construction of a sequence of two behaviors

• If several icobjs are in the same zone, the builder makes a copy of the behavior of all icobjs, puts
them in parallel and puts this behavior in sequence with what it had previously cloned. As seen on
figure2, the builder clones the behaviors of the two icobjs (go right and go down) and creates an
new icobj whose behavior is to go right and down at the same time.

Figure 2: parallelization of two behaviors

• Finally, if no icobj is in the same zone than the builder, the construction ends and a new icobj is
created. Its behavior is what the builder had previously cloned. Now, another construction can
start again with the default initial behavior:Nothing .

This represents the event emission builder. It corresponds to the reactive instructionGenerate .
The name of the emitted event can be changed via the Textfield builder described below. If one puts this
builder in the same zone than the Textfield builder and clicks on it, the name of the event becomes the
character string written in the Textfield.

This builder, the Event-Waiting one, is the counterpart of the previous one. It corresponds to
the reactive instructionAwait . As previously, the name of the event can be changed via the Textfield
builder.

This Icobjs builder allows preempting behaviors as the reactive instructionUntil . The event
which starts the preemption can be modified via the Textfield builder. This builder works in the same
way as the creation builder, except that the resulted behavior can be preempted on reception of the asso-
ciated event.



This builder corresponds to the reactive instructionControl that filters the control according
to the presence of a specified event. The controlled behavior is executed only when the event is present.
The use of this builder is identical to the use of the preemption builder.

The Textfield icobj allows changing the event parameter used by builders. It also allows
giving a name to the new icobj created with the creation builder.

This is another kind of builder because it modifies the behavior of existing icobjs. It gives the
mouse control behavior to the Icobjs on which it is applied.

This is a builder that produces aWorkspaceIcobj . It is an icobj with a workspace as
appearance. This new workspace is totally independent of its containers. This creates a new clean
environment in which all generated events don’t affect its container workspace and vice-versa. A drag-
and-drop mechanism allows to move icobjs from a workspace to another.

Figure 3: Icobjs factory

5 Conclusion and perspectives

Icobjs is a means that enables to build reactive behaviors by visual composition. This system makes it
possible to program the behaviors of entities by a rather simple means, without needing to learn a ”real”
programming language, but a lighter version of it. We create some elementary behaviors that are general
enough to pass in 2D and 3D worlds while keeping the same behavior.
Another version of Icobjs, carried out within the framework of project IST-PING (cf. [13]) and dedicated
to distributed simulations was realized. The goal of this project was to define a platform for large-scale
interactive multi- participants applications on the Internet, especially game. This version was a way to



make a kind of collaborative work by giving the capacity to create behaviors, which can be exported on
all simulations. Each one can create a part of the distributed virtual world.
A tool allowing the visualization of terms of the Ambients calculus (cf. [14]) has been realized using
the Icobjs API. It uses the model of Mobile Ambients, Robust Ambients and Controlled Ambients and
represents it in a funny way. It is accessible on the website of the MIMOSA project (cf. [15]]).

Next work will define a way to modify a behavior that was built or to know exactly what it does.
Therefore, it is planned to be able visualizing this behavior in the form of a tree whose leaves are the
elementary behaviors. Using this tree would allow removing certain parts of the behavior or to freeze
the execution of it. Introspection mechanisms will be added and this will provide a mean to parameterize
elementary behaviors.
For the moment, it is not possible to program, visually and at runtime, new atomic behaviors. We plan
to use a kind of console that would help to write some new Java code, compile these new creations and
add it at runtime in the simulation.
Finally, we want to add them a mechanism to type the field present in the Hashtable (indeed, for the
moment, each elementary behavior must verify the type of the recovered fields).

References

[1] Fréd́eric Boussinot, Jean-Ferdinand Susini, Fréd́eric Dang Tran, and Laurent Hazard. A reactive
behavior framework for dynamic virtual worlds. InProceedings of the sixth international confer-
ence on 3D Web technology, pages 69–75. ACM Press, 2001.

[2] http://www.pps.com.au/iconauthor.html.

[3] http://java.sun.com/docs/book/tutorial/javabeans/index.html.

[4] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the future: the story of squeak,
a practical smalltalk written in itself. InProc. of the ACM SIGPLAN conference on Object-oriented
programming systems, languages and applications, October.

[5] Fréd́eric Boussinot. Icobj programming. Technical report, Octobre 1996.

[6] http://www-sop.inria.fr/mimosa/rp/Icobjs.

[7] http://www-sop.inria.fr/mimosa/rp/SimulationInPhysics/.

[8] D. Harel and A. Pnueli. On the development of reactive systems.Logics and Models of Concurrent
Systems, NATO ASI Series(13):477–498, 1985.

[9] Laurent Hazard, Jean-Ferdinand Susini, and Fréd́eric Boussinot. The junior reactive kernel. Tech-
nical Report RR-3732.

[10] Laurent Hazard, Jean-Ferdinand Susini, and Fréd́eric Boussinot. Programming with junior. avail-
able athttp://www-sop.inria.fr/mimosa/rp/Junior, 2000.

[11] JavaSoft. Why javasoft is deprecating thread.stop, thread.suspend, thread.resume and run-
time.runfinalizersonexit.

[12] Fréd́eric Boussinot and Jean-Ferdy Susini. Java threads and sugarcubes.Software–Practice &
Experience, 30(5):545–566, 2000.

[13] http://www.pingproject.org.

[14] Luca Cardelli and Andrew D. Gordon. Mobile ambients. InFoundations of Software Science and
Computation Structures: First International Conference, FOSSACS ’98. Springer-Verlag, Berlin
Germany, 1998.

[15] http://www-sop.inria.fr/mimosa/ambicobjs/.

http://www.pps.com.au/iconauthor.html
http://java.sun.com/docs/book/tutorial/javabeans/index.html
http://www-sop.inria.fr/mimosa/rp/Icobjs
http://www-sop.inria.fr/mimosa/rp/SimulationInPhysics/
http://www-sop.inria.fr/mimosa/rp/Junior
http://www.pingproject.org
http://www-sop.inria.fr/mimosa/ambicobjs/

	Introduction
	Related Works
	Different visual language
	Previous work on Icobjs

	Reactive approach
	Reactive instructions
	Reactive machine
	Events

	Icobjs
	The API
	Building icobjs

	Conclusion and perspectives

