
Debugging Scheme Fair Threads

Damien Ciabrini
INRIA Sophia Antipolis

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

Damien.Ciabrini@sophia.inria.fr

Abstract

There are two main policies for scheduling thread-based concur-
rent programs: preemptive scheduling and cooperative scheduling.
The former is known to be difficult to debug, because it is usually
non-deterministic and can lead to data races or difficult thread syn-
chronization. We believe the latter is a better model when it comes
to debugging programs.

In this paper, we discuss the debugging of Scheme Fair Threads,
that are based on cooperative scheduling and synchronous reactive
programming. In this approach, thread communication and syn-
chronization is achieved by means of special primitives called sig-
nals, which ease the debugging process. We present the tools we
have implemented to deal with the main types of concurrent bugs
that can arise in this special programming framework.

1 Introduction

Modern systems offer multitasking inside a single application:
there can be many virtually independent flows of control, usually
called threads. These are commonly used in programs nowadays.

Concurrent programming is a difficult task. First, because reason-
ing about interleaved flows of control is an intrinsically difficult
task. Second, because bugs caused by multi-threaded programming
are usually very difficult to track down with traditional debuggers.

There are various policies for scheduling multi-threaded programs.
The two major categories are preemptive scheduling and coopera-
tive scheduling. Each one comes with its pros and cons with respect
to debugging.

1.1 Preemptive or Cooperative Scheduling

Preemptive scheduling appeared in operating systems [13] in the
late 70s and has been democratized in languages in the mid 90s.
In this model, the thread library (usually the underlying OS) may

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Damien Ciabrini.

suspend the execution of a thread at any time to schedule another
one. It can also benefit from Symmetric Multi-Processor hard-
ware (henceforth SMP). Unfortunately, preemptive multi-threading
is implemented in a way that leads to non-deterministic scheduling.
It is known to be difficult to program with and painful to debug:

• Locks have to be acquired before accessing shared memory to
avoid data races. Omitting locks may cause data corruption,
in which case debuggers become almost useless.

• Synchronization by means of mutexes can be missed if notifi-
cations are sent before some threads started to await them. In
this case, debuggers hardly help because they do not provide
tools for tracing the order of synchronization.

• It is very difficult to reproduce a bug because one cannot play
the same execution twice. Actually, the simple fact of insert-
ing prints in a program is sufficient to make a bug no longer
appear at run-time.

• Complex features like priority boost or scheduling policies are
non-portable, and debuggers usually do not provide support
for them. Using these features can lead to bugs like priority
inversion [20], that are difficult to track or to explain.

Cooperative scheduling is an older model, in which it is the respon-
sibility of threads themselves to cooperate, i.e, to give back control
so that another thread can continue to execute. This is a determin-
istic model where only one thread is executing at a time (which
hardly benefits from SMP). This scheduling model greatly eases
the debugging for various reasons:

• Debuggers do not have to deal with data races, since only one
thread is active at a time.

• The scheduler is deterministic. This means that when a bug
occured, it can be easily reproduced by replaying the same
execution.

In cooperative schedulers, problems like dead-locks can still occur.
Moreover, some specific problems are introduced because of man-
ual cooperation:

• If a thread fails to cooperate, the whole program is blocked.

• Too few cooperations can lead to interactivity problems, for
instance in Graphical User Interfaces (henceforth GUI).

• Too many cooperations can lead to unnecessary context
switches and poor performance. This is a problem similar as
taking too many locks to protect shared variables.

Contrary to bugs caused by non-determinism, these types of bug are
much easier to detect and to correct with the help of a debugger.



1.2 An Hybrid Solution

The Bigloo [18] Scheme compiler provides an alternative model
for multi-threaded programming called Scheme Fair Threads [17].
It is a programming framework based on synchronous reactive pro-
gramming1 with the following characteristics:

• It provides a cooperative and deterministic scheduler. Thus
there is no need to acquire locks and execution can be replayed
at will.

• Threads communicate by broadcasting signals into the sched-
uler. It is guaranteed that signals are seen by all threads during
a logical round of schedule called an instant.

• It still provides the ability to do I/O operations asyn-
chronously, i.e, without blocking the scheduler and also by
taking advantage of SMP. Non-determinism due to asyn-
chronous I/Os is confined into well defined locations in the
scheduler.

In Scheme Fair Threads, a debugger still has to deal with dead-
locks or live-locks, as it is the case with classical cooperative or
preemptive scheduling. However, it does handle communication
and synchronization bugs differently, because mutexes are aban-
doned in favor of broadcast signals. The debugger has to provide a
new set of tools to deal with specific problems introduced by this
programming framework.

We have extended BUGLOO [2], a source-level debugger for Bigloo
programs, in order to support the debugging of fair threads. In this
paper, we do not talk about POSIX-like mutexes or condition vari-
ables, as Fair Threads do not use them to communicate. Instead,
we concentrate on the debugging of cooperation points, signals and
instants:

• We have enhanced the single stepping by introducing new step
points that take into account cooperative scheduling and com-
munication by broadcast signals.

• We provide a tool for inspecting the state of fair threads and
for viewing signals present in the scheduler when execution is
suspended. This tool is used to fix bugs like dead-locks and
live-locks that occur during a single instant.

• We provide a tool to graphically trace the scheduling of fair
threads and the broadcasting of signals throughout the execu-
tion. It is an effective way to fix communication bugs that
occur across many instants.

1.3 Overview

In Section 2, we detail the Fair Threads programming model and
its usage in Scheme. In Section 3, we present the main debugging
support for Fair Threads, namely the single stepping and state in-
spection. In Section 4, we describe the tool for tracing scheduler
executions. In Section 5 we describe the typical usage of our tools
on a producer-consumer program with asynchronous I/Os. In Sec-
tion 6 we briefly describe how the debugger is implemented and we
present the overall experience we had with our tools. In Section 7
we present related work. Finally, Section 8 concludes and shows
some future directions for our work.

1See http://www-sop.inria.fr/mimosa/rp

2 Scheme Fair Threads

Scheme Fair Threads is a thread-based concurrent programming
framework based on Java Fair Threads [1]. In this section we
present the Fair Threads programming framework and the concept
of fair scheduling. As an example, we describe the execution of an
abstract program. We then give a brief overview of the Fair Threads
API, along with the type of concurrent bugs that can occur in this
programming framework.

2.1 Fair Threads and Fair Scheduling

In the Fair Threads model, each fair thread is mapped to a native OS
thread and has its own dynamic environment. Threads are attached
to a cooperative scheduler, in which only one thread is executed
at a time. When a thread cooperates, the scheduler gives control to
another thread. Note that the scheduler is deterministic, and is itself
a fair thread.

The Fair Threads model has a clear semantics that emphasizes fair
scheduling and powerful means of synchronization. Both principles
are described below:

• The scheduling of fair threads is decomposed into logical
units of schedule called instants. During an instant, fair
threads communicate together by awaiting and broadcasting
signals into the scheduler. A signal is present until the end of
instant and can be associated with a value.

• If a signal is broadcast during an instant, all the threads wait-
ing for it are guaranteed to be notified before the end of the
instant. In particular, if a fair thread waits for a signal that
has already been broadcast in the instant, it is immediately
notified and continues its execution.

• A signal can be broadcast many times in the same instant. Fair
threads can wait until the next instant to obtain the list of all
the values associated with a signal that were generated in the
previous instant.

• A fair thread can be re-elected for schedule in the same instant
if signals have been broadcast since its last election. An in-
stant terminates when all the fair threads have been executed
and no new signal has been broadcast.

2.2 A Simple Program

To understand how fair threads are scheduled, let us describe the
execution of the following abstract program composed of three fair
threads.

A B C

-------------- ----------------- ---------------

1: await sig1 1: broadcast sig1 1: await sig1

2: await sig2 2: yield 2: broadcast sig2

3: yield 3: broadcast sig3 3: await sig3

4: await sig1

Instant 1: fair thread A gets blocked in line 1 waiting for signal
sig1 to be broadcast. Next, fair thread B broadcasts sig1 in line
1, then it cooperates in line 2 to explicitly complete its execution
for the instant. At this point, the scheduler re-elects fair thread A
because signal sig1 has been broadcast in the scheduler. This fair
thread then blocks waiting for signal sig2. Then, fair thread C
takes the control. It does not block on signal sig1 because it has
already been broadcast (by B) during the instant. It broadcasts sig2
and blocks, waiting for signal sig3. At this point, the instant is not

http://www-sop.inria.fr/mimosa/rp


over: the scheduler re-elects fair thread A because signal sig2 is
now present. Then, this fair thread explicitly cooperates in line 3.
At this very point all threads are blocked and no new signal has
been broadcast. This marks the end of instant 1. Signals are reset.

Instant 2: fair thread A gets blocked in line 4 waiting for signal
sig1 which has not been broadcast yet during the instant. Fair
thread B broadcasts signal sig3 then it terminates its execution.
Fair thread C is awakened by signal sig3 in line 3 and it terminates.
At this point all threads are blocked, the instant 2 ends and signals
are reset.

Instant 3: fair thread A is still blocked for the instant and for the
remaining instants until somebody broadcasts sig1.

2.3 API Overview

The Fair Threads API has been designed to be fully compatible
with the SRFI-18 by M. Feeley [5]. This document proposes an
extension for multi-threaded programming in Scheme, inspired by
the Posix-1 API and the Java API. In Fair Threads, abstraction like
mutexes or condition variable are implemented on top of signals.
The previous abstract example is implemented in Fair Threads as
followed:

1: (define (funA)
2: (thread-await! ’sig1)
3: (thread-await! ’sig2)
4: (thread-yield!)
5: (thread-await! ’sig1))
6:

7: (define (funB)
8: (broadcast! ’sig1)
9: (thread-yield!)
10: (broadcast! ’sig3))
11:

12: (define (funC)
13: (thread-await! ’sig1)
14: (broadcast! ’sig2)
15: (thread-await! ’sig3))
16:

17: (define (main args)
18: (thread-start!
19: (make-thread funA "fairthread A"))
20: (thread-start!
21: (make-thread funB "fairthread B"))
22: (thread-start!
23: (make-thread funC "fairthread C"))
24: (scheduler-start!))

We now describe the major constructions of the Fair Thread API.

2.3.1 Basic Thread Manipulation

As shown in the previous example in line 19, a fair thread is created
with the (make-thread thunk . name) procedure, which takes
a thunk to execute and an optional name . A fair thread must be
started with (thread-start! thread) before it can be executed
by the scheduler.

Cooperation is achieved by calling the (thread-yield!) proce-
dure, as shown in lines 4 and 9. One thread can terminate another
thread with the (thread-terminate! thread) procedure.

Unlike many threading systems, the scheduler has to be started ex-
plicitly with (scheduler-start!). When started, the scheduler
runs until all its threads are completed or terminated.

2.3.2 Communication by Signals

A fair thread can broadcast a signal into the scheduler with the
(broadcast! sig . value) procedure. A signal can be an ar-
bitrary Scheme object. The broadcast can be associated with an
optional value that will be received by waiting threads on awake.
The default value is the symbol #unspecified, to indicate that no
particular value is associated with the broadcast of the signal.

A fair thread can await a signal by means of the (thread-await!
sig) procedure. It can also await several signals at a time with
(thread-await!* sigs). At last, a fair thread can get all the
values broadcast in the instant for a particular signal by using the
(thread-get-values sig) procedure. The fair thread waits un-
til the end of the current instant, and at the next instant it is awak-
ened with the list of broadcast values.

Mutexes and condition variables are implemented on top of signals
and are not presented in detail in this paper. They are still accessible
by their respective SRFI-18 procedures.

2.3.3 Asynchronous I/O and SMP

Fair threads can start special service threads whose purpose is to
do long lasting I/O operations in the background without blocking
the scheduler. Such threads are standard OS threads that benefit
from SMP. No lock is needed in user space because service threads
cannot execute user procedures.

On I/O termination, a signal is broadcast into the scheduler to awake
the fair thread that requested the operation. Here is a subset of the
service threads currently supported:

• output: (make-output-signal p s) spawns a service
thread that writes the string s to the output port p.

• input: (make-input-signal p n) spawns a service thread
that gets n characters from the input port p.

• socket: (make-accept-signal s) spawns a service thread
that waits for a connection on the socket s.

• process: (make-process-signal p) spawns a service
thread that forks process p in the background.

By definition, using asynchronous I/Os introduces a certain kind of
non-determinism. However, it is not harmful because it is confined
into service threads, thus it cannot cause any data corruption in user
space. Moreover, the fairness of the scheduler is maintained since
from a thread’s point of view, being notified of an I/O termination
is exactly the same thing as being awakened by a signal.

2.4 Classification of Fair Threads Bugs

We saw that with Fair Threads, communication or synchronization
is always based on signals and instants instead of mutexes and con-
dition variables. In this framework, the type of bugs that can be
caused by multi-threading can be classified in two subsets:

1. Bugs that can be fixed by inspecting the state of the program in
the current instant. An example of such bug could be a dead-
lock that occurs because all fair threads are awaiting signals.



It could also be a bug caused by a fair thread which is stuck
in a live-lock, i.e, a thread that repeatedly waits for a signal
that has already been broadcast, thus preventing the instant to
terminate. To fix this kind of errors, we provide two tools:
an enhanced single stepper and a scheduler and fair thread
inspector. Both are presented in Section 3.

2. Bugs for which one needs to remember the state of the pro-
gram several instants backward in time. For example, in a
badly designed sequence of successive communications, a fair
thread can await a signal in a particular instant while it was
broadcast in a previous instant. Dead-locks and live-locks can
also be caused by a succession of wrong synchronization. To
fix this kind of errors, we provide a tool to graphically visu-
alize what happened in the scheduler during a succession of
instants. It is presented in Section 4.

3 Debugging Fair Threads

In this work, we have included debugging support for Fair Threads
into BUGLOO, a debugger for Scheme programs compiled into Java
VM [12] bytecode. BUGLOO is a complete source-level debugger
with a command line language. It is integrated in the Bee devel-
opment environment [16], and is meant to be used from Emacs or
Xemacs.

The tools we have implemented are displayed in a new GUI layer
which is used in conjunction with Emacs. It is implemented in
Biglook [7].

In this section, we show how to start a debugging session and we
present the first two debugging tools we have implemented: an
enhanced single stepper and a scheduler and fair thread inspector.
They can be used to fix bugs like dead-locks or live-locks that may
occur during an instant. In the followings of this paper, the term
debuggee will denote the program that is being debugged.

3.1 The Fair Threads Debugging Toolbox

A typical debugging session consists in connecting an Emacs buffer
with BUGLOO, setting breakpoints somewhere in the source and
running the program. Let us suppose that we ran the little program
presented in Section 2.3 and that the execution was suspended on
a breakpoint line 13. Then, the user can pop up the Fair Threads
toolbox showed in Figure 1, from which all the debugging tools are
accessible. From top to bottom, the toolbox contains a set of buttons
for enhanced single stepping, buttons to display traces of scheduler
executions, and a list of fair threads present in the program. We will
now describe these tools.

3.1.1 Enhanced Single Stepping

Signals and instants introduce new logical points of control in the
execution. We have thus enhanced the classic single stepping oper-
ation by providing six new possible step points accessible through
buttons in the toolbox:

• End of Instant continues the execution until the end of the
current instant, and suspends the debuggee just before the next
instant begins. It is useful to see the state of fair threads or all
the broadcast signals at the end of an instant;

• Beginning of Instant suspends the execution as soon as a new
instant is started. It allows one to quickly step up to a point
that will be single stepped more precisely for debug purposes;

Figure 1. The Fair Threads debugging toolbox

• Thread Switch suspends the execution as soon as a new fair
thread gets the control. It is useful to see how threads are
scheduled during an instant;

• Next Await continues the execution until any thread awaits a
signal. It can be used to single step a communication mecha-
nism;

• Next Broadcast continues the execution until a thread broad-
casts a signal in the scheduler. It is the dual of the previous
step action;

• Any Scheduler Event suspends the execution on any of the
preceding event.

3.1.2 Trace of Events

Throughout the execution, scheduler events like thread switch, sig-
nal await, signal broadcast or end of instant can be recorded. Our
interest in tracing these events is twofold:

1. It enhances the debugging information provided by the fair
thread inspector that will be presented in Section 3.2. For
instance, it allows the debugger to remember which thread is
responsible for a particular broadcast, along with its location
in the source at this time.

2. It allows one to understand what happened precisely in the
scheduler across many instants, and to analyze this informa-
tion off-line.



In the debugging toolbox, two options can be checked to control the
recording of events.

• Enhanced inspection. When checked, the recording of
events is activated as soon as the execution is suspended.
When the user starts single stepping the program, he automat-
ically gets enhanced information in the inspectors2. Enhanced
inspection is automatically switched off as soon as the execu-
tion is resumed, to avoid performance penalties during normal
execution. In this trace mode, recorded events are reset every
new instant.

• Record Scheduler State. When checked, the event record-
ing stays activated during execution and across instant bound-
aries. Later, the resulting trace can be cleared or shown by
clicking on the appropriate buttons (see Figure 1).

3.1.3 List of Fair Threads

The last part of the debugging toolbox shows the lists of live fair
threads (this frame does not show native OS threads present in the
program). The list is arranged into a tree where the directory nodes
represent the schedulers, and the leaves represent the attached fair
threads. Note that there may be several schedulers in a program, and
that schedulers can be nested, since they are actually specialized fair
threads.

Figure 1 shows the three fair threads present in the previous pro-
gram, plus their scheduler. Threads are identified by their name, or
by a unique thread descriptor that can be used in the BUGLOO com-
mand line. Double-clicking on a node opens a fair thread inspector
in a new window. It is described below.

3.2 Fair Thread Inspector

An inspector provides a graphical representation (henceforth called
a view) of the state of a debuggee object at the time the execution
was suspended. BUGLOO provides various specialized views for
different object types. In particular, we have implemented views
for the three main types introduced by Fair Threads: schedulers, fair
threads and signals. Below, we describe the basic services provided
by an object inspector. Then we present the specific Fair Threads
views.

3.2.1 Object Inspectors

Inspectors are top-level windows that provide a set of common fea-
tures and attributes. Figures 2, 3 and 4 show screenshots of different
inspectors.

The bottom status bar shows the type of the inspected object. In
a view, fields that point to other debuggee objects are themselves
inspectable. A common pop-up menu lets the user inspect objects
within the current inspector window or in a new one, as show in
Figure 2. The toolbar at the top of the view provides a set of generic
actions available in every inspector:

• When the user inspects a new object in the same inspector
window, the old view is kept in a view history and is accessible
through the top toolbar. The history is managed in a browser-
like fashion: one can go backward or forward. When a new

2Enhanced debugging is only fully effective at the beginning of
the next instant.

Figure 2. Scheduler Inspector

Figure 3. Fair Thread Inspector

view is created, it is inserted at the current point in history,
and all the views forward this point are forgotten.

• A particular object type can be associated with many graph-
ical views. For instance, a scheduler can be visualized as a
simple fair thread or as a scheduler (more specific view). The
third button in the toolbox can be used to change the current
view (see Figure 3). A default view is provided for all types.
It is basically an object inspector and is not presented in this
paper.

3.2.2 The Scheduler View

The screenshot shown in Figure 2 represents the state of the sched-
uler when the program presented in Section 2.3 is suspended at line
13. The scheduler view is decomposed in four parts. The first part
exposes basic information concerning the scheduler: its name, the
current instant at the time the execution was suspended, and its par-



Figure 4. Signal Inspector

ent scheduler, if any (or the symbol [none]).

The second part is a table widget that shows all the fair threads
attached to this scheduler. Double-clicking on a line pushes a new
view of the selected fair thread in the inspector. Information about
a fair thread includes its name and its current state in the scheduler.
Unlike POSIX threads, a fair thread can be in six different states:

• running: the fair thread is currently executing;

• standby: the fair thread is eligible for execution during the
instant;

• await: the fair thread is awaiting signal(s);

• end of instant: the fair thread has terminated its execution for
the current instant;

• terminated: the fair thread has terminated its entire execu-
tion;

• unattached: the fair thread has not been started yet, because
it is not attached to a scheduler. Obviously this state can only
be seen in the fair thread view presented further on.

The last two parts of the inspector are devoted to signals.

• A first table represents signals that have been broadcast in the
scheduler during the instant. Information about a signal in-
cludes its name and its value (or [...] if the signal has been
broadcast several times). Double-clicking on a line pushes a
new view of the selected signal in the inspector.

• A second table represents signals that are awaited by threads,
and that have not been broadcast in the scheduler yet. As soon
as an awaited signal is broadcast, its entry in the table migrates
to the first table. An entry is composed of the signal’s name
and its awaiting threads.

3.2.3 The Fair Thread View

The fair thread view presented in Figure 3 is quite simple. It first
shows the name of the fair thread, and that of its scheduler. If the
latter is clicked, a new view is pushed on the inspector. The view
also shows the state of the fair thread. It can be any of those pre-
sented in the scheduler view. Moreover, if the thread is awaiting
one or more signals, their names are displayed in a list-box.

In the screenshot, we see that fair thread A is awaiting signal sig2.
Using many inspectors at a time, one can visualize in detail the state
of several fair threads.

3.2.4 The Signal View

The signal view is composed of the name of the inspected signal
and of two other tables. The first table contains the different values
associated with each broadcast of the signal in the current instant. If
enhanced inspection is enabled, each signal broadcast comes with
additional information: the fair thread that broadcast the signal and
its location in the source at the time of the broadcast. In the screen-
shot of Figure 4, we see that fair thread B has broadcast signal sig1
from function funB.

The second part of the inspector lists the threads waiting for this
signal. If the signal has already been broadcast in the instant, the
table is empty.

4 Tracing the Scheduling of Fair Threads

We already stated that the Fair Threads framework provides
stronger means of synchronization that mutexes, because during an
instant broadcast signals are seen by all threads.

In Section 3, we presented a set of tools to address communication
or synchronization problems that can occur during a single instant.
However, the user might need to remember what has occurred sev-
eral instants backward in time to understand the cause of a particu-
lar bug. These tool are not designed to provide such information.

In this section, we present a trace tool that is an effective way to vi-
sualize the state of a scheduler inside and between instants. It gives
the user a sharp vision of both the scheduling and the communica-
tion between fair threads throughout the execution.

4.1 The Trace Tool

When the trace tool is enabled in the debugging toolbox (Figure 1),
the user can display a graphical view of a scheduler execution.

For the sake of the example, let us run the little program presented
in Section 2.3 and trace its whole execution. We previously stated
that this program never terminates because one thread is waiting for
a signal while the others have already terminated.

In presence of a dead-lock, the typical action is to force the sus-
pension of the execution by hitting CTRL+C, and then requiring BU-
GLOO to display the recorded trace. The result is shown in Figure 5.
The trace is displayed as a graph:

• The vertical axis shows the fair threads attached to a scheduler
and all the signals that were broadcast during the recorded
execution slice. Signals always appear at the top, followed by
the scheduler3 and the fair threads.

• The horizontal axis represents the progression of the execu-
tion across the instants. Instant boundaries are delimited by
thick vertical grey lines, along with their respective number at
the bottom.

In the trace view, the execution is decomposed into logical units

3The scheduler appears in the trace because it is itself a fair
thread.



Figure 5. The Trace of the Example shown in Section 2.3

that represent atomic operations that occur inside a scheduler. For
example, such units can denote a context switch, the broadcast of
a signal, the waiting for a signal, the termination of a thread or the
start of an asynchronous I/O operation.

We now explain how to interpret the trace while we describe the
important parts of the execution:

At the beginning of instant 1, the scheduler named
scheduler1001 has the control of the execution. The con-
trol is symbolized by a thick black horizontal segment. Then,
the scheduler allocates the processor to fair thread A. This is
symbolized by another black segment.

Next, fair thread A awaits signal sig1, which suspends its execu-
tion. The waiting is symbolized by a black vertical arrow that points
to the life line of signal sig1. A dotted horizontal line is drawn to
indicate that this signal has not been broadcast yet during the in-
stant.

Next, the control switches to fair thread B which broadcasts sig-
nal sig1 into the scheduler. This is symbolized by a dashed arrow
pointing to the life line of sig1. To mark the presence of the signal,
a thick horizontal line is drawn up to the end of the instant. Remem-
ber that broadcasting a signal does not suspend a fair thread. Thus,
fair thread B has to cooperate explicitly. Overall, it has executed
2 logical operations in the scheduler, hence the double size of the
black segment.

Now that signal sig1 has been broadcast, fair thread A is re-elected
and continues its execution. The awaking is symbolized by a verti-
cal line starting from the signal life line and pointing to fair thread
A.

Later in the trace, the control switches to fair thread C, which then
awaits signal sig1. As this signal is already present in the sched-
uler, the fair thread can continue its execution in sequence. This
phenomenon is symbolized in the graph by a double-headed verti-
cal arrow.

When no other fair thread can be scheduled, the scheduler takes
back the control and the instant is over.

At the beginning of instant 2, all the signal are reset, thus their
respective life lines are empty. Fair thread A receives the control
and awaits signal sig1.

At the bottom right of the graph, one can distinguish two little diag-
onal crosses at the end of the schedule of fair threads B and C. This
indicates that both threads have terminated their entire execution
and will no longer be scheduled.

There is no instant 3. Indeed, the only remaining fair thread in
the scheduler is fair thread A. Unfortunately, this thread cannot be
scheduled because it is awaiting a signal that will never be broadcast
from now on. This leads to a dead-lock.

5 Bugloo in Action

In this section we present a complete debugging session on the clas-
sical producer-consumer problem. Several producers write data into
a global shared buffer of unlimited capacity. Several consumers can
read this data and print it using asynchronous I/O operations. We
split the complexity of the problem by presenting successively re-
fined implementations, along with the typical synchronization bugs
that may arise during this process and how we can track them down
with our tools.

5.1 First Implementation

First of all, let us model the problem in Fair Threads. The shared
buffer is a simple Scheme list. For the moment, we consider that I/O
operations are synchronous. Producers and consumers are naturally
modeled as fair threads that put (resp. get) data into (resp. from)
the buffer and then cooperate:



1: (define (buffer-fetch)
2: (let ((r (car *buffer*)))
3: (set! *buffer* (cdr *buffer*))
4: r))
5:

6: (define (buffer-put! val)
7: (if (null? *buffer*)
8: (set! *buffer* (list val))
9: (set-cdr! (last-pair *buffer*)
10: (list val))))
11:

12: (define (make-producer count name)
13: (make-thread (lambda ()
14: (let loop ((n count))
15: (put n)
16: (thread-yield!)
17: (loop (+ 1 n))))
18: name))
19:

20: (define (make-consumer name)
21: (make-thread
22: (lambda ()
23: (let loop ()
24: (print (current-thread) ": " (get))
25: (thread-yield!)
26: (loop)))
27: name))

The notification mechanism will occur by the means of the two pro-
cedure calls (put n) and (get). In the first implementation, the
communication model follows a simple wait/notify scheme: on data
availability, a signal is broadcast to awake all the consumers.

28: (define (wait sig)
29: (thread-await! sig))
30:

31: (define (notify sig)
32: (broadcast! sig))
33:

34: (define (put val)
35: (buffer-put! val)
36: (notify ’available))
37:

38: (define (get)
39: (if (buffer-empty?)
40: (begin

41: (wait ’available)
42: (thread-yield!)
43: (get))
44: (buffer-fetch)))

Note that the thread-yield! line 42 is mandatory after the wait.
Indeed, when a consumer awakes, data may have been already con-
sumed by another consumer. If there was no cooperation, the con-
sumer would retry another wait in the same instant. Because a
broadcast signal is present until the end of instant, the consumer
would not block anymore on signal available and would cause a
live-lock.

The following piece of program creates producers and consumers
and starts the scheduling:

(define (start)
(thread-start! (make-consumer "cons1"))
(thread-start! (make-consumer "cons2"))
(thread-start! (make-consumer "cons3"))
(thread-start! (make-consumer "cons4"))
(thread-start! (make-producer 1000 "prod1"))
(thread-start! (make-producer 0 "prod2"))
(scheduler-start!))

When we run the program, the following output is printed on the
screen:

#<thread:cons4>: 1000
#<thread:cons3>: 0
#<thread:cons2>: 1
#<thread:cons1>: 1001
#<thread:cons2>: 1002
#<thread:cons4>: 2
#<thread:cons3>: 3
#<thread:cons1>: 1003
#<thread:cons2>: 1004
#<thread:cons4>: 4
#<thread:cons3>: 5

The first reaction when seeing this output is to think that something
went wrong in the scheduling of the producers. Actually, one might
assume that producers generated two values in a single instant.

The trace shown in Figure 6 helps to find out why the threads are in-
terleaved this way. It turns out that producers broadcast their signals
correctly. In fact, the trace reveals that from an instant to another,
fair threads are scheduled in the exact opposite order, which gives
the impression of erroneous executions.

In conclusion, we showed that the trace tool is useful to understand
the interleaving of threads inside the scheduler. It showed that one
should not assume any particular execution order within an instant:
the scheduler is deterministic in the sense that another execution
will lead to the very same interleaving of fair threads.

5.2 Improving Notification

So far, data availability is signaled to all fair threads. This leads to
unnecessary context switches. We can improve the mechanism by
putting consumers in a queue, and by signaling availability only to
the first thread in this queue. We thus modify the former code as
follows:

(define (queue-empty?)
(null? *queue*))

(define (queue-push! val)
(set! *queue* (append! *queue* (list val))))

(define (queue-pop!)
(let ((th (car *queue*)))

(set! *queue* (cdr *queue*))
th))



Figure 6. The Trace of the Producers-Consumers with a Naive Implementation.

(define (wait sig)
(let ((self (current-thread)))

(queue-push! self)
(thread-await! self)))

(define (notify sig)
(if (not (queue-empty? sig))

(broadcast! (queue-pop! sig))))

Since any Scheme value can be used to denote signals, we can
make each fair thread waiting for a different signal, which is its
own thread descriptor returned by current-thread. This way, a
broadcast signal only awakes one consumer at a time.

5.3 Introducing Non-Determinism

We now replace the consumer’s print statement at line 24 with
a make-output-signal to support asynchronous I/O (see Sec-
tion 2.3.3). This way, the output operation is executed in parallel
(i.e, preemptively) and does not block other running fair threads,
for instance in case the output port is a very slow socket.

We also decide to remove the thread-yield! statement line 25,
as a call to make-output-signal always does an implicit cooper-
ation. The consumer code is rewritten as follows:

(define (make-consumer name)
(make-thread
(lambda ()

(let loop ()
(thread-await!
(make-output-signal
(current-output-port)
(concat (current-thread) ": " (get))))

(loop)))
name))

When we run the program, the following output is printed on the
screen:

#<thread:cons4>: 0
#<thread:cons3>: 1000
#<thread:cons3>: 2
#<thread:cons2>: 1002
#<thread:cons4>: 1001
#<thread:cons1>: 1
#<thread:cons1>: 1003
#<thread:cons2>: 3
#<thread:cons2>: 1004
#<thread:cons2>: 5
#<thread:cons3>: 4

The output seems coherent. In particular, the new interleaving order
and the inversion of data 1002 and 1001 can be explained by the
introduction of asynchronous I/O operations. Actually, this modi-
fied program contains a subtle bug which will be explained in detail
in the following section.

5.4 Profiling the Scheduling

At this time, the program seems bug-free, but the trace tool is still
useful to do some profiling analysis. Figure 7 exposes the behavior
of the scheduler when running the new program. By observing the
trace, we can draw various conclusions:

• The new notification mechanism is working as expected: each
producer awakes only one consumer by broadcasting a spe-
cific signal.

• Asynchronous I/O operations are materialized in the trace at
instant 2 by little diagonal arrows drawn at the extremities
of execution segments. An outgoing arrow means that a fair
thread started an asynchronous I/O operation and is awaiting
its termination. This operation always implies an implicit co-
operation. An ingoing arrow means that the consumer can
continue its execution because the I/O terminated.

• The trace reveals that asynchronous I/Os can terminate in the
instant they were started. This is problematic, because this al-
lowed consumers 1 and 2 to react many times in the same
instant and thus to consume more data than they were in-
tended to. We conclude that it was wrong to remove the call to
thread-yield! line 25 in the consumer code (Section 5.1).

• The trace also reveals that as soon as a consumer is awak-



Figure 7. The Trace of the Producers-Consumers with Enhanced Notification and Asynchronous I/Os.

ened, it explicitly cooperates (see cons2 near the end of in-
stant 1). Then, when it takes back control, it does an asyn-
chronous I/O. The trace tells us that the cooperation is due to
the thread-yield! located in the get function (line 42). In
Section 5.1, we stated that this cooperation point was manda-
tory because a consumer could be awakened while data was
no longer available. With the new notification mechanism,
this is no longer true. We conclude that this thread-yield!
leads to superfluous context switches.

In conclusion, we believe that the trace inspector is an effective way
to debug communication between threads during execution. It can
be used to track down algorithmic bugs, and it can also be employed
as a simple profiling tool, since it helps tweaking the cooperation
points in a program.

6 Practical Experience

In this section, we briefly explain how the debugger is implemented.
We describe the JVM debugging architecture, and how we hook
BUGLOO in the debuggee to debug fair threads. In a second part,
we present the practical experience we had with our tools and their
current limitations.

6.1 Implementation

The debugging architecture of the JVM is close to the one found in
GDB [21]: the debugger runs on a JVM, and it instruments the ex-
ecution of the debuggee which runs in a second JVM. This allows
BUGLOO to stay as unintrusive as possible. Debuggee’s events like
breakpoint hits, single steps or method entries are transmitted to the
debugger through an event queue connected to both JVMs. In order
to use BUGLOO, it is not necessary to compile the source program
in a special debug mode, nor to operate source-code instrumenta-
tion on it. The debugger queries remotely the debuggee JVM for
information such as a stack trace or the value of a variable. Motiva-
tions for such a design have been discussed in detail in a previous
paper [2].

To implement fair threads debugging, BUGLOO does not need spe-
cial hooks in the Bigloo runtime. It only uses some breakpoint trick-
ery and remote stack inspection. For instance, when the user single
steps to the end of instant, the debugger sets a temporary break-
point in scheduler code (somewhere in the Fair Threads runtime),
and it tells the debuggee JVM to continue its execution. Later,
when the execution breaks into the scheduler, the instant is over
and the breakpoint is discarded. The same trickery is employed to
implement the trace tool. Additionally, if enhanced inspection is
required (see Section 3.1.2), the debugger inspects the debuggee’s
stack frame when such temporary breakpoints are reached, and
stores additional information in the trace. An important property
of this implementation is that the scheduling of fair threads is never
affected by the debugger, since the scheduler is not aware of the in-
strumentation. In particular, the behavior of the debuggee program
is not changed, as opposed to debugging tools that rely on a special
interpreter or on source code instrumentation.

6.2 Benefits of the Tools

We have used our tools to debug BUGLOO itself. In the latest ver-
sion of the debugger, we have modified the GUI so that it does not
block anymore while the debugger queries information from the de-
buggee process. We have to manage a pool of fair threads, and to
use techniques such as nesting schedulers. The trace tool helped us
to understand that we were waiting a signal in the wrong instant.
We also saw that fair threads cooperated too much, leading to su-
perfluous empty instants in the execution.

The Fair Threads API and implementation are subject to change.
The scheduler is likely to be re-implemented to avoid unnecessary
context switches. For instance, all traces presented in this paper
show that the control always returns to the scheduler before the end
of instant. Our debugger will certainly help us in making a better
implementation.

We believe that the tools we have presented can be very useful for
educational purpose. They are simple to use and they help to un-



derstand what is going on in the scheduling of programs. This is a
good means to get acclimatized with this style of concurrent pro-
gramming based on signals and instants.

6.3 Current Limitations

We can detect dead-locks and live-locks, but the latter are currently
difficult to deal with. For example, if a fair thread is stuck in an
instantaneous loop, repeatedly awaiting a signal that is present in
the instant, the trace records a lot of events and may grow too much
to be displayed. To prevent this bug, the execution is automatically
suspended when an abnormal number of events occurred during a
single instant. Nevertheless, the repetitions stay visible in the trace
and should be grouped.

Also, while the trace tool is a good way to visualize the communi-
cation of threads, it says nothing about the actual processing (like
entering functions) done between the communication. This may
make the trace difficult to read for programs that do a lot of compu-
tation and/or side effects in between synchronizations.

Finally, we have not provided yet a good support for visualizing
large programs with many dozens of fair threads running concur-
rently. We should add means to show or hide signals and threads in
the trace. Also, the ability to display long traces in multiple views
in a Model-View-Controller fashion would be very useful.

7 Related Work

7.1 Debugging Concurrent Programs in Scheme

Every approach of concurrent programming comes with its spe-
cific problems with respect to debugging. Gambit-C 4.0 provides a
user space implementation of preemptive threads à la POSIX based
on continuations. We already discussed the problems inherent to
this approach of concurrent programming. PLT’s DrScheme [6]
provides CML-like [15] concurrent primitives, where threads are
meant to execute in independent address spaces with their only
communication being via messages sent through channels. How-
ever this approach does not solve the problem of direct shared mem-
ory access. The thread system found in Scheme 48 [11] is based on
optimistic concurrency, which provides a sort of per-thread cached
view of the global address space. The use of caches makes it diffi-
cult to maintain a valid global state and to visualize it. FrTime [3]
implements concurrency with functional reactive programming. It
provides signal processors in the spirit of Fran [4] that run in re-
sponse to “events” such as alarms or messages. To our knowledge,
none of the former systems provides a complete tool for debugging
concurrency.

In general, tools for debugging concurrent systems suffer from the
same difficulty: one has to reason on a program by studying the
order in which locks are acquired, or messages are passed. For
example, the Concurrent Haskell Debugger [8] allows to visualize
graphically the state of CML-like communication channels. The
OptimizeIt! JVM profiler can log all the accesses to monitors that
occur throughout the execution, to analyze them off-line. On the
other hand, when debugging Fair Threads, one can reason on the
full algorithmic logic of his program (i.e, context switches, end
of instants, broadcasted/received signals), thanks to sequentiality,
determinism and signals. Model checkers [10, 9] are one notable
exception: these tools can exhibit complete sequences of execution
that lead to a dead-lock or a live-lock. To achieve this, they use
techniques such as temporal logics and state space exploration.

7.2 Advanced Traces Visualization

Traces are very effective to debug multi-threaded programs. In
GThreads [22], Zhao and Stasko provide a complete set of trace
views for graphically depicting the execution of program. One par-
ticularly interesting view is the so-called “History View”, in which
the lifetime of a thread is decomposed into colored segments which
represent the functions entered by the thread. Our own trace tool
would clearly benefit from this idea.

Jinsight [14, 19] is a Java tool for displaying and analyzing traces of
programs. It can generate interactive views that can be unrolled or
collapsed. It can also automatically detect patterns in the trace and
group them to avoid cycles. We should integrate a similar mecha-
nism into our scheduler traces, to fix the problem of live-lock trac-
ing presented in Section 6.3.

8 Conclusion

In this paper we have presented an extension of the source-level
debugger BUGLOO. It provides support for Fair Threads, a new
thread-based concurrent programming framework that combines
cooperative scheduling and strong communication based on syn-
chronous reactive programming.

We showed that unlike the classic POSIX multi-threading approach,
Fair Threads allow to provide the programmer with a strong debug-
ging support. We have described three tools to deal with specific
bugs that can arise with Fair Threads. First, an improved single-
stepper. Second, a scheduler and signal inspector to analyze the
state of threads when the program is suspended. At last, a sched-
uler tracer to analyze the progression of the scheduling off-line.

The presented tools are new in BUGLOO. We are working on faster
ways of recording traces, and on other views that would give more
insight on the scheduling activity. In the future, The Fair Threads
framework will likely provide means to execute arbitrary computa-
tion asynchronously (i.e, in preemptive threads). We plan to extend
the debugging support for these features.

9 References

[1] F. Boussinot. Java fair threads. Technical Report RR-4139,
INRIA, 2001.

[2] D. Ciabrini and M. Serrano. Bugloo: A source level debugger
for scheme programs compiled into jvm bytecode. In Pro-
ceedings of the International Lisp Conference 2003, 2003.

[3] G. Cooper and S. Krishnamurthi. Frtime: Distributed and
asynchronous functional reactive programming. Technical
Report CS-03-20, Department of Computer Science, Brown
University, 2003.

[4] C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP ’97), volume 32(8), pages
263–273, 1997.

[5] M. Feeley. Scheme request for implementation 18:
Multithreading support. http://srfi.schemers.org/srfi-18/srfi-
18.html, 2000.

[6] R. B. Findler, J. Clements, M. F. Cormac Flanagan, S. Kr-
ishnamurthi, P. Steckler, and M. Felleisen. Drscheme: A
progamming environment for scheme. Journal of Functional
Programming, 12(2):159–182, March 2002.



[7] E. Gallesio and M. Serrano. Programming graphical user in-
terfaces with scheme. Journal of Functional Programming,
13(5):839–866, September 2003.

[8] C. Grelck and S. Scholz. Axis Control in SaC. In T. Arts and
R. Peña, editors, Proceedings of the 14th International Work-
shop on Implementation of Functional Languages (IFL’02),
volume 2670 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, 2002.

[9] K. Havelund and T. Pressburger. Model checking java pro-
grams using java pathfinder, 1998.

[10] G. J. Holzmann. The model checker SPIN. Software Engi-
neering, 23(5):279–295, 1997.

[11] R. A. Kelsey and J. A. Rees. A tractable Scheme implemen-
tation. Lisp and Symbolic Computation, 7(4):315–335, 1994.

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Specifi-
cation. Addison-Wesley, Reading, MA, USA, 1997.

[13] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Program-
ming. A Nutshell Handbook. O’Reilly & Associates, Inc.,
1996.

[14] W. D. Pauw and G. Sevitsky. Visualizing reference patterns
for solving memory leaks in Java. Concurrency: Practice and
Experience, 12(14):1431–1454, 2000.

[15] J. Reppy. CML: A Higher-order Concurrent Language. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’91), num-
ber 6 in SIGPLAN Notices, pages 293–305. ACM Press,
1991.

[16] M. Serrano. Bee: an integrated development environment for
the scheme programming language. Journal of Functional
Programming, 10(4):353–395, 2000.

[17] M. Serrano, F. Boussinot, and B. Serpette. Scheme fair
threads. In To appear in the proceedings of the 6th ACM-
SIGPLAN International Conference on Principles and Prac-
tice of Declarative Programming, 2004.

[18] M. Serrano and P. Weis. Bigloo: A portable and optimizing
compiler for strict functional languages. In Static Analysis
Symposium, pages 366–381, 1995.

[19] G. Sevitsky, W. De Pauw, and R. Konuru. An information
exploration tool for performance analysis of java programs.
2001.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39:1175–1185, 1990.

[21] R. Stallman and R. H. Pesch. Debugging with GDB: the GNU
source-level debugger. Free Software Foundation, 4.09 for
GDB version 4.9 edition, 1993. Previous edition published
under title: The GDB manual. August 1993.

[22] Q. A. Zhao and J. T. Stasko. Visualizing the execution of
threads-based parallel programs. Technical Report GIT-GVU-
95-01, College of Computing, George Institute of Technology,
1995.

Acknowledgments

Many thanks to Bernard Serpette, Frédéric Boussinot, Manuel Ser-
rano, Stéphane Epardaud, Florian Loitsch and to the anonymous
reviewers for their helpful feedback on this paper. This document
has been typeset in Skribe.


	1 Introduction
	1.1 Preemptive or Cooperative Scheduling
	1.2 An Hybrid Solution
	1.3 Overview

	2 Scheme Fair Threads
	2.1 Fair Threads and Fair Scheduling
	2.2 A Simple Program
	2.3 API Overview
	2.3.1 Basic Thread Manipulation
	2.3.2 Communication by Signals
	2.3.3 Asynchronous I/O and SMP

	2.4 Classification of Fair Threads Bugs

	3 Debugging Fair Threads
	3.1 The Fair Threads Debugging Toolbox
	3.1.1 Enhanced Single Stepping
	3.1.2 Trace of Events
	3.1.3 List of Fair Threads

	3.2 Fair Thread Inspector
	3.2.1 Object Inspectors
	3.2.2 The Scheduler View
	3.2.3 The Fair Thread View
	3.2.4 The Signal View


	4 Tracing the Scheduling of Fair Threads
	4.1 The Trace Tool

	5 Bugloo in Action
	5.1 First Implementation
	5.2 Improving Notification
	5.3 Introducing Non-Determinism
	5.4 Profiling the Scheduling

	6 Practical Experience
	6.1 Implementation
	6.2 Benefits of the Tools
	6.3 Current Limitations

	7 Related Work
	7.1 Debugging Concurrent Programs in Scheme
	7.2 Advanced Traces Visualization

	8 Conclusion
	9 References

